Zeitschrift: Bulletin de la Société vaudoise des ingénieurs et des architectes

Band: 8 (1882)

Heft: 4

Artikel: Notice sur la ventilation, la température, le refroidissement et l'humidité

de l'air dans le grand tunnel du St-Gothard

Autor: Stapff, F.-M.

DOI: https://doi.org/10.5169/seals-9519

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

six pages de texte et en tout plus de cent illustrations avec quelques suppléments artistiques. Chaque numéro contiendra une partie élégamment encadrée, consacrée aux annonces pour l'industrie et le commerce.

Le prixdu volume complet est, comparativement à ce qui est offert, très minime : il a été fixé à 15 fr. (pour l'étranger 20 fr.) expédié franco, contre remboursement du montant, avec l'envoi du premier numéro.

Le journal officiel de l'Exposition sera expédié promptement aux conditions ci-dessus à tous les abonnés déjà inscrits jusqu'à ce jour, par suite d'une demande d'abonnement écrite.

Les éditeurs feront confectionner, comme reliure, une couverture artistement et richement décorée, qu'ils enverront aux abonnés, sur leur demande, à un prix très modéré. Une annonce relative à cela sera publiée ultérieurement.

Dans la première moitié de novembre paraîtra le premier numéro principal. Jusqu'à la fin du janvier 1883 paraîtront environ six numéros, parmi lesquels trois numéros principaux; du commencement de février jusqu'à la fin d'avril paraîtront environ douze numéros, dont six numéros principaux; et, pendant la durée de l'exposition, depuis le 1^{er} mai il sera publié trente et un numéros principaux.

Toutes nos communications officielles à l'adresse des exposants seront publiées uniquement dans le journal officiel de l'Exposition, auquel nous renvoyons expressément pour cela.

(Extrait du prospectus.)

NOTICE

SUF

LA VENTILATION, LA TEMPÉRATURE

LE REFROIDISSEMENT ET L'HUMIDITÉ DE L'AIR

dans le grand tunnel du St-Gothard.

Extrait du rapport annuel présenté pour 1881 à la Direction des travaux du chemin de fer du Gothard par M. le Dr F.-M. Stapff.

Les questions qui se rattachent à la salubrité des grands souterrains, aussi bien pendant leur exploitation que durant les travaux, ont été et sont encore l'objet de discussions dont l'intérêt est grand, puisque la santé et la vie de nombreux ouvriers et même des voyageurs en dépendent.

Nous croyons donc devoir reproduire ici une notice rédigée par M. le D^r F.-M. Stapff, notice qui fait partie du rapport trimestriel N° 39 du Conseil fédéral Suisse aux Etats intéressés à la construction de la ligne du Saint-Gothard.

A cette notice feront suite, dans un prochain numéro de notre Bulletin, des observations sur le même sujet qui nous sont annoncées par l'un des membres de notre Société, en sorte que nous osons espérer que cette publication donnera lieu à un échange de communications utiles au progrès de cette branche du génie civil.

Rédaction.

TEMPÉRATURE ET REFROIDISSEMENT DE L'AIR

Les températures de l'air, mesurées sur divers points du tunnel pendant l'année 1881, sont indiquées dans le tableau de

la page suivante et placées en regard de la température mesurée jadis sur ces points, pour la roche fraîchement mise à découvert au cours des travaux d'excavation du souterrain. Ce tableau permet avant tout de se rendre compte des variations de la température du tunnel dépendant du sens du courant d'air régnant et de la température simultanée de l'air aux embouchures du souterrain. On voit que le courant du Sud rafraîchit la moitié méridionale du tunnel et réchauffe la partie septentrionale, tandis que le courant du Nord produit l'effet inverse. Le refroidissement de l'air du côté d'où vient le courant est d'autant plus fort que la température est plus basse à l'embouchure correspondante du tunnel. Vers le milieu du souterrain, les variations de température sont d'abord demeurées tout à fait insignifiantes; mais on peut constater que le courant du Sud déplace le centre de chaleur vers le Nord, tandis que le courant du Nord le ramène vers le Sud. Ce n'est qu'à partir du mois d'août qu'il s'est produit dans la partie centrale du tunnel un refroidissement plus sensible de l'air (température observée le 8 juillet, entre les profils 7400 et 6500 S., 30.40 C.; le 24 août entre les profils 7300 N. et 6500 S., 28.90 C.; le 3 septembre, entre les profils 7300 et 6600 S., 27.40 C.) Après l'enlèvement des boisages vers le milieu du tunnel, la température y est descendue à 2050 C. (1er novembre.) En comparant ces chiffres, il convient cependant de tenir compte de la température initiale de l'air pénétrant dans le tunnel, laquelle était, le 8 juillet, de 17.2 à 1890 C.; le 24 août, de 11.30 C; le 3 septembre, de 7.80 C., et le 1er novembre, de - 1.20 C. En général, l'air est toujours plus chaud et plus étouffant au Sud qu'au Nord de la partie centrale du tunnel, et il en sera toujours ainsi pour des causes naturelles.

Quant au refroidissement du souterrain dans toute sa longueur, les observations du tableau général de la page 2 sont trop clairsemées pour fournir des renseignements directs, mais un résumé spécial des observations faites du 28 août 1880 au 3 septembre 1881 permet de fixer la température moyenne de l'air à 29.350 C. sur le tronçon compris entre les profils 5675 N. et 5200 S. Comme la température moyenne primitive de la roche était pour ce tronçon de 30.980 C., le refroidissement aurait donc été de 0.930 C. pendant la période où, après le percement de la galerie de direction, on travaillait encore assidûment dans le tunnel et où des boisages empêchaient la libre circulation de l'air. Il peut paraître singulier que la température moyenne du tronçon ci-dessus, qui était de 29.340 C. pour la période du 28 août 1880 au 1er mars 1881, se soit encore maintenue à 29.320 C. dans la période du 1er mars au 3 septembre 1881. Ces chiffres diffèrent si peu l'un de l'autre qu'il semblerait qu'aucun refroidissement de l'air ne se soit produit durant l'année en question, si on ne devait pas tenir compte en même temps de la différence de température entre le semestre d'hiver et le semestre d'été, différence tout à fait indépendante du refroidissement graduel de l'air dans le souterrain.

La température moyenne de la roche du tunnel tout entier était primitivement de 23.₄₃° C. La température moyenne de l'air s'élevait, en revanche,

Ces trois chiffres sont d'autant mieux comparables qu'ils se

Température de l'air dans le grand tunnel du St-Gothard en 1881. (N = Courant du Nord. S = Courant du Sud. 0 = Courant nul ou alternatif très faible.)

		Température de la roche				Date	e des ob	servatio	ons et te	mpérati	ure de 1	'air en d	degrés c	entigrad	les.			
Points d'observation.		fraichement	Janvier						Février	Ma	ars	Avril	Mai	Juin	Juillet	Août	Sept.	Nov.
		mise à découvert	3	4	22	24	26	28	11	15	30	1	3	21	8	24	3	_ 1
	Portail Nord.	Degrés C.	+ 3.2	+ 4.8	- 8.5	- 5.9	+ 0.4	+ 4.2	- 0.4	+ 3.9	+ 5.6	+ 9.9	+7.8	+ 18.1	+ 17.2	+ 11.3	+ 7.8	- 1.
	Profils 0- 100	8.8	-	-		Glace	-	-	_	_		13.55 S	_	-	-	-		i -
	» 100- 200	11.6	_	_	-	-	- T	_	45.00 NS	-		-		_	_	_	_	_
	» 2400-2500	21.8		-	-	-	-	-	22.50 S	_	_	22.10 S	-	-	_			
a	» 2600-2700	21.6	-	-	_	-	-	_		-	_		-	_	-	20.00 N	_	_
отъ	» 3000-3100	19.5	-	_	_	-		_	25.00 S	_	_	26.20 S	-	_	_	20.45 0	_	-
	» 4700-4800	24.1	_	-	-	,-	_	_	27.00 S	_	-		_	_	_	-	_	-
	» 5000-5100	25.1	_	-	_	_	-	-	_	1 29.55 S)	_	28.00 0	_	_	-	22.55 0	_	_
z	» 5700-5800	28.6	28.35 S	28.64 S	27.50 S	_	_	_	_	28.65 S		29.00 0	_	_	-	-	_	-
0	» 5800-5900	27.9	_	_	27.50 S	27.00 S	27.40 S	28.45 S	_		_	-	-	_	_	_	-	_
RD	» 6300-6400	28.6	_	-		_	- 1	-	29.20 0	_	_	_	_	-	_		-	-
	» 6600-6700	29.4	-	-	-		-	_	-	29.95 S	_	29.90 S	-	_	-	- 7 :		-
1	» 6700-6800	29.7	-	-	-	-	-	29.15 S	-	- 1	_	-	-	_	_	-	_	5
	» 7000-7100	29.8	_	-		_	-	_	29.35 S	_	-	-	_	-	-	_		-
- 1	» 7300-7400	30.4	-	-	-	-	_	-	_	_		_		-	-	27.95 N		
	» 7400-7460	30.4	_		_	-	-	-		29.55 S	_	29.50 S		-	-1		17	15
	» 7460-7400	30.2				_	_	28.90 S	30.00 0	29.55 S	30.70 0		_ , i	_	_	28.95 N	26.95 N	320.
- 1		29.5	_			_		20.50 0	00.00	(29.15 S2)	30.60 N	29.50 S	29.50 S	30.20 S	30.55 0	_	_	320.
- 1	E000 E000	29.9	_	A		7	_	_	29.40 N	29.55 S³	00.0011	20.00 0	_	_			27.55 N	- 1
	» 7300-7200 » 7200-7100	30.5	_			_	_	28.80 S	23.4014		1120		_	_	_		-	-
. 1		30.3			_			20.00 5	_		1,110		_	30.10 S			27.80 N	l -
- 1	2000 2000	30.5	<u> </u>			_		_			30.40 N				30.25 0	1 1	_	-
- 1	02.11.000			_	_					_	-		29.60 S		00.20	3.6		1
	» 6800-6700	30.5			_		-	28.25 S	_	28.05 S		28.10 S	25.00 5	_			27.35 N	_
	» 6700-6600	30.9	_		_			20.23 5	_	20.00 5		20.10 5			30.35 0	29.65 0		
- 1	» 6600-6500	30.7		_	_		- 1		T.		I	I T	142.	29.80 S	50.00	23.00 0		
9	» 6500-6400	30.5	_	_	_	_		_	_	_			28.60 S	29.00 5				_
0	» 6400-6300	30.4			_			77	00 00 37	T.		I I	20.00 5			_		_
H	» 6300-6200	29.4	-					-	29.30 N		00 F0 NT	T T				5		
本	» 6000-5900	30.4				_	H 777	_			29.50 N	26.30 S				E		
on	» 5900-5800	29.3				4.04	17.0					20.30 5	27.80 S		15	E 5		
d	» 5800-6700	29.3		6 T &		_		07 08 0	00 80 0	I			21.00 8			FE		_
b	» 5600-5500	29.6			- T-1	7701		27.05 S	28.50 S	- OF AP C	00 00 7	05 70 8	_	00 00 0				
	» 5300-5200	28.3	_	-				06 50 0	-	25.65 S	28.60 N	25.70 S		28.60 S	T H F			
	» 5200-5100	28.5	_			_		26.75 S		_		_	27.40 S	00 00 0	28.65 0			
	» 4200-4100	26.5	_	_	_	7 1	_	- 04 00 0	05.00.0			92 00 9	24.90 S	26.80 S	20.00 0			
	» 4000-3900	27.4	_	_	_	_		24.00 S	25.00 S	-	-	23.00 S	_	_	_		_	
	> 3500-3400	26.2	-	_	_			_	23.30 0	_	17.00	10 10 0		_				
	» 3000-2900	25.7	-	-	-	-		_		-	_	18.40 S	-		_		_	
	» 2100-2000	20.5	-	-	-	_	-	ne Fact	-	-	-	13.30 S	_					1
	» 200- 100	9.0	-	-	_	-	_	_	9.30 0	_		_	_					1
	» 100- 0	8.4	-	-	_	_	_	_	-	-	-			1 10 -	- 10.0	1 10 1	1 10 0	-
	Portail Sud.	_	+ 0.1	-0.1	- 8.7	- 10.9	-1.9	-0.9	- 0.1	+ 3.8	+ 8.3	+ 3.4	+ 1.7	+ 16.7	+ 18.9	+ 12.1	+ 12.3	+

rapportent tous au même mois de l'année, mais il faut se garder de les prendre pour des températures moyennes annuelles. Il doivent être considérés plutôt comme des minimums moyens. Le 2 octobre 1880, par exemple, la température moyenne du tunnel entier s'élevait à 22.240 C., après être descendue le 2 avril de la même année à 19.420 C. Avec les forts courants d'air actuels, l'influence de la température extérieure se fait sentir, du côté d'où ces courants viennent, à une grande profondeur dans le souterrain. C'est ainsi que les 18 et 19 février 1882, avec un courant du Nord constant de 2.84 m. par seconde, la température est descendue dans l'espace de 24 heures, au kilomètre 8, graduellement de 20.40 à 20.00 C. Le courant du Sud fait remonter la température encore plus rapidement.

HUMIDITÉ DE L'AIR

Le degré d'humidité de l'air dans le tunnel, qui exerce une

si grande influence sur la santé des ouvriers, a pris, depuis l'achèvement du souterrain, des proportions plus favorables, comme le montre le résumé ci-dessous des observations faites le 11 février 1881 et le 24 février 1882. Avec un courant du Nord fort et soutenu, l'humidité relative de la partie voisine du point culminant du tunnel (km. 8.) tombe maintenant à 89 (24 février 1882) et même à 81 et 83.5 % (18-19 février 1882).A partir de ce point et en avançant vers le Sud, elle s'élève cependant encore à 95 ou 100 %. Lorsqu'il règne un courant du Sud, la partie méridionale du tunnel ne devient jamais aussi sèche que la partie septentrionale avec un courant du Nord, et l'humidité remonte même simultanément, dans cette dernière, à 90 ou 97 %. Dans le voisinage des embouchures du tunnel, les courants spéciaux qui se forment vers les têtes modifient le degré d'humidité de l'air aussi bien que sa température.

HIMIDITÉ DE L'AIR PENDANT LE BATTAGE AU LARGE ET DANS LE TUNNEL ACHEVÉ

TIOMIE	THE DE LAN	TENDIN'I	DE DATING	E AU LARGE ET		111122 1101121		
	11 Févrie	r 1881,			24 Févrie	r 1.882.		
Distance du	Ther- momètre	Hum	nidité	Distance du	Ther- momètre	Humidité		
portail Nord.	sec	absolue	relative	portail Nord	sec	absolue	relative	
Mètres	C°	Millimètres	%	Mètres	Co	Millimètres	0/0	
Extérieur, embouchure Nord	- 5.2	3.0	98	Extérieur, embouchure Nord	4.8	3	5	
_	_ :	_	_	50	2.8	4.1	73.5	
200	5.0	5.7	87	_	_	_	_	
-	_	-		1000	5.2	5.8	86.5	
- 1	_	x	_	2000	7.4	7.3	94	
_	_	_	_	3000	9.9	8.8	97	
- 1	_	· ·	_	4000	12.2	9.7	92	
	_	-	_	5000	13.9	11.2	96	
- 1	_		_	6000	15.7	12.5	93	
_	_	· -		7000	17.5	13.4	90	
7100	29.3	30.3	100				_	
7500	30.0	30.9	98	_	_	-	-	
7620	29.8	30.5	98	_	-	_		
_	_	_		8000	19.2	14.7	89	
8700	29.3	29.8	100	_	_	_	-	
_	_	1_	_	9000	19.4	15.9	95	
9350	28.7	28.9	99	_	_		-	
-	-	_	-	10000	19.8	16.6	98	
_	_	_	_	10000*	20.0	16.8	98	
	_	. —	_	11000	19.6	16.5	99	
	_	_	_	12000	18.6	15.6	99	
_	_	_	_	13000	16.4	13.9	100	
h	_		_	14000	12.8	10.6	98	
_	_	_		14650	9.0	6.7	78	
14750	9.2	8.6	98	_	_		_	
Extérieur, embouchure Sud	- 0.2	4.2	91.5	Extérieur, embouchure Sud	5.2	3.4	51	

Du portail Sud au km. 11 courant du Nord; puis courant oscillant; à travers le portail Nord, courant du Nord.

Du portail Sud au km. 12, courant du Sud; puis faible courant du Nord jusqu'au portail Nord.

Après le passage du train venant de Gœschenen.

VENTILATION

Les conditions qui régissent la circulation de l'air dans le tunnel sont résumées comme suit dans le Rapport annuel de la Direction du chemin de fer du Gothard pour l'année 1880 :

« Le courant d'air naturel à travers le tunnel dépend de la différence de pression atmosphérique sur les deux versants

du Gothard, laquelle varie avec la hauteur du baromètre, la température et l'humidité. Le courant vient du côté où règne la plus forte pression et sa vitesse croît comme la racine carrée de la différence existant entre les pressions des deux versants.

» La colonne d'air de 36 m. de hauteur dans le tunnel peut accroître ou diminuer la vitesse du courant, selon qu'elle est plus légère ou plus lourde que l'air extérieur et selon que le courant se dirige du Nord au Sud ou vice-versâ. La dilatation de l'air pénétrant dans le tunnel et s'y échauffant, ainsi que les frottements de tout genre sont autant d'obstacles à la circulation de l'air dans le tunnel. Les frottements diminuent dans la mesure de l'avancement des travaux en pleine section et du revêtement du tunnel. C'est pourquoi, les mêmes conditions atmosphériques étant données, il circulera dans le tunnel achevé un volume d'air plus considérable que maintenant. »

Ces principes se trouvent résumés dans la formule suivante, aussi simplifiée que possible, et dont les constantes ne sont directement valables que pour le tunnel du Saint-Gothard, en tant qu'elles dérivent des conditions météorologiques locales, de la longueur, de la section, du profil en long, etc., de ce tunnel, ou qu'elles ont été déterminées par des observations faites sur place.

Appelant v la vitesse (en mètres par seconde) du courant d'air naturel, d' le poids de 1 m³ d'air au portail Nord, d'' le poids de 1 m³ au portail Sud et μ un coefficient d'effet correspondant aux résistances dues aux frottements de tout genre, on peut écrire :

Pour le courant du Nord
$$v = \mu 281._8 \sqrt{d' - d'' + 0._{00032}}$$

» » du Sud $v = \mu 281._8 \sqrt{d'' - d' - 0._{00032}}$

Le chiffre 0.00032 (placé sous le signe radical) provient de la différence du poids de l'air au milieu du tunnel et en avant des deux portails. Depuis le jour du percement de la galerie jusqu'au 11 février 1881, 1 m³ d'air pesait au milieu du tunnel de $0._{0734}$ à $0._{1592}$, en moyenne $0._{1246}$ kg. $de\ moins$ que simultanément 1 m³ d'air aux deux embouchures. Le terme en question compris sous le radical variait par conséquent entre $0._{00019}$ et $0._{00044}$. On a admis comme constante la moyenne de 10 séries d'observations (0.00032), parce que les différences précitées sont de trop peu d'importance pour exercer une influence sur le résultat final. La différence entre le poids de l'air du tunnel et de l'air extérieur a été jusqu'ici la plus forte au printemps, la plus faible en automne, et elle doit en somme graduellement diminuer. Le 18-19 février 1882, elle était de $0._{0824}$ kg., de sorte que pour ces jours-là le terme $0._{0003}$ aurait dû être remplacé dans la formule par le terme 0.0002.

Les densités d se calculent aisément au moyen des hauteurs barométriques correspondantes b mm, réduites à 0^0 et à la ligne médiane des portails, et combinés avec les températures de l'air t^0 à Gœschenen et Airolo, suivant la formule

$$d = \frac{0.00471 \times b}{1 + 0.00367 t} \, ^{1}$$

L'influence de l'humidité de l'air n'a pour le moment pas encore été prise en considération dans la construction des formules ci-dessus. Quant au coefficient μ , résumant l'effet de toutes les résistances dues au frottement, etc., le tableau de la page suivante montre combien il a graduellement augmenté au fur et à mesure de l'avancement des travaux d'excavation.

Chacune des vitesses indiquées dans la col. 11 représente la valeur moyenne d'une série de mesurages exécutés pendant les heures mentionnées à la col. 3 pour divers profils du tunnel. Les vitesses locales ont toutes été réduites au même profil de 41 m² de section, quoiqu'elles ne varient pas exactement en

raison directe et inverse de l'aire des sections transversales du souterrain. La plupart des séries d'observations, tombant sur des périodes où la direction des courants changeait, ont dû être exclues du tableau, parce qu'il se produit pendant les changements dans le mouvement de l'air une certaine confusion que les matériaux d'observation recueillis jusqu'à présent ne permettent pas encore de déchiffrer.

Il ressort de la col. 13 que du 29 février au 14 avril 1880, il n'a circulé en moyenne (abstraction faites de l'observation N° 1) dans le tunnel, à cause des résistances considérables dues au frottement, etc., que $0._{007}$ du volume d'air qu'aurait pu débiter le courant naturel en *l'absence de tout obstacle*. Du 18 septembre 1880 au 11 février 1881, l'effet moyen de la ventilation est monté à $0._{049}$ (sauf pour l'observation N° 10) c'est-à-dire qu'il est devenu $2._7$ fois plus intense. Il est facile de se rendre compte par les diagrammes mensuels du progrès des travaux (et en général aussi par les diagrammes des progrès annuels joints aux rapports de la Direction pour 1879 et 1880) des obstacles qui ont dû être écartés dans le souterrain pour que cet effet croissant de la ventilation naturelle ait pu se produire.

Pour bien juger de la question de la ventilation du tunnel, il est nécessaire de déterminer par des observations directes continues le coefficient d'effet du courant d'air naturel dans le souterrain achevé. Dans ce but, on avait essayé de mesurer la vitesse de l'air à partir de la fenêtre d'un wagon faisant partie d'un train traversant le tunnel (dans ce cas la vitesse du train devait être additionnée algébriquement à la vitesse indiquée par l'anémomètre). Cette tentative n'a pu avoir de succès, parce qu'il se forme immédiatement à côté du train des courants séparés qui rendent illusoires les résultats obtenus par cette sorte de mesurage. Des observations anémométriques prolongées pendant plusieurs heures sur divers points du tunnel ont permis de constater que les trains traversant le souterrain amènent dans les courants naturels de l'air assez de confusion pour que les mesurages isolés de la vitesse de l'air ne conduisent qu'à des erreurs sur le courant réel et moyen à travers le tunnel entier (pour certaines conditions météorologiques données). Il ne reste donc pas d'autre expédient que d'exécuter des séries d'observations, embrassant chaque fois une période de 24 heures, et qui indiquent par conséquent une vitesse moyenne, dépendant des conditions atmosphériques simultanées à l'extérieur du tunnel, ainsi que de l'ensemble du mouvement des trains.

Une série d'observations continues de ce genre a été faite les 18 et 19 février 1882 à partir de et jusqu'à 5 heures de l'après-midi, dans la partie culminante du tunnel, vers le km. 8. Les résultats en sont reproduits sous N° 11 dans le tableau ci-dessus. On y voit qu'avec une section de tunnel libre de 43. $_2$ m², la vitesse moyenne du courant du Nord, fort et continu, était de $2._{84}$ m. par seconde. La vitesse variait entre $1._{64}$ et $3._{52}$ m. Le tableau précité montre quelles étaient alors pour les deux embouchures du tunnel la hauteur moyenne du baromètre, la température et la densité moyenne de l'air. En introduisant ces facteurs dans la formule indiquée plus haut, on trouve pour vitesse théorique de l'air $35._{68}$ m. et par conséquent pour coefficient d'effet $\mu=2._{84}:35._{68}=0._{0796}.$

⁴ Observation Le poids de 1 m³ d'air à 0° et 760 mm. de pression barométrique est fixé ici et dans ce qui suit à 1,2995 kg.

Depuis 1880-1881 et après l'enlèvement de tous les obstacles qui s'opposaient à la circulation de l'air, l'effet de la ventilation naturelle du souterrain s'est donc amélioré dans la proportion de 0.0796: 0.019 c'est-à-dire 4.2 fois.

Si le coefficient d'effet μ était déterminé plus exactement encore, en poursuivant, pour diverses conditions atmosphériques typiques, les mesurages commencés, on réussirait en fin de compte à pouvoir calculer à chaque instant le sens et la

force du courant d'air à travers le tunnel au moyen des seules observations météorologiques de Gœschenen et d'Airolo.

En introduisant pour la valeur de μ dans les formules indiquées ci-dessus le coefficient 0.0796, déterminé par la dernière série d'observations, ces formules prennent la forme suivante :

Courant du Nord :
$$v = 22._{43} \sqrt{d' - d'' + 0._{0003}}$$

» du Sud : $v = 22._{43} \sqrt{d'' - d' - 0._{0003}}$

Densité de l'air extérieur aux embouchures du tunnel et circulation simultanée de l'air a travers le souterrain

ions.		,	Densité o		térieur à m les heures o		Vitesse moyenne du conrant dans une section transversale de 41 m²					
observations.	DATE	HEURES	Gæse	chenen 1	112 m.	Ai	rolo 114	8 m.	Calculée (sans			Coefficient d'effet $\mu\left(\frac{\text{col. }14}{\text{col. }10}\right)$
N° des ob			Baro- mètre réduit à 0	Ther- mo- mètre	Poids de 1 m 3 d'air d'	Baro- mètre réduit à 0	Ther- mo- mètre	Poids de 1 m³ d'air d"	tenir compte des frot- tements)	Observée	Direction du courant	
1	2	3	4	5	6	7	8	9	10	11	12	13
	1880					-				11.0		
1	29 février	XII-V 1/4	664.5	3.0	1.1240	661.2	4.9	1.1106	32.90	0.125	N 1	0.004
2	17 mars	X-V 1/4	667.0	3.6	1.1256	663.0	7.3	1.1041	41.45	0.305	N	0.007
3	19 »	X-VI	672.3	3.4	1.1356	668.3	8.0	1.1103	45.12	0.400	N	0.009
4	2 avril	X-V	664.1	3.1	1.1226	660.9	5.5	1.1079	34.34	0.219	N º	0.006
5	14 »	X1I-VI	670.8	9.7	1.1077	669.0	4.9	1.1443	53.58	0.426	S	0.008
6	18 septembre	2X-VII 1/2	670.9	9.9	1.1070	668.1	12.1	1.0939	32.43	0.653	N	0.020
7	2 octobre	X 1/2-VII 1/2	669.8	13.0	1.0932	667.1	12.9	1.0892	18.49	0.322	N	0.017
8	14 »	XI-VIII 1/2	673.2	4.2	1.1338	668.8	8.7	1.1085	45.12	0.960	N	0.021
9	10 novembre	VIII 1/3-VI	670.3	1.8	1.1385	665.9	4.9	1.1187	39.76	0.790	N	0.020
	1881								1 -	1 1.17		
10	11 février	X 1/3-VI	650.9	0.0	1.4130	649.0	-0.1	1.1098	16.86	0.202	N ₂	0.012
	1882					4	-			1		
11	18-19 février	V-V après-midi.	674.0	-0.8	1.1560	669.5	1.1	1.1403	35.68	2.8404	N	0.080

⁴ Courant du Nord pendant les observations; le courant du Sud régnant ensuite n'entre pas en ligne de compte.

25 Changement de courant pendant les observations; le courant du Nord initial est seul entré en ligne de compte.

⁴ Section transversale libre de de 43.19 m² (km. 8).

On voit que le courant d'air devient nul aussitôt que 1 m³ d'air pèse 0.0003 kg. de plus au portail Sud qu'au portail Nord. Une vitesse de 1 m. est suffisante, avec l'horaire actuel des trains, pour chasser au moins une fois par jour la fumée du tunnel tout entier. Le courant du Nord atteint cette vitesse lorsque 1 m³ d'air pèse 0.00167 kg. de plus à l'embouchure Nord que simultanément à l'embouchure Sud. Cet excédant de poids suppose, qu'avec une température 00 sur les deux versants, le baromètre s'élève au portail Nord à $0_{96}\,\mathrm{mm}$. au-dessus de sa hauteur normale de 667.75 mm., tandis qu'il s'y maintient au portail Sud (664.37 mm.) Le même phénomène se produit, du reste, aussi lorsque le baromètre reste des deux côtés à sa hauteur normale, tandis que l'air est de 0.40 C. plus chaud à l'embouchure d'Airolo qu'à celle de Gæschenen. Le courant du Sud atteint de son côté une vitesse de 1 m. lorsque le m³ d'air pèse 0.00234 kg. de plus au portail Sud qu'au portail Nord, c'est-à-dire que le baromètre monte à Airolo à 1,35 mm. audessus de sa hauteur normale (Gœschenen restant normal) ou que la température de l'air à Airolo est de 0.550 C. inférieure à la température simultanée à Gæschenen (la pression barométrique restant la même de part et d'autre).

On peut voir par tout ce qui précède combien lés moindres variations atmosphériques sur les deux versants du Gothard suffisent pour faire entièrement tourner le courant d'air naturel à travers le tunnel, ou le faire simplement osciller, ce qui, en pratique, revient à l'annuler. Les chiffres ci-dessus montrent en outre que les chances sont notablement plus grandes pour le courant du Nord que pour celui du Sud.

Nous venons de déterminer la vitesse des courants d'air dans le tunnel, mais au point de vue de la ventilation, il est tout aussi important de déterminer les *changements* de courants provoqués par les conditions atmosphériques externes. Les observations météorologiques faites pendant plusieurs années à Gæschenen et Airolo fournissent sur ce point les bases statistiques voulues. Nous donnons ci-après, pour les mois de février, avril, août et octobre ¹ un extrait d'un tableau plus complet comprenant pour chaque jour de l'année 1881 les hauteurs barométriques et thermométriques observées et les den-

¹ Observation. Le mois de février correspond au minimum de fréquence du courant du Nord (hiver), le mois d'août à son maximum (été). Les mois d'avril et d'octobre correspondent à la moyenne de fréquence du courant du Nord au printemps et en automne.

Densité de l'air des deux côtés du souterrain et courant d'air simultané a travers le tunnel.

				Avril	1001.				Octobre 1881.								
D 4	Gæschenen		Airolo			Excédent	0	Gæschenen				Airolo	Excédent	E CLIE			
Date	Baromètre réduit à 0° (1112 m.)	Tempé- rature de l'air.	Densité de l'air. Poids de 1 ^{m3} d'	Baromètre réduit à 0° (1148 m.)	Tempé- rature de l'air	Densité de l'air Poids de 1 ^{m3} d"	de densité d'-d" du côté Nord du côté Sud	Courant observé dans le tunnel.	Baromètre réduit à 0° (1112 m.)	Tempé- rature de l'air	Densité de l'air. Poids de 1 ^{m3} d'	Baromètre réduit à 0° (1148 m.)	Tempé- rature de l'air	Densité de l'air Poids de 1 ^{m3} d''	de densité d'-d" du côté Nord du côté Sud	Courant observé dans le tunnel	
1	661.5	8.6	1.0966	660.4	3.0	1.1170	- 0.0204	S'	667.4	4.4	1.1231	664.5	7.2	1.1069	+ 0.0162	N, S?	
2	660.4	7.5	1.0991	657.3	7.0	1.0959	+ 0.0032	S, N	666.8	4.7	1.1209	663.1	7.3	1.1043	+ 0.0166	N'	
3	659.9	6.6	1.1018	657.4	4.4	1.4063	- 0.0045	S, N	665.5	3.9	1.1220	662.1	5.9	1.1082	+ 0.0138	N	
4	661.7	2.7	1.1204	659.2	6.9	1.0991	+ 0.0210	S, O, N?	664.9	1.3	1.1301	660.2	3 4	1.1162	+ 0.0139	N	
5	660.6	9.2	1.0928	659.3	5.3	1.1059	- 0.0131	S	666.3	0.5	1.1373	663.4	1.3	1.1290	+ 0.0083	N	
6	660.3	9.1	1.0927	658.7	7.6	1.0958	- 0.0031	S°	672.1	1.3	1.1438	668.8	2.7	1.1324	+ 0.0114	N, S?	
7	662.1	6.5	1.1959	660.1	8.1	1.0962	+ 0.0097	S, O, N	673.4	2.2	1.1423	671.5	7.0	1.1195	+ 0.0228	N, S?	
8	666.2	6.3	1.4135	663.9	8.9	1.0979	+ 0.0156	Nº	670.6	10.7	1.1035	669.3	7.0	1.1159	- 0.0124	S'	
9	667.6	7.3	1.1119	664.8	8.6	1.1021	+ 0.0098	N°	666.3	7.8	1.1077	663.7	6.9	1.1069	+ 0.0008	S, N	
.0	668.0	6.9	1.1141	665.2	6.2	1.1120	+ 0.0021	N, O, S	669.6	5.4	1.1228	664.8	7.5	1.1064	+ 0.0164	N'	
1	666.3	6.9	1.1113	664.0	6.3	1.1998	+ 0.0015	N, O, S	668.6	4.3	1.1256	664.5	7.8	1.1047	+ 0.0209	N'	
2	667.4	7.3	1.1115	664.2	9.8	1.0964	+ 0.0151	N, O, S?	668.1	6.3	1.1167	664.1	10.0	1.0955	+ 0.0212	N'	
.3	667.4	9.1	1.1045	666.2	4.7	1.1199	- 0.0154	S'	667.1	6.9	1.1126	* 663.8	8.8	1.0996	+ 0.0130	N. S	
4	669.0	6.9	1.4158	667.3	3.2	1.1278	- 0.0120	S'	664.5	10.9	1.0927	663.3	8.4	1.1004	- 0.0077	N. S	
5	669.1	7.3	1.1144	667.6	2.9	1.1296	- 0.0152	S'	667.5	4.9	1.1214	663.4	7.1	1.1056	+ 0.0157	N	
6	668.0	7.2	1.1130	666.6	5.4	1.1177	- 0.0047	S°	671.5	- 1.7	1.4555	667.8	1.1	1.1368	+ 0.0187	N'	
7	668.1	9.0	1.1060	667.0	6.9	1.1124	- 0.0064	S'	673.5	- 0.8	1.1551	669.6	0.9	1.1383	+ 0.0168	N,	
8	666.1	10.4	1.0972	664.6	6.3	1.4108	- 0.0136	S'	671.0	-1.9	1.4554	665.9	0.1	1.1382	+ 0.0172	N, S	
9	657.5	8.9	1.0889	655.3	7.6	1.0902	- 0.0913	S, N	666.3	1.2	1.1344	664.8	0.5	1.1388	- 0.0044	S	
0	655.9	0.2	1.1207	651.5	6.3	1.0889	+ 0.0318	N'	666.1	3.3	1.1254	665.0	0.5	1.4350	- 0.0096	S'	
1	656.8	0.8	1.1198	652.5	5.6	1.0933	+ 0.0265	N	660.1	1.8	1.1214	657.2	3.4	1.1198	+ 0.0016	S, N	
2	658.8	- 1.3	1.1319	654.2	0.7	1.1158	+ 0.0161	N°	661.3	7.7	1.0998	660.7	4.6	1.1110	- 0.0112	S'	
3	665.0	- 0.1	1.1376	661.4	1.1	1.1264	+ 0.0112	N	658.4	8.3	1.0927	657.2	3.2	1.1108	- 0.0181	S, N	
24	667.1	0.4	1.1391	663.3	3.1	1.1215	+ 0.0176	Nº	660.1	5.7	1.1057	656.8	6.7	1.0961	+ 0.0096	Nº	
25	671.2	2.8	1.4361	667.4	5.5	1.1187	+ 0.0174	N°	657.3	5.9	1.1002	655.0	6.4	1.0944	+ 0.0058	N, S?	
26	666.3	2.4	1.1295	663.4	5.4	1.1124	+ 0.0171	N°	662.2	- 0.7	1.1353	658.1	2.7	1.1143	+ 0.0210	N	
7	668.2	0.1	1.1422	664.5	2.9	1.1243	+ 0.0179	Nº	665.1	2.3	1.1278	663.2	2.0	1.1258	+ 0.0020	Sº?	
8	668.8	- 0.1	1.1441	665.0	2.3	1.1276	+ 0.0165	Nº	664.8	0.0	1.1368	662.5	2.9	1.1209	+ 0.0159	S, N?	
9	672.7	0.5	1.1482	668.4	1.9	1.1350	+ 0.0132	N°	663.5	- 0.9	1.1383	659.0	2.4	1.1170	+ 0.0213	N'	
0	669.9	7.2	1.1161	668.1	7.1	1.1135	+ 0.0026	N, O, S	661.5	- 2.7	1.1425	657.3	0.6	1.1215	+ 0.0210	N	
31									661.9	- 2.2	1.1410	656.8	0.2	1.1223	+ 0.0187	N'	

Observation. N = courant du Nord; S = courant du Sud; N, S = courant alternatif; N, O, S = courant nul ou alternatif. L'index ' indique un fort courant, l'index ° un courant faible.

DENSITÉ DE L'AIR DES DEUX CÔTÉS DU SOUTERRAIN ET COURANT D'AIR SIMULTANÉ A TRAVERS LE TUNNEL

		Février 1881									Août 1881						
Date	Gæschenen				Airolo	1. 4.1	Excédent		Gæschenen				Airolo		Excédent		
Date	Baromètre réduit à 0° (1112 m.)	Tempé- rature de l'air	Densité de l'air. Poids de 1 ^{m3} d'	Baromètre réduit à 0° (1148 m.)	Tempé- rature de l'air	Densité de l'air. Poids de 1 ^{m3} d"	de densité d'-d" — du côté Nord — du côté Sud	Courant observé dans le tunnel	Baromètre réduit à 0° (1112 m.)	Tempé- rature de l'air	Densité de l'air. Poids de 1 ^{m3} d'	Baromètre réduit à 0° (1148 m.)	Tempé- rature de l'air	Densité de l'air. Poids de 1 ^{m3} d"	de densité d'-d' du côté Nord du côté Sud	Courant observé dans le tunnel	
1	661.6	0.9	1.1276	658.8	0.7	1.1236	+ 0.0040	N	671.6	20.9	1.0668	669.5	19.4	1.0689	- 0.0021	S	
2	667.1	1.1	1.1362	663.7	2.0	1.1266	+0.0096	N	673.7	17.3	1.0834	669.9	20.3	1.0666	+ 0.0168	S, N	
3	667.1	2.3	1.1312	665.2	— 1.7	1.1446	- 0.0134	N, S?	676.4	16.7	1.0900	672.6	20.0	1.0716	+ 0.0184	N	
4	662.9	3.4	1.1196	662.2	- 1.6	1.1390	- 0.0194	N, O, S?	677.6	17.3	1.0897	673.9	19.3	1.0763	+ 0.0134	N, O, 8	
5	659.8	3.3	1.1148	658.5	- 1.2	1.1310	- 0.0162	S	675.3	19.4	1.0782		W	l		S°	
6	661.5	-2.0	1.1395	657.1	- 1.4	1.1294	+ 0.0101	N°	674.3	21.4	1.0704					Nº	
7	667.1	- 2.4	1.1508	664.4	-2.8	1.1478	+ 0.0030	N, S	673.3	19.5	1.0746					Nº	
8	660.7	- 0.2	1.1306	659.6	- 1.5	1.1341	- 0.0085	N, S	670.8	19.5	1.0707					N, S	
9	661.3	- 0.7	1.1337	658.4	- 0.1	1.1262	+ 0.0075	N°	667.9	17.5	1.0731	Pas d'obser	rvations.			N, S	
10	658.4	4.7	1.1068	657.1	2.1	1.4150	- 0.0082	N, S	669.7	13.3	1.0920					N'	
1	651.3	- 0.7	1.1166	659.0	- 0.9	1.1134	+ 0.0032	N, O, S	671.4	13.9	1.0925				1.0	N	
12	659.5	- 6.6	1.1557	656.0	- 5.2	1.1435	+ 0.0122	N "	669.2	14.4	1.0870				Lewis Co.	N, S	
13	666.0	- 8.4	1.1750	661.5	- 5.0	1.4520	+ 0.0230	N°	664.2	15.1	1.0763	661.3	15.0	1.0719	+0.0044	N N	
14	665.1	- 4.2	1.1551	661.6	- 4.2	1.1489	+ 0.0062	N, O, S	664.6	9.3	1.0991	659.9	15.4	1.0682	+ 0.0309	N	
15	664.1	0.9	1.1319	664.5	- 6.0	1.1618	- 0.0299	S'	666.7	7.9	1.1080	663.4	11.0	1.0905	+ 0.0175	Pas d'observa	
16	666.9	4.1	1.1235	666.8	- 2.6	1.1505	- 0.0270	S'	666.3	10.9	1.0956	663.8	11.2	1.0904	+0.0052	N, S	
17	667.5	2.9	1.1294	665.7	- 0.4	1.1400	- 0.0106	S	662.0	13.4	1.0802	660.0	11.4	1.0834	- 0.0032	N, S	
18	668.1	2.6	1.1317	666.3	- 0.4	1.1410	- 0.0093	S°	664.9	10.9	1.0934	661.0	15.1	1.0711	+0.0223	N'	
19	669.7	3.5	1.1307	668.4	0.5	1.1408	- 0.0101	S	670.2	15.1	1.0861	668.5	14.7	1.0847	+ 0.0014	N, S	
20	670.8	4.3	1.1293	669.9	1.6	1.1388	- 0.0095	S	670.8	16.2	1.0830	669.0	15.4	1.0829	+ 0.0001	S'?	
21	671.4	5.3	1.1262	670.6	2.3	1.1371	- 0.0109	S°	670.6	17.5	1.0777	668.2	17.2	1.0686	+ 0.0096	S, N	
22	671.3	3.9	1.1318	670.3	1.4	1.1403	- 0.0085	S°	679.9	16.5	1.0803	669.5	17.7	1.0719	+ 0.0084	S, N	
23	671.6	3.2	1.1351	670.2	0.7	1.1431	- 0.0080	S	668.2	21.3	1.0600	667.0	18.9	1.0667	- 0.0067	S'	
24	670.0	1.9	1.1378	667.9	- 1.7	1.1492	- 0.0114	S	669.3	12.0	1.0964	666.8	13.3	1.0871	+ 0.0093	S, N	
25	666.2	1.9	1.1245	664.1	- 1.0	1.1397	- 0.0152	S, O, N?	669.9	12.7	1.0947	D 11.1		1100	20 (10)	S, N	
26	663.4	1.4	1.1286	661.7	0.2	1.1306	- 0.0020	S	667.8	17.7	1.0725	Pas d'obse	rvations.		A wash	S	
27	662.4	2.7	1 1216	660.7	0.3	1.1285	- 0.0069	S	665.5	13.7	1.0837	663.1	13.0	1.0824	+ 0.0013	S, N	
28	660.7	5.3	1.1083	659.0	0.5	1.1248	- 0.0165	S'	669.0	4.2	1.1267	664.4	8.6	1.1014	+ 0.0253	N'	
9						F 24.45 3	F-1-1-		674.6	9.3	1.1156	671.2	11.7	1.1006	+ 0.0150	N, S	
0						F F W			670.7	14.8	1.0880	669.2	12.0	1.0966	- 0.0086	S'	
1									668.2	10.9	1.0988	664.7	12.9	1.0853	+ 0.0135	N	
	ns l'état d'av trouvait le tu il a régr	nnel en		8 » ou	28.6 º/o u	n courant du n courant nu n courant du	Nord l ou alternat	if N, O, S	Dans l'ét où se trouve	l at d'ava	nel en 1881, {	pendant 18	jours, ou » ou	60 % un cour 30 % un cour	ant du Nord	: N	

Observation. N = courant du Nord; S = courant du Sud; N, S = courant alternatif; N, O, S = courant nul ou alternatif. L'index ' indique un fort courant, l'index ° un courant faible.

sités de l'air qui en résultent, savoir d' pour Gœschenen et d' pour Airolo. La différence de ces densités y est mise en regard jour par jour avec la direction du courant d'air dans le tunnel relevée spécialement par les surveillants des travaux de la section d'Airolo 1. Le tableau complet montre que lorsque la différence de densité d'-d' était positive (+), c'est-à-dire qu'il y avait excédent à Gœschenen, il se produisait un courant du Nord, tandis que le courant du Sud correspondait à une différence d'-d' négative (-) c'est-à-dire à un excédant de densité à Airolo. Nous donnons, en outre, dans un tableau spécial (page 9) le groupement par mois des résultats fournis par le tableau général en question sur la direction des courants à travers le tunnel, dans l'état où se trouvaient les travaux d'excavation en 1881 (partie A).

LOCOMOTIVES AVEC ROUES A DOUBLE BANDAGE

Description de l'invention ayant pour titre : Nouveau système A. Cottrau de Locomotives avec quatre roues motrices sur chaque essieu moteur.

Le but de cette invention est de pouvoir exploiter avec la même locomotive, sans diminution de la charge à traîner, une ligne de chemin de fer composée de plusieurs sections, dont quelques-unes en palier ou à pentes faibles, et d'autres à fortes rampes, comme, par exemple, les diverses traversées des Apennins en Italie.

Ce nouveau système trouvera aussi des applications très avantageuses dans les nombreuses lignes de tramways à vapeur (chemins de fer économiques) soit construites soit en voie de construction, dans lesquelles on vérifie presque toujours le cas d'un certain nombre de sections avec des rampes très fortes par rapport à celles du tracé du restant de la ligne.

Enfin ce système pourra, dans tous les cas où les pentes ne seront pas extraordinairement excessives et les courbes n'auront pas de trop petits rayons, se substituer avec avantage aux systèmes de locomotion à adhérence artificielle, tels que les systèmes Fell, Riggenbach, Wetli, etc., non seulement au point de vue de l'économie et de la simplicité, mais bien encore au point de vue de la grande sécurité de l'exploitation, car il rendra impossible toute catastrophe provenant d'un déraillement, et cela précisément sur les points de la ligne où se vérifient les plus fortes rampes et les courbes les plus étroites.

Cela posé, l'invention consiste dans l'adjonction aux essieuxmoteurs des locomotives (et, si on le veut aussi, aux essieux
non moteurs des dites machines) d'une seconde paire de roues
motrices, d'un diamètre inférieur, disposées soit extérieurement soit intérieurement aux roues principales, le tout à peu
près comme c'est clairement indiqué sur les dessins qui accompagnent cette description, et sur lesquels on voit représentées quelques-unes des différentes dispositions que l'on

peut adopter parmi toutes celles qui peuvent être réalisées dans la pratique. A ce propos il est utile de faire observer que le système peut s'adapter à n'importe quel type de locomotive à cylindres intérieurs ou extérieurs, et à n'importe quel type d'armement, il n'est par conséquent pas limité à une disposition particulière (extérieure ou intérieure) des petites roues motrices supplémentaires ou de la voie ferrée auxiliaire correspondante. Cependant, dans le but de mieux fixer les idées, tout ce qui sera dit ci-après se rapportera à l'hypothèse des roues supplémentaires placées extérieurement s'appliquer au cas de ces mêmes roues motrices supplémentaires placées intérieurement aux grandes roues motrices de la locomotive.

Chaque essieu moteur aura donc quatre roues, solidaires avec cet essieu, et commandées simultanément par les mêmes bielles et les mêmes cylindres. Les roues intérieures pourtant (dans le cas que nous avons choisi pour fixer nos raisonnements) auront un diamètre plus grand que celui des roues extérieures et elles serviront à marcher à grande vitesse dans les parties de la ligne en palier ou à faibles pentes, tandis que les roues extérieures, c'est-à-dire celles d'un diamètre plus petit, serviront pour les sections à fortes rampes où l'on devra marcher à une vitesse réduite. Les roues intérieures s'appuieront sur la voie normale de la ligne, soit sur les rails qui servent d'appui aux roues des voitures et des wagons composant le train. Par contre, les roues extérieures s'appuieront, mais seulement dans les sections de la ligne à fortes rampes, sur une seconde voie, dont les rails seront placés extérieurement à ceux de la voie principale et seront par rapport à ces rails à un niveau plus élevé, ainsi qu'on le voit représenté sur les dessins ci-annexés.

Bien entendu que les véhicules traînés par la locomotive, wagons ou voitures, rouleront toujours sur la voie intérieure ¹, même dans les sections de la ligne à fortes rampes, où la locomotive s'appuiera sur la voie extérieure et aura ses roues motrices intérieures légèrement soulevées au-dessus du niveau des rails de la voie principale.

Dans les croquis ci-annexés on indique également plusieurs parmi les différents systèmes, que l'on pourrait adopter, pour la formation des deux voies ferrées dans les sections à fortes rampes; mais il est nécessaire de déclarer que cet armement des deux voies pourra être exécuté comme on le voudra, parce que ce n'est point sur le dit système d'armement que repose le brevet d'invention.

L'invention industrielle, pour laquelle nous demandons le brevet, est simplement et uniquement l'adoption, pour les locomotives, d'essieux moteurs avec deux (ou même plus) couples de roues motrices, le premier couple devant fonctionner lorsqu'on veut obtenir une grande vitesse, et le second lorsqu'il est nécessaire de traîner la même charge (qui dans le premier cas courait à grande vitesse) à une vitesse réduite, sur les sections à fortes rampes. En d'autres termes, cette invention, qui fait l'objet de notre demande de brevet, est la réalisation pratique, surtout au point de vue de son application aux locomotives, du principe bien connu de la mécanique

^{&#}x27;Observation. Il faut noter ici que les observations sur les courants se faisaient en partie près du portail Sud (partie curviligne du tunnel), où il se produit fréquemment un courant spécial entrant par le bas du tunnel et en sortant par le haut. Ce fait peut facilement tromper l'observateur sur le courant continu proprement dit, et les données du tableau général paraissent être, pour certains jours, sujettes à caution. (Voir les points d'interrogation dans les tableaux des pages 7 et 8).

⁴ A moins que, dans le cas spécial d'un chemin de fer à *voie réduite*, on ne préfère avoir partout une seule voie et par suite ajouter aussi des roues supplémentaires plus petites aussi aux wagons et voitures.