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DE LA SUISSE ROMANDE

fer-blanc. Pour les grandes charges, et lorsqu’il y avait plu-
sieurs mines a faire sauter ensemble, l'allumage était
électrique. Pour les petites charges on utilisait la meche
imperméable, allumée a la surface de I’eau ou méme remise
allumée au plongeur quand il ne s’agissait que de poser
une cartouche a la surface du rocher ou au pied d’une
paroi rocheuse.

De bourrage il n’était naturellement pas question, du
moins quand la charge était & une profondeur suffisante
sous I’eau. Pour le méme molif, le second procédé décrit
ne peut étre utilisé que sous une hauteur d’eau de 4abm.
au moins, pour produire un effet utile et convenable.

Le dérochement produit la plupartdu temps des déblais
de gros échantillon, dont le débitage sous I'eau couterait
cher. On enléeve a la drague les blocs de moins de 250 &
300 kg.; les autres sont amarrés par des plongeurs adroits
a la chaine d’une petite bigue flottante; on enleve de méme
les blocs de maconnerie, de pierre de taille oo d’enroche-
ments, vestiges de 'antiquité qui se retrouvent dans pres-
que tous les ports grecs. Au petit port de Carystos, en Eubée,
quiservaitautrefois a 'embarquement des marbres cipolins,
nous avons trouvé le sol ancien littéralement jonché de
marbres ébauchés ou taillés, sous une couche de sable de
2 a3 m. d’épaisseur.

Athenes, le 5 novembre 1903.

Deux problemes relatifs aux rayons de courbure.

par M. H. AMSTEIN
Docteur en philosophie. Professeur ordinaire.

Premier probleme.

Les coordonnées étant cartésiennnes, une courbe ((7)
est déduite d’'une courbe donnée (C) de telle facon qu’en
conservant les abscisses des points de (C) on multiplie les

; b
ordonnées par 5 ouael b sont des nombres réels et posi-

; l
tifs quelconques. Dans le cas ol —;— <1, lacourbe (C’) peut

étre envisagée comme la projection orthogonale de (C) sur
un plan qui fait avec le plan de () un angle dont le cosinus

[} : .
— ’—i . Les points P et P’ des courbes (C) et (C') seront dits

correspondants s’ils ont la méme abscisse. On demande
d’établir la relation qui existe entre les rayons de courbure
R et R" awx points P et P' de ces deux courbes, et d’en tirer
une construction de R'.
Soit
€@  y=f=

I’équation de la courbe donnée (C) ; celle de la courbe ()
sera

” b
&) =—4f@®.

Les rayons de courbure en question auront pour expres-
sions :

Vi (@

L T 2y ;
dax?
_—
dp\2
V)
— 00_
dax?

ou bien, en désignant par f’(xz), [”(x) les dérivées premiere
et deuxieme de la fonction f(x),

R= SETGN
1"(x)
/ IR
V14 o5 1 @
Ri— i S T
[
de sorte que I'on a la relation
bg 2 g )3
HI aﬂ f (‘E)v-
by + /"(‘1:)"23
Posant
d
Y _pwy—tga,
l ,
L= f’(( )= tg

on sait que « et ¢’ signifient les angles que font les tangen-
tes aux courbes (C) et (C’) aux points correspondants P et
P’ avec l'axe positif des «, et comme

VTF @ =

>
COos &

e .
\/l a? f(“) cosa’

la relation précédente peut s'écrire
) R a cosic
R — b cos’d ’
Sous cette forme elle peul élre construite ; mais I'inter-
prétation en est encore facilitée, si ’'on y apporte la modi-
fication suivante :

On a
il a

(e = =
b2 1/ a2+ bitga
1+ 05 [ (@) §
a=
s  CoS ¢t
== ;

y/a2cose + b2sinq

il s’ensuit que

cosa u- (‘0\-(' -+ b“’ %m-u

cosa «

et, par conséquent,

R’ a yaic 0s2¢ + b2sin? (c 1/ a®cos’a + b2 Qm a

R b a’ I ab
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Or on reconnait immédiatement que 'expression

i / aicota | st
ST ab
est celle du rayon de courbure R. de Iellipse

xr = asina ,

y—=bcosa,
au point P, qui est caractérisé par la valeur particuliere
que l'on assigne au paramétre variable ¢. La relation (1)
prend ainsi la forme finale

R R.

(’1“) R = — a )

et 'on voit que, R et Re étant connus, il suffit de construire
une quatriéme proportionnelle pour obtenir le rayon de
courbure cherché R'.

Il est & remarquer que la méme ellipse peut servir de

b
courbe auxiliaire aussi longtemps que le r‘apport—a— ne

change pas de valeur, car la relation (1), mise sous la forme

3

A b2
\/ cos?a + oy sin?a
R =—R

b ’
a
montre que son second membre ne dépend que du rapport
b : \
9 et que ce rapport n’est pas nécessairement <1.

Dans lafigure1, PN est la normale, PT la tangente a la
courbe (C) au point P et P'T la tangente a la courbe (C)

au point correspondant P'. .
(ORNS
c
P
=5
N
M
Fig. 1. Fig. 2.

Pour déterminer le point P” de Dellipse dont le rayon
de courbure entre dans la formule (12), on menera par 'o-
rigine du plan de Pellipse une parallele a la normale au
point P de la courbe (C), ce qui fait connaitre l’angle «;
ensuite on construira le point P” de la maniere habituelle.
(De cette facon on trouve, en vérité, souvent un point sy-
métrique de P” par rapport a un des axes coordonnés ; mais,
comme il ne g'agit que de la valeur absolue de R, les qua-
tre points de Pellipse, symétriques de P par rapport aux
deux axes, rendent le méme service).

Dans la figure 2 qui contient, pour mémoire, une des
constructions les mieux connues du rayon de courbure de
Pellipse, P'T est la tangente, P'N la normale au point P’

de cette courbe, F en estun des foyers, M le centre de cour-
bure et P"M le rayon de courbure Re relatifs au point P
les angles Q NM et [ QM sont droits.

Afin de vérifier la formule (12) et de présenter, en meme
temps, un exemple donnant lieu & une construction de rayon
de courbure qui ne soit pas trop simple, nous considére-
rons la courbe déduite de la spirale d’Archimeéde de la ma-
niére indiquée, c’est-a-dire la courbe qui, dans le cas ot
b
«
nale de cette spirale.

< 1, peut étre envisagée comme une projection orthogo-

Soient », t les coordonnées polaires d'un point du plan
de la spirale d’Archimede (C), p, 4 les coordonnées polaires
du point correspondant du plan de la courbe (C"), de sorte
que

& —='rcost, x=pCos ,
Y -— rsint , 7=p sind,
et soit

(G) ri—tet (¢ = const.)

I’équation de la spirale. Pour établir I'équation de la courbe
(C"), on exprimera d’abord p et 4 en fonction de t, et on éli-
minera ensuite le paramétre ¢ entre les deux équations ainsi
obtenues. On a

ST b2 b2
p=vyx2+ 2= \/ac‘~’ 4+ oyt = \/cosﬂt—}— —5 sin?¢

a a?

i T TR R W T C. 0
— "/ aZcos?t + b%sin?t = — ty/ a?cos?t + b3sint,
a a

tgt ,

bcos

’
{/ a?sin? 4 b2cos?y

. asinay
sint =

b
{/ a?sin?y + b2cos?y
b a
= arc tg Ztgt S b=—=iarcix glg\L >
et ’équation de la courbe (C) devient

a
arc tg (F tg '\.L)

=N s e e e
{/a?sin?y) + b2cos

Mais les calculs que I'on aura a effectuer deviennent un
peu plus simples, si 'on conserve le parametre ¢, de sorte
que la courbe (C’) sera donnée par les deux équations

__ € ¢/ aRcost & BPsin®
1047”' a?cos?t 4 b2sin?t ,

= b —b L’[)
ol ot ).
Y =arctg| — ta

Le rayon de courbure R au point P’ (o, ) a pour ex-
pression

)
(¢)
|

P B AL
TRl ypddgi e
i 12dLd + 2 (dp)Pdy + pdpd*l — p d?o dy

el / ; RIS, QR
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On trouve successivement :

ab i
aZcos2t - b2sin2t

d —

(a2 — b2) t sintcost
& i/ a2cos?t + b2sin2t

do=y/p

¢ a?cos?t + b2sin?t —
= Ll[ )

PaE T (dpP =

ol {/ a2 (tsint — cost)® + b® (tcost + sint)? dt,
«

sint cost 3
gl S=Re kg e b (a?cos?t + b2sin2t)? 4z,
vgp:_.t‘;i_(aﬁ__‘bﬂ)x

9 (a2 cos2t + b2sin2t)sint cost + ¢ (a? costt — b2

———— 5 333
/a2 cos2t + b2 sin?t

sinkt
2l )(1/-'

En introduisant ces valeurs dans lexpression de R,
on obtient, toute réduction faite,

¢ a®(tsint — cost)2 + b2 (tcost + sin L\“zg‘
T a?b 2+ 2
Si dans cette égalité on fait b = «, elle fournit, pour le
rayon de courbure R au point P (», t) de la spirale d’Ar-
chimede,

—3

e

242

expression qui admet une construction connue et facile
(voir fig. 3.)

R—c

Fig. 3.

En vue de la vérification en question, il esl nécessaire
d’exprimer aussi le rayon de courbure au point P* de I'el-
lipse, & savoir

V a? (‘os~u + b sm g

L AT ’
au moyen du parametre t.
Comme
dy  d(rsint) d(etsint) tcost -+ sint
I8¢ = x = d(rcost) _ d(ctcost)  tsint— cost

1 tsint—cost
cose = —
v 1+ tg2a Vi ra
; t t int
sin ¢ = e Lo ueRees a1 .
/14 tg2e v 24+1
il vient
__l_ a? (tsint — cost)?2 + b2 (tcost-}—sint)23
ab \ 21 ;
Or on peut écrire
yEF+1

Rax a[ 24 2 ]X

pe \/ a? (tsint — cos )2 4+ b2 (tcost + sint)?
ab P |
ce qui montre qu’effectivement

R Re
A

]
R/

Second probléeme.

En examinants’il exislait, pour les coordonnées polaires,
une formule analogue a celle qui vient d’étre vérifiée pour
les coordonnées cartésiennes, j’ai été amené a poser et a
résoudre le probleme qui va étre énoncé.

On dira que deux ou plusieurs points d'une méme courbe
ou de courbes différentes se correspondent, s’ils répondent
a une méme valeur de ¢. Les centres de courbure relatifs
a des points de ce geme seront également dits correspon-
dants. Ceci posé, le plobleme qui va étre résolu peut s’é-
noncer comme il suit:

Etant donnée une courbe

r = [ (),
déterminer toutes les courbes
p=F (o)

telles que les centres de courbure correspondants soient avec
Uorigine en ligne droite.

Si 'on désigne par e, 3 les coordonnées cartésienncs du
centre de courbure relatif au point (r, ¢) de la courbe » =
f (@) et par ', »” les deux premicres dérivées de r par rap-

port & ¢, on sail que
- (r2 + r’”) sing 4 » ("2 — »1") cos @
a4 = )
IR ot rr
i ) cos s 2 — pr") sin @
e e
et que, par conséquent,
el e (r-]—; 2 cosg +r (2 —r)sing
¢« — 7 (4 r)sing +r@2—rr’)cose’

En désignant par ¢, 3" les coordonnées rectangulaires
du centre de courbure relatif au point (o, ¢) de la courbe
p = F (¢) et par p/, p" les deux premieres dérivées de p par
rapport & ¢, on a de méme

T o (/)_- + p'?) cos ¢ + p (p"* — pp”) sin ¢

u’ — p' (p? +‘1)~)5|l\(,"+p(/1-—pp)c0=,
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Pour que les points (¢, 3), (¢', ') et 'origine soient en
ligne droite, il suffit de poser

g B
CaN
c’est-a-dire
Y (12 4+ r'2)cos @ + r (P2 —rr’)sino
— " (124 2)sin @ 4+ » (2 — r?”) cos ©
__ PP+ pPeosg

e e VMR
— 0 (P + p) sin ¢ + p (0" — pp") cos ¢

condition qui peut étre ramenée a celle-ci :
o e p-—pp
N R A

Telle est 'équation & laquelle doit satisfaire le rayon
vecteur p considéré comme fonction de ¢ ; c’est une équa-
tion différentielle pour p.

Indépendamment de la forme particuliére que prend la
fonction » = f (¢) dans chaque cas particulier, on peut sa-
tisfaire a I’équation (&) par les deux hypothéses

B

(13) P:AT> 10277

ou A et Bsont des constantes arbitraires. Interprété géomé-
triquement, ceci veut dire que 1¢ les courbes semblables
et semblablement placées, et 2¢les courbes déduites de 'une
d’elles par une inversion, satisfont aux conditions du pro-
bleme. Le premier de ces théoremes est a peu prés évident,
et le second est une conséquence immeédiate des principes
qui ont cours dans la théorie des représentations confor-
mes.

Les solutions (f3) doivent nécessairement se retrouver
dans la solution générale de I’équation («).

Afin d’intégrer I’équation différentielle (¢) on r'emal‘que
tout d’abord que

:‘ i "
pPQ aF [:75 Tidp e g }i’
Si donc on pose pour un instant
”
% =2z, 7 =l 5

on peut en la multipliant par do , donner a I’équation () la
forme

zdarctgz—tdarctgt,
ou bien

1
o dlog (1 + 22 = - dlog (1 + &).

L’intégration de cette derniére équation fournit immé-
diatement

log (1 4 z2) = log (1 + (%) 4 log m2,
oi1 log m? désigne la constante d’intégration. Il s’ensuit

14+ 22=m2(1 4+ 2,

puis
2=m2( 42 —1,

e =Vm:—14 m?

ou, en remplacant z et ¢ de nouveau par leur valeur,

z'—\/m-—l_{_ma ”_I/(’m-—~l)11 —I—m)-.
On a donc
el !

b

12 v/ (m2—1) 72 + m2 2

et 'intégration de cette équation donne

dr
(1 logp:f : +log 4,
V/ (m2—1) 2 + m2 92

log A représentant la constante d’intégration. Passant des
logarithmes aux nombres, il vient

T dr

p=Ae V m2_1)r2 L m2m.

Telle est I'intégrale générale de (@); elle est ramenée a
une quadrature, puisque » et " sont des fonctions de ¢.}
Dans le cas particulier o m — 1, Péquation (7) devient

*d
log 'o ra =log r,
d’ont
oi—Ar. ;
Pour m = — 1, le radical doit étre pris négativement

comme nous le reconnaitrons dans un instant. L’équation ()
donne alors
10g%— e #:—logr,
d’ott
A
= e

On retrouve donc bien les deux solutions particuliéres
signalées plus haut, et ces solutions sont méme plus im-
portantes que la formule I, vu qu’elles s’étendent a toutes
les courbes qu’elles soient données par une équation r=—f(¢)
ou seulement graphiquement.

1l ne sera pas inutile de calculer pour les courbes I
quelques-unes des quantités les plus importantes que ’on
a I’habitude de considérer dans la théorie des courbes.

On trouve d’abord

il

b
i/ (m2—1) 92 4+ m2 2

g=p

22

2 P’ —
IO”:[O[ 9 /9 9 9 + lner ']
(m2—1) "2 4 m2 2 V (mE—1) 12 Fm2s2 g
Si 'on désigne par de I'élément de la courbe p = F'(¢),
il vient
do VR

R 2 —m - :
do ver +/) p|/(m-»— 1) 12 + m2 2

Dans cette formule / #2 4 "2 do — ds signifie I’élément
de la courbe donnée » = f (¢). Or, en géométrie, on consi-
dere les éléments de courbes comme des quantités essen-
tiellement positives, surtout dans le calcul des rayons de
courbure. Il s’en suit que

met y/ (m®— 1) 1 4+ m2 2
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doivent, en général, étre affectés du méme signe. (Il se peut
d’ailleurs que les valeurs 4+ m et — m aménent les mémes
courbes; dans ce cas le radical devra étre muni du signe
double).

Soient # et = les angles que font les tangentes aux points
correspondants (r, ©), (p, ¢) des courbes » = f), p=
F (¢) avec les rayons vecteurs respectifs.

Il vient

/ (m2—1) r'2 4 m? 22

,r’

1ili; g z— —;,— =
Pour m =1 cette formule se spécialise en

P
T:’T:tgﬁ,

t

a9

et pour m = — 1 en

P
tg‘l‘:—-vz—tgﬁ’,

deux formules bien connues, dont la premiére peut servir
a définir les courbes semblables et semblablement placées.

Le rayon de courbure R au point (p, ¢) de la courbe
p = F (¢) a pour expression

(d0>3

do

R NP
11, e Rl

—mp ‘/7-4—1”3 £
r (12— ")+ (124 1'2) V (m2 —1) 72 + m2 12

Terminons cette note par lapplication des formules
trouvées a quelques courbes usuelles.

Exemple 1. La spirale d’Archiméde.
Si
r=co, (¢c=const.)

T

est ’équation de la courbe donnée, on a

r—cp, r—=°¢,

f di b ¢ _
/(m2 — 1) "2 + m? r? y/m2—1 4 m? ¢?
= % log (mg + V m2 —1 + m? ¢2)-

L’équation du systeme de courbes cherché devient

94
m

p_A(mo—[—l/m~——1+m )

Cette formule fournit

pourm =1, p=24¢; (Spirales d’Archimede)
A B
pourm=—1, p=—g-="" (Spirales hyperboliques.)
Exemple 2. La cardioide.
Si
—a(l 4+cosg), r=—asing, (a=const.)
il vient

/' i fe / decos ¢
‘/("m-; Tyr24m22 /costo 4 2m? cosg + 2m2—1

_/‘ dcosg

i/ (cosg + m2)2 4 2m> — mt — 1
=log (cos ¢ + m2 + / cos2e 4 2m?cos¢ +2m2—1)

et, par conséquent,

p = A (cosg + m? +/ cos?¢ + 2m? cosg + 2m* — Tk
Pour m =1 cette équation se spécialise en
o =24 (1 4 cose), (Cardioides)

et pour m — —1 on trouve directement

f dr vl
/ (m2—1) 2 4 m? r?
dcose
PRl COR G

i A
P=TXcosg’

log (1 + coso) ,
d’ott

(Paraboles).

Exemple 3. La circonférence.

L’équation de la circonférence étant donnée sous la

forme
r = a cos ¢, (@ = const.)

on obtient pour les courbes cherchées
p=A(cosg +y/ mE—1 + cos?o)
ou, en coordonnées cartésiennes,
(@ — A2 + y2=A2m?.

Comme il fallait s’y attendre, le systéme de courbes
cherché est le méme que le systeme de circonférences
donné, en considérant dans I'équation de départ a comme
un parameétre variable.

Pour m — — 1 on calcule directement

log —‘} — — log r=—log (a cos¢) ,

d’out
o)
P = wecose
ou bien

A
r—=—
a

(Droites.)
Exemple 4. Soit
r = /a? cos’p + b sin*e (@ = const. , b = const.)

Péquation de la courbe donnée. En la mettant sous la forme

r=y p ' L P cos 20,

ou

on trouve successivement
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T’:-

q* sin 20

Vi F @ cos 2

d cos 2¢

/1 dr e ik
=110
J V(=) "+ m*r 9 (

J VI FFeos e Vor — 1)

q*sin? 2 @

= m2 (p? > Q¢
Ffooszg TP I 97 C0S 20)

d cos 20

il
—2 3
\/cos2 20 + 2m? 4

,'n".' (104 + q’x) A q4

I

(

1 )2
=5 log (cos 20 + m? T + V/ cos’2¢ +

et les courbes cherchées auront pour équation

20
ey cos 20 + 7
W m* (p* + ¢ — ¢
Do L 9
2m P cos 20 + / )
2 2 (i AN
R R L oL e

i . . 17 s
p=A4A \/cos 20 + m o -+ \/cos

q
Pour m — — 1 il vient directement
sl T .
log e log i
ou bien

A A A N
== — . (Ellipses)
Va?costo 4 b*sin*o

S = 3
Vp*+ q*cos2¢

La courbe donnée est donc déduite de l'ellipse
1

Y a? cos’¢ 4 b® sin*¢

au moyen d’une inversion.

Exemple 5. La lemniscate. L’équation donnée étant

r—a Yy cos2¢, (a=const.)

on obtient pour les courbes cherchées

(O pi—=A \/cos 2¢ 4 1/ €020 - m? — 1
et pour m — —1

A

ey (Hyperboles équilateres.)
\/ cos 20
Afin d’examiner les courbes (0) d’un peu plus prés, on
remarquera d’abord qu’elles sont symétriques par rapport
a laxe des x et 4 'axe des y. Lorsque m? <1 elles se com-
posent de deux ovales placés symétriquement par rapport
a l'axe des y; pour m2=—1 elles deviennent des lemniscates
et lorsque m2 > 1 elles sont formées d’un seul trait entou-
rant 'origine. Pour ces courbes on a

I + cos® 2¢
T
sin 2¢

e i e e i Al T
2 cos 2¢ + m* — 1 4 cos* 2¢

et la droite sur laquelle sont situés les centres de courbure

q
correspondants, a pour équation

Y
— = —tg30 .
= geid

Observation 1. Quand m?2 > 1 Pangle ¢ parcourt toutes
les valeurs réelles de 0 & 2x, tandis que, pour la lemniscate
(m2 =1), ¢ est réduit aux valeurs renfermées dans I'inter-

7 T ! -
valle de — 32 + % Il parait ’ensuivre (ue la connaissance

des centres de courbure de la lemniscate n’est plus d’au-
cune utilité pour la construction des rayons de cour-
bure des autres courbes (d), dés que ¢ sort de I'intervalle
de — % a4 Z , car pour de telles valeurs » = |/cos 2¢
devient imaginaire. Il n’en est cependant pas tout a fait
ainsi. En effet, on remarque aisément que les formules
générales I, 11 et III, pour p, tgz, R’ et I'équation des
droites contenant les centres de courbure correspon-
dants, ne sont pas modifiées si 'on y remplace r par ir
= ‘/——'l), c’est-a-dire si I’on tourne la lemniscate d’un
angle droit autour de I'origine. (Il est clair que cette obser-
vation importante ne se borne ni ala lemniscate, niau seul
facteur i. On voit immédiatement comment il faudrait la
modifier, si pour certaines valeurs de ¢ le rayon vecteur r
prenait un facteur imaginaire constant « -1 £). Dans
’exemple actuel, lorsque ¢ n’est pas compris dans 'inter-

Tc . .
valle de — a + W la lemniscate »r = 1@ ¢/ cos20=

T
4
{/— cos 2 ¢ rend donc le méme service ue la lemniscate
proposcée a Pintérieur de cet intervalle.

Observation 2. Cette méthode de construire les rayons
de courbure de certaines courbes & I'aide des centres de
courbure connus d’autres courbes, est en défaut aux seuls
points ot la normale se confond avec la droite des centres
de courbure correspondants. Malheureusement ces points
exceptionnels seront presque toujours les sommets de la
courbe, ou le rayon de courbure alteint son maximum ou
son minimum. En de tels points le cercle osculateur a
quatre points infiniment voisins communs avec la courbe,
et sa connaissance serail précisément le plus utile.
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La figure 4 contient quatre représen-
tants des courbes (0), répondant aux va-
leurs particuliéres :

m—=/ 2 m=1;

777,_\/—4 R —

Les centres de courbure en ligne droite

y sont entourés de petits ronds.

&

Fig. 4.

La fabrique d'explosifs de Gamsen (Valais).
Société suisse des explosifs, ¢ Brigue.

Par M. G. BRELAZ,

Professeur extraordinaire a I’'Ecole d’Ingénieurs.

Grace a la bienveillance de M. I'ingénieur P. Ronchetti,
président du Conseil d’administration de la Société et di-
recteur de la fabrique, j’ai obtenu, non senlement l'auto-
risation de visiter celle-ci et d’étudier la fabrication dans
tous ses détails, mais aussi d’en publier une description.

Malgré les visites que j'ai faites & plusieurs reprises a
'usine, je ne serais pas parvenu au résultat désiré avec suf-
fisamment de détails et d’exactlitude, sans l'obligeance
avec laquelle la Direction a bien voulu compléter mes
renseignements.

Ce n’est pas une étude approfondie des questions de
chimie qui se rattachent aux explosifs, que je veux pré-
senter ici, mais la description d’une usine, & tous égards
remarquablement installée.

A quatre kilometres de Brigue, sur la route de Brigue
a Viege, on trouve & gauche un pelit vallon, profondé-
ment encaissé, ot coule le torrent la Gamsa. Les sables
et les graviers charriés par elle ont formé, & son débou-
ché dans la plaine, un cone de déjection qui termine le
vallon par une pente réguliére et fortement inclinée.

(est sur ce cone de déjection qu’est placée la fabri-
que de la Sociélé suisse des explosifs (siege social el bu-
reaux commerciaux a Brigue).

Le choix de cet emplacement, excellent au point de

vue de la fabrication d’un produit dangereux, a été cer-

tainement déterminé par la prévision du percement du
tunnel du Simplon, et, en effet, la fabrique fournit les
explosifs nécessaires a ce travail.

La Société suisse a été constituée le 9 avril 1894. Elle
a pour objet la fabrication et la vente des produits ex-
plosifs de toute nature, soit pour l'industrie privée, soit
pour les usages de la guerre,

Sa fabrication actuelle comporte tous les genres de
dynamites.

L’usine a une surface de 260000 m?; elle a couté
450000 fr. La fabrique n’est pas constituée par un seul
batiment, mais par une série de constructions ou de ba-
raques étagées en terrasses. Toutes ces constructions
sont reliées entre elles par des allées, la plupart souter-
raines et trées bien entrelenues, comme toute l'usine du
reste.

Des lravaux de protection, tels que talus et cavaliers,
tous en matériaux sablonneux passés au crible, séparent
les uns des aultres les ateliers de la dynamiterie, ainsi que
les dépols, et les garantissent complétement de tout dan-
ger de destruction générale, comme I'a démontré I'expé-
rience, & Gamsen, lors de I'explosion d’un appareil & ni-
troglycérine en 1900.

Les constructions ne faisant pas partie de la dynami-
terie, lelles que fabrique d’acide nitrique, atelier de rega-
gnage el de concentration, magasins généraux, locaux des
chaudieres et des machines, bureaux, laboratoire, concier-
gerie, écuries, etc., sont construits en solide maconnerie,
au moyen des matériaux trouvés a profusion dans le lit de
la Gamsa. Celle-ci, qui coule immédiatement & coté de I'u-
sine, fournit en outre une force motrice plus que suffisante
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