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Etude sur les forces d'inertie de la bielle.

par M. E. HAHN,
Ingénieur.

Professeur extraordinaire à l'Ecole d'Ingénieurs.

Le mécanisme de la bielle et de la manivelle a déjà fait
l'objet de nombreux travaux. Ceux-ci, toutefois, sont presque
tous consacrés à l'étude cinématique du mécanisme seulement

; les questions relevant du domaine de la dynamique
y sont le plus souvent laissées de côté. Aujourd'hui, cependant,

par suite de l'emploi toujours plus fréquent de grandes
vitesses dans les machines, le cas où les forces d'inertie du
mécanisme ne sont plus négligeables devant les forces
extérieures, se rencontrent de plus en plus souvent. L'étude

dynamique du mécanisme n'a donc pas seulement un intérêt
au point de vue théorique, mais aussi une importance
pratique.

Nous commencerons par étudier la distribution des

accélérations de la bielle, puis nous déterminerons les forces

d'inertie, enfin, nous en calculerons leseffets. Dans ce travail,
nous suivrons une méthode que nous avons lieu de croire
nouvelle.

§ I. — Détermination des accélérations des points
de la bielle.

Nous appliquerons, pour résoudre ce problème, le
théorème de cinématique suivant : Lorsqu'une figure plane se

déplace dans son plan, il existe à chaque instant un point
d'accélération nulle A jouissant de la propriété suivante :

l'accélération de chaque point de la figure est proportionnelle
à sa distance de A, et forme avec le rayon joignant ce point
à A un angle constant pour une position donnée de la figure.
Cet angle varie d'ailleurs d'une position à une autre.

Considérons une droite g de la figure. Soient (fig. 1) P
un point quelconque de cette droite ; A, le centre des
accélérations pour la position considérée; r, la distance de P à

A ; p, l'accélération de P ; p' et p", ses composantes dans
la direction de g et perpendiculairement à g ; -L, l'angle
constant formé par p et r. Nous avons :

p' pcos(<p + <£),

p»=psin(^ + $),
mais, en vertu du théorème précédent, nous pouvons écrire,
en désignant par k un facteur de proportionnalité dont la
valeur explicite n'importe pas ici :

p kr,
et par suite :

p' — k (rcos^cos^/ — rsin^sin^).
p"=k (rsinç>cos^ — rcos^sin*^.

Mais, d'après la figure, on a :

r cos tp AB — d,

r sin <p BP x,
donc :

p' kd cos <\L — kx sin ¦d,,

(1)
p" kx cos t/- + kd gin ^.

P
¦*-.--

V

à \ T P<s> \cf
w?,

t-*A

Fig. 1.

Or l'angle «L est constant pour une position donnée, de
même d et fe; si nous considérons d'autres positions de P, x
seul variera. Nous pouvons donc énoncer le théorème
suivant : Les composantes de l'accélération des points d'une
droite, prises dans le sens de la droite et dans le sens
perpendiculaire, varient linéairement le long de cette droite. On voit
immédiatement que, si l'on connaît l'accélération de deux
points de la droite g, il sera facile de déterminer l'accélération

d'un point quelconque. Il suffira (fig. 2) de former les

/>ï°

B r# ¥
R r,.r y°

TR *£

P

Fig. 2.

composantes p\, p".t et p\ et p'\ des accélérations données,

pi et p2 (les composantes p' étant tracées perpendiculairement
à la droite pour la construction) ; en joignant les

extrémités de p\ et p'2 d'une part, et de p'\ et p'\ d'autre
part, on obtiendra les deux droites définies par les équations
(1); par conséquent les longueurs Pp' et Pp", déterminées
sur une pendiculaire à la droite considérée, passant par un
point quelconque P, ne sont pas autre chose que les composantes

p' et p" de l'accélération p de P.
Application à la bielle. Soit (fig. 3) une bielle AB de

longueur l, articulée en fi à une manivelle BC de rayon r.
Nous supposerons que la manivelle se meut d'un mouvement

de rotation uniforme; soit a> la vitesse angulaire.
L'accélération pB du point B est, dans cette hypothèse,
égale à a>V et dirigée suivant le rayon BC.

Quant au point A, soi) mouvement étant rectiligne, son
accélération pA est dirigée suivant At A3. On voit que si
l'on connaissait la valeur de pA, on se trouverait dans les
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conditions du problème que nous venons de résoudre, et

que, par suite, l'accélération d'un point quelconque de la

bielle pourrait, être déterminée facilement.
La valeur de pA est donnée algébriquement par la

formule
r

Pa w%r cos w l
COS À ce

(voir par exemple Bach, Eléments de machines), on sait

aussi quepA est égale àla sous-normale de lacourbe des vitesses

du point A (Construction de Prœll, voir des Ing. Taschenbuch

Hütte) et peut être ainsi déterminée graphiquement.
Cette construction toutefois ne donne pas de résultats

exacts par suite des erreurs inévitables que l'on commet

dans le tracé de la normale. Nous allons indiquer une
nouvelle construction de pA-

Interprétons graphiquement ce résultat :

r cos w EC
cos a cos a

BD.

en substituant dans pA et en réduisant au même dénominateur

dans la parenthèse, nous trouvons :

pA
û>2 CD f BD — I sin a sin a
cos a I sin a

Mais
l sin a BE

I sin a sin a BE sin a BF, (EF jl AD)

donc:

pA
aPCD{BD — DF)

BE cos a

I kX H

B^-"'E

&*/P
CX.

CEA
Fie. 3

On sait que la vitesse vK de A est exprimée par le

produit :

VA (U CD,

par conséquent :

Vk
dvA

dt
d(CD)

dt
Mais

CD ACtga,

De plus, nous pouvons écrire :

CD d(AC)AC

de sorte que

tga
et dt

— vA a> CD.

r CD 1 da M 1

l_tga cos2 a dtPa o>

Nous avons en outre :

BE l sin a r sin tp,

et en dérivant par rapport au temps t :

I cos a
da
~dt

da

r cos w
dtp
~dX r w cos tp ;

nous tirons de là -tt-; en remplaçant dans pA, il vient

finalement : •

Fa
afiCD
cos

•DT r cos tp
— I -,—; sin a I ¦

a [( sin a cos a

1 Le signe — devant le second terme du membre de gauche pro
vient de ce que AÇ décroît lorsque tp va en croissant.

Menons CG parallèle à FE, CH parallèle à ED, les

triangles FBE et GDC ainsi que BED et DCH sont semblables

par suite :

DF GH

GH

BE ~~ DC

CD DF
BE

Si nous désignons généralement par p' et p" les mêmes

composantes de l'accélération que plus haut, nous avons:

p'A Pa cos a aP (DH — DG),

Pa^w^KH—KI)1,
p"A pA sin a <w2 (GL — IL).

La construction est, on le voit, fort simple, il suffit de

tracer les lignes GC, CH, HI, DK et KL pour obtenir, au

facteur aß près, pA et ses deux composantes.
Nous avons remarqué que :

pB a»2 r ufl BC,

nous trouvons, sans nouvelle construction :

P'b oß BG,

p"B a»2 GC.

Quant au sens des vecteurs p, il est facile à fixer : pB
est une accélération centripète, pA est, comme on sait,

positif pour <p ^ 7Q(1 ^g,, négatif pour tp ;> .^q,, (Lavaleur

79° 16' pour laquelle pA s'annule, est calculée dans

1 Dans la figure 3, DK est; par erreur perpendiculaire à AC, en
réalité DK doit être mené perpendiculaire à AB.
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r 1\l'hypothèse d'un rapport ~r -g-1; pour le retour, si 1 on

compte l'angle ç? à partir du point mort opposé, la valeur
de <p pour laquelle pA change de signe est 100°44'.

Si maintenant nous répétons pour la bielle AB la
construction de la figure 2, nous aurons pour les composantes
p' et p" de l'accélération d'un point quelconque, P, de la
bielle, situé à une distance x de la crosse A, les relations
suivantes :

p' p'A + y (p B — p'A),

(2)

p"A + -J- (p"B — p"A)-

F" p"A f dm+ -j (p"B — p"A) /' xdm.J (t P> t/ 0

Or, si M désigne la masse totale de la bielle, x0 la
distance du centre de gravité au point A, on a :

f xdm M.Xo,I dm M,J 0

et par suite :

[tg ,'^M[p'A(l-^)+p'B^],
(3)

^m[p»a(ï-x) + ^-t}

§ II. — Calcul des forces d'inertie de la bielle.

Nous remarquerons d'abord que, les dimensions des
sections transversales de la bielle étant généralement faibles

comparativement à r ou i, nous pouvons supposer les

masses concentrées sur l'axe AB. Ceci étant, nous trouvons
la force d'inertie dF agissant sur l'élément de masse dm
situé en x (fig. 3), en formant le produit pdm.

Plutôt que de considérer les forces dF, nous envisagerons

leurs composantes dF' et dF' prises dans le sens de

AB et perpendiculairement à AB. En tenant compte des

relations (2), nous avons :

ce
dF' p'A dm + -j (p'b — p'a) dm,

dF" p'\ dm + -y (p"B — p"A) dm1.

Les forces dF' et dF" étant respectivement parallèles
entre elles, nous en trouvons les résultantes F' et F" en

intégrant les équations ci-dessus entre les limites o et l :

F' =p\ f dm+ -j- (p'B — p'a) f xdm,

La force F' étant dirigée suivant AB, son point d'application

peut être choisi en un point quelconque de cette
droite, par contre il est nécessaire de déterminer le point
d'application de F', soit z la distance de ce point au point
A. Ecrivant l'équation des moments par rapport à A, nous
avons :

1 Au sujet du sens des forces dFt et dF", on remarquera qu'il est
opposé à celui des composantes pt et p", la direction de la force
d'inertie étant opposée à celle de p.

F'z p"A /*' x dm + (p"B - p"A) f '

t/ o «/ o

I X
dm,

mais, I x dm Mxa, I x2 dm I My
où / désigne le moment d'inertie de la bielle par rapport à

un plan perpendiculaire à AB, passant par A (y rayon
d'inertie correspondant à i).

Ce moment d'inertie pourra s'évaluer soit algébriquement,

soit graphiquement à l'aide de la méthode de Mohr
par exemple, soit enfin, si l'on dispose d'un exemplaire
déjà exécuté de la bielle, par l'expérience : on fera osciller
la bielle autour du point A ; la mécaniquerationnelle donne

pour la durée d'une oscillation simple la formule :

V x0g

d'où l'on pourra déduire y2, si l'on observe T.
En introduisant les valeurs indiquées- plus haut et en

remplaçant F" par sa valeur : il vient

P A [Xn
(4)

„ y2

P a 1 r- A-Pb-t
y étant toujours plus grand que x0, on voit, en discutant
l'expression de z, que

2/2
a5o<z<4--

Cette remarque peut être utile pour certains calculs
approximatifs.

§ III. Effets des forces d'inertie.

Dans chaque position de la bielle les forces d'inertie
devront être équilibrées par une force extérieure. Par
exemple, si nous prenons le cas d'une machine génératrice,
machine à vapeur ou moteur à gaz, une partie P de la force
exercée par le fluide sur le piston sera employée à vaincre
les forces F' et F'. Inversement, s'il s'agit d'une machine
réceptrice, le couple à exercer sur l'arbre devra être calculé
comme si à la résistance agissant sur le piston venait
s'ajouter une certaine force P. Donc un premier problème
se pose : Déterminer la force P qui, appliquée en A et dirigée
suivant AC, fait équilibre aux forces d'inertie F et F'.

On voit de plus que les composantes de .F" étant
perpendiculaires à AB, sollicitent la bielle-à la flexion. D'où un
second problème : Déterminer l'influence de cette sollicitation

secondaire à la flexion sur la résistance de la bielle.
4° Calcul de la force P1. — On trouve dans les ouvrages

techniques différents moyens de tenir compte des forces
d'inertie : Radinger propose d'admettre la masse de la bielle
entièrement concentrée en A, autrement dit de l'ajouter
simplement aux masses du piston, delà tige du piston et de

la crosse, d'autres indiquent de supposer les 2/8 de M con-

1 Ce travail était déjà rédigé, lorsqu'à paru dans la Zeitschrift des
Vereines deutscher Ingenieure, N° 45, année 1903, un article de M. le
professeur Mollier traitant du même sujet, mais donnant une méthode
entièrement différente.
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centrés en A, et i/3 en B, d'autres encore 4/2 de M en A, et

i/2 de M en B.
Un déplacement infiniment petit de la bielle est une

rotation autour du centre instantané de rotation N (fig. 4).

La force P devant faire équilibre aux forces F' et F', son

moment par rapport à N doit être égal et de signe contraire
à la somme des moments de F' et F".

N

' IQ-*

K

n
cR

Fig. 4.

P NA=F' .ND — F" (z — AD),

P-F'^_ F" ÊBÊa^\
^—rNA \NA~~NAy

F' cos a — F" [
-jv-z sin a I;

soit, en mettant pour F et F" leurs valeurs (3) :

P M p'A 11 f J cos a -f- p'b -y cos a +
X'„

//'a (1 —t- ] sin a + p"a — s"BysinaJ F A'A

mais

donc

p'a cos a + p"A sin a — pA,

p'B cos a + p" sin a pB cos ^,

P Jl/[(l-^)pA+^pBCOSf] F"z
NA

D'autre part, le triangle NAB donne la relation

NA l l

d'où NA

sin (a A <P)

l

cos (p

sin (a + cp) ;

y* cos g
p B .ssin(a-|-ç5)J

COS ^>

en mettant pour F"z la valeur trouvée plus haut (4), i I vient :

F"s ,A n V*\ cos<?
iVA L V '/ *8in(o-J-çff)

On reconnaît sur la figure que

P»'
sin (a + <p) Pb'

de sorte que l'on a finalement en remplaçant dans P, et en

groupant les termes semblables

P= m\ Xq

T
,xo y*\

pA + \-j m }Pb COS f

T-T'p
cos <p

in (a + tp) J

Chacun des facteurs variables qui entre dans cette
expression peut être facilement trouvé à l'aide des constructions

indiquées plus haut. Pour épargner la peine de cette
construction, nous donnons ci-dessous, pour 8 points de la

demi-circonférence, les valeurs que prennent les quantités

„ cos tp
pA, Pb cose? et va——-,—,— • Ce tableau permet aussi der*, r» r f sm(aA(p)
se rendre compte de l'ordre de grandeur des différents

termes ; il est établi pour le rapport usuel -y ^-.

"Ô.0. ' Pa „" cos f" A~~. 7 i—T\sin (a + 0)
PB cos Li

pB COS 0 —

p-'A cos <p

"sin (a + <p)

0°00' + 1,200 ra« 0,000 riß + 1,000 ru* + 1,000 ru*
22° 30' + 1,065 » 0,166 ' + 0,924 » + 0,758 »

45° 00' + 0,707 » 0,088 + 0,707 » + 0,619 »

67° 30' + 0,242 » 0,022 » + 0,383 » + 0,361 »

90° 00' — 0,200 » 0,000 » + 0,000 » + 0,000 »

112° 30' — 0,524 » 0,044 » — 0,383 » — 0,427 »

135° 00' — 0,707 » 0,117 » — 0,707 » - 0,824 »

157° 30' — 0,781 » 0,179 P) — 0,924 ¦ - 1,103 »

130° 00' - 0,800 » 0,000 B - 1,000 » - 1,000 »
II

Quant aux facteurs

1 - T et i
yf
p '

qui figurent également dans l'expression de P, ils dépendent
naturellement de la forme de la bielle et de la répartition
des masses dans celle-ci. Cependant leur valeur ne varie

pas autant d'un cas à l'autre qu'on pourrait le penser.
M. Mollier donne, dans son travail, les chiffres trouvés pour
des bielles de machines très diverses : les limites extrêmes

sont 0,35 et 0,45 pour 1 - -^, et0,03et0,14pour-f—j-'la

moyenne est 0,40 dans le premier cas, 0,06 dans le second.

De mon côté, j'ai déterminé les valeurs des mêmes facteurs

pour les bielles de quelques machines de construction
récente et suis arrivé aux mêmes résultats.

Ces chiffres et l'expression trouvée pour P montrent
qu'il est en tous cas absolument faux d'adjoindre toute la
masse de la bielle aux masses du piston, de la tige du piston

et de la crosse ; la fraction 2/3 est, elle aussi, trop grande.
Par contre, en prenant la moiliè de la masse environ, on
obtiendra une approximation très satisfaisante dans la
plupart des cas.

:
2° Détermination des efforts internes dus aux forera

d'inertie. — Sous l'influence de la force transmise pareil
la bielle travaille, comme on sait, alternativementà l'exte.'-
sion et au flambement. Ce dernier cas étant le plusdéfavv •

rable, c'est lui qui sert de base au calcul des dimensions :

S désignant la force à transmcllre à l'aide de la bielle, / 1
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moment d'inertie de la section transversale, n le coefficient

de sécurité, nous avons :

¦x* EJS~ m l%

Comme coefficient de sécurité m, il est d'usage de prendre

un chiffre variant entre 40 et 25 pour les machines à

petite et moyenne vitesse de piston. Dans les machines à

grande vitesse, ce coefficient est généralement moindre.

Nous avons vu que les forces d'inertie peuvent, pour
chaque point de masse dm, se décomposer en deux

composantes dF' et dF" agissant respectivement dans le sens

de la bielle et perpendiculairement à celle-ci. Les composantes

dF' s'ajoutent à pS ou s'en retranchent, suivant les

positions delà bielle ; comme toutefois elles sont généralement

petites par rapport à S, on peut les négliger. Les

forces]dF", par contre, sollicitent la bielle à la flexion, et

l'on conçoit facilement que cette flexion peut, sans atteindre

une grandeur considérable en valeur absolue, augmenter
dans de fortes proportions le danger du flambage.

C'est ce que nous nous proposons d'examiner.

Soit A B (fig. 5) la bielle de longueur l, sollicitée par les

forces S agissant suivant son axe et dF" agissant
perpendiculairement à l'axe.

3&
S

Essayons de déterminer la ligne élastique de la bielle,

l'équation dilïërentielk; île celte courbe est :

(5) El *£
ace2

M.

Dans le cas particulier, M, le moment fléchissant pour
la section d'abscisse x, provient de la force S, de la réaction

de l'appui A et des forces dF".

Mais comme, dans une bielle, lasection transversale varie

avec ce, par suite aussi /et indirectement les forces dF',
l'intégration de l'équation (5) devient impossible, tout au moins

sous sa forme générale.

Onpeut introduire toutefois une première simplification:
La tête de la bielle et le pied ont le plus souvent une section

considérable, de sorte que ces parties ne se déforment

pour ainsi dire pas sous les efforts de flexion, on peut dès

lors considérer la bielle comme formée de trois parties: latête

et le pied, aA et bB (fig. 6) rigides et, par conséquent,
restant rectilignes, et le corps ab, fléchissant seul sous l'action

de S et des forces dF'. Le corps de la bielle a une section

sensiblement constante, de sorte que le calcul peut alors

s'effectuer. Il n'en est pas moins encore pénible, et les

expressions compliquées qui en découlent se prêtent mal à

une discussion. Pour arriver à un résultat plus maniable,

nous introduirons les hypothèses suivantes : 1" nous admettrons

que la bielle a une section constante de A à B ;

2" nous supposerons que les forces d'inertie dF' sont

réparties uniformément sur la longueur AB.

A

Fig. 6.

On sait qu'en réalité ces forces varient linéairement de

A h B; nos hypothèses sontdonc défavorables, les résultats

qui en découleront seront donc à considérer comme des

limites supérieures de l'influence des forces d'inertie. Nous

nous réservons d'ailleurs de reprendre ultérieurement le

calcul en tenant compte de la loi exacte de répartition des

forces dF" et d'en publier les résultats dans le cas où ceux-
ci présenteraient quelque intérêt.

F' désignant la résultante des forces dF', la force agissant

sur l'unité de longueur sera, d'après notre hypothèse,

F"
— v,

les réactions des appuis A et B seront q— et, par suite, le

moment fléchissant M aura pour expression :

0 qlx gec2
M=Sy + h} -\--

L'équation de la ligne élastique peut donc s'écrire :

||| EJ^ + Sy -«l*+lf.
C'est une équation linéaire du second degré avec second

membre, l'intégrale générale est, comme on le vérifie
facilement :

n n qx* qlx EJq
y C, sin nx -f- G2 cos nx -\- jj-s — *T5 — ~~öä^ >

où C{ et C2 sont des constantes d'intégration, et n une

abréviation pour 1/ -^j.
C, et C2 se déterminent à l'aide des conditions aux

limites qui sont ici :

y o pour x o,
et y o pour x t.

En introduisant ces valeurs particulières dans l'expression

de y, nous en tirons ;

EJq
C2

Ml
S2

g» ¦».

1 — cos n l
sin n l

La quantité qu'il nous importe de connaître est la flèche

de la bielle f, nous la trouvons en posant ce —. 11 vient,

toutes réductions faites :

ni
r—MlÎ-- g.

1 — cos

ni
cos

II8 S'

On voit que /"devient infini pour

n l
cos 0,
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c'est-à-dire pour
n l
Ü

En remplaçant n par sa valeur en fonction de pS nous

trouvons la force Si qui produit le flambage de la pièce :

(6)
SjP
EJ Si

'-EJ
t2

On voit que cette force pSi est exactement la même que
celle donnée par la formule d'Euler pour le cas de flambage

correspondant. Il semblerait donc, à première vue, que les

efforts de flexion sont sans effet.
Cette conclusion n'est toutefois pas exacte (Voir ma

traduction française de l'ouvrage de A. Föppl, Résistance

des matériaux et Théorie de l'Elasticité). La formule que

nous venons de trouver est en effet établie dans l'hypothèse

que toute les déformations sont parfaitement élastiques ; or,
il se peut fort bien que les actions moléculaires développées

par suite de la flexion dépassent la limite d'élasticité de la

matière bien avant que pS ait atteint une valeur suffisante

pour produire le flambage, et naturellement, sitôt la limite
d'élasticité dépassée, nos résultats cessent d'être applicables,

puisque la loi de proportionnalité entre les déformations et

les actions moléculaires n'est plus remplie.
Ainsi, dans le cas d'une flexion et d'un flambement

simultané, la charge critique n'est pas celle donnée par la

formule d'Euler, mais bien celle qui développe dans la
section dangereuse de la pièce des actions moléculaires égales

à la limite d'élasticité des matériaux.
Dans le cas particulier, la section dangereuse est la

section transversale médiane, la tension spécifique maximum

y atteint la valeur :

*=£ + (£+s')-7> ^M
où e désigne la distance de la fibre extérieure à l'axe neutre
et Q l'aire de la section transversale.

Si nous posons R égal à la limite d'élasticité R' du métal,

et si nous résolvons par rapport à S, nous trouverons

précisément la charge critique Sa définie plus haut.
Nous voyons toutefois que f est fonction transcendante

de S, de sorte que la résolution de l'équation présente
d'assez grandes difficultés. Pour les tourner, nous allons

établir une valeurapprochée pour f, en remplaçant les termes

en cosinus qui y figurent par un développement en série.

On a:
X X* crfl

coscc^l-^ + jr-gj-r- '

Si nous posons
ni

X —"o"" >

lous pourrons écrire :

EJq
m s1

x2 x* afi
,1_1+—_ — + — + ••• V

ql*
^ !-£ + £-•••• ] 8S'

r-A x2 x* -,
l

EJq x*
'" 2 S*

3 M ' 3 4 5. 6 <?r
Xs x* ~8S'

dans la parenthèse nous pouvons arrêter le développemen t

nià la 4me puissance; x, c'est-à-dire -—, étant pour lesvaleurs

que nous considérons, toujours plus petit que 1 (l'angle -^

est naturellement exprimé en fonction des longueurs d'arc
de rayon 1).

Si nous effectuons la division indiquée dans la parenthèse

il vient :

f--
EJ qx*
2S* ri+!_x2+-^-x*i-2i5

|_ + 12 + 360 J 8pS'

ou, en remplaçant maintenant x et, dans cette quantité, n

par sa valeur

5l*q
T QQ,! J? A

EJ
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et en faisant les réductions :

384EJ M 5760 F2/*
1 +

Mais nous voyons que ;

Sq_ 5 V-q XA 12,2 SP

5 V- q

384F/ |_* ' 15F/ _

n'est autre chose que la
384 F/

valeur de la flèche f0 que prendrait la pièce sous l'action des

forces q agissant seules ; de plus -^- est, au facteur n* du
EJ

dénominateur près, égal à ^-, (formule 6).

Par suite

f=fo[i +
12,2 S Tt?

15 S,

soit, avec une approximation suffisante :

f=f0 1+8-^
Ayant mis maintenant f sous cette forme simple, nous

pouvons calculer la charge critique pSc. Il vient :

(7) R' Sç
O Pr + ^a+af)]

Sa est donc donné par une équation du second degré, il
faudra, bien entendu, prendre pour Se la plus petite des

deux racines de cette équation.
Connaissant Sc, la comparaison avec la force S, agissant

sur la bielle, donnera le degré réel de sécurité de la
construction1.

Pour terminer, nous allons appliquer ces calculs à un

exemple :

Soit une machine à vapeur pour laquelle nous ayons les

données suivantes :

r rayon de manivelle : 400 mm.
I longueur de la bielle : 2000 mm.
nombre de tours par minute : 150.

vitesse angulaire, w 15,7 radians par sec.

force transmise par la bielle, S 15 000 kg.

1 La valeur f que nous calculons s'entend naturellement pour le
cas où les forces S agissent exactement dans l'axe longitudinal de la
pièce, et où cet axe est exactement rectiligne. Pratiquement, il y aura
toujours des erreurs plus ou moins grandes à ces deux points de vue,
f sera donc en réalité plus grand que nous le donne la formule et, par
suite, Sa plus petit.



66 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

En employant la méthode de calcul usuelle nous

trouvons, en introduisant un coefficient de sécurité de 25,

J m 750 cm*, soit d 11 cm. env., 8 =95 cm2.

Nous calculerons l'effet des forces d'inertie pour la position

caractérisée par un angle cp de 45° (fig. 3) ; comme nous

supposons la section constante x«, <r l et par suite :

M

M:

F" M -y (P"A + P"»),

1
— 14s X 20 X 7,8 X rr-sr 15,1 kg. masse,
4 y,oi

(7,8 densité du fer).

Des diagrammes précédents nous relevons :

p"A 10,0 m. p. sec2. p"B 90,0 m. p. sec2

donc : F" 675 kg. et :

F" 675
q — -goo 3-38 k§- Par cm-

En prenant E 2000 000 kg. par cm2, nous trouvons

:

5ql*
fo 385 F/ 0,047 cm.;

nous avons d'autre part, ayant calculé la bielle avec un
coefficient de sécurité de 25,

S, 25 X 15000 375000 kg.

l'équation (7) prend donc ici la forme

Se p,38x2Ô0a M / 8Se XT 5,i
R - 95 + L~ 8 + °'047 Sc V + 375000 /J 75

5_
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Si nous prenons pour R' la valeur moyenne 2000 kg.

par cm2, il vient en ordonnant les termes :

8x5,5x95x0,047 + Sa (l + 0,047 X 5,5 X 95

750 X 375000

3,38 X 200* X 95 X 5,5
+ X750

750

— 2000 X 95 0,

64 X 0,047
4125000

Se2 + 1,034 Sa — 177 700 0,

d'où :

Sa
4125000

128x0,047 X

X I - 1,034 d

4125000

\A034)2+
4x177700x64x0,0471

4125000

1,034 -j 1,257] 10,2 x 15000 k$c — 128x0,047
Se est donc, dans le cas particulier, égale à 10,2 fois la

charge normale, c'est-à-dire environ 2,5 fois plus faible que
la charge de flambement St que nous avons prise ici 25

X15000 kg. Même en faisant la part des hypothèses défavorables

d'où nous sommes partis, on voit bien, par cet exemple,

l'influence que peuvent acquérir les forces d'inertie au

point de vue de la résistance de la bielle.
11 est vrai, d'autre part, que dans les machines à grande

vitesse, les alternatives de flambement et d'extension se

succédant avec une grande rapidité, les déformations n'ont
pas le temps d'acquérir lesvaleurs que nous calculons et qui
supposent une application lente et progressive des forces

extérieures. Nous ne pensons toutefois pas qu'il faille trop
se reposer sur cette considération et sommes, au contraire,
d'avis que l'on fera bien, dans tous les cas de machines à

grande vitesse, de déterminer par un calcul analogue à

celui que nous venons d'indiquer, la valeur de la charge
critique Sc afin de se rendre un compte exact du degré
réel de sécurité de la construction.

Le rôle de l'ingénieur dans la civilisation.

par M. Alph. VAUTIER,
Ingénieur.

Ancien élève de l'Ecole d'Ingénieurs (1856-1859).

Au moment où l'Ecole d'Ingénieurs de Lausanne met

une courte trêve à son activité pour regarder vers ses

origines, il y aurait intérêt à jeter un coup d'œil plus
étendu dans le passé et dans le présent, et à rechercher

quel a été le rôle de l'ingénieur dans le développement
de la civilisation. Chacun prévoit que cette étude serait
féconde et que son résultat serait propre à encourager

ceux, nombreux aujourd'hui, qui cultivent la science dans

le but d'applications utiles.
Pour traiter ce sujet avec l'ampleur qu'il mérite, il

faudrait consulter un nombre considérable de documents

qui ne sont pas à notre portée ; nous devons donc nous
borner à une simple causerie, avec l'espoir que quelque
archéologue sera tenté de combler ce vide dans l'histoire
du développement de l'humanité.

Les ruines des monuments anciens ont attiré depuis

longtemps, par leurs masses imposantes ou par leur
esthétique, l'attention des architectes, et l'on possède des

notices très étendues et captivantes sur les temples, sur
les palais et sur les nécropoles. On connaît aussi bien des

détails sur les théâtres et sur les maisons d'habitation,
mais on n'a, pour les âges reculés tout au moins, que de

rares indications sur les travaux publics tels que les routes

et les ponts, les ports, les travaux d'édilitô et sur ceux,
si importants, d'irrigations ou de canalisations.

Ces ouvrages demandant un entretien continuel ont

promptement disparu lorsque la civilisation qui les avait

produits sombrait sous les coups de conquérants barbares

ou se dissolvait par sa propre immoralité. Il en résulte

qu'une partie fort importante de l'œuvre des architectes

anciens, est tombée dans l'oubli et que c'est celle que

nous nommons actuellement l'art de l'ingénieur qui est

la plus dénuée d'histoire.
L'existence des monuments qui ont laissé des traces

supposait un état social avancé, jouissant sans doute de

routes, de ports, de canaux, ne fut-ce que pour amener

à pied d'œuvre les matériaux de provenances lointaines.

Les voyageurs signalent souvent, en Asie et au Nord

de l'Afrique, des ruines imposantes de villes situées actuel-
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