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Application de la statique graphique

aux systèmes de l'espace.
Par M. B. MAYOR,

ingénieur et professeur.

[Suite et fin)l.

78. La propriété que possède tout polygone funiculaire

relatif à des forces données, de coïncider avec la

figure d'équilibre d'un fil sollicité par ces forces peut
encore être généralisée.

Dans ce but, considérons, préalablement un solide S

assujetti à des liaisons données, mais quelconques. On

sait que tout déplacement infiniment petit de ce solide

est caractérisé géométriquement par le complexe linéaire
formé par les droites normales aux trajectoires de leurs
divers points. De plus, ce complexe peut être considéré

comme le complexe d'action du système de rotations qu'il
est toujours possible de faire correspondre au déplacement

considéré.
Ceci posé, admettons que S soit sollicité par des forces

données (F4), (F%),...., (Fi),..., (Fn) et soient, d'une
manière générale,

Xi, Yi, Zi, U, Mi, N,

les coordonnées de la force (Fi) et

X, Y, Z, L, M, N
celles du système (F) qu'elles forment. Proposons-nous,

alors, en appliquant le principe des vitesses virtuelles, de

déterminer les conditions auxquelles doit satisfaire (F)

pour que »S demeure en équilibre.
A cet effet, imprimons à S un déplacement virtuel

compatible avec les liaisons, et & désignant une quantité
infiniment petite, soient

dp, âq, êr, &X, êfx, êv

les coordonnées du système de rotation qui définit ce

déplacement. Si l'on désigne par a;,-, yi et s,- les coordonnées

du point d'application de la force (Fi), les projec-
tions, sur les axes, du déplacement de ce point ont pour
valeurs

ÔXi d- (A + qzi — ry()
dy{ =&(fi-\- rxi- pz()
ÔZi & (v + pgt — qxi

1 Voir N° du 10 février 1904, page 112. — Article publié à l'occasion
du cinquantième anniversaire'de la fondation de l'Ecole d'Ingénieurs
de l'Université de Lausanne. (Voir Note de la Rédaction, page 104.)

et le travail virtuel de la force (Fi) a pour valeur

ê [Xi À + Yi fi + Zi v + p (yi Zi — Zi Yi)
-\- q (Zi Xt — Xi Zi) -|~ r (xi Yi — yt Xi) ]

ou, ce qui revient au même,

# [Xi À + Yi fi + Zi v -f U p + Mtq + Ni r].
Ou aura donc pour la somme des travaux virtuels de

toutes les forces données,

¦8 [X k + Y fi + Z v + Lp + Mq + Nr).

Dans ces conditions, il faut et il suffit, pour que S soit

en équilibre, que l'équation

XÀ + Yft + Zv + Lp + Mq+Nr=0
soit satisfaite pour toutes les valeurs de p, q, r, A, fi, v qui
correspondent à un déplacement compatible avec les.

liaisons. Mais, puisque les quantités p, q, r, K, ft et v

peuvent être considérées comme les coordonnées du
complexe attaché au déplacement considéré et que, par suite,
l'équation obtenue exprime que ce complexe est- en
involution avec le complexe d'action de (F), on peut énoneer

le théorème suivant :
Pour qu'un solide, assujetti à des liaisons quelconques

et sollicité par un système de forces donné, soit en éqvAli-

bre, il faut et il suffit que le complexe d'action du système

de forces soit en involution avec les complexes linéaires attaches

à tous les déplacements qui sont compatibles ¦ avec les

liaisons du solide.

79. Le théorème qu'on vient d'obtenir peut être

énoncé sous une forme un peu différente qui nous sera

utile.
Si l'on désigne, en effet, par s le degré de liberté du

solide S on démontre facilement que les complexes attachés

à tous les déplacements compatibles avec les liaisons

forment un système dont le nombre de termes est-précisément

égal à s. Gomme ce système définit ou caractérise

complètement les liaisons du solide, il en est évidemment
de même du système complémentaire que nous désignerons

dans la suite par (O). Dans ces conditions, le théorème

précédent peut s'énoncer de la manière suivante :

Pour qu'un solide, assujetti à des liaisons caractérisées

par le système complémentaire (O) soit en équilibre, il
faut et il suffit que le complexe d'action des forces données

appartienne, à (C5).


	...

