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n° 22 ; c'est le stand moderne le plus perfectionné, le stand
de St-Georges un jour de grand tir, etlls nombreux personnages

sont autant de portraits que les initiés reconnaîtront
facilement.

Ce n'est point tout. Les Exercices possèdent une galerie
de portraits de leurs rois, qui contribue à son tour à la
décoration de la grande salle. Il y a là quelques bons
morceaux de peinture et de précieux documents iconographiques.

Comme on le voit par cette rapide promenade, les

Exercices sont bien logés. Leur hôtel complète les installations

de Saint-Georges, dues les unes et l'autre à l'habile
architecte, M. Gédéon Dériaz, dont nous donnons le
portrait. Ajoutons qu'il fiœentouré de collaborateurs zélés,
mais qui nous excuseront, vu leur nombre, de ne pas donner

leurs noms.
Les clichés qui illustrent cet article ont été

exécutés d'après d'excellentes jipotographies de M. Fréd.
Boissonnas. (Patrie Suisse.)
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r'intégraphe ibdank ibakanowiGZ

par Henry LOSSIER, ©génieur Civil

(Suite) f1

Effete tranchants et moments fléchissants

Considérons (fig. 1) une poutre droite A B encastrée

en B et soit m. n sa ligne de charge dont nous désflperons
l'ordonnée par *q.

Pour une section S située à une distance a du point-A,
l'eftort tranchant Q est égal à : a

Q I i}dx

et le moment fléchissant M
relatif à la même section :

J* L B

rr

M
u

: I -t]dX.

FIG. 1

D'après ce qui précède,

on voit que la première
courbe intégrale //' de m.n
est la courbe des efforts
tranchants et la seconde

// //' celle des moments
fléchissants.

Cette double intégration
revient à tracer la courbe
funiculaire de m.n.

En effet, l'équation de

cette courbe étant :

dly t[
~dx* ==~H

A
»Bo

A
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A

fig. a
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(H distance polaire du

polygone des forces), nous
obtiendrons la courbe
funiculaire en intégrant 2 fois la
courbe d'ordonnée i\.

Ligne élastique

L'équation de la ligne
élastique est donnée généralement

sous la forme :

d'y
dx3 M

JE1+mi-
Dans cette équation M

représente le moment fléchissant,

J le moment d'inertie et

E le coefficient d'élasticité.
La déformation d'une poutre

étant ordinairement très
dy_

dx
petit et l'on peut, sans
commettre d'erreur notable, considérer

le dénominateur comme
étant égal à /.

L'équation devient alors :

d'y M
~ JE'

faible, le rapport -

dx'

Si le moment d'inertie J
est constant, il suffit d'intégrer

2 fois la courbe des

moments fléchissants.

Si, par contre, le moment
d'inertie est variable, on construit

la courbe d'ordonnée
M.Je

•? J
Je étant un

moment d'inertie quelconque,
mais constant. La ligne
élastique s'obtient en intégrant
2 fois cette dernière courbe.

Comme le tracé des lignes
d'influence se ramène, dans

la plupart des cas, à la
détermination de lignes élastiques,
on conçoit tout le parti que
l'on peut tirer de ce qui
précède.

Exemple

Nous avons choisi comme
exemple un problème qui se

présente dans le calcul des

poutres continues à section

variable (méthode du professeur

W. Ritter).

Bi
_«5L#«5Vw_

C D
*^dh^-)l—Il—î=fii
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FIG. 3
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Considérons la poutre en béton de ciment armé,

système Hennebique, représentée fig. 2 et soit CcD la courbe

du moment d'inertie correspondante rapportée à l'axe A B
(le moment d'inertie de chaque section a été calculé en ne

tenant compte que de la section du béton).

Il s'agit de déterminer, à une échelle quelconque :

i° La ligne élastique Axe m de la poutre correspondant

à la surface des moments fléchisMnts A0 C0 B0.

20 Le point d'intersection M des tangerifes à la ligne

élastique en A1 et Bt.
Nous réduisons tout d'abord les ordonnées de la

Je
courbe des moments fléchissants dans le rapoort —— (Je

"Viooo de Jmax), ce qui nous donne la courbe m.n.B0.
La double intégration de cette dernière courbe nous

conduira, comme nous l'avons vu précédemment, à la ligne

élastique cherchée.

Traçons la première ligne intégrale Ir II de m.n. Bo.

Il s'agit de déterminer la position de l'axe des abscisses

00' de telle sorte que les points extrêmes A, et Bx de la

ligne élastique soient situés sur une hfflizontale. Cette

condition sera remplie si la somme algébrique des surfaces

O Ir et O' IIr est égale à zéro.

Nous aurons donc :

Surface Olr surface O'IIr.
Surface Olr A surface IrO'H' surface O'IIr A

surface IrO' II' ; d'où :

Surface rectangle OIII' O' surface Ir IIII'.
La longueur cherchée O I s'obtient donc en divisant

l'aire Ir IIII' par la distance I II'.
En intégrant la courbe I r II rapportée à l'axe O 0',

nous obtenons la ligne élastique At e Bt cherchée.

Les tangentes Ai Bî et B, Ai aux points extrêmes At et

B1 de la ligne élastique sont les lignes intégrales des

horizontales I II et 77 /'.
Le problème est ainsi résolu.

Poutre continue

Considérons la tranche de dalle en béton de ciment
armé, système Hennebique, représentée fig. 3. (Les figures

relatives à ce chapitre sont la reproduction à l'échelle

1/4, des tracés originaux.)
En négligeant la flexion des nervures et la résistance

qu'elles opposent aux déformations de la dalle, nous
pouvons envisager cette dernière comme une poutre continue
à section variable reposant librement sur ses appuis.

Nous nous proposons de déterminer la courbe des

efforts tranchants et celle des moments fléchissants pour
un cas de charge particulier.

Calculons tout d'abord la ligne d'influence relative à

l'une des réactions X' et X" des mesures B et C.

L'élimination des 2 réactions méconnues Z'etZ" nous
ramène à une poutre simple AD reposant librement en ses

extrémités....
Faisons X' 1 et déterminons la ligne élastique

correspondante de la poutre A D,

Pour cela, nous traçons d'abord, comme nous l'avons

u j- j - MJc
indique précédemment, la courbe d ordonnée \ —-—

Je moment d'inertie constant quelconque,

J moment d'inertie variable.

(Le calcul des ordonnés % s'effectue le plus rapidement
avec la règle à calcul.)

Dans notre exemple nous avons choisi pour / c le
moment d'inertie maximum.

La double intégration de la courbe d'actionnée ^ nous

conduit à la ligne élastique cherchée A0 c J BQ. L'axe des

abscisses de la première courbe intégrale IT a été déterminé

comme dans l'exemple précédent.
Supposons qu'il agisse maintenant sur notre poutre

A D les 3 forces verticales P, X' et X". En appliquant le

théorème de notre Maxwell sur la réciprocité des déplacements

des points d'application des forces extérieures, nous

pouvons exprimer les flexions en B et C comme suit :

En B : S' constante (/->?]' — X'r' — Z"r") ;

En C : 8" constante (Prf — X'r" — X"r'),

et comme 8' 8" O

X'r'A X"r" Pu' et X'r"-\-X"r' Pif
d'où nous tirons la valeur de X' :

¦1

X'

Si nous traçons la ligne élastique relative à X" 1 en

multipliant ses ordonnées par — (ligne A0c'JB0), nous

aurons, en tenant compte de la notation de la figure :

et

d'où

r r

r
La surface comprise entre les 2 courbes Ao c J B0 et

Ao c' J Bo est donc la surface d'influence relative à X'.
Comme seul le rapport — entre en considération, il

n'est pas nécessaire de connaître l'échelle à laquelle nos

lignes élastiques ont été tracées.

Lorsque nous avons à envisager des charges uniformément

réparties, il est avantageux de déterminer la ligne
d'influence relative aux charges de cette espèce.

Cette dernière ligne s'obtient en intégrant une fois la

ligne d'influence relative aux charges isolées.

En effet, soit p la charge uniforme par unité courante.

Un élément de charge p d x produit une réaction

dX' pdx.
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Si la charge considérée est répartie de a à b, nous

aurons :
b b

X'ab j M pdx £j ydx.
a a

b

L'intégrale I y] dx n'est pas autre chose que la partie

a
de la surface d'influence comprise entre les ordonnées

d'abscisses a et b.

Si nous désignons respectivement par ßa et ßf, les

ordonnées d'abscisses a et b de la courbe intégrale A1B1,
nous aurons :

b

I T\dx [A (ß* — ßa)

a

(t étant la base d'intégration, d'où

X'ab v- — (ß* — ßa

Dans notre exemple, nous avons rapporté la surface

A0 c J Bo J c' A0 k l'axe horizontal Aa B0 en doublant ses

ordonnées pour plus d'exactitude (A0 c" B0

La ligne d'influence pour charges uniformément réparties

Ax B, a été obtenue en intégrant la ligne A0 c" B0 avec

une base d'intégration égale à 20 centimètres.

Il nous reste à déterminer la courbe des efforts
tranchants et «celle des moments fléchissants relatives au cas de

charge suivant, choisi d'une façon quelconque (voir la

figure) :

1) Charge uniforme de 400 kg par mètre linéaire

répartie sur toute la portée A D ;

2) Charge uniforme de 3oo kg par mètre linéaire répartie

de part et d'autre de C sur une longueur totale de 3,46

mètres ;

3) Charge isolée de 5oo kg entre A et B ;
4) Charge isolée de 11 o kg entre B et C.

En introduisant les valeurs numériques dans les

formules relatives à X' et X", nous obtenons :

Xi Xi H" (P» - ß«)

0,20 m X 400 kg X 4>9$ cm

Z2>

4,85 cm

Xi XI' i63o kg.

(ßft-ßa)

X 20 (échelle du tracé)

0,20 m X 3oo kg
4,85 cm

(5,io cm — 4,65 cm) 20 111 kg

i-Ü-issi&xjjMcm 1366
r 4,85 cm

v ¦ -Pi iioX "i3o '

Xi" —= -^85--=29'5kS-
X' Xi' + Z«' 4- Z8' -f Xi' 2.i36 kg.

_, 0,20 X300X* ¦ 0» - (4.65 - 0,90) 20 927 kg.
4,»r>

Z3"

A4

5oo X (— 0,6)

4,85

110 X 4,3

— 62 kg.

m 97>5 *ê
4,85

X" M A Xi" + Xi' A Xi' S 2.592 kg.

Nous sommes ramenés au calcul d'une poutre simple

reposant librement sur ses 2 extrémités. Comme nous
n'avons que des charges isolées et des charges uniformément

réparties, la ligne des efforts tranchants se composera
uniquement de droites.

Dans notre exemple, nous l'avons tracée à l'échelle de

3 cm par 1000 kg (T0 T').
Il nous reste à déterminer l'axe des abscisses 0 0' de

cette dernière ligne ou ce qui revient au même, les réactions
des appuis A et D.

Pour cela, nous traçons la courbe intégrale T0 T" de

To T' et, à partir de T", la ligne intégrale de l'horizontale

passant par T'. Le point d'intersection L de cette dernière

ligne intégrale avec la droite T0 T est, d'après ce que nous

avons vu précédemment au sujet des centres de gravité, un

point de la résultante des forces agissant sur la poutre AD.
Nous aurons donc :

TT'XET TO' X T0T= T00X 70T
d'où

TT' X ETT00= TO' T0T
Enfin, la courbe des moments fléchissants a été obtenue

en intégrant la courbe des efforts tranchants avec une
base d'appareil égale à 2,5 cm.

Une ordonnée de 1 centimètre de la courbe des

moments fléchissants représente donc :

2,5 cm X 20 5o
1 cm ordonnée- ¦•

3 (cm p. 1 t) 3
t X cm-

Le problème est ainsi complètement résolu.
Je termine ici cette première publication dont le seul

but était, comme je l'ai dit au début, de faire connaître

l'intégraphe Abdank Abakanowicz et quelques unes de ses

applications à la statique ; j'aurai l'occasion de revenir dans

la suite sur la résolution de quelques problèmes spéciaux.

Qu'il me soit permis, en terminant, de remercier ici

Monsieur le professeur W. Ritter, pour les conseils éclairés

qu'il m'a prodigués au cours de cette première étude.

Noie au fujeï du calcul de$

potitç de chemin de ferç en béton arçmé

Dans l'ordonnance federate concernant le calcul, ^inspection
et l'épreuve des ponts et des charpentes métalliques, du 19 août

1892, le Conseil fédéral prescrit que pour le calcul des petits

ponts, jusqu'à i5oo m d'ouverture, la surcharge sera majorée
de :

2 (i5 - /) %

/ étant la portée de l'ouvrage exprimée en mètres.
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