Zeitschrift: Bulletin technique de la Suisse romande

Band: 26 (1900)

Heft: 1

Artikel: Essais de rendement des pompes installés par la ville de Neuchâtel à

Combe-Garot

Autor: Chavannes, Roger

DOI: https://doi.org/10.5169/seals-21446

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

communications intéressantes et en empêchant les discussions qui pourraient y surgir, de s'égarer ou de devenir par trop vives! Comme tout président qui sait son métier, nous prendrons la parole le moins possible, mais nous la donnerons aussi à ceux qui, sans être membres de notre société, auront des communications intéressantes à faire à nos lecteurs. A tous ceux qui apporteront à la tribune un sujet susceptible d'y être admis, nous offrirons enfin le traditionnel verre d'eau sucrée à 10 cent. la ligne; ça ne fait pas vivre, mais cela adoucit cependant les rapports entre les orateurs et le président et souvent l'auditoire s'en aperçoit aussi!

Sur ce, nous implorons l'indulgence de nos collègues et lecteurs bénévoles, en même temps que leur collaboration active!

Genève, mai 1900.

LA RÉDACTION.

Essais de rendement des pompes installées par la ville de Neuchâtel à Combe-Garot

PAR ROGER CHAVANNES, INGÉNIEUR

Le Service des Eaux de Neuchâtel dispose, dans les Gorges de la Reuse, de sources dont le niveau est inférieur à celui de son aqueduc. Une de ces sources, la Verrière, a été pompée pendant quelques années par une installation hydraulique provisoire qui a été décrite dans le Bulletin de la Société vaudoise des ingénieurs et architectes, année 1893.

Actuellement cette source a été amenée par une canalisation en fonte à l'usine hydraulique de Combe-Garot, située à un kilomètre en aval. Chemin faisant, la canalisation recueille deux autres sources, l'une qui jaillit dans le tunnel en rocher qu'il a fallu percer pour contourner la chute de la Reuse au barrage de la Verrière; l'autre a été rencontrée en aval, au pied d'un éboulis.

Ces trois sources rejoignent la source de Combe-Garot dans un réservoir situé sous les machines de l'usine.

Voici quelques renseignements sur les débits de ces sources, en litres, par minute :

50 are.	55, 611 111 65, 1			Verrière	Source noire (tunnel)	Source Rochefort (éboulis)	Combe- Garot
1893.	Etiage			2160			2160
1894.	Etiage			2315			2000
1897.	Etiage d'hive	er		 1900			3000
1898.	Etiage d'été			 2105	295		2300
1899.	29 avril .			5625	3460	1400	4025
1899.	Etiage (déce	mb	re)	1730	187	658	1960
1900.	20 janvier			4725	3100	1020	3150

Le volume total des sources qui arrivent dans le réservoir varie dans des limites très étendues. En 1899, nous trouvons des chiffres dans les limites de 12000 à 4775 litres à la minute.

Pour amener cette eau dans l'aqueduc de la ville, qui passe à proximité sur le flanc de la montagne, il a été installé deux groupes de turbines et pompes, fournies par la maison Piccard et Pictet, de Genève.

Dans tout contrat de fourniture de générateurs et récepteurs, hydrauliques ou autres, il est prévu des garanties de rendement. En pratique, les épreuves nécessaires à la vérification de ces rendements sont rarement faites avec précision. Ces épreuves sont coûteuses, longues et difficiles, et il faut les faire à la réception des machines, au moment où l'acheteur est habituellement pressé de profiter de l'effet de ses machines. Si quelques essais grossiers lui montrent que les garanties sont probablement tenues, il est fréquent qu'il s'en tienne là.

Dans le cas particulier, il a été fait des essais assez complets, à cause de l'intérêt qui s'attache à l'emploi des pompes centrifuges à haute pression. On sait depuis quelques années que ces pompes ont un rendement qui croît avec le débit, et grâce à cet accroissement on peut atteindre d'assez grandes hauteurs d'élévation avec un rendement industriel. Le fait a été vérifié à plusieurs reprises, et mis en relief en particulier dans différentes publications de M. Schabaver, constructeur à Castres. Les essais de M. Schabaver peuvent laisser cependant quelques doutes au sujet de leur précision, par le fait que la mesure de la puissance motrice a été faite en relevant les diagrammes d'une machine à vapeur. Le procédé n'est pas précis, et ne permet guère que des mesures comparables entre elles, ce qui suffit pour démontrer une loi, mais non pour fixer exactement des chiffres absolus.

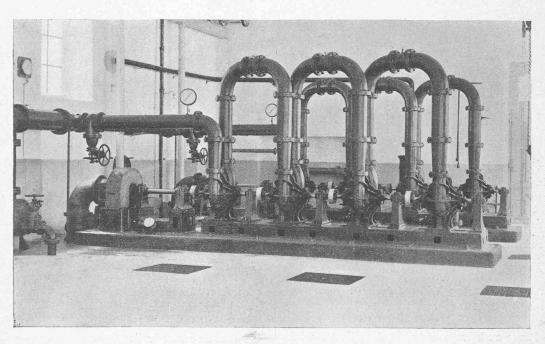
M. Dumont, le constructeur des pompes employées à Combe-Garot, avait dû également baser ses essais sur les diagrammes des machines à vapeur qui entraînent les pompes par courroie.

Il était d'un certain intérêt de profiter des circonstances favorables où nous étions pour faire quelques mesures précises. Ces circonstances sont décrites ci-après.

Hauteur de refoulement. — La distance verticale entre la nappe du réservoir d'aspiration et l'aqueduc a été relevée par nivellement, ce qui a permis de vérifier les deux grands monomètres employés pendant les essais. Ces appareils étaient remarquablement exacts à la pression de marche, qui a varié entre 87 et 88 ½ mètres.

Débit des pompes. — L'eau refoulée arrive à côté de l'aqueduc dans une chambre de jauge d'une capacité utile de 3o63 litres. Pendant les mesures, cette chambre se remplissait en un temps variant entre 32 et 80 secondes. L'erreur moyenne de comptage peut être évaluée à $^{1}/_{60}$ au plus. La mesure de la capacité de la chambre comporte, d'autre part, une approximation de $^{1}/_{2}$ $^{0}/_{0}$ environ, et probablement même inférieure. Pendant la mesure, l'eau monte dans la chambre de 915mm. Le o correspond à une nappe d'eau de plus de 40cm.

Pour mesurer la puissance fournie aux pompes, il fallait tarer la turbine motrice. Il a été employé pour cela un frein à serrage automatique et refroidissement par arrosage intérieur. Dans ces conditions, on obtient un équilibre relativement stable qui permet des lectures faciles. La précision de la mesure dépend de celle de la mesure des forces


en présence (poids fixes et poids variables) et de celle de la vitesse.

Frein. — Le frein n'était pas équilibré. Pour mesurer sa charge constante on le suspendait, après l'avoir desserré, sur une arête vite placée dans la verticale de l'axe de rotation. Plaçant alors un dynamomètre à ressort au-dessus du point de suspension du plateau des poids mobiles, on avait la surcharge à ajouter à ceux-ci dans le calcul. Cette tare fixe a été trouvée variable d'un jour à l'autre dans de faibles latitudes, dont les unes provenaient de ce qu'une caisse destinée à renfermer les poids s'imbibait plus ou moins d'eau, et les autres de causes inconnues. Ces dernières variations sont une mesure de l'approximation. Elle atteignait environ 1 kilo sur 64, soit 1, 6 % d'erreur probable. D'autre part, la

La mesure de la vitesse se faisait avec un tachymètre fréquemment vérifié avec un compteur de tours. On pouvait admettre sur la mesure de la vitesse une erreur probable de 1 $^{0}/_{0}$.

L'élimination de ces erreurs ne peut se faire qu'en multipliant les expériences, dans les mêmes conditions, avec fréquentes vérifications des constantes admises. Les erreurs tantôt s'ajoutent, tantôt se compensent, et la moyenne assure une certaine compensation finale. C'est ce qui a été fait.

On a naturellement profité des mesures faites au frein pour vérifier le rendement de la turbine. Les essais ont montré que la ventilation de la turbine jouait un grand rôle dans les variations du rendement, et on a été amené à

POMPES CENTRIFUGES DE COMBE-GAROT (VAL-DE-TRAVERS). Propriété de la commune de Neuchâtel. 180 chevaux; 87 mètres.

mesure de l'exactitude du dynamomètre et la vérification des poids employés a permis de penser que les erreurs commises sur ces mesures devaient atteindre environ 1 %.

Soient L la longueur du levier du frein;

P le poids du frein mesuré au bout du levier, ou tare fixe du frein ;

P' les poids mobiles pendus à l'extrémité du levier, et pesant l'effort dynamique moteur ;

p le poids relevé au dynamomètre, et mesurant la puissance du serrage, mesuré dans la verticale du point de suspension des poids mobiles.

Le poids total à l'extrémité du levier sera donc

$$P + P' - p$$
.

La puissance du générateur sera donnée par la formule de Prony :

HP=
$$(P+P'-p)\frac{2\pi L n}{60\times75}$$
=0,001396 \times (P+P'-p) n L où n est le nombre de tours par minute.

modifier quelques détails pour améliorer la ventilation. Nous indiquerons simplement dans ce qui suit les mesures correspondant aux conditions extrêmes qui ont pu être réalisées, soit turbine non ventilée ou ventilée. Ces deux expressions indiqueront que dans le premier cas on a empêché au maximum l'accès de l'air autour et dans l'eau dans son trajet entre la sortie du distributeur et le canal de fuite, et que dans le second cas on l'a au contraire facilité le plus possible.

La notable différence trouvée dans les rendements provient de ce que, en l'absence de ventilation, il se faisait un vide à l'échappement de l'eau, qui retenait celle-ci et la laissait tourbillonner avec la turbine, qui marchait donc en partie noyée et gênée dans son mouvement. L'étude de cette question accessoire a été trouvée assez intéressante pour multiplier les essais qui s'y rapportaient.

Débit de la turbine. — Ce débit a été étudié de deux manières. On a mesuré la section des orifices et calculé les

débits ; puis on a vérifié les calculs par l'observation d'un déversoir. Ce dernier a été installé dans le canal de fuite, et l'eau y prenait un niveau tranquille favorable aux mesures. La règle divisée sur laquelle on lisait les hauteurs était à plusieurs mètres en amont de la chute, et pour en lire les divisions on avait installé un éclairage tel qu'on pouvait facilement apprécier le millimètre à l'aide d'une petite lunette.

Le canal ayant 1^m ,50 de large, le déversoir avait 0^m ,50. En appelant A et a ces quantités, et h la hauteur d'eau audessus de la crête, on a appliqué la formule de Brashmann :

$$Q = \left(1.7 + 0.171 \frac{a}{A} + 0.00235 \frac{1}{h}\right) a h \sqrt{h}$$
ou
$$Q = \left(0.3838 + 0.386 \frac{a}{A} + 0.00053 \frac{1}{h}\right) a h \sqrt{2gh}$$

On comparait les mesures au débit calculé d'après les sections des orifices, tous sensiblement égaux et ayant 10^{cm2},92. On a appliqué comme coefficient de vitesse le chiffre 0,85 admis généralement pour les turbines. L'accord a été très satisfaisant.

L'erreur absolue faite sur la dépense d'eau est peut-être assez notable, malgré l'accord des deux méthodes; mais elle n'a d'influence que sur la mesure du rendement de la turbine. Les erreurs relatives tenant aux observations étaient de l'ordre de celles qu'on pouvait faire en lisant la hauteur d'eau du déversoir, ou en mesurant la largeur de la veine. Ces erreurs relatives sont inférieures à 1 º 0.

Turbine. — La turbine nº 1 a été l'objet du plus grand nombre de mesures, parce qu'elle a été montée d'abord sans pompe, ce qui facilitait les expériences. Au reste, les deux turbines étaient exactement semblables, et les dimensions des orifices étaient les mêmes, à une quantité négligeable près. Chacune d'elles a cinq orifices, dont chacun peut être obstrué par un bouchon en fonte placé à la main. Ce vannage a peut-être l'air primitif, mais il a été désiré à cause de sa simplicité et parce que, en pratique, la tu bine marche des mois entiers avec le même degré d'ouverture, et en général avec les cinq orifices ouverts.

La pression de l'eau motrice était de 89^m,80 au distributeur. Cette pression a été vérifiée par nivellement. On a tenu compte de la très faible perte de charge dans la tuyauterie. Le manomètre, quoique sensible, n'indiquait pas de perte de charge appréciable, et il donnait 92,10 comme pression au distributeur, au lieu de 89,80.

La vitesse normale de la turbine est de 800 tours par minute. Sa puissance de 180 chevaux en pleine charge, à cette vitesse.

Essais de puissance de la turbine

	L	sours	ue puissu	nce ue iu iu	roine	
Date des essa 189	d'essais is	d'orifice	Nombre s de tours extrêmes	Puissances extrêmes observées bine non ventilé	Moyenne	Tare et longueur du levier
4 se		3	825-900	66-113	93,5) 57 kilg.
4	14	4	675-900	122-150	113,5	et
4	14	5	800-925	144-169	160,4	1,763
21 se	pt. 2	1	725-800	22-24	23) 56 kilg.
<	5	2	800-825	58-60	59	et et
«	9	3	800-870	91-101	94,7	1,763
	(10	4	800-900	120-140	127,8	1
12 no	V. 4	5	870-880	160,5-165,5	163	64 kilg.
				urbine ventilée		et
4	5	5	810-820	177-184	181	1,83

Essais des 16, 17 et 18 décembre. — Turbine ventilée (n° 1). — Tare du frein : le 16 décembre, 62 kilos ; le 17, 63 ; le 18, 64 kilos. Levier, 1^m,83.

Nombre d'orifices	Vitesses extrêmes	Puissances extrêmes	Nombre d'essais	Moyenne
1	805	36	I	36
2	785-800	72,5-73	2	72,75
3	805-815	109-112	3	. 111,1
4	810-855	141-149	8	145,5
5	820-880	179-184	7	180,9

Débits de la turbine. — Essais de 1897. — Pression, 89^m,8, Section d'un orifice 10^{cm²},92. Coefficient de vitesse, 0,85. Turbine ventilée.

Pendant les essais, le frein employait 90 litres d'eau par minute, qui rejoignait l'eau sortant de la turbine. Cette eau est déduite sous le nom d'arrosage dans le tableau cidessous.

TURBINE N° 1	1 orifice	2 orific*	3 orific"	4 orific*	5 orific*
Débit calculé par les orifices . Hauteur d'eau sur le déversoir					
Date de l'essai					
Débit déversoir	48.9	85.0	123.5	160	196.5
A déduire arrosage	1.5	1.5	1.5	1.5	1.5
Débit des orifices	47.4	83.5	122	158.5	195
Débit $\frac{195}{5} = 39. \dots$	39	78	117	156	195
Différences	8.4	5.5	5	2.5	

On observe un accord remarquable entre le débit calculé par la hauteur d'eau sur le déversoir, 194,6 litres par seconde, et par la section des orifices, 195 litres, pour cinq orifices ouverts.

En divisant ce chiffre de 195 par 5, on trouve que chaque orifice devrait débiter 39 litres, et en multipliant ce chiffre par le nombre d'orifices, on a les chiffres de l'avant-dernière ligne du tableau. La dernière ligne donne les différences entre ces chiffres et le débit observé, et il est facile de voir que ces différences sont sensiblement proportionnelles aux nombres d'orifices fermés, et représentent les fuites des bouchons assez grossiers qu'on employait pour leur obstruction.

Pompes. — Trois séries de mesures de débit des pompes ont été faites. La première en août, septembre et octobre 1897, avec la turbine n° II, non ventilée, comme moteur. Une deuxième série en mars et juin 1898, avec les deux pompes, actionnées par leurs turbines ventilées. Une troisième série de contrôle a été faite en 1900, après une vérification de la chambre. Cette troisième série a montré que la turbine n° II, qui a fonctionné beaucoup plus que l'autre, ne fournit plus sa force normale, par suite d'une usure du distributeur, qui en a modifié la forme.

Voici le résumé de ces essais :

	Date	N∘ de la pompe	Nombre d'orifices ouverts	Eau pompée Litres par minute	
1807.	Août 20	II	5	5330	
	Septembre 11	II	5	5350	
	Octobre 15	II	5	5360	
1898.	Juin 2	II	5	5740	
	Février	II	5	5740 5128	
1898.	Mars 31	I	5	5620	
«	Juin 2	I	5	5610	

	Date	N° de la pompe	Nombre d'orifices ouverts	Eau pompée Litres par minute	git.
1900.	Février	I	5	5491	
1897.	Avril 20	II	4	3970	
1898.	Juin 2	II	4	4230	
1000.	Février 2	II	4	3682	
1898.	Mars 31	I	4	3925	
«	Juin 2	I	4	4170	
1900.	Février	I	4	4170	
1898.	Octobre 15	II	3	2135	
1900.	Février	II	3	2017	
1898.	Mars 31	I	3	2535	
1900.	Février	I	3	2365	
«	«	I	2	97	
«	«	II	2	0	

Parmi ces chiffres, ceux qui peuvent être comparés avec le plus d'exactitude avec la puissance motrice sont ceux qui concernent la pompe nº I; soit parce que la turbine correspondante a été étudiée avec le plus de soin, soit parce que les essais de 1900 ont montré que les débits actuels sont peu différents de ceux de 1898.

On obtient alors les résultats moyens suivants :

Nombre d'orifices ouverts à la turbine	Débit d Litres Minute	es pompes Litres Seconde	Hauteur d'élévation	Chevaux théoriques correspondants
I	0	9	0	0
2	97	1,62	87,4	1,88
3	2535	42,2	87,6	49,3
4	2997	66,6	87,9	78
5	5615	93,6	88,14	110

Rendements. — Des tableaux ci-dessus on peut calculer le rendement de la turbine, des pompes et du produit des deux.

On obtient les chiffres suivants, basés sur la dépense des turbines, non compris les fuites aux bouchons, et sur les résultats obtenus avec les pompes n° I.

Comme chaque groupe comporte quatre pompes centrifuges associées en série, les rendements observés se rapportent pour chaque pompe à une hauteur d'élévation du quart de la hauteur totale, soit environ 22 mètres.

Débit turbine Litres par second	Nombre d'orifices ouverts e	Pression de l'eau motrice	Débit des pompes Litres par seconde	Hauteur de l'élévation	Puissance de la turbine observée	Puissance représentée par l'eau élevée
39	I	89,8	0	0	36,00	0
78	2	«	1,62	87,4	72,75	1,88
117	3	«	42,20	87,6	111,10	49,30
156	4	«	66,60	87,9	145,50	78,00
195	5	«	93,60	88,14	180,90	110,00
Nombre d'orifices ouverts	Render de l turbi	a	Rendemen des pompes		Rendement total bine et pompe	Tours par minute
I	0,77	7 I	0		0	
2	0,77	78	0,0258		0,02	728
3	0,70)2	0,444		0,352	754
4	0,77	79	0,535		0,418	782
5	0,77	75	0,610		0,472	814

On retrouve dans ces essais le fait toujours observé d'un rendement croissant avec le débit d'une pompe centrifuge. Le maximum qui atteint à Combe-Garot, 61 %, eût été sans doute dépassé encore avec une turbine plus puissante. On remarquera encore la très faible augmentation de vitesse qui suffit pour doubler le débit d'une pompe centrifuge.

L'intérêt de ces mesures est surtout dans le fait qu'elles ont été exécutées dans des circonstances qui permettaient une exactitude assez grande, et qu'on peut les admettre comme entièrement dépourvues de tout parti-pris ou d'intérêt privé. Nous avons entendu parler d'autres pompes centrifuges, de construction étrangère ou suisse, qui donneraient des résultats encore supérieurs, mais n'avons pas encore vu la *preuve* de ces résultats. Il existe à Genève un groupe d'un moteur de 1000 chevaux, actionnant une pompe en quatre étages juxtaposés, élevant l'eau à 130 mètres. Il va être installé au Locle des pompes de même espèce pour l'alimentation de la ville, élevant l'eau à 90 mètres, et mûes par moteurs électriques. Si ces villes font des essais complets, il sera intéressant de les comparer à ceux de Neuchâtel.

Résumé des données principales:

Localité. — Combe-Garot, aux bords de la Reuse, Val de Travers, en aval de Champ du Moulin.

Puissance motrice. — La Reuse, captée en amont de Champ du Moulin, canal souterrain calculé pour 5 m³, étiage 1300 à 1500 litres, chûte 90 mètres. Concession dite du palier moyen, appartenant aux communes de Chaux-de-Fonds, Locle et Neuchâtel.

Eau pompée. — 4 sources d'un débit total de 4 à 12 mille litres par minute.

Elévation. — 88 mètres. Aspiration de 1 $^{-5}$ 50 à 2 mètres comprise.

Turbine. — 180 chevaux, 810 tours, axe horizontal, vannage à bouchons, arrivée de l'eau parallèle à l'axe. 2 paliers à bagues.

Pompes. — Chaque turbine actionne 4 pompes Dumont, à paliers à bagues, indépendants. Chaque groupe élève 5000 à 5400 litres par minute, 2 groupes installés.

Encombrement. — Longueur, 6^m75, largeur 1^m50, hauteur 3 mètres, turbine comprise.

Refoulement. — Tuyauterie de 200 mètres de long, 400 milimètres de diamètre ; fonte.

Constructeurs. — Piccard & Pictet à Genève pour les machines; Société de construction mécanique à Bâle pour la tuyauterie. Montage en 1897.

GHRONIQUE LOGALE

GENÈVE

Question du Musée. — Cette question semblant devoir arriver enfin à une solution définitive, nous pensons intéresser nos lecteurs en résumant ici, d'après les documents officiels, les péripéties par lesquelles a passé le choix d'un emplacement pour la construction d'un musée central, réunissant les collections des Beaux-Arts, des Arts décoratifs, d'Archéologie, de Numismatique et le musée historique:

De 1879 à 1885, le Conseil municipal examine successivement les emplacements suivants : Hôtel de la Métropole, le terrain des Casemates, le Jardin botanique, le palais Eynard, la Plaine de Plainpalais, la promenade de St-Jean.

En 1885, il mit au concours la construction du musée en laissant aux concurrents le choix entre les Casemates et la promenade de Saint-Jean.

Le 25 septembre 1886, les architectes établis dans la ville de Genève procèdent à l'élection du jury, qui est composé comme suit :

MM. Gaspard André, architecte, à Lyon.

Léo Chatelain, architecte, à Neuchâtel.

Th. Turrettini, conseiller administratif.

Tièche, architecte, à Berne.

Et. Duval, peintre, à Genève.

25 octobre 1886. 21 projets ont été présentés pour le concours, dont les deux tiers se rapportent à l'emplacement des Casemates, et un tiers seulement à la promenade de Saint-Jean.