Zeitschrift: Bulletin de la Société vaudoise des ingénieurs et des architectes

Band: 13 (1887)

Heft: 4

Artikel: Cinquantenaire de l'inauguration des chemins de fer français

Autor: [s.n.]

DOI: https://doi.org/10.5169/seals-13724

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

tro-magnétisme, passent en revue les grandeurs et les unités électriques. Ils rappellent ensuite les lois fondamentales des courants, savoir : la loi d'ohm, et celles des courants dérivés et d'induction.

Vient ensuite la théorie du circuit limite, utile à connaître surtout quand on employe la pile.

Puis les auteurs traitent des différentes espèces d'amorces à fil de platine, à fil interrompu, etc.

Production de l'électricité. — L'électricité est obtenue par une action chimique (la pile) ou par une action mécanique (machines à frottement, machines magnéto et dynamo-électriques).

La pile est décrite avec une grande clarté et nous citons textuellement : « La force électro-motrice d'un élément de pile est proportionnelle à la somme des calories positives et négatives développées par les réactions d'un équivalent chimique des corps en présence. »

La polarisation des éléments a pour effet d'affaiblir le courant produit, par suite de la plus grande résistance de l'électrode conductrice et des actions chimiques secondaires qui tendent à déterminer un courant en sens contraire.

Le classement des piles, leur mode d'assemblage, les appareils d'induction électro-voltaïques, les condensateurs et les accumulateurs sont définis d'une façon générale, et les machines magnéto et dynamo-électriques sont traitées dans tous leurs principes fondamentaux.

Electrométrie — Avant d'aborder l'électrométrie proprement dite, description sommaire est donnée des instruments de mesure, tels que galvanomètres, rhéostats, pont de Wheatstone, etc.

Les premières mesures à faire consistent à déterminer les résistances intérieures des piles employées et les résistances du circuit extérieur, dont les principales sont : résistance des conducteurs, des amorces, de la terre, des dérivations et du galvanomètre. Des tableaux donnent ces résistances pour des fils de différents métaux et pour diverses matières.

Viennent ensuite les mesures suivantes : mesure des forces électro-motrices, des différences de potentiel, de l'intensité de courant, de la quantité d'électricité, de la capacité des conducteurs et de l'énergie.

Théorie des amorces. — Les auteurs recherchent quelle est la quantité de chaleur, puis l'intensité du courant nécessaires pour faire détoner une amorce et arrivent à la formule :

$$I=d^{rac{3}{2}}\,\sqrt{rac{\mathrm{K}\,\pi}{4\,
ho\,l}}$$
 dans laquelle I désigne l'intensité limite

du courant, d le diamètre du fil de l'amorce, l sa longueur, ρ sa résistance spécifique et K un coefficient qui tient compte de la déperdition de chaleur par le rayonnement.

« Telle serait, en tenant compte des pertes de chaleur, l'expression de l'intensité limite en fonction du diamètre du fil d'amorce. »

Pratiquement, les intensités au lieu d'être proportionnelles aux diamètres puissance trois demis, paraissent être simplement proportionnelles aux diamètres.

Ce point spécial donnera lieu à de nouvelles expériences.

MM. Burnier et Guillemin indiquent ensuite les meilleures dispositions à donner aux amorces. Ces dernières sont en très grand nombre, les principales sont : les amorces Statheam, Hipp, Beardslee, Ebdner, Abel et Guillemin.

Des tableaux donnent ensuite les forces électro-motrices et les résistances des piles les plus employées, les résistances du circuit-limite, les températures d'inflammation de diverses substances, et les intensités d'une pile théorique suivant le groupement des éléments.

Seconde partie. — Service de campagne.

Les auteurs entrent ici dans une description complète du matériel et des appareils réglementaires, puis traitent des travaux préparatoires de la mise du feu et des conducteurs, des essais des amorces et des circuits, des mesures à prendre en cas de ratés, du repliement des conducteurs, de l'enlèvement des amorces, et enfin de l'entretien général du matériel.

Les deux derniers tableaux indiquent, le premier une comparaison entre le câble de mineur et le câble télégraphique, le second les données pratiques sur les conducteurs métalliques.

Ce manuel est d'une composition tellement serrée et renferme un si grand nombre de formules et de renseignements pratiques qu'il est bien difficile d'en donner une idée exacte par un résumé de quelques lignes seulement. Mais l'appréciation qu'en donnent les hommes compétents, dont le savoir en ces matières spéciales ne peut pas être mis en doute, est une preuve irrécusable de la haute valeur de ce manuel.

M. E. Hospitalier, rédacteur en chef de l'Electricien dit, dans son numéro du 19 mars : « Dans leur manuel sur l'inflammation des mines par l'électricité, MM. V. Burnier et Et. Guillemin, officiers supérieurs du génie de l'armée suisse, établissent très simplement la théorie des amorces et calculent la quantité de chaleur nécessaire pour faire détoner une amorce. Nous croyons utile de résumer les points principaux de cette étude et d'en reproduire les formules pratiques qui pourront servir de guide dans le calcul du courant nécessaire à cette opération. »

M. P.-F. Chalon, ingénieur des arts et manufactures, dans le *Génie civil* du 26 mars, s'exprime ainsi: « Déjà le problème nous semble complètement résolu au point de vue des mines militaires, et mis à la portée de tous les officiers du génie, grâce au remarquable manuel sur l'inflammation des mines par l'électricité que viennent de publier MM. V. Burnier et E. Guillemin, ingénieurs des arts et manufactures et colonels du génie fédéral suisse. Nous allons citer les parties de ce manuel qui nous ont paru absolument nouvelles et qui peuvent trouver leur application dans les travaux industriels, en particulier l'étude des amorces et la théorie du circuit limite. »

Et nous-même, nous recommandons vivement la lecture de ce manuel à nos collègues, car il contient les connaissances électriques les plus essentielles, savoir : les unités électriques, les lois fondamentales, les renseignements pratiques et les principaux calculs demandés à l'ingénieur.

> LÉON RAOUX, ingénieur, directeur de la Société suisse d'électricité.

Un concours d'esquisses est ouvert à Zürich en vue d'obtenir des projets pour la construction d'une nouvelle Tonhalle. Le jury, nommé sur la présentation de la société zuricoise des ingénieurs et des architectes se compose de MM. André, architecte à Lyon; Auer, professeur et architecte à Vienne; Bluntschli, professeur et architecte à Zurich; Geiser, architecte de la ville de Zurich et Recordon, architecte à Lausanne.

H. VERREY.

CINQUANTENAIRE DE L'INAUGURATION DES CHEMINS DE FERFRANÇAIS.

D'après une note lue à l'Académie des sciences morales et politiques, par M. Léon Aucoc, professeur à l'Ecole des ponts et chaussées, le premier chemin de fer français ouvert à l'exploitation est celui de Saint-Etienne à Andrezieux, inauguré en octobre 1828, pour le service des marchandises. Les voyageurs ont été transportés, dès juillet 1832, sur le chemin de fer de Saint-Etienne à Lyon, au moyen des premières locomotives Seguin. Les fêtes du cinquantenaire sont donc en retard de plusieurs années.