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fer-blanc. Pour les grandes charges, et lorsqu'il y avait
plusieurs mines à faire sauter ensemble, l'allumage était

électrique. Pour les petites charges on utilisait la mèche

imperméable, allumée à la surface de l'eau ou même remise
allumée au plongeur quand il ne s'agissait que de poser
une cartouche à la surface du rocher ou au pied d'une

paroi rocheuse.
De bourrage il n'était naturellement pas question, du

moins quand la charge était à une profondeur suffisante

sous l'eau. Pour le même motif, le second procédé décrit,

ne peut être utilisé que sous une hauteur d'eau de 4à5m.
au moins, pour produire un effet utile et convenable.

Le dérochement produit la plupart du temps des déblais
de gros échantillon, dont le débitage sous l'eau coûterait
cher. On enlève à la drague les blocs de moins de 250 à

300, kg. ; les autres sont amarrés par des plongeurs adroits
à la chaîne d'une petite bigue flottante; on enlève de même
les blocs de maçonnerie, de pierre de taille ou d'enrochements,

vestiges de l'antiquité qui se retrouvent dans presque

tous les ports grecs. Au petit port de Carystos, en Eubée,

qui servait autrefois à l'embarquement des marbres cipolins,
nous avons trouvé le sol ancien littéralement jonché de

marbres ébauchés ou taillés, sous une couche de sable de

2 à 3 m. d'épaisseur.

Athènes, le 5 novembre 1903.

Deux problèmes relatifs aux rayons de courbure.

par M. H. AMSTEIN

Docteur en philosophie. Professeur ordinaire.

Premier problème.

Les coordonnées étant cartésiennnes, une courbe (C)
est déduite d'une courbe donnée (C) de telle façon qu'en
conservant les abscisses des points de (C) on multiplie les

ordonnées par —, où a et b sont des nombres réels et posi-

b
tifs quelconques. Dans le cas où — < 1, la courbe (C) peut

être envisagée comme la projection orthogonale de (C) sur
un plan qui fait avec le plan de (C) un angle dont le cosinus

— Les points P et P' des courbes (C) et (C) seront dits

correspondants s'ils ont la même abscisse. On demande
d'établir la relation qui existe entre les rayons de courbure
R et R' aux points P et P' de ces deux courbes, et d'en tirer
une construction de R'.

Soit
(O y f(x)

l'équation de la courbe donnée (C) ; celle de la courbe (C)
sera

(C) K/(ic),
Les rayons de courbure en question auront pour expressions

:

P ~ ¦ ~^\dx)

1
dh,
cte2

Rr
+ \dx)

C&7]

dx2

ou bien, en désignant par f {x), f"(x) les dérivées première
et deuxième de la fonction f(x),

3

R 1/1+ f(s)g

R'

I b2

Vi + ^W
-a-rw

de sorte que l'on a la relation

R

v7
62

6 |/l + f'(x)2

Posant

dy

dij

/'0) tga.

f (x) tg a',

on sait que a et a' signifient les angles que font les tangentes

aux courbes (C) et (C) aux points correspondants P et
P' avec l'axe positif des x, et comme

(/1 + f'W l
cos a

Vi + ^r(^
la relation précédente peut s'écrire

R! a cos3 a
~~R(1) b cos3 a'

Sous cette forme elle peut être construite ; mais

l'interprétation en est encore facilitée, si l'on y apporte la
modification suivante :

On a
1 a

cos a
</

a cos a

l/a2-f b2tg2a

j/a2cos2 es -f- b2 sin2 es

il s'ensuit que

cos a Va2 cos2a + b2sin2a
coses'

et, par conséquent,

R_ a t/a2cos2« + b^sin2ct3
__

1 j/ a2cos2cc + b2sinV
R "~b as a ab
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Or on reconnaît immédiatement que l'expression
-3

aRe - j/a2 cos2 es + b2sin2aj
ab

est celle du rayon de courbure Re de l'ellipse

x cssincs

y b cos a

au point P", qui est caractérisé par la valeur particulière

que l'on assigne au paramètre variable a. La relation (1)

prend ainsi la forme finale

RR,
(la) R' —

et l'on voit que, R et aRe étant connus, il suffit de construire

une quatrième proportionnelle pour obtenir le rayon de

courbure cherché R'.

Il est à remarquer que la même ellipse peut servir de
b

courbe auxiliaire aussi longtemps que le rapport — ne

change pas de valeur, car la relation (la), mise sous la forme

-3

aR' R

I b2

y cos2a -) g-sin2a

b_

a

montre que son second membre ne dépend que du rapport

— et que ce rapport n'est pas nécessairement <!•
Dans la figure 1, PN est la normale, PT la tangente à la

courbe (C) au point P et P'T la tangente à la courbe (C)

au point correspondant P'. t

«KP

Fig. 1. Fig. 3.

Pour déterminer le point P" de l'ellipse dont le rayon
de courbure entre dans la formule (la), on mènera par
l'origine du plan de l'ellipse une parallèle à la normale au

point P de la courbe (C), ce qui fait connaître l'angle a;
ensuite on construira le point P" de la manière habituelle.

(De cette fiaçon on trouve, en vérité, souvent un point
symétrique de P" par rapport à un des axes coordonnés ; mais,

comme il ne s'agit que de la valeur absolue de Re, les quatre

points de l'ellipse, symétriques de P" par rapport aux

deux axes, rendent le même service).

Dans la figure 2 qui contient, pour mémoire, une des

constructions les mieux connues du rayon de courbure de

l'ellipse, FT est la tangente, P'N la normale au point P"

de cette courbe, F en est un des foyers, M le centre de courbure

et P'M le rayon de courbure it"e relatifs au point P" ;

les angles 0NM et FQM sont droits.

Afin de vérifier la formule (la) et de présenter, en même

temps, un exemple donnant lieu à une construction de rayon
de courbure qui ne soit pas trop simple, nous considérerons

la courbe déduite de la spirale d'Archimède de la
manière indiquée, c'est-à-dire la courbe qui, dans le cas où

b
— < 1, peut être envisagée comme une projection orthogonale

de cette spirale.

Soient r, t les coordonnées polaires d'un point du plan
de la spirale d'Archimède (C), p, ->l les coordonnées polaires

du point correspondant du plan de la courbe (C), de sorte

que

et soit

x rcost,

y rsint

(C) r et

t x =^p COS iL,

7] p sin^,

(c const.)

l'équation de la spirale. Pour établir l'équation de la courbe

(C), on exprimera d'abord p et ¦$, en fonction de t, et on

éliminera ensuite le paramètre t entre les deux équations ainsi

obtenues. On a

b2 b2

p j/x2 + 3j2= V & + -gy* rycos2t+ -^ sin2«

— i/a2cos2t -f- b2sin2t — 11/ a2cos2£ + b^sin2*,
a a

ts4, — -<-
a x

d'où il suit

¦tg^, cost-

smf :

tfft

bcosiL

l/ a*sm**L + b2cos2^

asin^

(/ a2sin24, + b2cosH
'

Ï z= arc tg - tgt t arc tg I -r tg ip

et l'équation de la courbe (C) devient

faarc tg T
p bc

te-

Vo»sinty + ^cos2^

Mais les calculs que l'on aura à effectuer deviennent un

peu plus simples, si l'on conserve le paramètre t, de sorte

que la courbe (C) sera donnée par les deux équations

(C)
p — 11/ a2cos«t + b2sin2£,r a

b
4- arc tg tg<

Le rayon de courbure R' au point P' (p, 1/,) a pour
expression

p*dï3 + 2 (dppdiL -<- pdpcPiL — p d*p d-f
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On trouve successivement

diL
ab

dt,

dp

cs2cos2t + b2sin2t

c a2 cos2* -+- b2sin2t — (a2 — b2) t sin t cost

(/ a2cos2t + b2sin2t

da= [/p*d-]J*+(dp)*

z= — j/a2 (tsint — cost)2 -f b2 (tcost + sint)2 dt,

d*i=2ab (a2 — b2)'^—Si° ,C°! ¦ q,.9 d&

dt

d2^:

,(a2cos2t + b2sin2t)2

(a2—b2)x

2 (a2 cos21 + b2 sin21) sin t cos t +1 (a2 cos41 — b2 sin* t)

l/a2cos2t + b2sin2t

En introduisant ces valeurs dans l'expression de R',
on obtient, toute réduction faite,

I
R' —

c (/a2 (tsint — cost)2 + b2 (tcost + sint)2
aïb P + 2

Si dans cette égalité on fait b a, elle fournit,.pour le

rayon de courbure R au point P (r-, t) de la spirale
d'Archimède,

t2 + 2

expression qui admet une construction connue et facile

(voir fig. 3.)

/// ^^ ^^ J / >N. I

l/\s ^\\ 7 \
F ^^V / > a j/

nc

ï ^

\ fflHllili
Fig. 3.

En vue de la vérification en question, il est nécessaire

d'exprimer aussi le rayon de courbure au point P" de

l'ellipse, à savoir

Ue
[/ a2 cos2 a -f- b2sinses

ab

au moyen du paramètre t.

Comme

dy d(rsint) d (et sint)
tges dx d(rcost) d (et cost)

t cos t ¦+- sin t
t sin t — cos t

cos es

1 t sin t — cos t

sines:

•/ 1 + tg2« / t2 + 1

tg es t cos t -+- sin t

1/ 1 + tg2a (/t2 + l
il vient

1
i}e== g.;4 /a2 (t sin t — cos t)2 -f- b2 (t cos t + sin t)2

t2 + 1ab V

Or on peut écrire

R' i_ p(/t2 + l "j
a L «2 + 2 J X

1 / a2(tsin
L ^b v

t — cost)2 -)- b2 (tcost + sint)2
t2 + l

ce qui montre qu'effectivement

R' —
RRe

Second problème.

En examinant s'il existait, pour les coordonnées polaires,
une formule analogue à celle qui vient d'être vérifiée pour
les coordonnées cartésiennes, j'ai été amené à poser et à

résoudre le problème qui va être énoncé.
On dira que deux ou plusieurs points d'une même courbe

ou de courbes différentes se correspondent, s'ils répondent
à une même valeur de tp. Les centres de courbure relatifs
à des points de ce genre seront également dits correspondants.

Ceci posé, le problème qui va être résolu peut
s'énoncer comme il suit :

Etant donnée une courbe

r f(cp),

déterminer toutes les courbes

p F(<p)

telles que les centres de courbure correspondants soient avec

l'origine en ligne droite.
Si l'on désigne par a, ß les coordonnées cartésiennes du

centre de courbure relatif au point (r, tp) de la courbe r =s=

f (cp) et par r', r" les deux premières dérivées de r par
rapport à <p, on sait que

- r1 (r2 + r'2) since + r (r'2 — rr") cos <p

ß

rs _|_ 2r'2 — rr"
rr (r2 -|- r'8) cos <p -f- r (/2 — rr") sin ç>

r2 + 2/2 — rr"
et que, par conséquent,

ß f/ (rs _|_ r'2) cos <p -\- r (/% — rr") sin <p

a — r' (r2 + r'2) sin tp -f- r (r'2 — rr") cos <p

En désignant par a', ß' les coordonnées rectangulaires
du centre de courbure relatif au point (p, <p) de la courbe

p F (<p) et par p', p" les deux premières dérivées dep par
rapport à <p, on a de même

ß' _ P' (M + p'*) cos <P + P (p'°- — PP") sin tp

es' — p' (/j2 + p"*) sin tp + p (p'* — pp") cos tp
'
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Pour que les points (a, ß), (a', ß') et l'origine soient en

ligne droite, il suffit de poser

A EL
a — a' '

c'est-à-dire

r1 (r-2 + r '2) cos <p -f r 0»'2 _ r r") sin tp

— r' (r2 + «) sin tp + r (à/2 r r") cos tp

P '(p* + P" cos <P + /° (^ — PP") sin tp

P' (i°2 + i0'2) sirup -\- p (//2 — pp") cos <p
'

condition qui peut être ramenée à celle-ci :

(o)
}.'Z — rr.
r2 + r72

Telle est l'équation à laquelle doit satisfaire le rayon
vecteur p considéré comme fonction de <p ; c'est une équation

différentielle pour p.
Indépendamment de la forme particulière que prend la

fonction r — f(<p) dans chaque cas particulier, on peut
satisfaire à l'équation (a) par les deux hypothèses

(/3) P Ar, p —
où A et .B sont des constantes arbitraires. Interprété
géométriquement, ceci veut dire que 1° les courbes semblables
et semblablement placées, et 2° les courbes déduites de l'une
d'elles par une inversion, satisfont aux conditions du
problème. Le premier de ces théorèmes est à peu près évident,
et le second est une conséquence immédiate des principes
qui ont cours dans la théorie des représentations conformes.

Les solutions (/3) doivent nécessairement se retrouver
dans la solution générale de l'équation (a).

Afin d'intégrer l'équation différentielle (es) on remarque
tout d'abord que

P'*-PP" -
d p

-5— arc tg J-r
dtp ^ pP* + P'*

Si donc on pose pour un instant

p r
p r

on peut en la multipliant par dtp, donner à l'équation (es) la
forme

z d arc tg z t d arc tg t,
ou bien

-y d log (i 4- *8) — >g- d log (1 + t2).

L'intégration de cette dernière équation fournit
immédiatement

log (1 -(- z2) log (1 + t2) + log m2,

où log m2 désigne la constante d'intégration. Il s'ensuit

puis

1 -f z2 m2 (1 + t«)

Z2 TO2 (1 + {2) _ 1

z Vm* — 1 + m* t*

ou, en remplaçant z et t de nouveau par leur valeur,

m
p'

On a donc

y m2 1 + ^-r,r -
\/ (m* — 1) r"* + m* r2

PL

P ¦/ (m2 — 1) r'2 + m2 r2

et l'intégration de cette équation donne

(T)
dr

log p losf A
(/ (m2 — 1) r"^ -j- m2 r-

log A représentant la constante d'intégration. Passant des

logarithmes aux nombres, il vient

I.
P Ae V

dr

(m2 — 1) r'2 + m2 r3.

Telle est l'intégrale générale de (es); elle est ramenée à

une quadrature, puisque r et r' sont des fonctions de tp.\
Dans le cas particulier où m 1, l'équation (f) devient

d'où

ë A r

p Ar.

loer

Pour m — 1, le radical doit être pris négativement
comme nous le reconnaîtrons dans un instant. L'équation (7)
donne alors

o C drl0g^ =-./- logr,
d'où

1?
A_

r
On retrouve donc bien les deux solutions particulières

signalées plus haut, et ces solutions sont même plus
importantes que la formule I, vu qu'elles s'étendent à toutes
les courbes qu'elles soient données par une équation r=f(<p)
ou seulement graphiquement.

11 ne sera pas inutile de calculer pour les courbes I
quelques-unes des quantités les plus importantes que l'on
a l'habitude de considérer dans la théorie des courbes.

On trouve d'abord

(/ (m2 — 1) /2 -f m2 r2

P =P |_(Wl2
l-m2* r y" _ r'i -,

i/(m2—l)*-'2 + »n8»*3J

Si l'on désigne par d<7 l'élément de la courbe p F(<p),
il vient

dç>
^i°2 + p'* mj°

(/ r2 + ï-'ï

(/(m2 — 1) r'2 + m8 r«

Dans cette formule */ r2 + r'2 d^> ds signifie l'élément
de la courbe donnée r / (çu). Or, en géométrie, on considère

les éléments de courbes comme des quantités
essentiellement positives, surtout dans le calcul des rayons de

courbure. Il s'en suit que

met[/ (m2 — 1) r'2 + m2 r2
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doivent, en général, être affectés du même signe. (Il se peut

d'ailleurs que les valeurs -(-met — m amènent les mêmes

courbes; dans ce cas le radical devra être muni du signe

double).
Soient â et t les angles que font les tangentes aux points

correspondants (r, tp), (p, tp) des courbes r f (<p) p

F{tp) avec les rayons vecteurs respectifs.

Il vient

IL iff T- p |_ ¦/ (m2 — 1) r-'2 + w2 r2

P r
Pour m 1 cette formule se spécialise en

te r •te«?

et pour m — 1 en

tg r — -^ — tg #

deux formules bien connues, dont la première peut servir

à définir les courbes semblables et semblablement placées.

Le rayon de courbure R' au point (p, <p) de la courbe

p F (tp) a pour expression

da \3
dw

<¦

R'
f

.mp
(/ r2 + r/¥3

r (/2_ r /') _|_ (r2 _|_ ,.'2) )/ (TO2 _ 1) r'2 _|_ TO2 j.2-

Terminons cette note par l'application des formules

trouvées à quelques courbes usuelles.

Exemple 1. La spirale d'Archimède.

Si

r — ctp, (c const.)

est l'équation de la courbe donnée, on a

r cw

Ç dr r dtp_

J (/(m2 — 1) r72 + m2 r2 «^
(/m2 — 1 44m2ç>2

— — log (mça + |/ m8 — 1 4 m2 çs>2)-

m

L'équation du système de courbes cherché devient

i
p A {mtp 4 / m8 — 1 4 m8 çs>2

m
•

Cette formule fournit

pour m 1 p 2Atp ; (Spirales d'Archimède)

pour m =— 1,^ — — g— ==—- ¦ (Spirales hyperboliques.)

Exemple 2. La cardioïde.

Si

r a (1 4 C09 ^) >
**' — a s'n ^ > (a const.)

il vient
dr r dcosço/ j/(m2—l)r'24TO2''9 (/cos2ç9 4 2m8 cosço 4 2m2—1

dcosço

[/ (cosç5 4 m2)2 4 2 »w2 — m4 — 1

log (cos ç5 4 w2 4 |/ cos2ç> 4 -2w8 cosçp 4 2 w2 — 1)

et, par conséquent,

p A (costp 4 w2 4 j/ cos2çs 4 2m2 costp 4 2 m8 — 1) ¦

Pour m 1 cette équation se spécialise en

p 2A (1 4 cosçfl), (Cardioïdes)

et pour m — 1 on trouve directement

drI Ij/ (TO2 _ 4) /2 _|_ TO2 r2

dcosû?

d'où

1 4 cosço

A
1 4 COSÇ0

— log (1 4 cosçc)

(Paraboles).

Exemple 3. La circonférence.

L'équation de la circonférence étant donnée sous la

forme
r a cos tp, (a const.)

on obtient pour les courbes cherchées

p A (costp -f (/m8-l 4 cos8çc

ou, en coordonnées cartésiennes,

(x —A)8 4.3/8 A8 m2..

Comme il fallait s'y attendre, le système de courbes

cherché est le même que le système de circonférences

donné, en considérant dans l'équation de départ a comme

un paramètre variable.
Pour m — 1 on calcule directement

log -j- — log r — log (a cos (p),

d'où

a coscî

ou bien

x — (Droites.)
a

Exemple 4. Soit

r t/as cos*cp 4 b" sin'f (a const. b const.)

l'équation de la courbe donnée. En la mettant sous la forme

r j/ p* 4 c/ cos 2ç>,
ou

pi
a» 4 b»

¦>r

on trouve successivement
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q2 sin 2 tp

|/p2 4 <f cos 2çc

J
dr

(/ (m2 — 1) r*'2 4 w2 *"2

H
— 9

H d cos 2e?

/ a4 sin2 2 a>

J Vf + <f cos 2y> yV2 — 1) -rn—l V" + ™2 (P2 + 92 cos 2ç>)t y \ j p2 _|_ g2 cos 2çc>
' Vf I 1 /

d cos 2ß>

» / « „ „ P2 I m2 m4 4 74) — <74

V cos2 2ç> 4 2m2 -Sp cos 2ça -j ^ V ' h-

ö- log (cos 2a> 4 m2 £L 4 V cos2 2<p + 2m2 -^- cos 2ço + m (P f )——),
ij <d ¦ r p

ga
p y r p qi r qt

et les courbes cherchées auront pour équation

A y cos 2^> 4 w2 "^" 4 y cos22^>P

Pour m — 1 il vient directement

ou bien

A A

log j- — — log r

A

»2 m2 (p4 4 e/4) — <74

4 2m2 -S- cos 2ç5 H ^ t q ; !L

correspondants, a pour équation

— — ta3 ax * r

Vp2 4 g2cos 2<p ya2cos2ç* 4 b2sin2ç-3

La courbe donnée est donc déduite de l'ellipse

1
P

¦'. (Ellipses)

V a2 cos2 <p 4 & sin2 ^

au moyen d'une inversion.

Exemple 5. La lemniscate. L'équation donnée étant

r a y cos 2^>, (es const.)

on obtient pour les courbes cherchées

(ô) p — A y/cos 2ç> 4 y cos22ç> 4 m2 — 1

et pour m — 1

A ^| gli
(Hyperboles équilatères.)

V cos 2a*

Afin d'examiner les courbes (d) d'un peu plus près, on

remarquera d'abord qu'elles sont symétriques par rapport
à l'axe des x et à l'axe des y. Lorsque m2 < 1 elles se

composent de deux ovales placés symétriquement par rapport
à l'axe des y ; pour m8 1 elles deviennent des lemniscates

et lorsque m8 > 1 elles sont formées d'un seul trait entourant

l'origine. Pour ces courbes on a

tgr —

R' ~

V m2 1 4 cos2 2<p

sin 1<p

mp
2 cos 2<p 4 Y m* — 1 + coss 2ç<?

et la droite sur laquelle sont situés les centres de courbure

Observation I. Quand m2 > 1 l'angle <p parcourt toutes

les valeurs réelles de 0 à 2rc, tandis que, pour la lemniscate

(m2 1), tp est réduit aux valeurs renfermées dans l'intervalle

de — jà 4t • Il paraît s'ensuivre que la connaissance

des centres de courbure de la lemniscate n'est plus
d'aucune utilité pour la construction des rayons de courbure

des autres courbes (à), dès que tp sort de l'intervalle

de t à 4 T4 4 car pour de telles valeurs r j/cos 2ço

devient imaginaire. Il n'en est cependant pas tout à fait

ainsi. En effet, on remarque aisément que les formules

générales I, II et III, pour/?, tgz, R! et l'équation des

droites contenant les centres de courbure correspondants,

ne sont pas modifiées si l'on y remplace r par ir
(i (/—1), c'est-à-dire si l'on tourne la lemniscate d'un

angle droit autour de l'origine. (Il est clair que cette

observation importante ne se borne ni à la lemniscate, ni au seul

facteur i. On voit immédiatement comment il faudrait la

modifier, si pour certaines valeurs de tp le rayon vecteur r
prenait un facteur imaginaire constant a -\-i ß). Dans

l'exemple actuel, lorsque tp n'est pas compris dans l'intervalle

de 7 à +7. la lemniscate r i i/ cos2çj>:
A ' A7 '

\/— cos 2 <p rend donc le même service que la lemniscate

proposée à l'intérieur de cet intervalle.

Observation 2. Cette méthode de construire les rayons
de courbure de certaines courbes à l'aide des centres de

courbure connus d'autres courbes, est en défaut aux seuls

points où la normale se confond avec la droite des centres

de courbure correspondants. Malheureusement ces points
exceptionnels seront presque toujours les sommets de la

courbe, où le rayon de courbure atteint son maximum ou

son minimum. En de tels points le cercle osculateur a

quatre points infiniment voisins communs avec la courbe,

et sa connaissance serait précisément le plus utile.



16 BULLETIN TECHNIQUE DE LA SUISSE ROMANDE

La figure 4 contient quatre représentants

des courbes (ô), répondant aux

valeurs particulières :

m j/ 2 ; m 1 ;

¦ m y-r ; m 1.

Les centres de courbure en ligne droite

y sont entourés de petits ronds.

V-
«>

V

Fig. 4.

La fabrique d'explosifs de G-amsen (Valais).

Société suisse des explosifs, à Brigue.

Par M. G. Brélaz,
Professeur extraordinaire à l'Ecole d'Ingénieurs.

Grâce à la bienveillance de M. l'ingénieur P. Ronchetti,

président du Conseil d'administration de la Société et

directeur de la fabrique, j'ai obtenu, non seulement
l'autorisation de visiter celle-ci et d'étudier la fabrication dans

tous ses détails, mais aussi d'en publier une description.

Malgré les visites que j'ai faites à plusieurs reprises à

l'usine, je ne serais pas parvenu au résultat désiré avec

suffisamment de détails et d'exactitude, sans l'obligeance

avec laquelle la Direction a bien voulu compléter mes

renseignements.
Ce n'est pas une étude approfondie des questions de

chimie qui se rattachent aux explosifs, que je veux
présenter ici, mais la description d'une usine, à tous égards

remarquablement installée.

A quatre kilomètres de Brigue, sur la route de Brigue
à Viège, on trouve à gauche un petit vallon, profondément

encaissé, où coule le torrent la Gamsa. Lés sables

et les graviers charriés par elle ont formé, à son débouché

dans la plaine, un cône de déjection qui termine le

vallon par une pente régulière et fortement inclinée.

C'est sur ce cône de déjection qu'est placée la fabrique

de la Société suisse des explosifs (siège social et

bureaux commerciaux à Brigue).
Le choix de cet emplacement, excellent au point de

vue de la fabrication d'un produit dangereux, a été cer¬

tainement déterminé par la prévision du percement du

tunnel du Simplon, et, en effet, la fabrique fournit les

explosifs nécessaires à ce travail.
La Société suisse a été constituée le 9 avril 1894. Elle

a pour objet la fabrication et la vente des produits
explosifs de toute nature, soit pour l'industrie privée, soit

pour les usages de la guerre.
Sa fabrication actuelle comporte tous les genres de

dynamites.
L'usine a une surface de 260000 m2; elle a coûté

450000 fr. La fabrique n'est pas constituée par un seul

bâtiment, mais par une série de constructions ou de

baraques étagées en terrasses. Toutes ces constructions

sont reliées entre elles par des allées, la plupart souterraines

et très bien entretenues, comme toute l'usine du

reste.

Des travaux de protection, tels que talus et cavaliers,
tous en matériaux sablonneux passés au crible, séparent
les uns des autres les ateliers de la dynamiterie, ainsi que
les dépôts, et les garantissent complètement de tout danger

de destruction générale, comme l'a démontré l'expérience,

à Gamsen, lors de l'explosion d'un appareil à

nitroglycérine en 1900.

Les constructions ne faisant pas partie de la dynamiterie,

telles que fabrique d'acide nitrique, atelier de rega-

gnage et de concentration, magasins généraux, locaux des

chaudières et des machines, bureaux, laboratoire, conciergerie,

écuries, etc., sont construits en solide maçonnerie,

au moyen des matériaux trouvés à profusion dans le lit de

la Gamsa. Celle-ci, qui coule immédiatement à côté de

l'usine, fournit en outre une force motrice plus que suffisante
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