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Un algorithme d’inversion par moindres carreés
pondérés: application aux données géophysiques
par meéthodes électromagnétiques
en domaine fréquence

par

Laurent MARESCOT 1.2

Abstract-MARESCOT L., 2003. A weighted least-squares inversion algorithm:
application to geophysical frequency-domain electromagnetic data. Bull. Soc. vaud.
Sc. nat. 88.3: 277-300.

Geophysical inverse theory can be used to process data collected from the surface in
order to build an image of the subsurface structures. This processing is the only way to
get a quantitative insight into the subsurface features. Inverse problems in geophysics,
like the one-dimensional inversion of frequency domain electromagnetic data presented
in this paper, frequently suffer from the lack of available information. Interpreting such
inverse results can therefore be misleading or dangerous. This prompts us to propose an
inverse formulation that contains a maximum of a priori information.

To introduce a priori information into the inverse problem, the least-squares formulation
(Marquardt-Levenberg) is completed with weighting matrices. Various parameters
(e.g. the damping factor) or the quality of the starting model allow the inverse process
to converge towards a plausible solution. Nevertheless, the uniqueness of the solution
cannot be guaranteed. Solving inverse problems seems complex at first sight but
the background theory can be easily understood. The inverse problem solution, the
characteristics of under- or over-determined systems, the principle of norm minimisation
as well as the task of a weighting matrix can be presented in a straightforward way. The
numerical resolution of the inverse problem is intentionally kept as much general as
possible in this work. Therefore, the numerical tools proposed in this paper can be
used to solve other inverse problems. To invert a matrix, a Gauss reduction with partial
pivoting is first used. The upper triangular linear system is then solved using a back-
solving procedure. This method proved to be stable and the computational effort as well
as the memory required can be optimised throughout the whole procedure.

This algorithm is used to invert synthetic data calculated on a horizontal-layer model.
These examples enhance the influence of the lack of information on the quality of the
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model reconstruction. The role of the weighting matrices is also emphasized. These
matrices, that can contain measurement errors or constraints on the model, introduce
a priori information into the inverse problem. This information proved to have a
significantly positive influence on the quality of the model reconstruction. Nevertheless,
poor quality results can sometimes be obtained when using starting models too different
from the solution. The efficiency of the inversion algorithm is also demonstrated with
field data.

Keywords: geophysics, inversion, least-squares, weighting matrix, a priori information,
numerical calculus, electromagnetic methods, EM34, EM31.

Résumé —~MARESCOT L., 2003. Un algorithme d’inversion par moindres carrés
pondérés: application aux données géophysiques par méthodes électromagnétiques en
domaine fréquence. Bull. Soc. vaud. Sc. nat. 88.3: 277-300.

Le processus d’inversion en géophysique permet la reconstruction de la structure
profonde du sous-sol a partir de données mesurées en surface. Ce type de traitement
est indispensable si I’on souhaite pouvoir exploiter de maniere quantitative les mesures
effectuées. En geophyanue le processus d’inversion souffre fréquemment du manque
d’information a disposition. Il s’aveére donc nécessaire de résoudre le probleme inverse
au travers d’une formulation permettant d’utiliser toutes les informations disponibles
au moment de I'interprétation des données. La méthode €lectromagnétique en domaine
fréquence, utilisée ici pour effectuer des sondages en une dimension du sous-sol, souffre
tout particulierement de ce manque d’information.

La résolution du probleme inverse par moindres carrés (formulation de Marquardt-
Levenberg) permet la gestion de |'information a priori au moyen de matrices
de pondération. Les différents parametres de cette formulation (tel le facteur
d’amortissement) ou encore la qualité du modéle de départ, permettent d’obtenir une
convergence vers une solution plausible. Toutefois, I’'unicité de la solution ne peut pas
étre garantie. Bien que complexe au premier abord, la compréhension de la résolution
du probléme inverse (conditionnement du probléme inverse, notion de minimisation
des normes de vecteurs) ne nécessite pas de concepts mathématiques particuliers et peut
étre présentée de maniére relativement simple. Les outils numériques utilisés ont été
choisis dans 1’optique de présenter un algorithme applicable a de nombreux types de
données. L’inversion des matrices s’effectue directement en utilisant une factorisation
de Gauss a pivots partiels et le systeme triangulaire supérieur ainsi obtenu est résolu par
substitution rétrograde. Cet algorithme s’avére étre trés stable et peut étre facilement
optimis€ en temps et espace mémoire.

L algorithme par moindres carrés pondérés est appliqué a des données électromagnétiques
synthétiques calculées sur un systéme de couches tabulaires ainsi qu’a des mesures de
terrain. Dans ces exemples, I'effet de la carence en information du probléme inverse
est alors souligné de méme que le role des matrices de pondération. Ces dernieres
permettent d’introduire des informations a priori telles que des contraintes sur les
parameétres du modéle (profondeur de certains niveaux géologiques, conductivités
mesurées sur affleurements par exemple) ou encore sur les erreurs expérimentales.
Ces informations permettent une amélioration significative de la qualité¢ des modeles
obtenus. Toutefois, certaines difficultés de convergence ont parfois été constatées si le
modele de départ est trop éloigné de la solution.

Mots clés: géophysique, inversion, moindres carrés, matrice de pondération, information
a priori, calcul numérique, méthodes ¢lectromagnétiques, EM34, EM31.
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INTRODUCTION

La géophysique est une discipline scientifique étudiant les propriétés physiques
du sous-sol dans le but d’en caractériser la structure et la composition. Ces
mesures se font généralement depuis la surface ou plus rarement en profondeur
par I'intermédiaire de forages. Il est en général difficile, voire impossible,
d’utiliser ces données en tant que telles pour décrire de maniére quantitative
les propriétés du sous-sol. Un traitement est donc nécessaire afin d’obtenir un
résultat exploitable par le géologue ou I’ingénieur. Le processus d’inversion
en géophysique permet la reconstruction de la structure profonde du sous-sol
a partir de mesures en surface. La stratégie d’inversion par moindres carrés est
sans doute une des solutions les plus fréquemment utilisées en géophysique,
bien que d’autres modes de résolution existent (méthodes ART (algebraic
reconstruction technigue) ou encore rétroprojection par exemple).

Cet article est tout d’abord un essai de vulgarisation a I’attention des personnes
qui ne sont pas familieres avec la théorie du probléme inverse. Il s’agit d’aborder
de manicre simple la théorie du probleme inverse par moindres carrés ainsi que
la gestion de I’information a priori qui lui est associée. En effet, la qualité du
modele obtenu dépend fortement de la quantité et de la qualité des informations
introduites dans le processus d’inversion. Il est primordial de relever que, bien
qu’appliquées a des données géophysiques, les notions développées dans ce
travail sont de portée générale et peuvent aisément étre transposées a d’autres
disciplines scientifiques. Dans ce but, les recettes numériques utilisées pour
I’élaboration de cet algorithme seront également détaillées.

Cette étude a ensuite pour but d’illustrer les possibilités et les limites de
’inversion par moindres carrés pondérés de données électromagnétiques en
domaine fréquence (appareillage EM31/34 de Geonics Ltd.). Cet appareillage
fournit une mesure de la conductivité apparente en un point de la surface
qui est une fonction des conductivités vraies qui composent le sous-sol. La
conductivité d’une roche est la capacité de cette derniere a laisser passer
un courant é€lectrique. Ce parametre physique dépend, entre autres, de la
composition des roches, de leur saturation et de la qualité de I’eau d’imbibition.
Cette méthode est surtout utilisée de mani¢re qualitative, sous la forme de
profils de conductivité destinés a appréhender la variabilité latérale du sous-
sol (voir par exemple OGILVY ef al. 1991 ou GEX 1997). Une autre approche
consiste a effectuer des sondages électromagnétiques. Dans cette méthode,
les mesures effectuées depuis la surface servent a appréhender les variations
verticales de la conductivité a I’aplomb du dispositif. Comme seule la variation
de la conductivité avec la profondeur nous intéresse, les modeles obtenus sont
dits a une dimension (1D). Le traitement quantitatif de ce type de données
sous la forme de sondages n’est pas évident (GOMEZ-TREVINO ef al. 2002). En
effet, les appareillages mentionnés plus haut ne permettent d’acquérir qu’un
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nombre treés limité de mesures par sondage. Il va donc étre capital de trouver
une maniere d’introduire de I’information a priori (connue indépendamment
des données) dans le probleme inverse si I’on désire obtenir une reconstruction
correcte du sous-sol.

Dans cette étude, le principe de la mesure de la conductivité apparente par
la méthode électromagnétique en domaine fréquence est tout d’abord exposé.
Le conditionnement, la résolution ainsi que la question de I’unicité et de la
convergence du probléme inverse sont ensuite décrits de maniére plus détaillée.
Un algorithme de résolution est également détaillé. Une série de modélisations
synthétiques ainsi qu’un exemple de terrain sont finalement présentés afin
d’illustrer I’application de I’algorithme d’inversion proposé dans cette étude.

MESURES SUR LE TERRAIN ET PROBLEME DIRECT

Les mesures du sous-sol par la méthode électromagnétique en domaine
fréquence peuvent étre effectuées sur le terrain au moyen de deux bobines
tenues horizontalement ou verticalement. La premiere bobine est un émetteur
parcouru par un courant alternatif dans la bande des fréquences audio. La
seconde joue le role de récepteur et est située a une distance définie s de
I’émetteur. En vertu de la loi de Biot-Savart, un champ magnétique primaire
H, variant dans le temps va étre créé par le courant alternatif de la bobine
é¢mettrice. Selon le principe de Faraday, ce champ primaire va alors induire
un courant dans le sous-sol, ce dernier se comportant comme un corps plus
ou moins conducteur selon sa composition. Ces courants générent de méme
un champs magnétique secondaire /H, qui est alors mesuré, avec le champ
primaire, par la bobine réceptrice. Le champ /| est une fonction complexe de
la distance entre les bobines s, de la fréquence utilisée f'et de la conductivité
du sous-sol G.

Sous une certaine hypothése, appelée approximation a faible nombre
d’induction (MCNEILL 1980), le champ secondaire peut étre évalué par une
fonction plus simple de ces variables. On peut définir le nombre d’induction B
comme ¢€tant le rapport de la distance s sur la profondeur de peau o (pour «skin
depthy»), cette derniere étant définie comme la distance verticale parcourue par
une onde plane qui se propage dans un demi-espace (le sous-sol) a laquelle
son amplitude ne vaut plus que 1/e de son amplitude en surface (avec e = 2.71
le nombre népérien). La profondeur de peau & dépend de la fréquence fet de
la conductivité. Pour que I’approximation a faible nombre d’induction soit
valide, il est nécessaire de considérer que B soit beaucoup plus petit que 1,
c’est a dire que s<<9. Dans ce cas, le rapport du champ magnétique secondaire
sur le champ magnétique primaire vaut:
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avec H  /H, le rapport du champ magnétique secondaire sur le champ
magnétique primaire, ® la fréquence angulaire (radians) avec w=27fou fest la
fréquence (Hz), L, la perméabilité magnétique du vide, ¢ la conductivité (S/m)
du sous-sol, s la distance entre les bobines (m) et i=(-1)0-5,

Dans cette expression, le rapport du champ magnétique secondaire sur le
champ magnétique primaire est directement proportionnel a la conductivité
apparente ¢, du terrain, exprimeée en tant que modules:

- - 4 H. 2)

o, s*\H

P

Cette conductivité apparente est identique a la conductivité vraie du terrain
si ce dernier est homogene et isotrope. Ayant défini une certaine valeur pour la
distance s et une valeur pour la fréquence £, la conductivité maximum acceptable
pour que I’approximation a faible nombre d’induction soit applicable, peut
étre déterminée. On peut admettre que cette conductivité ne doit pas excéder
80 mS/m. Au dela, I’approximation a faible nombre d’induction n’est plus
valable et la relation liant la conductivité apparente mesurée et la conductivité
vraie n’est plus linéaire (MCNEILL 1980).

Dans le cas d’une modélisation a une dimension, on suppose que le sous-
sol est constitué¢ d’une succession de couches horizontales et paralléles, de
conductivités et d’épaisseurs différentes (figure 1). Le champ primaire induit
dans le sous-sol des boucles de courant horizontales et parall¢les entre elles,
ces dernieres restant confinées dans chaque couche. On suppose de plus qu’il
n’y a pas de couplage magnétique entre les différentes boucles de courant,
la fréquence utilisée dans I’approximation a faible nombre d’induction étant
relativement basse (<10°000 Hz) tout comme la conductivité du sous-sol. Il est
donc possible de calculer le champ magnétique résultant a la surface d’un sous-
sol composé de couches horizontales paralleles en évaluant indépendamment
les contributions de chaque couche. Ces contributions dépendent directement
des conductivités et épaisseurs de chaque couche. En géophysique, le calcul de
la réponse d’un mod¢le de terrain porte le nom de probléeme direct.

Pour effectuer un sondage électromagnétique, I’espacement des bobines
ainsi que la fréquence utilisée vont étre modifiées afin d’augmenter la
profondeur d’investigation tout en respectant I’approximation a faible nombre
d’induction. Pour les mesures sur le terrain, les matériels EM31 (distance s
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fixe, 3.7 m) et EM34 (distance s variable, 10, 20 ou 40 m) de Géonics Ltd.
permettent quatre espacements de bobines différents. Ces appareils sont
calibrés électroniquement pour permettre une mesure directe de la conductivité
apparente. En considérant des dipoles ¢lectromagnétiques (perpendiculaires
aux bobines émettrices et réceptrices) horizontaux et verticaux, ce matériel
permet donc d’effectuer 8 points de mesure par sondage. La profondeur
d’investigation de ces dispositifs varie entre 3 m et 60 m en fonction des
espacements s et des fréquences utilisées (MCNEILL 1980).

; % ;
Bobine i "I Bobine
émettrice ' receptrice
f ol
Couche 1 h1

Couche 2

EColcher3)

Figure 1.-Dispositif de mesure par méthode électromagnétique en domaine fréquence
(bobines émettrice et réceptrice) et parametres caractérisant un sous-sol tabulaire a trois

couches.
The frequency domain electromagnetic measurement device (transmitter and receiver
coils) and the geoelectrical parameters for a three-layer tabular earth.

POSITION DU PROBLEME INVERSE

L’opération inverse du probleme direct est résolue pour remonter aux
caractéristiques inconnues du terrain a partir de la réponse mesurée. 1l s’agit, a
partir des données mesurées sur le terrain (conductivités apparentes regroupées
dans un vecteur d de dimension N), de retrouver les parametres du modele de
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terrain (conductivités vraies et profondeurs de chaque couche regroupées dans
un vecteur m de dimension M), décrivant le sous-sol de maniere plausible
et expliquant bien les données mesurées (figure 1). Connaissant un modele
de terrain particulier, les composantes d’un vecteur g(m) de dimension N,
appelées données calculées, peuvent étre évaluées en utilisant la formulation
du probleme direct. L’opération d’inversion s’effectue en général par une
minimisation de la somme des écarts (au carré dans le cas d’une minimisation
par moindres carrés) entre les observations mesurées et calculées. Comme I’a
démontré AL-CHALABI (1992), il est indispensable que les erreurs (incertitudes
expérimentales) sur les données mesurées suivent des distributions normales
lorsque I’on applique une minimisation par moindres carrés (norme L,). Cette
propriété sera supposée dans notre cas.

Lasolution du probleme inverse dépend fortement du rapport entre le nombre
de données mesurées et le nombre de paramétres du modéle (conditionnement
du probleme). Le probléme peut étre parfaitement déterminé. Dans ce cas, il y
a exactement le méme nombre de données sans incertitude expérimentale que
de parametres du modele. La solution obtenue est alors unique avec un vecteur
d’écart entre données mesurées et calculées nul. Cette situation n’arrive jamais
en science expérimentale car les données mesurées sont toujours entachées
d’incertitudes. Un probléme peut aussi étre sur-déterminé s’il y a plus de
données (conductivités apparentes entachées d’erreurs expérimentales) que
de parametres du modele. Dans ce cas, le vecteur d’écart entre les données
mesurées et calculées est non-nul et une minimisation de la norme L, permet
d’obtenir une solution au sens des moindres carrés. Par contre, dans le cas
d’un probléme purement sous-déterminé, il n’y a pas assez de données
pour déterminer de maniére univoque les paramétres du modele. Il y a donc
plusieurs solutions possibles avec un vecteur d’écart entre données mesurées
et calculées invariablement nul. Ce type de probléme est résolu en introduisant
d’une part des informations a priori afin de sélectionner la solution la plus
probable ou du moins limiter le nombre de solutions possibles (le probléme de
la qualité de I’information a priori se pose alors) et en supposant d’autre part
que la solution du probleme inverse est «simple». On obtient généralement
une solution mathématiquement «simple» en minimisant la norme L, des
parametres du modele ou leur écart par rapport a un modele de référence.

Toutefois, en science expérimentale, le probléme du conditionnement
est plus subtil. La plupart des probléemes inverses ne sont en effet pas
complétement sous-déterminés ou sur-déterminés. En effet, le géophysicien
doit souvent travailler avec des données en nombre suffisant mais entachées
d’erreurs expérimentales, redondantes (certains dispositifs EM34 donnent plus
ou moins la méme profondeur d’investigation) et dont I’échantillonnage n’est
pas adéquat. Le systeme d’équations, qui lie données et parametres du modele,
est donc inconsistant. On parle alors de problémes mixtes et dans ce cas, le
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vecteur d’écart entre données mesurées et calculées n’est pas nul. Idéalement,
il serait nécessaire de séparer les parametres du modele en deux groupes: ceux
qui sont sous-déterminés et ceux qui sont sur-déterminés. Cette opération peut
par exemple étre effectuée par une méthode de décomposition des valeurs
propres (SVD pour «singular-value decomposition»). Comme cette méthode
est relativement lente lorsqu’il y a beaucoup de données, on lui préfere
généralement une alternative par moindres carrés amortis pour les problemes
mixtes faiblement sous-détermings.

En sondage électromagnétique utilisant le matériel EM31/34, il est possible
de mesurer 8 conductivités apparentes par sondage. Il sera donc difficile
d’imager des terrains a plus de trois couches, ces derniers présentant déja cinq
parametres pour le modele (3 conductivités et 2 profondeurs). La complexité
du probléme inverse électromagnétique vient également de sa non-linéarité
(1.e. les relations qui relient paramétres du modele et données calculées ne sont
pas linéaires). Une approche possible consiste a rendre linéaire ce probléeme
en effectuant un développement limité du premier ordre autour d’une solution
approchée puis en résolvant le probléme inverse de maniere itérative selon une
minimisation par moindres carrés (norme L ).

SOLUTION DU PROBLEME INVERSE

La méthode décrite ci-dessous est une adaptation de la méthode de Marquardt-
Levenberg (LINES and TREITEL 1984) qui consiste a déterminer une solution
qui minimise simultanément la norme L, du vecteur d’écart entre données
mesurées et calculées et la norme L, du vecteur de modification a apporter au
modele. Par cette derniere opération, on cherche alors a éviter des oscillations
de la solution.

On rend le probleme <électromagnétique linéaire en effectuant un
développement selon une série de Taylor autour d’une solution estimée mp
(modele de départ).

g(m) =g(m?) + G (m - m?) (3)
Cette équation peut encore s’écrire

g(m) - g(m?) =G Am (4)

Dans I’équation 4, on notera Am=m-mP la modification a apporter au
modele. Les éléments de la matrice G valent:
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),
G, = % 5)
iy

G est une matrice qui joue donc le méme réle que I’opérateur A dans une
relation linéaire de type d=Am. La matrice G est la matrice de sensibilité
(ou matrice des dérivées partielles ou matrice des dérivées de Fréchet ou
encore le jacobien). Elle n’est pas carrée car de taille NxM et ne peut donc
pas étre inversée directement. Les coefficients de cette matrice représentent la
sensibilité de la mesure en un point a une variation des parametres du modele.
En utilisant I’approximation par faible nombre d’induction, il est possible de
calculer analytiquement les composants de la matrice de sensibilité ce qui a
¢té fait dans ce travail. Pour d’autres problémes (en méthode géophysique par
courant continu par exemple), un évaluation numérique des dérivées partielles
pourrait étre nécessaire.

Nous allons tout d’abord utiliser la norme L, afin d’évaluer I’écart entre les
valeurs de conductivités apparentes mesurées et les conductivités apparentes
calculées.

q=d-g(m)=d-(g(m’) +G Am) ®)
=Ad -G Am

Il peut étre intéressant de pondérer le vecteur d’écart entre données mesurées
et calculées en fonction de la précision des données mesurées. De cette
maniere, une donnée plus précise qu’une autre peut avoir un plus grand poids
dans le calcul de I’erreur globale. Nous savons par exemple que les mesures
effectuées par dipdles verticaux sont moins précises que les mesures effectuces
par dipoles horizontaux, de par la difficulté d’avoir des bobines coplanaires
sur le terrain. Cette pondération est effectuée par le biais d’une matrice NxNV
diagonale W, qui définit la contribution relative de chaque individu a I’erreur
globale.

diag(Wy) =[a,,,a,,,...a.,...,a,]" (7)

ii
avec 1=1,.....N

Plus a;; est grand, plus la mesure est fiable. Cette information agit tout
particulierement sur la partie sous-déterminée du probléme. L’expression de
la norme L, du vecteur d’écart entre données mesurées et calculées s’exprime
alors, sous forme matricielle:
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S.=q"W,q= (Ad- G Am)" W, (Ad - G Am) (8)

I1 est également possible de pondérer la minimisation de la modification a
apporter a la solution. Pour cela, une matrice MxM diagonale W,, peut étre
incluse dans la minimisation. Cette matrice diagonale tient compte du degré
d’information a priori que nous possédons sur certains parametres du modele
initial. Il se peut par exemple que nous connaissions la conductivité ou la
profondeur du substratum avec une relative précision (par le biais de mesures
sur affleurement ou en forage). Dans ce cas, un plus fort poids sera donné a
ce parametre a I’aide de la matrice de pondération. Les parametres du modéle
pourront évoluer avec plus ou moins de liberté durant I’inversion suivant le
poids qui leur sera attribué.

diag(W,)=[b,,, b,y b sos b, T 9)

avec i=1,.....M

L’expression utilisée lors de la minimisation de la norme L, sur la
modification a apporter a la solution devient alors, sous forme matricielle:

S,,=Am" W_ Am (10)

La formulation du probléme inverse par moindres carrés peut alors étre
trouvée par la méthode des multiplicateurs de Lagrange. On minimise alors Sp,
sous la contrainte que S, est minimum. Cela revient a mmimiser la fonction

de colt S:
S:SD+7LSM (11)

avec A un multiplicateur de Lagrange.

Pour résoudre le probléme inverse, nous allons minimiser I’expression
S en cherchant le zéro de son gradient. L’équation que nous obtenons apres
minimisation est une forme modifi¢e de I’équation de Gauss-Newton:

Am=[G"W,G+AW_ |'G" W, Ad (12)

avec Am le vecteur de modification a appliquer au modele. Le facteur A est
également appelé facteur d’amortissement car il limite la longueur de Am et
amortit ainsi la modification apportée au modéle.

Du point de vue de la théorie du probléme inverse, le facteur d’amortissement
A détermine I’importance relative donnée au vecteur sur les paramétres du
mod¢le par rapport a la distance entre les données calculées et mesurées. Ce
facteur applique une contrainte sur les valeurs du vecteur de modification des
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parametres du modele Am. Il est alors possible de trouver un compromis entre
la partie sur-déterminée et la partie sous-déterminée du probléme considéré
en faisant varier la valeur de A. Le facteur A peut étre également utilisé pour
trouver un compromis entre résolution et précision du résultat. Si A est trop
fort, le résultat perd rapidement en résolution (SAsAK1 1992). La précision du
résultat a par contre tendance a s’améliorer (INMAN 1975).

D’un point de vue plus mathématique, le facteur A est un moyen d’ajouter
une valeur scalaire aux valeurs propres de la matrice GTW G, évitant ainsi
que cette derniére, dans le cas ou le conditionnement est médiocre, devienne
singuliere au cours du processus itératif. Cela peut par exemple se passer
lorsque le modele de départ est trop éloigné de la solution. Le fait d’augmenter
la taille des faibles valeurs propres de GTW4G diminue la longueur du vecteur
de modification Am a appliquer au modele, ce qui a pour conséquence
de donner des solutions plus proches de la réalité. De plus, si ce vecteur
de modification est trop grand, de par I’effet des valeurs propres faibles,
I’approximation linéaire perd en précision. Si le modele de départ est médiocre
et que I’on inverse avec de faibles valeurs propres, le processus aura tendance a
imager de petits détails et a diverger de la solution. Ces faibles valeurs propres
ne doivent étre tolérées qu’a proximité de la solution.

CONVERGENCE ET UNICITE

Il n’y a pas de moyen simple permettant de savoir, en I’absence d’informations
a priori, si un probléme inverse non-linéaire posséde une solution unique par
la méthode des moindres carrés. Afin d’évaluer la non-unicité¢ d’un probleme
inverse non-linéaire, il est nécessaire de s’intéresser a la topologie de la surface
d’écart entre les données mesurées et calculées dans I’espace des parametres
du modele. Cette surface peut présenter plusieurs extrema («sommets»,
«cuvettes») secondaires, étre creuse ou presque plate. Pour un grand nombre de
parametres, ce type d’investigation graphique est toutefois impossible. Méme
si un probléme inverse non-linéaire est connu pour présenter une solution
unique, rien ne nous garantit que la technique itérative appliquée converge
vers cette solution. Un minimum local est toujours possible, qui empéche le
processus de converger vers le vrai minimum. Les méthodes itératives ne
peuvent trouver que des solutions qui sont linéairement proches de 1’estimation
initiale des parametres du modeéle. Un choix soigneux du modele initial est
donc de rigueur. La non-unicité¢ d’un probleme peut également provenir des
incertitudes sur les données (parfois importante sur des mesures de faibles
champs induits), qui se propagent numériquement vers les parametres du
modeéle, ou encore du formalisme mathématique qui ne décrit pas exactement
la réalité physique du phénomene (nous utilisons ici des approximations pour



288 L. Marescot

le probleme direct et le sous-sol peut également ne pas étre tabulaire). Il peut
donc y avoir plusieurs modeles de terrains différents qui peuvent expliquer
(presque) aussi bien les conductivités apparentes mesurées. Le seul critére
d’ajustement ne permettra donc pas toujours de décider quel modéle est le plus
représentatif du terrain.

Une des manieres de déterminer l'unicité d’un probleme inverse serait
de résoudre ce probléme pour un grand choix d’estimations initiales. Mais
comme le nombre d’expérimentations ne peut étre infini, rien ne nous garantit
que la totalité de la topologie de la surface d’écart entre les données mesurées
et calculées a été appréhendée. De plus, il n’est souvent pas nécessaire de
connaitre toutes les solutions possibles mais uniquement celles qui semblent
plausibles. Pour parvenir a interpréter de maniére univoque les mesures de
terrain, des informations a priori seront donc souvent nécessaires. Dans notre
cas, la pertinence géologique ou les mesures sur affleurements peuvent étre
d’une grande aide lors du choix des contraintes.

Le choix de la valeur de A a une influence sur la rapidité de la convergence.
Si A est trés grand, la méthode de Marquardt-Levenberg est proche de la
méthode du gradient (steepest descent) qui présente une convergence stable
mais lente a proximité du minimum (si A est infini, il n’y a plus de correction
apportée au modele). Si A est proche de zéro, I’algorithme obtenu est celui
de Newton-Raphson qui converge (si G est bien conditionnée) rapidement
a proximité¢ d’un minimum mais peut diverger loin de tout minimum. C’est
pourquoi, pour un probléme non-linéaire, on combine ces deux approches et
le processus est amorcé avec une forte valeur de A que I’on diminue a chaque
itération, a mesure que 1’on s approche de la solution.

ALGORITHME ET RECETTE NUMERIQUE

L’algorithme du processus d’inversion est schématisé dans la figure 2. Un
modele de départ est tout d’abord proposé par I’utilisateur ainsi que différents
parametres et contraintes. Les matrices et vecteurs sont ensuite construits puis
le processus d’inversion itératif commence. A chaque itération, la matrice
de sensibilité est recalculée puis on évalue le vecteur de correction sur les
parametres du modele. Une erreur moyenne RMS (pour Roof Mean Square)
entre les données mesurées et calculée est également évaluée et le facteur
d’amortissement est diminué. Le processus d’inversion se termine lorsqu’un
des criteres d’arrét est rempli (I’erreur RMS augmente ou ne diminue plus de
maniere significative par exemple) et dans ce cas la convergence est atteinte.
Les points cruciaux de cet algorithme sont précisés ci-dessous. Ce programme
d’inversion a été écrit en langage C'*, un langage orienté objet permettant
de regrouper sous forme de classes un bon nombre d’opérations matricielles
fréquemment utilisées.
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— ENTREES EN LECTURE |—

mesures modele de | | contraintes | | paramétres
—— | |départ — | | d'inversion
1) A initial
2) A final

3) % de diminution de A a chaque itération
4) nombre maximum d'itérations

5) erreur RMS maximum acceptable

6) % de e" minimum entre deux itérations

T
f

| Contréle de I'approximation a faible nombre d'induction ‘

l Mise au logarithme des données |

| Construction des vecteurs m et d |

7

[Construction des matrices Wd et Wm]

'

I Résolution du probleme direct}

'

‘ Evaluation de I'erreur RMS }

— BOUCLE SUR LES ITERATIONS |— #

—_——>| Evaluation de la matrice de sensibilité G l

{

Construction de GTW4G + AW,y

Modification de A *

i Inversion de GTWdG + AW

| Evaluation du vecteur de correction sur le modéle Am ‘
| Correction des paramétres du modele m = m + Am|
Veérification de la [ Reésolution du probléme direct |
valeur de A
T ‘ Evaluation de I'erreur RMS | N
} A\
-— Evaluation du critéere d'arrét de l'inversion: oul sauvegarde

Augmentation de l'erreur RMS? du résultat
Erreur RMS inférieure a la valeur désirée? _—
Nombre maximum d'itérations atteint?

Figure 2.—Représentation schématique de 1’algorithme d’inversion itératif par moindres
carrés pondérés.

The schematic structure of the iterative weighted least-squares algorithm.
Mise a l'échelle des variables
Relevons tout d’abord que les variables considérées dans cet algorithme sont

les logarithmes des conductivités et épaisseurs. L’utilisation du logarithme
permet de considérer des variations significatives de la conductivité et de tenir
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compte de la grande variabilité de ce paramétre dans la nature. En considérant
des conductivités directement, on introduirait un déséquilibre entre les faibles
et fortes valeurs de ce parameétre. A partir d’une série de tests synthétiques,
nous avons constaté que ces fortes valeurs sont alors rendues artificiellement
plus influentes.

Inversion de la matrice

Le probléme inverse exposé dans ce travail ne nécessite pas d’opérations avec
des matrices de grandes tailles. Il n’y a donc pas de probleme numérique et
informatique (stockage des données en mémoire, temps de calcul prohibitif)
qui serait hors de portée d’un micro-ordinateur moderne. L’inversion de la
matrice [GTW 4G+AW,, ] (équation 12), que nous identifierons dorénavant par
A, peut donc étre effectuée de maniére traditionnelle. L’inverse d’une matrice
carrée A de dimension MxM peut étre obtenu en posant que l’expression
AA- =1, ou I est la matrice identité¢ MxM, doit étre satisfaite. Cette expression
peut étre interprétée comme I’ensemble de M équations de la forme Ax=b,
avec x une colonne de A-! et b la colonne correspondante de I. Pour trouver
A-1, il suffit alors de résoudre M équations d’un systéme linéaire en utilisant
une des méthodes numériques disponibles (QUARTERONI et al. 2000).

La matrice A étant de composition variable, une factorisation de Gauss a
pivot partiel rendant la matrice triangulaire supérieure a ¢ét¢ choisie pour le
calcul du probléme inverse. D’autres types de factorisations peuvent s’avérer
plus efficaces si la structure de la matrice A est particuliere (factorisation de
Cholesky si A est symétrique définie positive par exemple). La méthode de
Gauss consiste a soustraire les lignes de A entre elles dans le but de convertir
en zéros la partie de chaque colonne sous la diagonale principale. La colonne
de gauche est partiellement mise a zéro en soustrayant 4,,/4,, fois la premiére
ligne de la seconde ligne, 4;,/4,, fois la premiére ligne de la troisieéme et ainsi
de suite. La seconde colonne est traitée de la méme maniere en soustrayant
Aj;>14,, fois la seconde ligne de la troisieme, A, /A5, fois la seconde ligne de
la quatriéme et ainsi de suite. Le vecteur b doit également étre modifié durant
cette opération. Si un des éléments de la diagonale est nul (ou proche de zéro),
une division par zéro survient. Une solution possible consiste a rechercher
le plus grand élément dans la méme ligne que I’élément diagonal considéré
(appelé pivot) et a le transférer a la place de cet élément diagonal en effectuant
une permutation des colonnes.

Relevons que cette factorisation n’a besoin d’étre effectuée qu’une seule
fois par itération du processus d’inversion. Une attention spéciale a été portée
a la programmation de I’opération de factorisation afin d’optimiser le temps de
calcul nécessaire et la mémoire requise. Premierement, les colonnes de A ne
sont pas réordonnées durant I’opération, mais leurs positions dans le triangle
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sont enregistrées dans un vecteur de travail. Deuxiemement, I’emplacement
des ¢léments de A qui ont été annulés par I’opération peuvent servire a stocker
les multiplicateurs (il est inutile de stocker des variables nulles). Dans notre
cas, cette méthode s’avere étre stable car il est généralement possible de
trouver un pivot non nul, de par ’effet du facteur d’amortissement, dans les
limites de I’erreur d’arrondi de I’ordinateur.

Une fois le systeme linéaire Ax=b rendu triangulaire supérieur sous la
forme d’un systeme A’x=b’, il est ensuite résolu en utilisant une procédure
de substitution rétrograde. On commence par la derniére ligne en posant que
xXy=b"1/A vy PUIS 0N remonte dans les lignes en posant:

1 M
X = b,.'—ZA;. X

A, (13)

j=i+l

Choix du facteur d’amortissement

Le facteur d’amortissement peut étre utilisé soit de maniére statique, dans ce
cas il est choisi avant inversion et ne varie plus durant le processus itératif,
soit de maniere dynamique. Nous préférons ici une utilisation dynamique.
A partir d’une série de tests synthétiques, nous avons déterminé des valeurs
satisfaisantes pour le facteur A. La premicre itération est effectuée avec
A=0.50, puis le facteur est diminué¢ de moiti¢ jusqu’a une valeur minimale de
0.02. La forte valeur de A au début du processus d’inversion donne alors une
grande influence a la matrice de pondération W,,, @ un moment ou le besoin
d’information a priori est capital. Cette influence est ensuite diminuée au cours
de I’inversion, a mesure que le processus converge vers la solution.

Critere d’erreur

Un critere de convergence est nécessaire afin de pouvoir vérifier si le modele
obtenu explique bien les données mesurées et, le cas échéant, pouvoir mettre
fin au processus d’inversion. Une erreur moyenne RMS peut étre utilisée.
Cette erreur RMS est de I’ordre de grandeur du bruit de mesure affectant les
données. En suivant SASAKI (1992), on peut donner la définition suivante de
I’erreur RMS:

Jid- g7 (d - g(me))

Cprrs = (14)
N

Nous pouvons de plus nous baser sur le taux de variation e” de I’erreur RMS
entre deux itérations n et n+ 1 pour mettre fin au processus d’inversion.
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o =(B;Ms - e;:\}ls) (15)

n
€rus

Un faible taux de variation signifie que le processus est parvenu a une
situation numériquement stable et n’en sort plus, qu’il s’agisse d’une solution
acceptable ou non.

EXEMPLES SYNTHETIQUES

Nous donnons ici quelques exemples synthétiques dans le but d’illustrer les
notions développées dans les paragraphes précédents. Le modele synthétique
utilisé est le méme pour tous les exemples traités. Il s’agit d’un modéle
géoélectrique a trois couches dont les parametres (Figure 1) sont les suivants:

Couche 1: Conductivité 6,=20 mS/m, profondeur #,=4 m
Couche 2: Conductivité 6,=5 mS/m, profondeur #,=23 m
Couche 3: Conductivité ;=10 mS/m

Ce modele pourrait par exemple représenter une succession moraine,
dépot graveleux et Molasse sur le Plateau suisse. Les données sont calculées
en utilisant les parametres géométriques propres a 'EM31 et a ’EM34, a
savoir une valeur de 3.7, 10, 20 et 40 m pour la distance s. Pour ces données
synthétiques, une valeur de 0.01 a été choisie pour e” (équation 15) et I’erreur
RMS maximum a été fixée a 0.01%.

Gestion des contraintes a priori sur le modele

L’information a priori sur le modele peut étre facilement introduite dans
le probléme inverse par le biais de la matrice W,,. Une premiére inversion
est effectuée avec deux modeles de départ (itérations 0) figurant dans le
tableau 1. Les éléments des diagonales de W, et W, ont un poids unité (on
ne favorise aucune donnée pour sa qualité, ni n’introduit aucune information
a priori). Le tableau 1 présente les modeles obtenus apreés inversion. Dans les
deux cas, le processus d’inversion s’arréte car la valeur de e” est inférieure a
celle prédéfinie. Les résultats obtenus ne refletent pas réellement le modele
synthétique utilisé bien que 1’erreur RMS soit relativement faible. Ceci se
remarque particulierement bien pour la profondeur /,. La solution finale
dépendra donc du modele initial utilisé. Ce phénomene illustre bien la non-
unicité de la solution du probleme inverse.

Supposons maintenant que nous sachions avec une certitude relative que
la conductivité de la troisiéme couche corresponde bien a celle entrée dans le
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Tableau 1.—Inversion des données synthétiques avec deux modeles de départ différents
(a et b) Les matrices de pondération sont des matrices identités.

Inversion of synthetic data using two different starting models (a and b). The weighting
matrices are identity matrices.

Iteration  Erreur 01 ) 03 h4 ho

[%] [mS/m]  [mS/m]  [mS/m] [m] [m]
a) 0 5.863 30.00 8.00 10.00 2.00 10.00
63 0.038 19.91 4.10 9.54 4.21 17.21

b) 0 6.739 30.00 8.00 10.00 2.00 5.00
11 1.07 22.18 8.22 8.06 2.35 5.04

modele de départ (10 mS/m). Nous pouvons constater que, bien qu’introduite
dans les modeles de départ, cette information évolue durant le processus
itératif et n’est pas reflétée dans les modéeles obtenus (tableau 1). Pour donner
plus d’importance a cette information, nous accordons un poids de 1/0.001
a I’élément diagonal de W, correspondant a ce parametre. Apres inversion,
les résultats obtenus sont tres proches du modele synthétique (tableau 2) et
I’erreur RMS sur les modeles correspond a I’erreur désirée. On notera tout
particulierement que la conductivité de le couche 3 est restée tres semblable a
celle entrée dans le modele de départ.

Nous voyons donc dans cet exemple qu’il est relativement ais¢ d’introduire
des informations a priori dans le probléme inverse (géologie, données de
forage, autres types de données géophysiques). Soulignons encore que cette
information n’est pas introduite de maniére rigide, mais peut évoluer au cours

Tableau 2.—Inversion des données synthétiques avec les mémes modeles de départ que
pour le Tableau | (a et b) mais en augmentant le poids de la conductivité de la troisiéme
couche dans la matrice de pondération sur les parametres du modéle.

Inversion of synthetic data using the same starting models as in Table 1 (a and b) but
increasing the weight of the third layer conductivity in the model parameter weighting
matrix.

ltération  Erreur o1 09 03 h4 ho

[%] [mS/m]  [mS/m] [mS/m] [m] [m]
a) 0 5.853 30.00 8.00 10.00 2.00 10.00
3 0.010 19.99 495 9.99 4.01 22.76

b) 0 6.739 30.00 8.00 10.00 2.00 5.00

76 0.010 19.98 4.93 9.99 4.02 22.73




294 L. Marescot

du processus d’inversion en fonction du facteur d’amortissement choisi.
De plus, chaque conductivité et épaisseur peut étre pondérée de maniere
indépendante, ce qui confére une certaine flexibilité a la méthode.

Ponderation des données mesurées

Dans le cas de données peu entachées d’erreurs expérimentales ou d’incertitude,
nous pouvons accorder une plus grande confiance aux mesures introduites
dans le processus d’inversion. Le tableau 3 présente deux inversions effectuées
a partir du méme modele initial (itération 0). La ligne b du tableau rappelle le
résultat obtenu avec les éléments diagonaux de W, et W, valant 1 et qui a déja
été commenté dans le tableau 1. Nous constatons que le modéle obtenu fournit
une information médiocre sur A,. En donnant un poids de 1/0.01 aux éléments
des diagonales de Wy, il est possible de constater une nette amélioration du
modeéle obtenu (modele ¢).

Tableau 3.—Inversion des données synthétiques a partir du modéle de départ donné en
a. Le résultat en b est une inversion avec des matrices de pondération identités. Le
résultat en ¢ est obtenu en augmentant tous les poids de la matrice de pondération sur
les données.

Inversion of synthetic data using the starting model in a. The model in b is the result of
an inversion with weighting matrices which are identity matrices. All the weights of the
data weighting matrix were increased for the result presented in c.

Itération  Erreur C1 C9 03 h4 ho
[%] [mS/m]  [mS/m]  [mS/m] [m] [m]
a) 0 5.853 30.00 8.00 10.00 2.00 10.00

b) 63 0.038 19.91 410 9.54 4.21 17.21
c) 35 0.010 19.97 4.79 9.84 4.05 21.09

L’opération décrite précédemment n’est généralement valable que pour des
données peu entachées d’incertitude. De plus, I'intérét de la matrice W est de
pouvoir donner des poids différents aux termes qui contribuent a la somme S,
Dans I’exemple du tableau 4, une erreur expérimentale aléatoire (10% de bruit
gaussien) est simulée sur les données obtenues lors des mesures effectuées
avec des dipdles verticaux. Une premiére inversion (modele b) est effectuce
avec le modele de départ (itération 0) figurant dans le tableau 4. Les éléments
des diagonales de W, et W sont supposés avoir un méme poids de 1. Nous
remarquons immédiatement que le résultat obtenu est médiocre. Ce probleme
peu étre partiellement résolu dans le cas ou un plus faible poids est assigné aux
données entachées d’erreur expérimentale. Nous accordons donc un poids de 1
aux €éléments diagonaux de W, correspondant aux mesures obtenues par dipdles
verticaux et un poids de 1/0.01 aux autres données. Apres inversion, le résultat
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obtenu est beaucoup plus satisfaisant (tableau 4, modele ¢) et s’approche des
valeurs obtenues avec des données non-bruitées, sans information a priori sur
le mod¢le (tableau 1, modele a).

Le fait de tenir compte de la qualité des données dans le processus d’inversion
améliore sensiblement la convergence du processus itératif. Comme dans le cas
de la matrice W, cette procédure apporte de I’information a priori et diminue
donc quelque peu la sous-détermination du probleéme inverse.

Tableau 4.—Inversion des données synthétiques bruitées a partir du modele de départ
donné en a. Le résultat en b est une inversion avec des matrices de pondération identités.
Le résultat en c est obtenu en diminuant le poids des données bruitées dans la matrice
de pondération sur les données.

Inversion of noisy synthetic data using the starting model in a. The model in b is the
result of an inversion with identity weighting matrices. The weights of the noisy data
were lowered in the data weighting matrix for the result presented in c.

Iteration  Erreur oF 09 03 h4 ho

[%] [mS/m]  [mS/m] [mS/m] [m] [m]
a) 0 6.078 30.00 8.00 10.00 2.00 10.00
b) 9 1.525 22.77 7.66 8.20 2.27 10.23
c) 4 1023 20.59 5.03 9.21 371 16.77

Contraintes et équivalence

Il n’est pas évident de définir, sur le terrain, si le nombre de couches présentes
dans le modele de départ correspond bien au nombre de couches du sous-sol.
Dans I’exemple suivant, des données synthétiques ont été calculées sur un
modele a deux couches possédant les paramétres suivants:

Couche 1: Conductivité 6,=5 mS/m, profondeur /#,=30 m

Couche 2: Conductivité 6,=10 mS/m

Le tableau 5 présente une inversion en un modele a trois couches de ces
données. Le résultat obtenu sans information a priori (modele b) est déja tres
proche du modele a deux couches mais peut étre encore amélioré (modele c)
en fixant la valeur de &, (I’élément diagonal correspondant dans W, est fixé a
1/0.001, les autres valent 1). Soulignons que le parametre /4, dans le modele a
trois couches n’a pas de réelle signification dans cet exemple (les conductivités
des deux premieres couches sont presque identiques).

L’inversion en un modele a deux couches de données mesurées sur un
systeme a trois couches n’est pas €vident. Des tests tendent a montrer que si le
contraste de conductivité entre les deux premieres couches est trop fort (ce qui
est le cas ici), le processus ne converge pas. Le nombre d’unités géoélectriques
constituant le sous-sol est donc une information a priori importante que doit
obtenir le géophysicien.
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Tableau 5.—Inversion des données synthétiques calculées sur un modele deux couches
a partir du modele de départ trois couches donné en a. Pour le résultat présenté en b,
les matrices de pondération sont des matrices identités. Pour le résultat présenté en c, le
poids de la conductivité de la troisieme couche dans la matrice de pondération sur les
parametres du modele a été augmente.

Inversion of synthetic data calculated on a two-layer model using the three-layer
starting model in a. The model in b is the result of an inversion with identity weighting
matrices. The weight of the third layer conductivity in the model parameter weighting
matrix was increased for the model c.

Itération  Erreur o1 092 03 h4 ho
[%] [mS/m]  [mS/m] [mS/m] [m] [m]

a) 0 18.652 10.00 10.00 10.00 5.00 10.00
b) 165 0.024 5.00 4.82 9.62 7.67 25.92
c) o 0.012 5.00 4.97 9.98 292 29.78

EXEMPLE DE TERRAIN

Afin d’illustrer cette méthode d’inversion au moyen d’un exemple de terrain,
deux sondages ¢lectromagnétiques ont été effectués dans la région de Arnex
sur Orbe (canton de Vaud, Suisse), vers le flanc S de la vallée des Vaux. Ces
sondages sont perpendiculaires entre eux et possédent le méme point central
(coord. 530°227/171°131, alt. env. 550 m). Les deux sondages ont été effectués
selon des directions E-W et N-S. Le centre des sondages est situé a environ
80 m d’un forage dont la lithologie et les propriétés physiques (obtenues par
diagraphies) sont connues.

Les sédiments quaternaires constituant le remplissage de la vallée sont
composés de produits d’altération molassique (Molasse d’eau douce inférieure,
Chattien) avec des alternances métriques d’argiles, de limons, de sables et de
graviers. La conductivité de ces sédiments varie entre 10 et 30 mS/m dans
le forage. On rencontre ensuite, a une profondeur de 29.5 m, un calcaire
fracturé, bréchique, souvent recristallisé et contenant parfois des paléokarsts
(Urgonien). La conductivité de ce calcaire fracturé varie entre 0.1 et 0.5 mS/m
dans le forage.

Supposons que nous désirions obtenir la profondeur du toit du substratum
calcaire. Un modele a deux couches semble donc étre acceptable en fonction
du but recherché. De plus, I'importance du contraste de conductivité existant
entre le substratum calcaire et les sédiments quaternaires justifie une telle
interprétation. Les instruments utilisés sont I’EM38 (avec s=1 m), 'EM31
(avec s=3.66 m) et ’EM34 (avec s=10, 20, 40 m). Pour chaque sondage, les
dipdles horizontaux et verticaux ont été mesurés.
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Le tableau 6 présente les résultats de I’inversion des données pour les
sondages E-W et N-S. Les deux jeux de données ont été également inversés
simultanément. Une valeur de 0.3 mS/m a ¢ét¢é attribuée au calcaire. Il n’est pas
fondamental de connaitre la valeur exacte de la conductivité du substratum
calcaire de par la faible contribution de ce dernier au signal total (faible
induction). Pour ces données de terrain, une valeur de 0.01 a été choisie pour e”
(équation 15) et I’erreur maximum RMS a été fixée a 0.01. Lors des premieres
itérations, les éléments des diagonales de W, et W, ont tout d’abord un poids
unité (modeles b). Pour introduire de I’information concernant la conductivité
du substratum calcaire, connu par les mesures en forage, nous accordons ensuite
un poids de 1/0.001 a I’élément diagonal de W, correspondant a ce parametre
(modeéles c¢). Malgré le choix d’un modéle de départ relativement éloigné de la
solution, les résultats obtenus pour les différents sondages sont tous cohérents.
La profondeur du substratum est compatible avec les données de forage (elle
doit étre un peu plus profonde en fonction du léger pendage tectonique des

Tableau 6.—Inversion des données de terrain (sondages électromagnétiques N-S, E-W
et combinaison des deux jeux de données). L’inversion s’effectue a partir d’un modele
a deux couches. Le modéle de départ est donné en a. Pour les résultats présentés en b,
les matrices de pondération sont des matrices identités. Pour les résultats présentés en c,
le poids de la conductivité de la seconde couche dans la matrice de pondération sur les
parametres du modéle a été augmenté.

Inversion of field data (electromagnetic soundings N-S, E-W and merging of the two
data sets). The inversion is carried out on a two-layer model. The starting model is given
in a. The models in b are the result of inversions with identity weighting matrices. The
weight of the second layer conductivity in the model parameter weighting matrix was
increased for the models c.

Sondage Itération Erreur Oq Go h1
[%] [mS/m] [mS/m] [m]
E-W a) 0 68.72 10.00 0.30 5.00
b) 3 4.19 37.95 0.77 27.84
C) 3 417 3771 0.30 29.10
N-S a) 0 66.58 10.00 0.30 5.00
b) 3 4.17 34.45 0.80 30.09
c) 3 4.14 34.24 0.30 31.65
E_W a) 0 47.84 10.00 0.30 5.00
& b) 3 3.08 35.93 1.26 29.30
N-S

C) 2 3.08 35.66 0.30 30.45
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couches calcaires). La conductivité du remplissage est certainement une
moyenne des conductivités des différentes couches constituant le Quaternaire
de la vallée. La grande variabilité¢ du remplissage de la vallée peut expliquer
que la conductivité calculée soit légérement plus élevée que celles mesurées
dans le forage. On notera encore que I’erreur RMS caractérisant les modeles
diminue rapidement en quelques itérations.

Le tableau 7 présente différentes inversions pour le sondage N-S effectuées
a partir de différents modeles de départ. Les éléments des diagonales de W, et
W,, ont tout d’abord un poids unité¢ (modéles b). Nous accordons ensuite un
poids de 1/0.001 a I’élément diagonal de W, correspondant a la conductivité

Tableau 7.-Inversion des données de terrain (sondage électromagnétique N-S) avec
différents modeles de départ donnés en a. Pour les résultats présentés en b, les matrices
de pondération sont des matrices identités. Pour les résultats présentés en c, le poids de
la conductivité de la seconde couche dans la matrice de pondération sur les paramétres
du modele a été augmente.

Inversion of field data (electromagnetic sounding N-S) with various starting models
given in a. The models in b are the result of inversions with identity weighting matrices.
The weight of the second layer conductivity in the model parameter weighting matrix
was increased for the models c.

Sondage Itération Erreur o G9 h1
[%] [mS/m] [mS/m] [m]
N-S a) 0 99.71 10.0 0.30 1.8
b) 6 4.36 35,19 156.28 12.29
c) 4 413 34.18 0.30 31.98
N-S a) 0 35.04 10.0 0.30 100.0
b) 7 413 39.50 0.29 3631
)] 7 413 33.50 0.30 35.31
N-S a) 0 121.63 1.0 0.30 5.0
b) 2 4.14 33.80 6.33 24.78
c) 10 413 33.65 0.30 35.03
N-S a) 0 27.30 60.0 0.30 5.0
b) 4 4.14 34.32 0.36 a1.27

C) 4 4.14 34.31 0.30 31.36
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du substratum (modeles c). Lorsque de I’information a priori est entrée dans
le modele, le processus converge dans tous les cas vers une solution trés
semblable.

CONCLUSIONS

L’algorithme d’inversion par moindres carrés pondérés présenté dans ce travail
est de portée générale et peut aisément étre transposé a d’autres disciplines
scientifiques. Pour des problémes impliquant peu de données et des modéles
relativement simples, la résolution numérique proposée dans ce travail semble
stable, efficace et applicable a de nombreux domaines. La matrice a inverser est
rendue triangulaire supérieure en utilisant la méthode de Gauss a pivots partiels
puis le systeme linéaire est résolu par une méthode de substitution rétrograde.
Cet algorithme peut étre facilement optimisé en temps et espace mémoire.

Lorsque I’on désire inverser des données électromagnétiques en domaine
fréquence sous la forme de sondage sur un sous-sol tabulaire, le probléme
inverse a fortement tendance a étre sous-déterminé. Il est donc indispensable
d’introduire des informations a priori dans le processus d’inversion et
d’appliquer un fort facteur d’amortissement. Cette opération peut étre effectuce
de maniere tres simple par I’'intermédiaire de matrices de pondération sur les
données mesurées et les parametres du modele. Ces matrices permettent de
régler de maniere trés fine la qualité et la quantité d’information a priori que
le géophysicien désire ajouter au probléme inverse. Cette information est
non seulement modulable a volonté pour chaque donnée et paramétre, mais
peut également évoluer au cours des différentes itérations. Les exemples
synthétiques et de terrain ont montré que les incertitudes sur les données
mesurées ou encore des informations extérieures sur la profondeur ou la
conductivité des couches pouvaient étre efficacement exploitées par le biais de
[’1nversion par moindres carrés pondérés amortis.

Ce programme d’inversion permet donc une interprétation rapide et
efficace du sous-sol en termes de conductivités et de profondeurs pour un
milieu tabulaire. La résolution obtenue est certainement inférieure a celle d’un
sondage €lectrique par courant continu mais suffisante pour une modélisation
rapide et simplifiée du sous-sol. Relevons encore qu’une amélioration de
I’efficacité de cet algorithme d’inversion passera sans doute par [’utilisation
d’une solution au probleme direct beaucoup plus précise.

Il est finalement intéressant de relever que cette formulation du probléme
inverse par moindres carrés pondérés (équation 12) est trés similaire a la
formulation probabiliste de TARANTOLA et VALETTE (1982a et 1982b). Cette
analogie est révélée si I’on suppose que les composantes des matrices de
pondération sont des matrices de covariance contenant I’inverse de la variance
sur les données et les parametres du modele.
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