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Modélisation physique et simulation informatique
d’un trébuchet a contrepoids en JavaScript

Adrien BARMAZ!", Adrien MARTELLI?" et Simon PIGUET?"

BArRMAZ A., MARTELLI A. & PIGUET S., 2022. Modélisation physique et simulation informatique d’un trébuchet a
contrepoids en JavaScript. Bulletin de la Société Vaudoise des Sciences Naturelles 101 : 139-150.

Résumé

Ce projet, issu d'un travail de Maturité 2021 du Gymnase de Renens, consiste en la modélisation
physique et la simulation informatique d’un trébuchet & contrepoids. Le trébuchet est une arme de
siege du Moyen Age qui exploite le potentiel gravitationnel pour propulser des boulets de pierre,
pouvant peser jusqua 100 kg, contre des remparts fortifiés. Le but du travail était donc de décrire
la dynamique de I'engin en utilisant les outils de la mécanique classique, notamment I'équation
d’Euler-Lagrange, ainsi que les lois du mouvement de Newton. Etant donné que le systéme est
chaotique, nous avons utilisé des méthodes d’analyse numérique, afin d’approximer les fonctions
du mouvement en procédant a une intégration discréte des équations régissant la dynamique du
trébuchet. Enfin, le but étant de rendre ce projet accessible, nous avons programmé la simulation
en JavaScript/HTML, afin de la rendre disponible sur un site web.

Mots-clés: Equation de Euler-Lagrange, lois de Newton, trajectoire balistique, méthodes d’analyse numérique,
double pendule.

BARMAZ A., MARTELLI A. & PIGUET S., 2022. Physical modelling and computer simulation of a counterweight
trebuchet in JavaScript. Bulletin de la Société Vaudoise des Sciences Naturelles 101: 139-150.

Abstract

This project, the results of a high school 2021 project, consists in the physical modeling and
computer simulation of a counterweight trebuchet. The trebuchet is a siege weapon of the Middle
Ages which exploits the gravitational potential to propel stone balls, weighing up to 100 kg,
against fortified walls. The aim of this work was to describe the dynamics of the system using
the tools of classical mechanics, in particular the Euler-Lagrange equation and Newton’s laws
of motion. Since the system is chaotic, we used numerical analysis methods to approximate the
functions of motion by discrete integration of the equations of motion. Finally, the goal being
to make this project accessible, we programmed the simulation in JavaScript/HTML to make it
available on a web site.

Keywords: Euler-Lagrange equation, Newton’s laws, ballistic trajectory, numerical analysis, double pendulum.
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INTRODUCTION

Le trébuchet est une arme de siege, originaire de Chine, qui s'est imposée en Europe occi-
dentale 2 la fin du Moyen Age. Son mécanisme reprend le principe de la fronde et exploite la
force gravitationnelle d’un contrepoids, aussi appelé « huche », afin de propulser des boulets
de pierre. Malgré la faible fréquence de I'engin, maximum deux tirs par heure, son utilisation
permet de détruire les plus épaisses fortifications de pierre. Lobjet peut mesurer une vingtaine
de metres et lancer des charges de cent kilogrammes. La masse du contrepoids peut quant a
elle varier de dix a vingt tonnes.

Dans le cadre de ce travail, la question centrale a été de parvenir 4 modéliser le mouvement
du trébuchet lors du lancé, ainsi que la trajectoire balistique du projectile jusqu'a ce qu'il
touche le sol, en modifiant notamment les caractéristiques physiques du modele (longueur des
bras, de la fronde, masse du contrepoids, vitesse du vent, etc.). De plus, la simulation devait
étre vraisemblable et retranscrire, le plus fidélement possible, le comportement réel du trébu-
chet (DE Jong 2020). En outre, le dessein final étant de proposer la simulation sur un site
internet, l'interface doit étre fluide et facile d’utilisation. Un bon exemple de nos attentes est le
site www.virtualtrebuchet.com, principale source d’inspiration pour ce projet.

METHODE

Théories utilisées

La modélisation du trébuchet se divise en deux grandes parties: premiérement, la simulation
du mouvement du trébuchet en lui-méme, puis la modélisation de la trajectoire balistique du
projectile. Malgré la grande différence apparente entre les notions physiques de ces deux pro-
blemes, ils peuvent tous les deux étre exprimés a I'aide d’équations différentielles. Les solutions
de ces équations sont les fonctions qui régissent le mouvement du projectile et du trébuchet
dans le temps. Pour déterminer les équations différentielles du mouvement du trébuchet, nous
avons fait appel au formalisme Lagrangien, tandis que pour la trajectoire balistique du projec-
tile, nous avons exploité le principe fondamental de la dynamique énoncé par Newton.

Description de la trajectoire balistique

Lorsque le projectile du trébuchet est libéré de la fronde, il poursuit une trajectoire balistique
avec une vitesse initiale ¥,. En principe, lorsque nous ne considérons pas le frottement de I'air, la trajectoire
balistique d’un projectile se comporte comme un mouvement parabolique, c’est-2-dire que la particule se
déplace A vitesse constante sur I'axe x (MRU) car aucune force ne s’applique sur I’horizontale, tandis que sur
I'axe y, la masse est en proie A 'accélération gravitationnelle §, ce qui I'entraine vers le sol de maniére
uniformément accélérée (MRUA). En intégrant accélération selon le temps, on obtient un systéme
d’équations paramétriques décrivant une parabole :

x(t) =vt+x;

1
y(t) = —Egtz +ut+y;
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Cependant, dans la réalité, des forces relatives 4 la mécanique des fluides s’appliquent sur le projectile, ce qui
fait que I'accélération du boulet n’est en vérité pas uniforme au cours du temps. Dans notre cas, il s’agit de

la force de trainée (E:) et de I'effet Magnus (ﬁ)

Force de trainée

Lorsqu'un corps est en mouvement dans un fluide (air par exemple), celui-ci subit une force de frottement
colinéaire 2 la vitesse relative ¥ de l'air par rapport au corps. La force de trainée (F;) est dépendante du
module de la vitesse relative du fluide par rapport au corps v, de la masse volumique du fluide p de la section
efficace! du corps notée 4, ainsi que d'un coefficient de frottement C,.

1
F, = EC,,Apvz [N]

Effet Magnus

L'effer Magnus est un principe physique qui se produit lorsque qu'un corps sphérique est en rotation sur
lui-méme dans un fluide (MIQUEY, 2008 ; GASTEBOIS, 2017). Cet effet peut étre décrit comme une
différence de pression entre deux points opposés de la sphére. Il 2 comme conséquence d'induire une force
Fy perpendiculaire 3 la vitesse relative ¥ du fluide. La norme de cette force, Fy, est dépendante du rayon

. . . . . rad .
du corps 7, de la vitesse v, de la vitesse angulaire de rotation w exprimée en [T] et de la masse volumique

du fluide p. Ici, nous avons considéré que le vecteur de roration @? érait perpendiculaire au vecteur vitesse
7. Etant donné que la rotation du boulet provoquée par le jet érait difficile 4 évaluer, nous avons choisi de
laisser 4 utilisateur le soin de choisir lui-méme une vitesse angulaire de rotation.

1
Fpp = Enr3pwv [N]

En appliquant la deuxiéme loi de Newton, nous avons pu déterminer I'accélération de la balle en tout point
et en tout temps :

ZF’=FQ+Ft+FM=m-(’i

3
om §+F@) +Fu@) =m- 2
Le but de résoudre cette équation différentielle était de déduire la fonction de la vitesse en fonction du temps.
Par la suite, il nous aurait suffi d’intégrer la solution ¥(t) dans le but d’obtenir la position ; la vitesse étant
égale A la variation instantanée de la position. Cependant, I'équation différentielle obtenue devenant trop
complexe, nous n’avons pas été en mesure de trouver une solution analytique pour la vitesse et la position
du projectile au cours du temps ; nous expliquons ci-aprés comment nous avons finalement procédé. A ce
stade-13, nous savons seulement que la trajectoire du projectile sur la simulation ne sera pas une parabole
parfaite puisque la force de trainée et I'effet Magnus s’appliquent sur le boulet.

! La section efficace d’un corps est la plus grande section qui coupe le corps perpendiculairement a la vitesse
relative de I'air. Pour un corps sphérique, tel qu’une balle, la section efficace est une constante. Généralement,
la section efficace change en fonction de I'orientation du corps dans I'air qui I’entoure.

2| e vecteur @ est un vecteur perpendiculaire au plan de rotation. Nous considérons que sa norme est positive
lorsque la balle est en rotation vers I'avant et donc négative lorsque la balle est en rotation vers I'arriére (en
fonction de I'axe x).
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Description du mouvement du trébuchet: équation d’Euler-Lagrange

L’équation d’Euler-Lagrange permet d'exprimer la dynamique du trébucher 4 I'aide de I'énergie mécanique.
Cette égalité se présente ainsi :

d (dL aL_O
dt\dq,) 0dq;

Ot L, le lagrangien, correspond 4 la différence entre I'énergie cinétique, notée T, et I'énergie potentielle du
systéme, notée V.

Contrairement 4 la mécanique newtonienne, 'approche lagrangienne n’utilise pas des coordonnées
cartésiennes, car leur utilisation se révéle inefficiente dans un systéme complexe comme le trébuchet. C'est
pourquoi nous utilisons un nouveau type de coordonnées dites « généralisées » (SHAPIRO, 2010) qui
permettent de représenter les contraintes du systtme sans utiliser forcément la position sous forme
directe. Dans notre cas, il s’agit des angles formés par les bras de I'engin, 4 savoir : a, B, et Y, ce qui nous
donne les trois équations de Lagrange pour notre systéme.

En effet, 'engin que nous souhaitons simuler peut se représenter uniquement avec trois angles qui varient
au cours du temps ; le mouvement des bras et des masses se déduisant par la suite. Les équations ne se
calculent pas en fonction de la position de tous les points, mais elles permettent tout de méme de décrire
leurs mouvements. Bien que toutes ces nouvelles notations puissent paraitre piégeuses, la mécanique
lagrangienne nous sera trés utile pour déterminer les équations du mouvement.

Méthodes d’intégration numérique

Comme décrit précédemment, la description mathématique de notre modéle repose sur des
équations différentielles. Or, la solution analytique d’une équation différentielle peut parfois
ne pas étre déterminée. Dans ce cas, il faut estimer la fonction a I'aide d’une intégration numé-
rique. Certaines méthodes étant plus précises que d’autres, nous avons décidé d’en comparer
trois différentes : la méthode d’Euler (1¢" ordre), de Heun (2¢ ordre), ainsi que de Runge-Kurtta
(4¢ ordre). Ces trois méthodes utilisent les dérivées de la fonction du mouvement a un instant ¢
afin d’approximer la position sur un pas de temps /4 trés faible.

Application sur le trébuchet

Le but érant ici de rester concis, nous présentons surtout les résultats et évitons de réécrire le
développement entier des calculs. Le rapport complet est toutefois disponible en annexe.

Bulletin de la Société Vaudoise des Sciences Naturelles, volume 101 (2022).



Equations du trébuchet

Les trois équartions de Lagrange enfin développées, nous avons pu les écrire sous la forme d’un systéme
linéaire ayant comme inconnues les trois accélérations angulaires. Cela ne veut pas dire que les coefficients

ne varient pas dans le temps, mais juste qu’ils ne dépendent pas explicitement de &, B.¥.
c11é + c1aB + c1a¥ = wy
€218 + Coaf + Co3F = W,
€316 + €328 + 337 = w3

Ce systéme linéaire peut ensuite s’écrire sous la forme d’une multiplication matricielle, qui nous permettra
de déterminer les coefficients A chaque nouveau pas de temps.

Programmation

Ce projet a été programmé en JavaScript car ce langage est exécuté directement dans une page web ce qui
permet de partager facilement le projet. Nous avons utilisé chart.js pour afficher les graphiques sur le site.
Notre code se divise en deux parties principales :

1. Le calcul des angles du trébuchet et de la position du projectile pour toute la durée de la simulation
2. L’affichage de la simulation

Certe structure a été choisie pour assurer la fluidité de I'affichage. Par conséquent, au fur et & mesure de
'exécution des calculs, les résultats sont stockés dans des listes. Une fois que le projectile touche le sol,
exécution des calculs se termine et le programme lance en temps réel affichage de la simulation en se
basant sur les résultats déterminés précédemment. Pour plus de précision sur le fonctionnement du code,
nous vous invitons A parcourir la partie programmation de notre rapport en annexe, ainsi que le code source

disponible en ligne sur le site GitHub (https://github.com/AdrienB2/TM trebuchet).

Méthodes de vérification

Test avec modele réduit (catapulte simple)

Nous avons vérifié |'intégration numérique en utilisant un modele simplifié de notre trébuchet, o la-

longueur de la fronde est quasiment nulle. En effet, un modele comme celui-ci possede une solution

analytique et nous pourrons la comparer avec les graphes fournis par nos méthodes d'intégration. En -

étudiant donc les moments de force et le moment d'inertie de ce modéle, nous sommes arrivés 4 I'équation
différentielle —c - sina = &, ol ¢ dépend de l'accélération g, des masses et des longueurs du balancier.
Cette équation est cependant complexe 2 résoudre, c'est pourquoi nous pouvons la simplifier en approximant

la fonction sinus lorsque & est petit.
. = i I T
—c'sina=d=-ca=d-——<a<—-

6 6

La solution de cette équation simplifiée est une fonction harmonique : S(t) = 4 - sin(w - t + ¢), ou 4,
et ¢ déterminent I'amplitude, la fréquence et la constante de phase de S. Par conséquent, si le graphique de

@ en fonction du temps est semblable 4 une fonction harmonique, nous aurons alors d’une part une preuve
de la pertinence de I'intégration numérique, et d’autre part de notre simulation par rapport 4 la réalité.
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Etude des graphiques de @, 8,y

Puisque les équations différentielles auxquelles nous avons fait face n'avaient pas de solution analytique, nous
avons di les approximer i l'aide d'intégrations numériques. Or, cette intégration a tendance i diverger au
cours du temps, les valeurs angulaires devenant de plus en plus chaotiques. L'étude des graphiques de @, 8, ¥
en fonction du temps nous a permis de déterminer lorsque la simulation s'éloigne de la réalité, mais aussi de
tester la validité des différentes méthodes d’intégration numérique en vérifiant la convergence des données
lors de I'augmentation de la précision.

Conservation de I'’énergie avec modéles sans frottement

La vérification de la conservation de I'énergie consiste 4 établir si I'énergie du systéme reste constante au
cours du temps. Dans le cas inverse, cela signifierait que le syst¢éme "trébuchet + projectile” subit des forces
dissipatives ou bien que les calculs liés au systéme soient incorrects. La motivation derri¢re cette vérification
est donc de valider nos équations du mouvement. Pour ce faire, nous avons calculé A chaque pas de notre
simulation la somme de I'énergie potentielle (U) et de I'énergie cinétique (K) du systéme, ce qui comprend
le trébuchet ainsi que le projectile. Pour le trébuchet, il a suffi de reprendre le calcul du lagrangien et de
changer le signe de I'énergie potentielle afin de connaitre non pas la différence entre I'énergie potentielle et
cinétique mais la somme des deux :

L=T-V =Kirep — Utreb = Etrep = Ktrep + Utrep =T +V

Cependant, pour que le calcul de I'énergie soit correct, nous devons nous assurer que le systéme soit bien
isolé, ce qui n'est pas le cas puisqu'il est en proie 4 des forces dissipatives liées au frottement de ['air et 2 |'effet
Magnus. Nous isolons donc le systéme en supprimant temporairement tout effet lié aux frottements de ['air.
De plus, nous faisons en sorte d’avoir le moins de perte d’énergie dans les collisions. Dans ces conditions, si
nos calculs sont corrects, I'énergie ne devrait presque pas varier.

Pour les mesures de I'énergie, nous nous sommes basés sur deux modeles a échelles diffé-
rentes. Le premier correspond aux dimensions entrées par défaut tandis que le second est le
modéle réduit construit par Piotr Maleika, mesurant approximativement un meétre. De plus,
pour chacun des modeles, nous avons pris les mesures avec et sans les collisions afin d’éviter
toute subjectivité dans notre raisonnement.

Comparaison de la portée avec des modeles réels de trébuchets

En comparant la portée simulée de notre simulation avec la portée mesurée d’un vrai projectile
de trébuchet, nous pouvons évaluer la validité de notre simulation. Ainsi, nous avons comparé
la portée de notre simulation avec deux modeles réels de trébuchets:
- Une maquette de trébuchet d’env. 1 m, pouvant effectuer de vrais tirs, construite par 2 Maleika.
- Un trébuchet de taille réelle construit en Utah par Daniel Bertrand, sous le pseudo-
nyme Reddit « Dawesome21 ».

RESULTATS

Visuel de la simulation

La simulation représente le produit final de notre travail et donc son résultat. Celle-ci se trouve
sur notre site (www.trebuket.org) qui peut étre consulté librement. Le site permet de simuler
le tir d’un trébuchet en fonction de différents parametres (figure 1, interface sur la gauche),
puis de visualiser la trajectoire du projectile (onglet « Simulation ») et 'évolution de plusieurs
variables en fonction du temps (onglet « Graphiques »).

Bulletin de la Société Vaudoise des Sciences Naturelles, volume 101 (2022).
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- x: 129.801 [m] ¥: 0.017 [m] ©9.700 [s] vitesse: 53,481 [m/s] aipha: -58.601 Beta: 214.736° yamma: 204.579
Trébuchet

Direction du vent

Longueur de La fronde [m) /

Longueur du bras long [m]
Longueur du bras court [m)
Hauteur du pivot (m]
Longueur du contrepolds [m]

Masse du projectile [kg]

Masse du contrepolds [kg]

Masse de ta barre [kg]

Angle de libération ']
s

Vitesse du vent [m/s)

Inctinaison du vent [*]

i

Rotation du boulet [* 5]

R 1 AT

Figure 1. Simulation d’un tir de trébuchet sur notre site: www.trebuket.org. Les paramétres du tir peuvent étre mo-
difié dans la colonne de gauche, et les résultats du tir sont visibles dans les onglets de haut de page « Simulation »
et « Graphiques ».

Vérification de la simulation

Angle a (pivot) avec des longueurs de fronde et de contrepoids proches de zéro

Lorsque la fronde et la longueur du contrepoids tendent vers zéro, le graphe de a confirme nos
prédictions car nous avons bien affaire 4 une fonction harmonique (figure 2). D’autre part,
la diminution de 'amplitude au cours du temps, qui n'apparait pas dans la solution de notre
équation, est également correcte.

Convergence des valeurs des angles a, B ety en fonction des différentes méthodes d’intégration

En se penchant la méthode d’Euler (degré 1), nous observons une variation de I'amplitude d’os-
cillation beaucoup plus élevée qu'avec les autres méthodes, ceci est particulierement visible sur
Y(2) ot P'on apercoit une amplitude d’oscillation de plus en plus grande vers la fin du graphique
(figure 3). D’autre part, avec la méthode d’'Heun (degré 2), la variation d’amplitude semble étre
beaucoup plus faible voire nulle au cours du temps, ce qui fait état d’'une plus grande stabilité
du systeme. Ce constat peut également étre fait pour la méthode de Runge-Kutta (degré 4). Les
graphiques d’Heun et Runge-Kutta ne se distinguent pas 4 I'ceil nu, ce qui indique une conver-
gence des valeurs des angles lors de 'augmentation de la précision de la méthode d’intégration.

Evolution de I'énergie des modéles avec et sans frottement

Les collisions créent de légeres fluctuations de 'énergie, bien visibles sur le modéle basé sur le la
reproduction de trébuchet de P. Maleika (figure 4, haut droite). En comparaison, les modeles
sans frottement et sans collision ne présentent aucune fluctuation significative (figure 4, bas).
Nous observons une conservation du niveau d’énergie du systéme au cours du temps.

Comparaison entre portée simulée et portée réelle de vrais trebuchets

Premiérement, nous avons comparé la portée simulée avec notre méthode a celle mesurée avec
la maquette de 1 m (pouvant effectuer de vrais tirs) construite par P. Maleika. Nous avons ap-
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Figure 2. Graphique de I'angle a (pivot) avec la fronde et la longueur du contrepoids tendant vers zéro (0,01 m). Le
graphe en bas est un grossissement de celui en haut pour la période entre 0 et 6 secondes.

proximé I'angle de libération (tableau 1) car il est assez compliqué a déterminer sur le modele
physique. La portée mesurée était de 26,1 m, alors que celle prédite était de 26,0 m, ce qui
correspond i une dizaine de centimétres de différences entre la prédiction par notre modéle et
la réalité (tableau 1).

Tableau 1. Données du trébuchet de P. Maleika, et comparaison de sa portée avec celle simulée par notre modele.

Données
my 0.121 [kg]
mg 16.1 kg
mp 5.00 [kg]
Iy 0.298 [m]
la 0.882 [m
I3 0.529 [m
la 0.250 [m
l5 0.980 [m
Iy 0.590 [m
angle de libération | =40 [°]
portée JavaScript | 26.0 m
portée physique | 26.1 m

Bulletin de la Société Vaudoise des Sciences Naturelles, volume 101 (2022).
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Figure 3. Variation des angles a, 8 et y au cours du temps, en fonction des trois différentes méthodes d’intégration (Euler = 1°" ordre; Heun = 2° ordre ; Runge-Kutta = 4° ordre).

NSAS XLd




Prix SVSN

148

Deuxiémement, nous avons comparé la portée du trébuchet construit par Daniel Bertrand
(taille réelle) a celle prédite par notre modele. Il sest avéré que I'erreur absolue entre la portée
réelle du projectile et la simulation allait de 0,3 2 3 m, 4 une distance évaluée de 300 m.

DiscussioN

Dans ce travail, nous avons effectué une modélisation physique et une simulation informatique
d’un trébuchet 4 contrepoids. Premiérement, nous avons validé la pertinence de la simulation
en nous basant sur les graphiques obtenus apreés la fin des calculs, puis nous avons comparé les
résultats obtenus avec les données réelles issues de deux trébuchets, un modele réduit et une
reproduction 2 taille réelle.

Vérification des calculs

Test avec modele réduit (catapulte simple)

Notre solution est confirmée car, lorsque la fronde et la longueur du contrepoids tendent
vers zéro, 'angle a se comporte bien comme une fonction harmonique (figure 2). De plus,
la diminution de 'amplitude de a au cours du temps, qui n’apparait pas dans la solution
de notre équation, est bien correcte. En effet, 'approximation du sinus que nous avons
appliquée induit une légére extrapolation de la fonction. En revanche, la période demeure
constante, ce qui nous indique que I'intégration numeérique est stable. Bien que ce test n’in-
dique pas directement que nos calculs sur le trébuchet sont corrects, celui-ci nous indique
que la simulation suit le bon chemin.

Etude des graphiques de a, B,y

Les résultats montrent directement une convergence des données lors de 'augmentation de
la précision des méthodes d’intégration (figure 3). En effet, les graphiques avec la méthode
d’Euler, ayant la plus faible précision, différent de ceux obtenus avec la méthode d’'Heun, ayant
une meilleure précision. Cependant, lorsque 'on compare les graphiques d’Heun et de Runge-
Kutta, nous ne pouvons pas les discriminer a I'ceil nu. Ceci nous indique que plus la précision
des méthodes d’intégration numérique augmente, plus les valeurs tendent a converger. Ceci
prouve la validité et de la pertinence de ces différentes approximations.

Conservation de I’énergie avec modéles sans frottement

La comparaison des modéles avec et sans collisions indique que celles-ci peuvent créer de
légeres fluctuations de I'énergie (figure 4). Nous pouvons également supposer que le méme
phénomene se produit pour le premier modéle (figure 4, haut gauche), toutefois on ne peut
pas 'observer a cause de I'échelle. Par ces observations, nous pouvons affirmer que les collisions
ameénent un facteur d’erreur, qui reste cependant insignifiant. Il est important de noter qu'avec
ou sans collisions, I'énergie du systéme semble rester constante dans le temps. Cela permet de
confirmer que notre systéme a été implémenté correctement puisqu’il respecte le principe de
la conservation de I'énergie.
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Figure 4. Comparaison de 'évolution de ['énergie pour des modeles avec (haut) et sans (bas) frottements. Les graphiques de gauche correspondent au modele de trébuchet par
défaut de la simulation, et a droite au modéle basé sur le modéle réduit P. Maleika.
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Vérification de la portée

Premiérement, nous pouvons véritablement observer la concordance entre les résultats du
modéle réduit (26,1 m) et ceux de notre simulation (26,0 m), variant de seulement 0,4 %
de la distance parcourue par le projectile (environ 10 cm). Pour ce qui est du trébuchet de
« Dawesome21 » (taille réelle), I'erreur absolue entre la portée réelle du projectile et la simula-
tion allait de 0,3 3 3 m 4 une distance évaluée de 300 m. Lerreur relative se situe donc entre 0,1
et 1 %, ce qui est largement au-dessus de nos attentes en matiére de précision. Pour conclure,
la comparaison avec ces deux modeles de trébuchet nous permet ainsi d’affirmer que la simu-
lation est extrémement fidéle 4 la réalité, du moins concernant la portée du boulet.
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ANNEXE

A consulter sur https://wp.unil.ch/svsn/publications/bulletins/

Bulletin de la Société Vaudoise des Sciences Naturelles, volume 101 (2022).



	Modélisation physique et simulation informatique d'un trébuchet à centrepoids en JavaScript

