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n° 22 ; c’est le stand moderne le plus perfectionné, le stand
de St-Georges un jour de grand tir, et les nombreux person-
nages sont autant de portraits que les initiés reconnaitront
facilement.

Ce n’est point tout. Les Exercices possédent une galerie
de portraits de leurs rois, qui contribue a son tour i la
décoration de la grande salle. 1l y a la quelques bons mor-
ceaux de peinture et de précieux documents iconographi-
ques.

Comme on le voit par cette rapide promenade, les
Exercices sont bien logés. Leur hotel compléte les installa-
tions de Saint-Georges, dues les unes et 'autre & I'habile
architecte, M. Gédéon Dériaz, dont nous donnons le por-
trait. Ajoutons qu’il fut entouré de collaborateurs zélés,
mais qui nous excuseront, vu leur nombre, de ne pas don-
ner leurs noms.

Les clichés qui illustrent cet article ont été exé-
cutés d’aprés d'excellentes photographies de M. Fréd.
Boissonnas. (Patrie Suisse.)

P'intégraphe Abdank &bakanowicz

par Hexry LOSSIER, Ingénieur Civin

(Suite)

Effets tranchants et moments fléchissants

Considérons (fig. 1) une poutre droite A B encastrée
en B et soit m.n sa ligne de charge dont nous désignerons
l'ordonnée par 1.

Pour une section S située a une distance a du point 4,
I'effort tranchant  est égal a: a

Q= f-qu
0

et le moment fléchissant M
relatif & la méme section :

a
M = [.'qu.x.
0

D’aprés ce qui précede,
on voit que la premiere
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courbe intégrale / /" de m.n
est la courbe des efforts
tranchants et la seconde
Il Il celle des moments

fléchissants.

11" Cette double intégration
revient a tracer la courbe
funiculaire de m.n.

En effet, I'équation de
cette courbe étant :
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(H = distance polaire du
polygone des forces), nous
obtiendrons la courbe funi-
culaire en intégrant 2 fois la
courbe d’ordonnée 1.

Ligne élastique
L’équation de la ligne élas-
tique est donnée générale-
ment sous la forme :
d¥y
dx? +=M

[+ &T

Dans cette équation M re-
présente le moment fléchis-
sant, J le moment d’inertie et
E le coétficient d’élasticité.

La déformation d'une pou-
tre étant ordinairement trés
dy
dx
petit et 'on peut, sans com-
mettre d’erreur notable, consi-
dérer le dénominateur comme
étant égal a 7.

L’équation devient alors:

dy M

dx®

est tres

taible, le rapport

S TE

Si le moment d’inertie J
est constant, il suffit d'inté-
grer 2 fois la courbe des mo-
ments fléchissants.

Si, par contre, le moment
d’inertie est variable, on cons-
truit la courbe d’ordonnée
M.Jc
=
momentd’inertie quelconque,
mais constant. La ligne élas-
tique s’obtient en intégrant
2 fois cette derniére courbe.

Comme le tracé des lignes
d'influence se raméne, dans
la plupart des cas, a la déter-
mination de lignes élastiques,
on congoit tout le parti que
I'on peut tirer de ce qui pré-
cede.

Jc étant un

Exemple

Nous avons choisi comme
exemple un probléme qui se
présente dans le calcul des
poutres continues a section
variable (méthode du profes-
seur W. Ritter),
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Considérons la poutre en béton de ciment armé, sys-
téme Hennebique, représentée fig. 2 et soit Cc D la courbe
du moment d’inertie correspondante rapportée a l'axe A B
(le moment d’inertie de chaque section a été calculé en ne
tenant compte que de la section du béton).

Il s’agit de déterminer, & une échelle quelconque :

1o La ligne élastique A,e B, de la poutre correspon-
dant & la surface des moments fléchissants Ao Co Bo.

20 Le point d’intersection M des tangentes a la ligne
élastique en A, et B,.

Nous réduisons tout dabord les ordonnées de la

Adid Jc
courbe des moments fléchissants dans le rapoort i (Je=

/.00 de Jmax), ce qui nous donne la courbe m.n.Bo.

La double intégration de cette derniére courbe nous con-
duira, comme nous l'avons vu précédemment, a la ligne
élastique cherchée.

Tracons la premiére ligne intégrale /7 [/ de m.n. Bo.
Il s’agit de déterminer la position de l'axe des abscisses
00O’ de telle sorte que les points extrémes A, et B, de la
ligne élastique soient situés sur une horizontale. Cette con-
dition sera remplie si la somme algébrique des surfaces
O Ir et O IIr est égale a zéro.

Nous aurons donc :

Surface O r = surtface O' 7.

Surface OIr 4 surface IrO'Il' = surtace O'IIr +
surface IrO'Il'; d’ou:

Surface rectangle O [ II' O" = surface [ r I1 II'.

La longueur cherchée O [ s’obtient donc en divisant
l'aire I I II' par la distance [ I1'.

En intégrant la courbe /7 /I rapportée a 'axe O O,
nous obtenons la ligne élastique A, e B, cherchée.

Les tangentes A, B, et B; A," aux points extrémes A, et
B, de la ligne élastique sont les lignes intégrales des hori-
zontales [ [I' et II I'.

Le probleme est ainsi résolu.

Poutre continue

Considérons la tranche de dalle en béton de ciment
armé, systtme Hennebique, représentée fig. 3. (Les figu-
res relatives a ce chapitre sont la reproduction a I'échelle
1/4, des tracés originaux.)

En négligeant la flexion des nervures et la résistance
qu’'elles opposent aux déformations de la dalle, nous pou-
vons envisager cette derniére comme une poulre continue
a section variable reposant librement sur ses appuis.

Nous nous proposons de déterminer la courbe des
eftorts tranchants et celle des moments fléchissants pour
un cas de charge particulier.

Calculons tout d’abord la ligne d’influence relative a
I'une des réactions X’ et X" des mesures B et C.

[élimination des 2 réactions méconnues X' et X" nous
raméne 4 une poutre simple A D reposant librement en ses
extrémités.

Faisons X" = 1 et déterminons la ligne élastique cor-
respondante de la poutre A D,

Pour cela, nous tracons d’abord, comme nous I'avons
MJc

f

indiqué précédemment, la courbe d’ordonnée ; =

J ¢ = moment d’inertie constant quelconque,

J = moment d’inertie variable.

(Le calcul des ordonnés ; s’effectue le plus rapidement
avec la régle a calcul.)

Dans notre exemple nous avons choisi pour J/ ¢ le mo-
ment d’inertie maximum.

La double intégration de la courbe d’actionnée 3 nous
conduit a la ligne élastique cherchée A, ¢ J Bo. L’axe des
abscisses de la premiére courbe intégrale /7" a été déterminé
comme dans I'exemple précédent.

Supposons qu’il agisse maintenant sur notre poutre
A D les 3 forces verticales P, X’ et X". En appliquant le
théoréeme de notre Maxwell sur la réciprocité des déplace-
ments des points d’application des forces extérieures, nous
pouvons exprimer les flexions en B et C comme suit :

En B: 8 = constante (Py — X'r' — X"7");

En C: 8" = constante (Pn'— X'»" — X"7r"),

et comme &' = 3" = O
X7 4 X"r'"=Pq et X'r"+X"r' =Py

d’ou nous tirons la valeur de X":

Lol
s 7
X' = o
B o
=
Si nous tracons la ligne élastique relative & X" =1 en

o1

multipliant ses ordonnées par — (ligne Ao,c’J B,), nous
r

aurons, en tenant compte de la notation de la figure :

et

La surface comprise entre les 2 courbes 4, ¢ J B, et
A, ¢'J B, est donc la surface d’influence relative & X

Comme seul le rapport z] entre en considération, il

n'est pas nécessaire de connaitre I'échelle & laquelle nos
lignes élastiques ont été tracées.

Lorsque nous avons a envisager des charges uniforme-
ment réparties, il est avantageux de déterminer la ligne
d’influence relative aux charges de cette espece.

Cette derniére ligne s’obtient en intégrant une fois la
ligne d’influence relative aux charges isolées.

En eflet, soit p la charge uniforme par unité courante.

Un élément de charge p d x produit une réaction

7! 7]
X' = — pdx.
d - pdx
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Si la charge considérée est répartie de a & b, nous

aurons :
b b
X’abe%pdx = 'gf'qu.
a a

b
L’intégrale fn dx n’est pas autre chose que la partie

de la surface da;inﬂuence comprise entre les ordonnées
d’abscisses a et b.

Si nous désignons respectivement par B, et By les or-
données d’abscisses a et & de la courbe intégrale Ay By,

nous aurons :
b

f"ldx=u(ﬁb-—ﬁa)

a

p étant la base d’intégration, d’ou
X = u% (Bo — Ba-

Dans notre exemple, nous avons rapporté la surface
AocJ By Jc' A, a l'axe horizontal A, B, en doublant ses
ordonnées pour plus d’exactitude (Ao ¢" Bo ).

La ligne d’influence pour charges uniformément répar-
ties A, B, a été obtenue en intégrant la ligne A, ¢" By avec
une base d’intégration égale a 20 centimetres.

Il nous reste & déterminer la courbe des efforts tran-
chants et celle des moments fléchissants relatives au cas de
charge suivant, choisi d’'une fagon quelconque (voir la
figure):

1) Charge uniforme de 400 kg par métre linéaire
répartie sur toute la portée A D ;

2) Charge uniforme de 300 kg par métre linéaire répar-
tie de part et d’autre de C sur une longueur totale de 3,46
meétres ;

3) Charge isolée de 500 kg entre A et B ;

4) Charge isolée de 110 kg entre B et C.

En introduisant les valeurs numériques dans les for-
mules relatives 8 X’ et X", nous obtenons :

X0 =X =g L@ — ) =

0,20 m XX 400 kg X 4,05 cm
4,85 cm

X, = X" = 1630 kg.

¥ 20 (échelle du tracé)

Xou . P - =

0,20 m X 300 kg

485cm (5,10 cm — 4,65 cm) 20 = 111 kg
XBI e P,IA e 57007195)( 3’55 e = 366 l\g
r 4,85 cm
,  Pq __ 1oX1,30 §
X = T 485 = 29,5 kg.

X' = X'+ Xi'+ X5 4 X' =236 kg,

L 0,20 X 300
Xy =

2 4,85 (4,65 — 0,00) 20 = 927 kg.

500 X (— 0,6)

Ky = 2RO ;
3 285 62 kg
v 110X 43 o

Xy = 1,85 = 97,5 kg.

X"= X"+ Xo'+ X5" + Xi" = 2.592 kg.

Nous sommes ramenés au calcul d’une poutre simple
reposant librement sur ses 2 extrémités. Comme nous
n’avons que des charges isolées et des charges uniformé-
ment réparties, la ligne des efforts tranchants se composera
uniquement de droites.

Dans notre exemple, nous l'avons tracée a I'échelle de
3 cm par 1000 kg (T T").

Il nous reste a déterminer 'axe des abscisses O O de
cette derniére ligne ou ce qui revient au méme, les réactions
des appuis A et D.

Pour cela, nous tracons la courbe intégrale To T" de
To T’ et, a partir de 7", la ligne intégrale de I'horizontale
passant par T". Le point d’intersection L de cette derniére
ligne intégrale avec la droite 7, T est, d’aprés ce que nous
avons vu précédemment au sujet des centres de gravité, un
point de la résultante des forces agissant sur la poutre A D.

Nous aurons donc :

FT X L TR0 X Ty T=F0) Fo
d’ou
TR G
e

Enfin, la courbe des moments fléchissants a été obte-
nue en intégrant la courbe des efforts tranchants avec une
base d’appareil égale a 2,5 cm.

Une ordonnée de 1 centimétre de la courbe des mo-
ments fléchissants représente donc :

To0=TO =

3. 5iem 20 50
3(emp. 1ty 3 bR G

1 cm ordonnée =

Le probléme est ainsi complétement résolu.

Je termine ici cette premitre publication dont le seul
but était, comme je I'ai dit au début, de faire connaitre
l'intégraphe Abdank Abakanowicz et quelques unes de ses
applications & la statique ; j'aurai I'occasion de revenir dans
la suite sur la résolution de quelques problémes spéciaux.

Qu’il me soit permis, en terminant, de remercier ici
Monsieur le professeur W. Ritter, pour les conseils éclai-
rés qu'il m’a prodigués au cours de cette premicre étude.

Note au gujet du calcul deg

ponts de chemin de fer en béton agmée

Dans I'ordonnance fédérale concernant le calcul, Pinspection
et épreuve des ponts et des charpentes métalliques, du 19 aott
1892, le Conseil fédéral prescrit que pour le calcul des petits
ponts, jusqu’a 1500 m d'ouverture, la surcharge sera majorée
de :

2 (15 — 1)%,

[ étant la portée de 'ouvrage exprimée en metres.
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