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Villa de M. Amédée Kohler, a Ouchy, sous Lausanne.
Coupe transversale.

intérieure, aux parties accessoires des facades, la menuise-
rie et la ferronnerie, et surtout aux arts industriels ot il
a produit d’excellents résultats.

Ainsi nos artistes, affranchis des préjugés d’écoles, ayant
pris conscience de leur force et de leur indépendance, ar-
riveront enfin & faire revivre un art national qui vaut bien
les autres et qui sera d’autant plus admiré qu’il sera sin-
cere el sans parti-pris.

Villa de M. Amédée Kohler, & Ouchy, sous Lausanne.

Vestibule.

Restons nous-mémes en art comme en littérature, ne
cherchons pas ailleurs ce que nous avons & notre porte, et
surtout n’imitons pas les autres quand ils sont en train de
se tromper.

Nous joignons a cet article, non point a titre d’exemple,
car nous avons conscience de la modestie qui convient dans
ce domaine, mais atitre de simple renseignement, les plans
de la villa de M. Amédée Kohler, & Ouchy, quiont été éta-
blis en cherchant a s’inspirer de ces principes, et nous es-
pérons qu'un avenir prochain nous permettra d’admirer
chez d’autres la réalisation plus compléte de I'ceuvre pa-
triotique que nous venons d’esquisser.

Lausanne, 6 janvier 1904.

Application de la statique graphique
aux systémes de lespace.

Par M. B. MAYOR, ingénieur,
Professeur ordinaire.
Ancien éléeve de Ecole d’Ingénieurs (188%-1887).

[Suite) 1.

CHAPITRE TV
Représentation des systémes de forces.

52. Considérons un systéeme de forces (F) constitué
par n forces quelconques (Fy), (Fy), -.... G 5 (Fa),
et supposons essentiellement que chacune de ces forces
soit définie sur le plan I, non seulement par ses deux
éléments représentatifs, mais encore & I'aide de ceux qui
correspondent & sa conjuguée. La force (F3), par exemple,
sera donnée par les quatre éléments Fi, i, @i, @';.

Imaginons, alors, qu’on concentre en chaque point tel
que @; une masse fictive égale a la composante verticale
de la force correspondante (/i) et, par suite, é¢gale aussi
au produit du moment, relativement au point O, de la

4

force I'; par le facteur constant De méme, concen-
I »

trons en chaque point tel que @ une masse fictive égale
au produit du facteur constant — par le moment de la
a

force I; pris par rapport au point O. Sil’on détermine en-
fin les résultantes I et F' des deux systémes plans cons-
titués respectivement par les forces /i et I”;, ainsi que les
centres de gravité @ et @' des deux systémes de masses
fictives @; et @i, les quatre ¢léments F, F', @, @' obte-
nus de cette maniére, définissent complétement, non seu-
lement le systéme (/'), mais encore son conjugué (/') par
rapport au complexe directeur.

En effet, le systéme (F) est réductible, d’'une maniére
et d’'une seule, & deux composantes dont l'une, située
dans le plan /I, sera dite la composante horizonlale, et
lautre, normale & ce plan, sera dite la composante verti-
cale. 11 est d’ailleurs évident que la composante horizon-
tale coincide avec I, tandis que la composante verticale

1 Voir No du 10 janvier 1904, page 24.




PRESReS = s e e e b

76 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

passe par le point @ et a pour intensité la somme algé-
brique des masses @;. Elle est donc ¢gale & la somme des
moments, par rapport & O, des diverses forces I multi-

pliée par le facteur — ou, ce qui revient au méme,
a

1 ;
égale au produit de ce facteur —a—par le moment de la re-

sultante /7, ce moment étant encore calculé par rapport
au point O. Il résulte de 13 que les seuls éléments F, F' et
@ suffisent pour représenter le systéme considéré puis-
qu’il est possible d’en déduire en grandeur, direction,
position et sens, deux composantes formant un systeme
qui lui est équivalent.

On verrait, d’une maniére analogue, que les trois élé-
ments £/, I et @ représentent complétement le systéme
conjugué (F); par suite, les quatre éléments I, I, @ et
@’ suffisent bien, comme nous ’avions annonceé, pour re-
présenter le systéme donné (F) et son conjugué (F’). En
conséquence, ces éléments seront appelés les éléments re-
présentatifs des systémes (F') et (F'). Comme il est utile,
d’autre part, de distinguer les éléments représentatifs
dont Porigine est purement géométrique de ceux dont la
nature est plutot mécanique, nous conviendrons désor-
mais de désigner par les minuscules /et /7 les lignes d’ac-
tion des composantes horizontales /' et /7. Quant aux
deux points représentatifs, nous les caractériserons par
les minuscules grecques ¢ et ¢©’; les majuscules @ et @'
seront alors réservées pour dénoter les intensités des com-
posantes verticales du systéme considéré et de son conju-
gué ou, ce qui revient au méme, les masses fictives qu’il
est souvent utile de concevoir comme concentrées sur ces
points représentatifs.

53. Les éléments représentatifs qu’on vient de définir
ne peuvent étre choisis arbitrairement; ils sont au con-
traire liés par certaines relations qu’on obtient sans au-
cune peine si I'on a soin de chercher préalablement les
expressions analytiques qui permettent de les caractéri-
ser.

Désignons, a cet effet, par

Xi, Y5, Zi, Li, Mi, N
les coordonnées, calculées par rapport aux axes précé-
demment choisis, de la force (). Les coordonnées du
systéme (/') ont alors respectivement pour valeurs

n

Xa=—r2l XeHie L= 2Ly,
| 1

1) G N e M=3 M,
1 1

Z:.\'Zi 5 x’\v:.l'A\‘i;
| 1

de plus, on voit immédiatement, en appliquant les rela-

tions du paragraphe 36 (chap. IlI), que les coordonnées
du conjugué (F") sont données par les formules

X i e X TS T
2) b ALE——SE W M=— M,

AL 'I' N, N/ az .

(o

Dés lors, si 'on remarque que le moment du systéme
(F') par rapport a 'axe Oz est égal au moment, par rap-
port au méme axe, de la composante horizontale de ce
systéme, on aura, entre les coordonnées = ety d’un point
quelconque de la ligne d’action f, la relation suivante :
3) zY—yX=N,
qui constitue précisément I’équation de cette ligne. En
raisonnant d’une maniére analogue et en tenant compte
des formules ci-dessus, on obtient immédiatement, pour
équation de la droite /7, la relation

4) Y —yX=— aZ

Si ’on remarque ensuite que la composante verticale
de la force (F;) a pour valeur Z; et qu’on désigne par ; et
y: les coordonnées du point ou la ligne d’action de cette
derniére force perce le plan //, on aura, en appliquant
les formules qui donnent le centre de gravité d’un sys-
téme de masses, et en appelant « et y les coordonnées du
point représentatif ¢,

n‘ l!
X Zi Xy Zi
i 4
i . st
27 234
1 1

Comme, d’ailleurs, le point (x;, i) est le point repré-
sentatif de la conjuguée (F'%), on a (§ 36) :

M; L;

Xy = — 5 i — ——
d Z; & T

et, par suite,

n n
2 M il

ot L B

Ll n 2 Zl T l!
2 Zi 2 Z

1

Finalement, en tenant compte des équations (1), on
obtient, pour les coordonnées du point ¢, les valeurs sui-
vantes :

M L

9) Th—as 5

Z

iy a

Un calcul analogue montrerait enfin que les coordon-
nées «’ ety’ du point représentatif ¢’ sont données par les
formules

6) =0 —, y'=—a—

54. Ces résultats obtenus, il est facile de trouver les
relations qui lient les éléments représentatifs d’'un méme
systeme de forces.

Tout d’abord, la forme méme des équations (3) et (4)
montre que les deux lignes représentatives f et [ sont
paralléles, et les deux premiéres relations du groupe (2)
indiquent que les composantes horizontales I et /' sont
égales, paralléles, et de sens opposés. D’ailleurs, ces pro-
priétés résultent immédiatement du fait que deux forces
telles que i et I'; sont égales, paralléles et de sens op-
posés.

Si ’on compare ensuite les équations () et (6), on ob-
tient immeédiatement
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par suite, les trois points O, ¢ et ¢’ sont en ligne droite.

Jusqu’ici les éléments représentatifs d’un systéme de
forces satisfont donc aux mémes relations que les éléments
représentatifs d’une force; cependant, comme nous le
verrons, les points ¢ et ¢’ ne sont plus respectivement
situés sur les lignes représentatives correspondantes [ et
{’. En revanche, ils satisfont & une condition essentielle
qu’on peut obtenir de la maniére suivante.

Soit :

y —kx

I’équation d’une droite quelconque issue du point O et
coupant en ¢ et ¢’ (fig. 10) les deux droites représentati-
ves [ et f'. On trouve facilement que les droites f et [’
sont définies par les équations suivantes:

LX4+ MY NZ

DT XN fpean (y — kx)=0,
LX + MY + NZ S
8) xY—yX+aZ~w(fl Ry =105

qui ne différent I’'une de ’autre que par les termes indé-
pendants des variables « et y. Par suite, ces deux droites
sont paralléles quelle que soit la valeur attribuée au coef-
ficient k£, c’est-a-dire quelle que soit la direction de la
droite issue de l’origine. Si donc on considére une homo-
logie ayant pour centre le point O, pour axe la droite &
Iinfini du plan // et admettant / et /” pour droites corres-
pondantes, on voit que les points ¢ et ¢’ se correspondent
aussi dans cette méme homologie. On peut donc énoncer
le théoréme fondamental qui suit :

Les lignes représentatives d’un meéme systéme de forces
sont paralléles, tandis que les poinls représentalifs sont ali-
gnés sur O. De plus, ces lignes et ces poinls se correspondent
dans une méme homologie, ayant O pour centre et la droite
a Pinfini du plan I pour axe.

Fig. 10.

55. Réciproquement, si I’on considére deux droites
[, [" et deux points ¢, ¢’ satisfaisant a loutes les condi-
tions qui viennent d’étre énoncées, et qu’on applique, sur
les droites [ et [’, deux forces [ et /" ¢égales, mais de
sens opposés, deux systemes de forces (/) et (/), conju-
gués par rapport au systéme directeur, se trouvent définis
dans ’espace.

Admettons, en effet, que le systéme (F) soit constitué
par la composante horizontale /' et par une composante
verticale @ passant par ¢ et ayant pour intensité le pro-

: : 3 1
duit du momentde /7, relativement a O, par le facteur —.

a
De méme, supposons que le systéme (F”) soit constitué
par la composante horizontale F” et par une composante
verticale @’ passant par ¢’ et ayant une intensité égale au

1
produit de -, bar le moment de /' relativement a O. Pour

vérifier la propriété réciproque qu’on vient d’énoncer, il
suffit d’établir que ces deux systémes sont bien conjugués
par rapport au systeme directeur.

Or le systéme résultant de (/') et de (F”) est constitué
par les quatre forces F, I/ @, @'. Si, d’ailleurs, on dési-
gne par r et " les distances de O aux deux points ¢ et ¢/,
et par d et d’les distances de ce méme point O aux droi-
tes [ et [/, on déduit immédiatement de la comparaison
des triangles semblables de la figure 10,

rd’—r’d:_().
Mais,
D= . F'd’,
a
1
O = — HdJs
a

par suite, puisque [ est égal & F” en valeur absolue,
, F
r@ + '@ ——_7(7‘(1’—7"(1):0.

En conséquence, la résultante des deux forces @ et @’
passe par le point O; de plus, son intensité est donnée par
la formule

o + @ =%F(d’—d).

D’autre part, les deux forces F et I’ forment un cou-
ple dont le moment normal au plan /7 a pour valeur, en
tenant compte de son signe,

Fd —d).

Ce moment étant d’ailleurs égal a celui du systéme ré-
sultant par rapport & son axe central, puisque cet axe
central, qui passe par O, est normal a //, la fleche de ce
systéme a pour valeur:

F(d — d)
o+ T

Le systeme directeur et le systeme résultant de (/) et

de (/7) ont donc méme axe central et méme fléche ; par

suite, leurs complexes d’action sont nécessairement con-
fondus, ce gqu’il fallait précisément établir.

56, L’homologie qui relie les élémenls représentatifs
d’un méme systéme est entiérement définie par un seul
couple d’éléments correspondants : 'axe et le centre de
cette homologie sont, en effet, indépendants du systéme
considéré et, d’ailleurs, toujours connus. De la résultent
quelques conséquences utiles pour la suite.

En premier lieu, si I'on connait trois des éléments
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représentatifs d’un systeme, il devient possible de déter-
miner immédiatement le quatriéme.

Admettons, en effet, qu'on connaisse, par exemple,
f, " et ©. Si 'on désigne, comme précédemment, par c et
¢’ (fig. 10) les points ott une droite quelconque issue de O
coupe [ et /7, qu'on méne ensuite par ¢ une paralléle a
ce, cette parallele passe nécessairement par le point cher-
ché ¢’ puisqu’elle est 'homologue d’une droite qui ren-
ferme ¢. Le point ¢’ est deés lors bien déterminé, car il
est, d’autre part, situé sur O¢.

Un procédé analogue permettrait ensuite, en suppo-
sant connus les éléments ¢, ¢’ et f, de déterminer f”.

Enfin, il est encore nécessaire de remarquer que les
deux points ¢ et ¢’ peuvent étre déterminés lorsqu’on
connait, en outre de f et f/, deux droites sur lesquelles ces
points doivent étre respectivement situés.

Soient, en effet, f et // (fig. 11) les lignes représentati-
ves données, g et b’ deux droites sur lesquelles doivent
respectivement se trouver ¢ et ¢”. Si I’on joint & O le point
de rencontre de g et de f, on obtient une droite qui coupe
/" en un point par lequel doit passer la droite ¢, homolo-
gue de g. On peut d’ailleurs tracer cette droite g’, car
elle est paralléle a ¢, et son intersection avec h/ détermine
le point ¢’. Quant au deuxiéme point cherché ¢, on peut
’obtenir soit par un procédé analogue, soit plus directe-
ment en cherchant Iintersection de O¢’ et de g.

Ajoutons encore qu’une méthode semblable a celle
qu’on vient de décrire permettrait de déterminer [ el [/,
en supposant qu’on connaisse, en outre de ¢ el ¢', deux
points par lesquels doivent respectivemenl passer ces
droites.

Ces résultats obtenus, il est nécessaire d’examiner quel-
ques cas particuliers qui se présentent fréquemment dans
Pétude des systémes de forces.

57. CGas d'un systéme réductible & une seule résul-
tante. On sail que lorsqu’un sysléme est réductible a une
seule résultante, son automoment s’annule. On a done,

dans ce cas,
LX +~ MY + NZ = 0,

et les équations (7) et (8), qui définissent les droites co et
c'o’ dela figure 10, deviennent respectivement identiques
aux équations des lignes représentatives /et f’. Le point
© est donc situé sur [ et le point ¢ “sur f'.

Réciproquement, lorsque I'un des points représentatifs,
© par exemple, est situé sur la ligne représentative cor-
respondante /, l'autre point représentatif est situé sur la
deuxiéme ligne représentative, et le systéme est réductible
a une seule résultante.

Dans ce cas, en effet, la droite c¢, représentée par
’équation (7), coincide avec f, ce qui entraine nécessaire-
ment la condition

LX+ MY + NZ =0 ;
nous pourrons donc énoncer le résultat suivant :

Pour gquwun systéme de forces soit réductible a une seule
résultante, il faut et il suffit que Uune de ses lignes repré-
sentatives passe par le point représentatif correspondant.

58. CGas d'un systéme réductible & un couple. Lors-
qu’'un systeme est réductible & un couple, on a simulta-
nément :

X0 V=T —E0):

L’équation (3), qui caractérise la ligne représentative f,

prend alors la forme

0:— IV
ce qui indique que cette droite est rejetée a Iinfini. De
plus, I’équation (4), qui définit la ligne représentative f',
se réduit a I'identité

=0
cette droite est donc indéterminée dans le plan /7. Comme,
d’autre part, un couple est assimilable & un systéme ré-
ductible a4 une seule résultante infiniment petite, mais
agissant a distance infinie, le point représentatif ¢ doit se
trouver sur f. Par suite, ce point est aussi a l'infini, ce
qui résulte d’ailleurs des équations () qui deviennent :

L =120,y =20,

Enfin, comme les quantités L, M et N sont en général
différentes de zéro, les formules (6) montrent que le point
¢’ est bien déterminé et reste, en général, & distance
finie.

Réciproquement, lorsque le point ¢ et la droite / sont
a l'infini, on a nécessairement :

X = e O =

La droite f’ est alors indéterminée et le systeme cor-
respondant est réductible & un couple.

D'aprés cela, les éléments représentatifs d'un couple
se réduisent simplement a un point ¢, situé & distance
finie, et & une force nulle, F, ayant pour ligne d’action [
la droite & infini du plan /7. D’aillenrs, il est bien évi-
dent que. pour définir la force nulle F, il est nécessaire
de donner son moment par rapport au point O. Ce mo-
ment, divisé par la quantité ¢, donne la composante ver-
ticale @’ de la conjuguée du couple, composante qui
coincide avec cette conjuguée et qu’il est utile, comme
nous I’avons déja expliqué, d’assimiler & une masse fictive
concentrée au point ¢’. Ajoutons encore que le point ¢’
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est le point représentatif de I’'un quelconque des plans du
couple considéré.

59. Gas d’un systéme réductible a une seule résultante
normale au plan //. On a, dans ce cas,
XY= Ol NI — 10"
et 'on déduit, des formules (2)
X0 el S — )

Par suite, lorsqu’un systéme est réductible & une seule
résultante normale au plan //, le systéme conjugué est
réductible & un couple. Il résulte immédiatement, alors,
du paragraphe précédent que la droite /' et le point ¢,
sont rejetés a I’infini, et que la droite f est indéterminée.
Les éléments représentatifs d’un tel systeme se réduisent
donc au point ¢ et & une force nulle /" agissant & distance
infinie et dont le moment, par rapport au point O, doit
étre donné si ’'on veut que ce systeme soit bien défini.

60. Cas d'un systéme en involution avec le systeme
directeur. Il résulte des formules (1) du chapitre III, que,
pour qu’un systeme (/) soit en involution avec le systéme
directeur, il faut et il suffit que I’on ait '

N+ aZ =0,
ou
aZ =—N.

Remplacant alors aZ par sa valeur dans I’équation (4)
de ce chapitre, on voit que celle-ci devient identique a
(3) ; par suite, les droites représentatives f et f”coincident.
Opérant ensuite la méme substitution dans les formules
(5) et comparant les résultats obtenus aux formules (6) on
voit que

z=u,y=y",
et les deux points représentatifs ¢ et ¢ sont aussi con-
fondus.

Réciproquement, comme les lignes représentatives ou
les points représentatifs d’'un méme systéme ne sont con-
fondus que lorsque

N+ aZ =0,
on peut énoncer le théoréeme suivant :

Powr quun systéme soit en involution avec le systéme
directewr, il fautA et il suffit, par exemple, que ses deux
lignes représentatives soient confondues et, alors, ses deuw
points représentatifs sont également confondus.

61. Représentation des complexes linéaires. On sait
que lorsqu’on multiplie par un méme facteur arbitraire
les six coordonnées d’un systéme de forces, le complexe
d’action de ce systéme ne change pas; il résulte, de plus,
des équations (4), (5), (6) et (7) que cette opération ne
modifie pas non plus les éléments f, [/, ¢ et @, qui repré-
sentent ce systéme. D’autre part, ces mémes équations
montrent que lorsque trois seulement des éléments
f, ', ¢, ' sont connus, il est possible de déterminer six
nombres proportionnels aux coordonnées du systéme cor-
respondant. Comme, enfin, un complexe linéaire quelcon-
que (/") peut toujours étre considéré comme le complexe
d’action d’un systéme de forces, on voit que les quatre
éléments purement géométriques f, [/, ¢ el ¢, utilisés

dans la représentation des systémes de forces, suffisent
pour représenter complétement, non seulement un com-
plexe linéaire (/"), mais encore son conjugué (/”) par rap-
port au systeme directeur.

Ces éléments représentatifs ont d’ailleurs des signifi-
cations géométriques simples. En effet, toul systéme (/)
ayant (/7) pour complexe d’action est, comme nous ’avons
vu, réductible & deux composantes dont 1’'une, normale
a /I, passe par ¢, tandis que l'autre, située dans le plan
I, a f pour ligne d’action. Comme les lignes d’action de
ces deux composantes sont, non seulement conjuguées
par rapport a (/7), mais encore rectangulaires, on voit
que ¢ est le foyer du plan /7 par rapport a (/I7), et /' la ca-
ractéristique de ce méme plan par rapportau méme com-
plexe. On verrait enfin, d’'une maniére analogue, que ¢’
et /' sont, respectivement, le foyer et la caractéristique
de /I par rapport au complexe conjugué (/).

Il n’est presque pas nécessaire d’ajouter que les élé-
ments représentatifs d’on complexe satisfont a la condition
d’homologie précédemment définie. De plus, on déduit
immeédiatement des résultals obtenus dans I’étude des
divers cas particuliers que présentent les systémes de
forces, les deux propositions suivantes :

Pour qu'un complece linéaire soit spécial, il faut el il
suffit que ses points représentatifs soient respectivement
unis awe lignes représentatives correspondantes. De plus,
lorsque cetle condition est satisfwile, les éléments représen-
tatifs du complexe coincident avec ceux de sa directrice.

Powr qu'un complexe linéaire soit en involution avec le
systéme divectewr, il faut et il suffit, par exemple, que ses
dewx lignes représentatives coincident, et alors les points
représentatifs sont confondus. Inversement, lorsque les
points représentalifs sont confondus, les lignes représenta-
tives coincident et le complexe correspondant est en invo-
lution avec le systéme directewr.

62. Condition d’involution de deux complexes linéai-
res. Si I'on désigne par u, v les coordonnées tangentielles
de la ligne représentative / d’'un complexe (/7), par u/, v’
celles de la ligne représentative f, on déduit immeédiate-
mentides formules (4) et (5) :

e TN
e o T RS
Y X

P By K
En combinant ensuite ces relations aux équations (7)
et (8), on obtient facilement les formules suivantes, qui
permettent de calculer les coordonnées homogenes d’un
complexe linéaire dont on connait trois des éléments re-
présentatifs :

\ : Uy
X =Ny £ e
au

w.e

Y= — uN, M= —N,
aw

! w . 3

B et B R N=N.

ou
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Ces relations obtenues, considérons deux complexes
linéaires (I7)) et (/3). Pour qu’ils soient en involution, il
faut et il suffit que leurs coordonnées satistassent & la
condition

LiXo + MYy + NZy 4+ X\ Ly + Y My + Z,Ny = 0
qu’on peut écrire, en tenant compte des formules préce-
dentes,

Lyavy | — Myawu'y — Nowy + Zoau'y 4wy (g Yo—1y,X5) = 0.

Or cette équation ne change pas lorsqu’on modifie (/7))
de maniére que, les lignes représentatives f) et [’; restant
fixes, le point ¢, se déplace parallélement a la droite re-
présentative f, de (1) ; car, dans ce cas, le seul terme

xy Yo — 11y

qui dans la relation précédente dépend de ¢;, conserve
la méme valeur. Comme on peut, en particulier, déplacer
¢, jusqu’a ce que ce point tombe sur f; en prenant la po-
sition désignée par ¢, sur la figure 12, et que, dans ces
conditions, ¢/, tombe également sur /'), en prenant la po-
sition désignée par ¢’;,, on voit qu’il est possible, dans
I’étude des conditions d’involution de deux complexes
(I) et (I'y), de remplacer (/7)) par une droite (y5) définie
par les éléments représentatifs fi, 'y, @j9, ¢’ 2. De méme, il
est évidemment possible de remplacer (/') par une droite
(72y) ayant fy et f5 pour lignes représentatives et, pour
points représentatifs, deux points ¢y et ¢’y tels que les
deux directions @, ¢o; et ¢y ¢’y soient paralleles a f;.
Enfin, puisque deux droites se coupent lorsqu’elles sont
en involution et réciproquement, il suffira, pour résoudre
le probléme proposé, d’appliquer aux deux droites (y9) et
(721) la condition de rencontre oblenue précédemment ;
si cette condition est vérifiée les complexes sont en invo-
lution, et ils ne le sont pas si celte condition n’est pas sa-
tisfaite.

h

Un calcul analogue au précédent montrerail qu’on
peut aussi substituer au complexe (/) une droite (y)
ayant ¢, et ¢'; pour points représentatifs et, pour lignes
représentatives, deux droites [, et /'jy passant respective-
ment, d’une part, par ¢, et ¢', et, d’autre part, par les
points de rencontre de f; et /7y avec la droite ¢, ¢'y. De la

résulte un deuxiéme procédé corrélatif du précédent et
permettant de reconnaitre dans quel cas deux complexes
donnés sont en involution.

63. Représentation des congruences linéaires. Tous
les complexes linéaires qui passent par une congruence
linéaire forment un systéme a deux termes et, réciproque-
ment, tous les complexes d’un systéme a deux termes
passent par une méme congruence linéaire. Dans ces con-
ditions, il suffit, pour obtenir la représentation d’une con-
gruence linéaire, de chercher la représentation du systéme
a deux termes.

Considérons alors un systéme a deux termes (C) défini
par deux de ses complexes (/7)) et (/). Soient :

Xy, Yy, Zy, Ly, My, Ny
et
‘Y:b Y‘b Z“.’Y L’l? M:?v Zv'l

les coordonnées de ces complexes, et désignons, en outre,
par fo, ', Qi @'y €t fo, 1o @2y @5 leurs éléments repre-
sentatifs.
Les coordonnées d’un complexe quelconque (/) appar-
tenanta (C) sont données par les formules:
X=X X, S0 La=t =i le s,
Y=Y, +4iY,, M=M +1iMs,
Z=12+4Z,, N=DN+ Ny,
ol / désigne un paramétre. Par suite, et en vertu des
formules (3) el (4), les équations des lignes représentati-
ves f et f/ de (/7) auront les formes suivantes :
(@Y, —yX; — N) + A (@Y, —yX, —Ny) =0,
@Y, — yX, + aZ) + A @Yy — yXy + aZg) =0 ,
tandis que, en vertu des formules () et (6), les coordon-
nées des points représentatifs ¢ et ¢’ du méme complexe

ont pour valeurs

e Ml-f—/llw:z '_L.1+/1L:2
"L'#'Zl+/‘~Z-z’ J_Zl+/1L'2,
A G
e N, & AN Y= N, + AN, 4

Par conséquent, lorsque /4 varie, c’est-a-dire quand
(1) décrit le systéme (C), les droites f et " engendrent
chacune un faisceau plan, tandis que ¢ et ¢’ décrivent
chacun une ponctuelle. De plus, il résulte aussi bien de
ces derniéres relations que des conditions géométriques
qui lient les éléments représentatifs d'un meéme com-
plexe, que ces faisceaux et ces ponctuelles sont en corres-
pondance projective. En outre, il est manifeste que les
faisceaux engendrés par f et // ont pour sommets : le pre-
mier, le point C commun & fj et & fy, le second, le point
¢’ commun & f;’ et & fy/; quenfin les ponctuelles ¢ et ¢’
déerites par ¢ et ¢’ passent : la premiere par ¢, el ¢y, la
seconde par ¢," et ¢y’

D’apres cela et en résumé, a tout systéme a deux ter-
mes correspond un ensemble formé de deux points €, €'
et de deux droites ¢, ¢’. Un complexe quelconque appar-
tenant au systéme est alors tel que ses lignes représenta-
tives f et /" passent respectivement par C et C’, tandis
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que ses points représentatifs ¢ et ¢’ sont respectivement
situés sur ¢ et ¢’. Si, d’ailleurs, on connait un seul des
éléments représentatifs de ce complexe, on peut immédia-
tement déterminer les trois autres. Supposons, en effet,
qu’on connaisse f, par exemple; on peut alors tracer la
droite f’ puisqu’elle est paralléle & f et qu’elle passe par
C’. Dés lors, il devient possible de déterminer ¢ et ¢’ a
l’aide de la construction indiquée au paragraphe 56, car
on posséde maintenant les deux lignes représentatives du
complexe et deux droites sur lesquelles sont respective-
ment situés les points représentatifs.

Réciproquement, on vérifie sans aucune peine qu’a
tout ensemble formé de deux points quelconques €, C et
de deux droites également quelconques ¢ et ¢’, on peut
faire correspondre un systéme a deux termes et un seul.
Les ¢léments représentatifs f, /7, ¢ et ¢/ d'un complexe
quelconque de ce systéme sont alors caractérisés comme
suit : fet /* passent respectivement par C et C’, tandis
que ¢ et ¢’ sont respectivement situés sur ¢ et ¢’. En con-
séquence, les quatre éléments C, C', ¢, ¢ doivent étre
considérés comme les éléments représentatifs d’un sys-
téme & deux termes ou d’une congruence linéaire.

64. Quelques remarques doivent étre faites au sujet
de ce qui précede.

En premier lieu, on sait qu’un systéme & deux termes
comprend, en général, un complexe linéaire, et un seul,
qui soit en involution avec le systéme directeur. Il est
d’ailleurs bien simple d’obtenir les éléments représenta-
tatifs d’un pareil complexe. Ses lignes représentatives
étant, en effet, confondues, elles coincident 'une et I'au-
tre avec la droite ¢ C’; de méme, et pour une raison ana-
logue, ses deux points représentatifs coincident avec le
point de rencontre de ¢ et ¢'.

En second lieu, lorsque deux des complexes d'un sys-
téme & deux termes sont en involution avec le systéme
directeur, il en est de méme pour tous les autres. Les
deux points C, C' sont alors confondus ainsi que les droi-
tes ¢ et ¢’; dans ces conditions, ces éléments ne suffisent
plus pour définir Je systéme correspondant et il devient
nécessaire de faire intervenir la correspondance projec-
tive qui lie le faisceau des lignes représentatives a la
ponctuelle des points représentatifs. D’ailleurs, on vérifie
immeédiatement, & ’aide des formules données plus haut,
d’une part, que cette correspondance est telle qu’au
rayon du faisceau qui passe par O doit correspondre le
point & l'infini de la ponctuelle, et, d’autre part, que lors-
que cette correspondance est définie, le systéme & deux
termes est lui-méme déterminé.

Une derniére observation doit encore étre faite. Une
congruence étant complétement déterminée par ses deux
directrices, il semble naturel, & premiére vue, de la défi-
nir 4 'aide des éléments représentatifs de ces deux droi-
tes. Mais, en procédant ainsi, on serait conduit, dans cer-
tains cas, a4 représenter une congruence réelle a I'aide
d’éléments imaginaires, puisqu’une congruence réelle
peut avoir ses deux directrices imaginaires.

Ces remarques faites, il y aurait lieu de rechercher le
mode de représentation des systemes de complexes linéai-
res &3, 4 et 5 termes; mais cela nous ferait sortir des
limites que nous avons du fixer a cette série d’articles et
nous nous bornerons, pour terminer ce chapitre par
quelques applications, & montrer comment les résultats
obtenus peuvent étre utilisés dans la solution de quel-
ques problémes usuels relatifs a la théorie des complexes
linéaires.

65. Probléme I. Déterminer le plan focal d'un point
par rapport & un complexe linéaire donné par ses élé-
ments représentatifs.

Soient P, P’ (fig. 13) les éléments représentatifs du
point donné (P) et fi, [/, ¢, ¢, ceux du complexe
linéaire, donné également (/7).

Fig. 13.

Toutes les droites de (/7) qui passent par (P) forment
un faisceau dont le plan coincide précisément avec le plan
focal cherché, et, pour résoudre le probléme proposé, il
suffira de déterminer les éléments représentatifs de deux
de ces droites. De plus, on sait que chacune de ces droi-
tes peut étre considérée comme la directrice d’'un com-
plexe spécial en involution avec (I7).

D’aprés cela, faisons passer par P une droite quelcon-
que f,. Si nous la considérons, ce qui est évidemment
possible, comme la ligne représentative d’une droite (fy)
issue de (P) et appartenant & (/7), il devient possible de
déterminer son point représentatif ¢,". Car, d’une part,
ce point est situé sur P’; d’autre part, si I'on projette ¢,’
parallelement & f; et jusque sur f;’, on obtient un point
055" tel que la droite de I'espace définie par les deux élé-
ments /; et ¢;," doit rencontrer la droite définie par f," et
@,’. Si donc on méne par ¢," une paralléle a la droite qui
passe par O et par le point de rencontre de f; et de f,
cette paralléle coupe P’ au point cherché ¢,'.

En considérant ensuite une deuxiéme ligne représen-
tative f; issue de P, on peut, par I'application du méme
procédé, déterminer un point représentatif ¢, tel que la
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droite correspondante (f;) passe par (P) et appartienne
encore au complexe (/7). Le plan cherché est alors déter-
miné par les deux droites (f) et (f3), et 'on peut obtenir,
a l'aide d’opérations déja décrites, ses éléments représen-
tatifs = et 7',

Il n’est presque pas nécessaire d’ajouter qu’on résou-
drait par un procédé semblable le probléme ayant pour
objet la recherche du foyer d’un plan par rapport & un
complexe linéaire.

66. Probléme II. Déterminer la conjuguée d'une
droite donnée par rapport 4 un complexe linéaire.

Il suffit de choisir sur la droite donnée deux points
quelconques et de déterminer leurs plans focaux en ap-
pliquant la méthode qu’on vient de décrire. La droite
d’intersection de ces deux plans constitue précisément la
conjuguée cherchée.

67. Probleme III. Déterminer l'axe d'un complexe
linéaire donné par ses éléments représentatifs.

On résout facilement ce probléme en s’appuyant sur la
remarque suivante qui, d’ailleurs, nous sera utile dans
d’autres circonstances.

Tout d’abord, une résultante générale quelconque d’un
systéme (F) a pour éléments représentatifs une force
égale et paralléle a la composante horizontale £ de ce sys-
téme et un point astreint a la seule condition de se trou-
ver sur la ligne représentative [’ de ce systéme. Csla
résulte immédiatement du fait que le moment de la com-
posante I’ par rapport & O est proportionnel a la compo-
sante verticale @.

D’autre part, les diamétres du complexe d’action de
(F) étant paralléles a la résultante générale de ce sys-
téeme, les lignes représentatives de leurs droites conju-
guées coincideront toutes avec la ligne représentative f’
de ce complexe. Dans ces conditions, les plans normaux
aux diamétres auront pour point représentatif commun
lantipole de f’ par rapport & la circonférence directrice.
I’axe cherché étant le lieu des foyers de ces plans, il suf-
fira, pour résoudre le probléme proposé, de déterminer le
foyer de 'un d’entre eux, puis de mener par ce point une
paralléle a la direction des diameétres.

68. Probleme IV. Déterminer les directrices d'une
congi‘uence linéaire définie par ses éléments représenta-
tifs.

On sait que les directrices d’une congruence linéaire
coincident avec les directrices des complexes spéciaux
appartenant au systéme & deux termes qui correspond a
cette congruence.

Soient alors G, C', ¢, ¢’ (fig. 14) les éléments représen-
tatifs de la congruence donnée ou du systéeme & deux ter-
mes correspondant (C). Désignons, de plus et d’une ma-
niére générale, par f, [/, ¢ et ¢’ les éléments représentatifs
d’un complexe quelconque (/) appartenant a (C). Nous
avons vu que, lorsque (/") varie, [ engendre un faisceau
de centre C projectif a la ponctuelle ¢ décrite par ¢. Dans
ces conditions, le point d’intersection 4 de f et de ¢ en-
gendre une ponctuelle projective et superposée a celle
qui correspond & ¢. Comme, d’ailleurs, la ligne représen-
tative d’un complexe spécial est toujours unie au point
représentatif correspondant, il suffit, pour résoudre le

Fig. 14.
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probléme proposé, de déterminer les éléments unis de ces
deux ponctuelles superposées.

A cet effet, choisissons sur ¢ trois points quelconques
Ay, "4y, Ay en les joignant a €, on obtient trois droites f},
/5, 5 qu’on peut envisager comme les droites représenta-
tives de trois complexes du systéme (C), et il est possible,
en appliquant une construction donnée, de trouver les
points représentatifs correspondants ¢;, ¢z et ¢;. On pos-
séde ainsi trois couples d’éléments correspondants 4, ¢,
A, @5, Ay 05 et 'on peut obtenir immeédiatement, a l'aide
du procédé classique, les éléments unis ¢, et ¢. Chacun
de ces éléments coincidant, enfin, avec le point représen-
tatif d’une directrice, on trouve sans aucune peine tous
les éléments représentatifs des deux directrices cher-
chées. On peut facilement suivre toutes les constructions
sur la figure 14, dans laquelle ces éléments représentatifs
ont eté déSignéS par fP) fll’ﬁ Lo, C’/P et an f’q7 Pa, 90"1'

(A swivre.)

La locomotion électrique & grande vitesse
sur voies ferrées .
Par M. E. GAILLARD,

Ingénieur.
Proresseur extraordinaire a ’Ecole d’Ingénieurs.
Ancien éleve de I'Ecole d’Ingénieurs.
(1893-1897).

Introduction. — Les essais de locomotion électrique sur
voies ferrées qui viennent d’étre effectués en Allemagne —
entre Zossen et Marienfelde, prés de Berlin — ont eu par-
tout un grand retentissement. La vitesse considérable de
200 km a I’heure a été atteinte, puis dépassée, et cela non
pas accidentellement, mais dans des conditions telles qu’il
sera facile de renouveler les mémes expériences a volonté.
Nous avons pensé que les lecteurs du Bulletin seraient
heureux d’avoir sur ce sujet quelques renseignements.

La vitesse de 200 km. n’a pas été obtenue d’emblée; il
a fallu de longs mois d’essais et des expériences nombreu-
ses, permettant de déterminer les divers éléments du pro-
bleme.

Cest en 1899 qu’il est sérieusement question pour la
premiere fois, de réaliser de pareilles vitesses. Ensuite d’une
conversation entre MM. Rathenau et Schwieger, qui s’étaient
rencontrés par hasard dans le rapide Berlin-Milan, une
entente intervint entre la Société générale d’électricité et
la maison Siemens et Halske, toutes deux a Berlin; on de-
vait construire une ligne pour y effectuer des essais de lo-
comotion & grande vitesse. Ce projet rencontra approba-
tion et 'appui sympathique des autorités, de plusieurs
maisons de construction importantes et des financiers;
aussi une société put-elle étre bientot constituée, sous
le nom de «Société pour I'étude de la locomotion élec-
trique & grande vitesse » (Studiengesellschaft fur elek-
trische Schnellbahnen). Voici quels en étaient les mem-

+ Voir Elektrotechnische Zeitschrift, 1901, nos 34, 37, 38, 41 ; 1902,

n° 32. Revue d'électricité, 1902, no 1 et suivants. Glasers Analen, 1903,
ne 619,

bres fondateurs : la Société générale d’électricité, Siemens
et Halske, la Deutsche Bank, la National Bank, MM. Del-
bruck Leo et Ce, Jakob S.-H. Stern, Bowig, Krupp, Ph.
Holzmann, van der Zypen et Charlier (Cologne). La prési-
dence du Conseil d’administration de la Société fut confiée
4 M. Schulz, président du Service impérial des chemins de
fer. Un comité technique se mit aussitot a ’étude et élabora
les bases sur lesquelles les essais se feraient. Il fut décidé
que les expériences seraient organisées sur la ligne militaire
Zossen-Marienfelde; la maison Siemens et Halske construi-
rait la ligne électrique, et la Société générale d’électricité fe-
rait le nécessaire pour la fourniture du courant depuis son
usine de I’Obersprée, a Berlin; chacun des concurrents
équiperait une voiture, dont MM. van der Zypen et Char-
lier livreraient les bogies et la caisse.

Programme des conditions a remplir par les concurrents.
Les constructeurs se mirent a ’ceuvre ; ils avaient a satis-
faire aux conditions suivantes :

Les essais seront effectués sur la ligne a écartement
normal Marienfelde-Zossen, longue de 23 km.; le rayon
minimum de celle-ci est de 1000 m. et la pente maximum
1:184.

La voiture, de profil normal, pourra prendre 50 person-
nes ; elle sera portée par deux bogies, avec chacun 3 es-
sieux chargés de 16 tonnes au maximum, y compris les
voyageurs.

L’énergie électrique sera fournie sous forme de cou-
rants triphasés, a la tension de 10000 volts (45-50 pé-
riodes).

La mise en marche et le réglage devront pouvoir s’ef-
fectuer depuis chaque extrémité du véhicule, et il faudra
que I'équipement électrique soit calculé et dimensionné de
telle sorte qu’apres une course de 250 km., ’échauffement
de toutes ses parties ne soit pas anormal.

La vitesse sera de 200-220 km. a I’heure.

Le démarrage et le freinage seront tels qu’il reste un
temps suffisant pour faire des observations précises, a toute
vitesse, entre la fin du premier et le commencement du
second.

Tous les appareils de mesure et de controle nécessaires
seront installés sur la voiture, qui sera éclairée a 1’électri-
cité; il est permis d’utiliser, pour cet éclairage, une batte-
rie d’accumulateurs.

Détermination de la puissance nécessaire. — Comme on
le voit, il n’est pas question, dans le programme, de la
puissance a donner aux moteurs. (’est qu'on voulait lais-
ser aux constructeurs toute latitude a cet égard. Jamais
encore personne n’avait eu l'occasion d’expérimenter des
vitesses aussi considérables, et il y avait lieu de détermi-
ner plusieurs éléments inconnus. Quelle serait, par exem-
ple, 'influence de la forme de la voiture, de la résistance
de Pair; comment la déterminer a priori. En prenant les for-
mules anciennes, on arrive & une puissance de 3000 chevaux
environ, en marche normale, pour 200 km. de vitesse!. 1l

' La formule de Grave et Clark donne la résistance suivante :
[ =2,25 + 0,001 »? = 42,25 kg.




	Application de la statique graphique aux systèmes de l'espace

