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L.a construction des calendriers*

par

Jean LEFORT!

1. LA NOTION DE TEMPS
1.1. Aspects biologiques et physiques

Difficile de définir le temps. Il fait partie de notre environnement tant phy-
sique que biologique. Nous pouvons ergoter sur I’existence d’une différence
entre ces deux aspects. Mais nous sommes des humains et nous ne pouvons
raisonner qu’a partir de notre humanité qui est essentiellement biologique.
Cette réalité biologique est conditionnée en grande partie par notre environne-
ment physique. C’est notre pensée humaine qui fait le lien entre les deux.

Notre réalité biologique est soumise a de trés nombreux rythmes: rythme
cardiaque, rythme de la respiration, rythme de I’alternance veille - sommeil,
rythme mensuel, rythme annuel,... pour n’en citer que quelques uns. Chacun
de ces rythmes permet une évaluation du temps écoulé, de la durée. Mais cette
perception de la durée est tres variable d’un individu a I'autre et chez un
méme individu en fonction de son age. (Je suis conscient de ne pas échapper a
une certaine circularit¢é de mon discours dans ma réflexion sur le temps et la
~ durée). Que I'on pense a la vitesse de cicatrisation beaucoup plus rapide chez
le jeune enfant que chez I’homme mir et a fortiori chez le vieillard. On peut
aussi voir les choses autrement en pensant qu’une année pour un enfant de 5
ans représente 20% de sa vie soit 8 ans pour un adulte de 40 ans. On est ainsi
amené a construire différentes échelles de temps: le temps psychologique qui
permet le classement des événements constituant 1’histoire d’un étre humain
particulier (d’un point de vue mathématique on a construit un ensemble ordon-
- né); le temps physiologique qui caractérise le passage de I’enfant au vieillard
- (ce qui permet de donner un age a une personne); le temps scientifique donné
par un mécanisme physique (une montre par exemple).

*Conférence donnée le 8 décembre 1999 dans le cadre de la Conférence académique
organisée par la SVSN, conjointement avec la Société académique vaudoise.
IProfesseur de mathématiques. 24, rue Schweitzer, F-68920 Wintzenheim.

CODEN: BSVAA6 © Société vaudoise des Sciences naturelles
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Parmi les rythmes biologiques certains sont synchronisés par des phéno-
menes extérieurs. Il en est ainsi des rythmes circadiens (voisins de la journée
de 24 h) qui sont variables d’un individu a 1’autre, comme le prouvent les
expériences d’isolement au fond de gouffres, mais qui se synchronisent sur
I’alternance des jours et des nuits. Cette synchronisation met un certain temps
a s”établir aussi bien chez le nouveau-né que chez 1'adulte contraint au décala-
ge horaire ou au travail posté. Sans doute y a-t-il aussi un rythme annuel syn-
chronisé par le retour des saisons.

L’homme vivant en société et ayant une forte conscience du temps, il parait
indispensable et finalement assez naturel d’utiliser des phénomenes physiques
extérieurs pour évaluer la durée et dater des événements.

Il reste néanmoins une interrogation: Qu’est-ce qui nous fait dire que tel
rythme est parfaitement régulier ? Le retour du lever du soleil, le retour de son
passage au méridien, le retour de la pleine lune, le retour des saisons... sont-ils
plus réguliers ou moins réguliers que la période de tel quasar ou de la radiation
correspondant a la transition entre les deux niveaux hyperfins de 1’état fonda-
mental de I'atome de césium 133 ? Sans entrer dans les détails disons que
I’esprit humain fonctionne suivant un principe de simplicité qui implique que
les éléments sont plus simples et plus réguliers que les assemblages. Mais un
débat pourrait s’établir sur ce sujet. Réfléchissons seulement a la somme
d’ingéniosité que I"'Homme a di déployer pour mesurer le temps et les durées
avec une précision de plus en plus grande.

1.2. Quelques définitions

J a1 I'intention de parler de calendriers ¢’est-a-dire de la mesure du temps pour
les durées supérieures a la journée. Cela ne m’empéchera pas de faire quelques
incursions sur les problemes de la mesure des durées inférieures, mais le
calendrier est par excellence une échelle d’unités permettant de repérer un
événement a la journée pres.

Nous appellerons journée (parfois jour) une durée voisine de 24 h, mois une
durée d’environ 29 jours 1/2 (entre 27 et 31), année une durée d’environ 365
jours (entre 346 et 385). D’autres périodes interviennent comme la semaine
(7 jours), la décade (9 ou 10 jours), le lustre (5 ans), le siecle (100 ans) mais
elles sont moins fondamentalement reliées a des phénomenes naturels, encore
que...!

2. LES ASPECTS ASTRONOMIQUES

La présence du soleil, de la lune, des étoiles et des planétes ont €té pour
I’homme une source évidente pour la mesure du temps. Les phénomenes
astronomiques étant sensiblement les mémes pour tous les peuples et toutes
les civilisations, il est normal que les calendriers finissent par se ressembler.
La création des calendriers a été concomitante de I’amélioration de la mesure
des durées. C’est I’observation sur de longues périodes qui a permis de préci-
ser la durée d’une lunaison ou d’une année tropique mais c’est parce qu’on
disposait d’un calendrier que 1’on a pu relier des observations sur des dizaines
de générations.
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2.1. La journée
2.1.1. Généralités

L’ alternance des jours et des nuits est la premiere manifestation de cycles tem-
porels. Une nuit et un jour font une journée (de 24 heures). Ce regroupement
n’a pas toujours été évident et c’est pourquoi nous divisons le jour et la nuit en
12 heures chacun. Cette division en deux fois douze heures «régulieres» n’a
d’ailleurs pas toujours existé et résulte a la fois d’un progres dans la mesure
des durées inférieures a la journée (clepsydre, sablier...) et de la perception
unitaire de la journée (le nycthémere des Grecs). Sans insister, disons que dans
un premier temps le jour et la nuit ont été divisés chacun en un méme nombre
d’unités, 3 puis 6 puis 12 qui n’étaient pas les mémes suivant les saisons et pas
les mémes entre le jour et la nuit. Ce n’est que plus tard que ces unités ont été
regroupées pour former les 24 heures, beaucoup plus régulieres, de la journée.

Il est assez naturel de compter la journée a partir soit du début du jour soit a
partir du début de la nuit. Notre décompte a partir de minuit s’est imposé petit
a petit pour faciliter le repérage dans un calendrier. Les astronomes préfere
mesurer a partir du passage du soleil au méridien, c’est-a-dire sensiblement a
partir de midi.

2.1.2. Inégalité des journées

La terre tourne tres régulierement sur elle-méme en quelque 23 heures et
56 minutes. C’est I’inclinaison de son axe sur le plan de son orbite qui
implique les variations dans la durée des jours et des nuits suivant les saisons.
Par suite si on compte les journées a partir du coucher du soleil, si les jours
allongent, la journée comptera plus de 24 heures et moins de 24 heures si les
jours raccourcissent.

Cette inclinaison de 1’axe des pdles sur le plan de 1’écliptique implique éga-
lement une inégalité dans la durée des journées mesurée au passage au méri-
dien. C’est ce qu’on appelle la réduction a I’équateur qui a une période d’une
demi-année.

La trajectoire elliptique de I'orbite terrestre implique une autre inégalité due
a la loi des aires. La vitesse de la terre sur son orbite est plus faible a I’aphélie
qu’au périhélie ce qui entraine des journées plus courtes a 1’aphélie qu’au péri-
hélie. Cette inégalité a une période annuelle.

La somme de ces deux inégalités constitue ce qu’on appelle I’équation du
temps et qui se traduit sur les cadrans solaires par la fameuse courbe en 8.

2.2. La lunaison
2.2.1. Généralités

Le retour des phases de la lune (les lunaisons) est suffisamment net pour
s’imposer comme un regroupement nécessaire des journées. Cela donne le
mois lunaire qui est voisin de 29,5 jours.

On a mesuré treés souvent le début de la lunaison a partir de la nouvelle
lune, plus exactement a partir du moment ot I’on observe a nouveau un fin
croissant de lune le soir juste apres le coucher du soleil. Ceci correspond a un
retard d’environ 36 a 48 heures sur la nouvelle lune astronomique. Mais ce
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retard est constant ce qui fait que la précision relative sur la durée d’une lunai-
son croit avec le nombre de lunaison mesuré. 48 heures sur 480 lunaisons soit
environ 40 ans permet une mesure a 6 minutes pres. On comprend des lors que
I’accumulation de mesures sur plusieurs générations ait permis la mesure du
mouvement de la lune avec une trés grande précision permettant de mettre en
évidence un certain nombre d’inégalités.

2.2.2. Mouvement de la lune

Le mouvement de la lune est trés complexe et ne peut guere étre considéré
comme képlérien. Il faut plutot considérer un systéme a trois corps (terre lune
soleil). La lunaison elle-méme a une durée variable de 1’ordre de 14 heures.
On distingue essentiellement 4 types de période pour le mouvement de la
lune:
La révolution sidérale qui voit la lune revenir dans la méme direction
stellaire: 27 j 7 h 43 min.
La révolution anomalistique séparant deux passages au périgée: 27 j 13 h
19 min.
La révolution draconitique qui voit passer la lune dans le plan de I’éclip-
tique dans le méme sens: 27 j 5 h 6 min.
La révolution synodique ou lunaison qui regle les phases et qui est régie
par la position de la lune par rapport au soleil: 29 j 12 h 44 min.

A titre d’information ce sont les deux dernieres révolutions qui régissent le
retour des éclipses.

2.3. L’année
2.3.1. L’année tropique

Le mouvement apparent du soleil est bien plus régulier que celui de la lune ce
qui n’empéche pas de mettre en évidence plusieurs types d’années. Nous
avons déja vu I’année tropique, celle qui reégle le retour des saisons. Sa durée
exacte n’est pas facile a mesurer. Il faut d’abord choisir un instant de début:
soit un équinoxe (passage du soleil dans le plan de I'équateur), soit un solstice
dont la détermination précise n’est pas aisée. Une erreur de quelques jours est
possible mais comme la période est sensiblement douze fois plus longue que
pour la lunaison il faut douze fois plus de temps pour corriger une telle incerti-
tude. Une vie humaine ne suffit plus. On trouve une durée de 365 j 5 h 49 min.

2.3.2. Les autres années

Le mouvement apparent du soleil n’est képlérien qu’en premiere approxima-
tion. On peut considérer qu’il s’agit d’une ellipse tres lentement variable. Le
retour du soleil au périgée (ou de la terre au périhélie) défini I’année anomalis-
tique qui vaut 365 j 6 h 14 min.

Comme celui d’une toupie, I’axe de rotation de la terre tourne tres lente-
ment autour d’une perpendiculaire au plan de 1’écliptique. C’est ce qu’on
appelle la précession des équinoxes. Le passage du soleil dans un méme plan
fixe par rapport aux étoiles défini I’année sidérale qui vaut 365 j 6 h 9 min.
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On considere parfois I’année draconitique d’environ 346 jours et qui cor-
respond a deux retours consécutifs du soleil dans la méme position par rapport
a la ligne des nceuds du systéeme terre - lune. Cette année est importante pour
la prédiction des éclipses.

2.4. Révolution synodique des planétes

Les planetes, ces astres «errants» des Grecs, ont €té largement observées et
étudiées. Il s’agit bien siir de Mercure, Vénus, Mars, Jupiter, Saturne et chez
certains peuples d’Océanie d’Uranus. Nous nous contenterons des 5 premiers.
Il n’a d’ailleurs pas du tout été évident de regrouper en une seule plancte
Mercure et Vénus qui apparaissaient tantot le soir, tantot le matin.

Le mouvement conjugué de la terre et de la planete fait intervenir ce qu’on
appelle la révolution synodique de la planéte ce qui revient a étudier le retour
dans une position analogue par rapport au soleil. Le tableau ci-apreés donne les
durées des périodes de révolution sidérale et synodique des planetes: (I’année
vaut exactement 365,25 jours, ce qu’on appelle une année julienne)

En I"absence de modele théorique pour les mouvements du systéme solaire,
c’est souvent la révolution synodique qui a été prise en compte par ceux qui
ont établi des calendriers. Mais il faut également noter la distance relative a la
terre.

Planetes Révolution sidérale Révolution synodique

Mercure 87323 h I7 min 115j21h 6 min= 115, 879 |
Vénus 224716 h 49 min 583j22h 6 min=>583,921 ]
Mars lan 321j17h31 min 779122h 27 min =779, 936 j

Jupiter I1ans314j20h 8 min 398 721 h 13 min = 398, 884 |
Saturne 29 ans 166 )23 h 31 min 378 ) 2h 12 min =378, 092 ]

2.5. Autres phénomenes

Rares sont les autres phénomenes astronomiques périodiques qui ont été pris
en compte pour la mesure du temps du calendrier. Citons toutefois que la posi-
tion du soleil par rapport aux étoiles a souvent servi de repere. On parle alors
du lever héliaque de I’étoile quand on voit a nouveau I’étoile peu de temps
avant le lever du soleil. Le retour du lever héliaque de I’étoile définit I’année
sidérale. La précision instantanée n’est pas trés grande mais guere moins que
dans le cas de la détermination de 1’année tropique.

Une mention particuliére doit étre faite de Sirius. Non seulement le lever
héliaque de Sirius | joue un rOle particulier dans le calendrier égyptien mais en
plus il est avéré qu’au tout premier temps de la civilisation égyptienne, Sirius
était vu comme une étoile rouge et double. La période d’une cinquantaine
d’années aujourd’hui sert encore de référence a des fétes religieuses chez les
Dogons qui honorent Vénus, qu’une révélation divine leur assure €tre une
étoile double.
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3. CULTURES ET RELIGIONS
3.1. Pythagore: nombres pairs et impairs, le role de 10

On sait que Pythagore qui vécut au 6¢ siecle avant notre ere (~569 ~500) avait
fondé une sorte de secte mathématico-religieuse. Les mathématiques, et sur-
tout les nombres y jouaient un role fondamental. Il est intéressant de voir qu’il
reprend un certain nombre de croyances qui ont cours dans le bassin méditer-
ranéen. Il met en avant les trois premiers nombres entiers 1, 2 et 3 qu’il met en
parallele avec le singulier, le duel et le pluriel, avec les trois personnes de la
conjugaison (tout au moins au singulier). Il est intéressant de remarquer que
cela correspond a la facon dont se construit la connaissance des nombres chez
I’enfant ou le passage de 3 a 4 est un obstacle épistémologique.

Dans une société patriarcale, le 1 est associé au masculin le 2 au féminin et
d’une facon générale les nombres impairs sont masculins et les nombres pairs
sont féminins. Cela résulte explicitement du fait que les nombres pairs sont
divisibles par 2 et qu’on y associe de facon symbolique les mécanismes de la
reproduction, ot la femme «se divise en deux» lors de 1’accouchement.

La somme des quatre premiers entiers donne 10 ce sera la tétrakys. 10
apparait comme parfait puisque base de la numération des Grecs. Schéma-
tiquement 1, 2 et 3 sont les nombres des hommes et 4 celui des dieux. Dans la
mystique pythagoricienne la somme des entiers successifs joue un rdle impor-
tant et d’une facon générale le lien entre multiplication et addition, d’ou la
notion de nombre parfait (6, 28,...) et de nombres amiables (comme 220 et
284).

3.2. Méso-Amérique: le réle de 20 et de 13

En Amérique centrale le systeme de numération est de base 20, nombre qui va
donc jouer un role tres important dans I’établissement du calendrier qui sera
organisé autour de période de 20 jours. Un autre nombre important est le
nombre 13 qui correspond au nombre de cieux. 13 est un nombre sacré.

Les Mayas et les Azteques utiliseront ainsi un calendrier de 20 X 13 = 260
Jjours, calendrier religieux fonctionnant en parallele avec un calendrier civil de
20 x 18 + 5 = 365 jours. Cette intervention de 18 sera a I’origine d’une singu-
liere irrégularité dans la numération utilisée pour compter les jours.

3.3. Les Babyloniens et la consécration des planétes: le nombre 7

Le nombre 7 est un nombre maléfique pour les Babyloniens. Ceci implique
qu’il est preferable de ne rien faire tous les sept jours de peur que ce qui est
fait tourne a la catastrophe. Il est a peu pres certain que cette période de sept
jour est lié au quart de lunaison. Une heureuse coincidence avec le nombre de
«corps célestes» va renforcer la stabilité du nombre sept. Chaque jour va finir
par se voir attribuer un des sept corps célestes. Il semble méme que chaque
heure du jour et de la nuit ait été¢ dédiée a un des corps célestes, bien évidem-
ment divinisé, chaque jour €tant consacré a la divinité honorée lors de la pre-
micre heure.
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Ces propriétés particulieres du nombre 7 ne se limitent pas a la seule région
de Babylone. Il est certain, qu’avec des variantes, le nombre 7 joue un role
important dans les civilisations voisines. C’est pourquoi, méme si le penta-
teuque (genese, exode, lévitique, nombres et deutéronome) a été rédigé apres
la captivité a Babylone (6¢ sieécle avant notre ére) et a donc subi I’influence
babylonienne, cette rédaction s’est faite sur une tradition orale bien antérieure
datant au moins de Moise (13¢ siecle).

3.4. Se démarquer des autres: le calendrier musulman

La construction d’un calendrier avec ses fétes (ses jours sacrés) ses inter-
dits,... se base sur la culture, au sens large, du peuple qui doit utiliser ce calen-
drier. (Je ne veux pas entrer dans les détails des interactions entre les diri-
geants religieux ou civils et les pratiques du peuple). Mais un peuple peut éga-
lement rechercher son identité en se démarquant ou en s’opposant a ses Voi-
sins. C’est ainsi que quand le prophete Mahomet a fédéré les tribus arabes, il
I’a fait dans un contexte de concurrence entre schématiquement trois religions:
la juive, la chrétienne et la polythéiste. Il a imposé un calendrier de douze
mois lunaires interdisant I’'usage d’un treizieme mois a I’instar des juifs ce que
faisaient certaines tribus. C’est pourquoi on trouve dans le Coran, sourate 9,
verset 36 et 37: «Oui, le nombre de mois, pour Dieu, est de douze mois ins-
crits dans le Livre de Dieu .... Le mois intercalaire n’est qu’un surcroit d’infi-
délité ».

4. APPROXIMATIONS RATIONNELLES

4.1. Suites de Farey

On appelle suite de Farey d’ordre n 1’ensemble ordonné F,, des nombres
rationnels compris entre 0 et 1 et dont la forme réduite a un dénominateur
inférieur ou égal a n . Voici les premieres suites de Farey.

— O =S =[O =[O =[O — O —|D
o= O |—

ENT T N N N P NP

L [b L [bo b |

N [—= M= = N [— R [— N |—
| Lh [ L W

W [ W [N W [B9 W [D) W [
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~3 |-



304 J. Lefort

La présentation montre que 1’on passe d une suite (d’une ligne) a la suivan-
te en intercalant entre deux éléments }, et ; I’ élément ;= 4 bourvu que b+d
soit inférieur ou égal a n. La démonstration de ce resultat depasse le cadre du
présent exposé.

Ces suites peuvent se prolonger au-dela de 1 en ajoutant 1 puis 2 puis 3...
aux nombres fractionnaires qui apparaissent dans la table précédente.

L’intérét de ces suites connues depuis longtemps mais principalement €tu-
diées par le physicien John Farey au début du XIXe siecle, réside dans le fait
qu’il est tres facile de les utiliser pour trouver une approximation rationnelle
d’un nombre réel donné r. Il suffit de construire les fractlons de F,, qui enca-
drent r. Ce]a se_ fait a partir d’un encadrement donne LR en testant la

pour le nombre ¢ base des logarlthmes népériens (¢ = 2,7182818...).

wlinf | 2 | 5 | 8 | 8 | B | ® [ 1® [ [ 1 |16 16
| . 3 3 7 7 7 7 7 39 39
wlsp | 3 | 3 | 3 | L | I | %0 | & [ & |87 | 8 |19
| | | 4 4 11 18 25 32 32 71
whal | 5 | 8 | I | 19 | 30 | & | 68 | & | 106 | 195 | 299
2 3 4 7 11 18 25 32 39 71 110
test 2,5000 | 2,6667 | 2,7500 | 2,7143 | 2,7273 | 2,7222 | 2,7200 | 2,7188 | 2,7179 | 2,7183 | 2,7182

Nous obtenons ainsi les meilleures approximations rationnelles a 1’aide de
fractions dont le dénominateur ne dépasse pas une quantité donnée.

4.2. Algorithme d’Euclide et fractions continues

Une autre fagcon d’obtenir de bonnes approximations d’un nombre réel est
d’utiliser I’algorithme d’Euclide pour la recherche du pged de deux nombres.
On effectue des divisions successives avec reste. Voici 'exemple de la
recherche du pged de 300 et 108.

300 =108 x 2 + 84 a=bXxq +r
108 = 84x1+24 b=rXq,+r
84= 24x3+12 Fy=ry;Xqz+1;
24= 12x2+ O ry=r3Xqu+ry

Le dernier reste non nul correspond au pged (ici 12). On remarque alors
qu’on peut écrire sur I’exemple précédent:

300 5, 84 5, 1y, |

108 108 108 [ +24
84 84 12

On obtient ce qu’on appelle une fraction continuée. On voit apparaitre dans
I’'exemple precédent la suite des quotients successifs (2 ; 1, 3, 2) qui est ici
fmle Il est a noter que si on arréte la suite avant son terme, par exemplg (2;

,3) on obtient la fraction 2 + 1~ = 1! L qui vaut 2,75 a comparer & gg qui
vaut a peu pres 2,778. I+3-

C’est une bonne approximation.
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L’idée est de généraliser ce processus & un nombre réel. Comme nous vou-
lons que les quotients successifs soient entiers nous allons partirde a =r, b =

letg,=I[r]= la partie entiere de r ce qui conduit a r égale a la partie déci-
eder. Al e ape suivante nous prendrons g, = ‘l et ainsi de suite g; =
r (Le crochet indiquant systématiquement la pa re entlere) Voyons ce que

cela donne avec .
m=3,141 592 ... = 1 X 3+0,141592

1=0, 141 592...)({0?({—59—2%@:0,]41 592...x 7+0,008 851...
0, 141 592... =0, 008 85... X {%ﬁ%@? +r;=0,008 851... X 15+0,008 821...
0,008 851... = 0,008 821.. P%%%%ﬁwro 008 821... X 1 +0,000 030...

On voit ainsi aggarai‘tre la suite (3 ;7 , 15 1 355) qui conduit aux
appr0x1mat10ns 3,=% (donnée par Archlmede) cette derniere frac-
tion ayant été publiée par Adrien Métius (mais connue cfes Chinois depuis le
Ve siecle).

Avec une calculatrice on construit tres facilement la suite des quotients en
partant de r en retranchant la partie entieére (premier quotient) qu’on lit directe-
ment sur 1’affichage, puis en prenant I'inverse du résultat, on en retranche la
partie entiere (deuxieme quotient) et on prend I'inverse du résultat, etc.

Les fractions obtenues par cette méthode apparaissent également dans les
suites de Farey. Cependant la précision obtenue par ces fractlons successives
2 est excellente puisqu’elles approchent le nombre & moins de L pres. Clest

n ce sens les meilleures approximations possibles.

4.3. Dans la pratique

Il est bien évident que I’humanité n’a pas disposé instantanément de ces
approximations rationnelles. C’est par I’observation attentive sur des généra-
tions qu'une mesure de plus en plus exacte des périodes des corps célestes a
pu étre établie. Par le fait méme que I'unité de base est la journée, la mesure
s’effectuait a I’aide d’une fraction rationnelle et ce d’autant plus facilement
que la notion d’irrationalité n’est apparue que tardivement. Par ailleurs il
s’agit de rechercher un ordre dans le cosmos, ordre caché par les dieux et que
I’homme doit essayer de retrouver pour comprendre et suivre la volonté des
dieux. Or le nombre irrationnel est, comme son nom I'indique, peu capable de
représenter la volonté des dieux.

Nous savons aujourd’hui qu’il est inutile de chercher une précision extréme
de la période des différents corps du systeme solaire car le mouvement est
chaotique a I’échelle du million d’années. Par conséquent les nombres ration-
nels, avec de petits dénominateurs suffisent amplement pour la construction de
calendriers parfaitement rigoureux a I’échelle des civilisations.

Fractions continues et suites de Farey seront donc pour nous un guide per-
mettant de comprendre d’ou sortent les approximations utilisées par les
diverses cultures.
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4.4. Introduction des cycles, retour sur les calendriers

Tous les calendriers cherchent a concilier des phénomenes périodiques dont
les périodes sont dans un rapport peu simple. Tous les calendriers admettent
I’unité du jour et y rajoutent soit la lunaison, soit I’année tropique, soit les
deux ou d’autres phénomenes. Ils cherchent ensuite a trouver une période
commune. Cela est rigoureusement impossible mais on peut trouver d’excel-
lentes approximations.

Prenons I’exemple d’un calendrier qui veut concilier le nombre 7 et I’année
tropique. Il faut donc concilier I’année tropique avec les jours. Différentes
approximations peuvent étre proposées. Par exemple 365 +1/4 jours ce qui
correspond a un cycle de 4 ans, avec 3 années communes de 365 jours et une
année abondante (bissextile) de 366 jours. Combiné avec le cycle de 7 jours,
imposé par des considérations religieuses, nous obtenons un cycle de 28
années. Ce cycle de 28 années est appelé cycle solaire. Il permet de retrouver
les mémes jours de la semaine de 7 jours aux méme date de I’année. Ce cycle
est utilisé dans le calendrier julien.

Prenons un autre exemple, celui des calendriers méso-américains.
L’ approximation de I’année est de 365 jours (365 = 5 x 73). Mais il faut la
combiner avec les nombres 20 (imposé par la numération) et le nombre 13
(imposé par la religion) — Cela correspond aux 260 jours du calendrier reli-
gieux (260 =4 x 5 x 13) . Le plus petit commun multiple est alors une période
de 52 années appelé cycle calendaire (calendar round en anglais). Il se trouve
que ce cycle de 52 années correspond aussi a 32,5 révolutions synodiques de
Vénus (de 584 jours), ce qui veut dire qu’au bout de 2 cycles calendaires
Vénus revient sensiblement a la méme position a la méme date dans les deux
calendriers, civil et religieux. Cause ou conséquence, Vénus joue un réle tres
important dans les civilisations méso-américaines et son mouvement était par-
ticulierement bien étudié.

Prenons un dernier exemple. On cherche a concilier la lunaison et 1’année
tropique. Il nous faut donc trouver une bonne approximation rationnelle de
I’année exprimée en lunaisons. Différegltes solutions ont été progosées et ont
servi de modele a des calendriers: 12 +5 ;12 +5;12+5; 12+ % (%ette der-
niere yaleur correspondant a I’octaéride des calendriers grecs) ; 12 + et enfin
12 + 4, donnant un cycle de 19 années, appelé¢ cycle de Méton en I’honneur de
son découvreur (Ve siecle avant notre ere). e rang d’une année dans le cycle
s’appelle le nombre d’or de I’année. D’ autres approximations (meilleures) ont
été proposées mais elles ne furent jamais reprises dans les calendriers.

Dans un cycle, on va devoir mélanger des éléments dont la durée varie
d’une unité. Ainsi dans notre calendrier avons-nous des années de 365 et
d’autres de 366 jours. Dans le cycle de Méton nous aurons des années de 12 et
de 13 mois. Le but est d’obtenir au bout du cycle une valeur moyenne la plus
précise possible. Comment intercaler les éléments longs et les éléments
courts ? L’idée est d’attendre que I’écart soit supérieur a une unité pour placer
un élément long, ou bien d’attendre qu’il soit supérieur a une demi-unité. On a
alors I'impression de ne pas trouver le méme rythme d’intercalation mais cela
dépend tout bonnement du choix de I'origine. Voici I’exemple de I'octaéride
des Grecs:
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(En gris, les années de 13 mois dont le rang change selon le choix du début du cycle).

5. QUELQUES EXEMPLES DE CALENDRIERS

La fagon la plus simple de mesurer le temps qui passe est de compter les jours.
Mais les nombres utilisés deviennent vite trop grands et le regroupement en
lunaisons s’impose tres vite. C’est une unité pratique, facilement accessible a
I’observation et trées commode pour les peuples de pasteurs nomadisant dans
des régions peu sensibles aux saisons. Le regroupement naturel des lunaisons
est de dix chez les peuples dont le systeme numéral est de base dix (indo-euro-
péens, sémitiques) et c’est pourquoi les premiers calendriers italiques (ancétre
des Romains) et arabes ne comportaient que 10 mois. Le passage a 1’agricultu-
re implique le respect de 1’année tropique ce qui impose trés rapidement un
regroupement par douze et une intercalation d’un 13¢ mois de temps en temps
de maniére a ce qu’un mois de méme nom reviennent toujours a la méme sai-
son. La complication d’un tel calendrier lui fait rapidement préférer un calen-
drier purement solaire d’environ 365 jours ou les mois n’ont plus rien a voir
avec les lunaisons.

5.1. Jour julien

Compter les jours est la facon la plus naturelle de mesurer le temps. Les astro-
nomes qui, a travers les siecles ont cherché a rassembler les observations des
générations précédentes pour les relier aux leurs ont été amenés a compter les
jours. Pour que I’opération soit la plus simple possible ils ont créé des eres.
Selon les époques on a rattaché ces eres a une origine plus ou moins importan-
te. L’intérét étant d’éviter des nombres négatifs dont ’'usage ne s’est répandu
qu’a partir du XIVe siecle (au moins en Europe). On peut ainsi citer :

L’¢re des Séleucides datant de ~312 correspondant a I’entré triomphale de
Séleucos 1¢r a Babylone apres sa victoire a Gaza.

L ’ére de Nabonassar, créée par I’astronome Ptolémée au II¢ siecle de notre
¢re. Elle doit son nom au plus ancien souverain babylonien auquel il put
remonter: Nabonassar qui prit le pouvoir le 26 février 747 avant notre ere.
Cette ere est trés importante car elle servit pendant longtemps de repere chro-
nologique pour les observations astronomiques et pour les historiens.

L’ére de la création du Monde, utilisée dans le calendrier juif, ’ére de
I’Hégire, utilisée dans le calendrier musulman, I’ere chrétienne, bien sir,
méme si I’on préfére dire «notre ere» pour éviter toute susceptibilité reli-
gieuse !
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C’est en 1583 que Joseph-Juste Scaliger propose de compter les jours les
uns apres les autres en prenant comme origine le lundi 1< janvier - 4712 a
midi en temps universel. Il s’agissait de trouver une origine suffisamment
lointaine pour ne pas avoir de nombres négatifs, d’utiliser les cycles solaires
(de 28 ans) et de Méton (de 19 ans) auquel il ajoute un cycle de 15 ans dit
indiction romaine et qui avait €t€ créé par I’empereur Constantin pour rempla-
cer les olympiades et correspondant a la périodicité des recensements néces-
saires a la levée des impOts. Il a donc chercher une année commengant un
lundi pour laquelle le nombre d’or et I’indiction valaient 1. D’ou son choix. A
partir de cette origine, il compte les jours les uns apres les autres, le jour
numéro 1 finissant le 2 janvier - 4712 & midi.

Scaliger donne le nom de période julienne a cette ére, car il congoit qu’elle
ne dure que 28 X 15 X 19 = 7980 ans, au bout de ce laps de temps on devra
recommencer le compte, d’ou la notion de période. De plus il la baptise
«julienne» puisque, converti au protestantisme, il refuse la réforme grégorien-
ne de 1582 ; il a d’ailleurs échappé de peu a la St-Barthélémy (24 aoiit 1572)
car en route pour la Pologne pour y régler des affaires. Il reviendra prudem-
ment sur Geneve.

Le numéro du jour dans la période julienne s’appelle le jour julien et il est
régulierement publié par les instances astronomiques de tous les pays (en
France le Bureau des Longitudes). Un tel décompte permet une comparaison
immédiate de deux événements astronomiques (ou historiques). Pour des rai-
sons pratiques les durées sont regroupées en années juliennes d’exactement
365,25 jours.

5.2. Calendrier musulman

On tient compte exclusivement des phases de la lune, mais on a regroupé les
lunaisons par 12 bien qu’il n’y ait que dix noms différents qui sont :

[ - Al-Mouharram (30)  II - Safar (29) III - Rabi le ler (30) IV - Rabi le 2¢ (29)
V - Djoumada la 1¢¢ (30) VI - Djoumada la 24 (29) VII - Radjab (30) VIII - Cha’ban (29)
IX - Ramadan (30) X - Chaououal (29) XI - Dou-1-Qa’da (30)  XII - Dou-I-Hidjja (29/30)

Les approximations doivent donc étre faites sur la durée de douze lunai-
sons, soit 354,367056 jours, appelé année lunaire. Comme il faut toujours tra-
vailler avec un nombre entier de jours on aura soit des années de 354 jours
(années communes) soit de 355 jours (années abondantes). En gros deux
années sur trois sont communes |’autre étant abondante. 354 jours font 6 mois
(les mois pairs) de 29 jours et 6 mois (les mois impairs) de 30 jours ce qui cor-
respond a une lunaison moyenne de 29,5 jours (au lieu de 29,530 ...). On
ajoute un jour au dernier mois de I’année lunaire lors des années abondantes.

Pour étre pjlus préci;, on cherche de§ approxilr]nations rationnelles et on
trouve: 354 +3; 354 +454 354 +7; 354 +45; 354 + 50+ Les cycles de 8 ans et de
30 ans sont utilisés. Le premier a été utilisé au début puis a été repris par les
Turcs. 11 a le gros avantage d’€tre compatible avec le cycle de la semaine. En
effet 8 X 354 + 3 = 2835 =7 x 405. Le cycle de 30 ans est actuellement utilisé
dans le calendrier musulman officiel, au moins dans les pays de langue arabe.

Les années abondantes sont placées selon le rythme 3, 6 , 8 pour un cycle
de 8 ans. Pour le cycle de 30 ans, le rythme est 2, 5, 7, 10, 13, 16, 18, 21, 24,
26, 29.
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5.3. Calendriers solaires

La plupart des calendriers solaires se souviennent d’avoir été lunaires dans un
passé plus ou moins lointain, d’ou I’existence de mois d’environ 30 jours. On
a donc douze mois plus éventuellement quelques jours (5 ou 6) qui permettent
d’atteindre la durée de I’année solaire.

Les peuples qui utilisent une année de 365 jours ont ce qu’on appelle un
calendrier vague. Les différents mois se déplacent dans les saisons en un cycle
d’environ 1460 ans. Ce fut le cas du calendrier égyptien. Ce cycle de 1460
années recut le nom de cycle sothiaque car il voyait revenir le lever héliaque
de Sirius (Sothis chez les égyptiens) a la méme date.

La meilleure approximation suivante est celle de 365,25 jours qui corres-
pond au calendrier julien. Une année sur quatre est bissextile et comporte 366
jours. Ce calendrier fut créé par Jules César, d’ou son nom, sur les conseils de
I’astronome égyptien Sosigene en - 44, Un tel calendrier prend un retard sur le
soleil d’environ 1 jour tous les 128 ans.

Faire plus précis revient a trouver un rythme plus compliqué. C’est le déca-
lage progressif vers le début de 1’année de 1’équinoxe de printemps fixé initia-
lement au 25 mars qui alerta les autorités religieuses (cela était important pour
la fixation de la date de Piques). Une réforme aurait di avoir lieu vers 1347-
1348 mais la peste noire qui s’abattit sur I’Europe en décida autrement.
Finalement la réforme eut lieu a partir de 1582 sous le pontificat de Grégoire
XIII. Les états protestants et orthodoxes la refusérent. Au lieu de prendre
I’ approx1mat10n de 365 + i , il faudrait prendre I’approximation 365 + 5
365 + .

En f3a1t l’attractlon du siecle imposa un cycle de 4 siccles car 183 pres-
qu’égal a ==. On a donc en général 24 année bissextile par siecles (? année
séculaire n est pas bissextile) et tous les 4 siecles 25 années bissextiles comme
dans le calendrier julien. C’est ce qui fait que 2000 est bissextile alors que
1900 ne I’était pas.

5.4. Calendriers [uni-solaire

5.4.1. Le calendrier juif

C’est un calendrier assez complexe puisqu’il faut tenir compte a la fois du
jour, de la lunaison, de 1’année tropique et d’interdits religieux qui résulte de
I"histoire accumulée des juifs. Les mois lunaires vont voir quasi alterner des
mois de 29 et de 30 jours. Les années seront de 12 dites communes ou 13 mois
dites embolismiques (ce qui veut dire «ajouter» en grec). Les interdits reli-
gieux vont faire qu’il ne saurait y avoir 2 fétes considérées comme des «sab-
bats» deux jours consécutifs. L.’année ne peut donc commencer ni par un
dimanche, ni par un mercredi, ni par un vendredi. Pour cela les années com-
munes pourront avoir 353 (années défectives), 354 (années régulieres) ou 355
(années abondantes) jours. De méme pour les années embolismiques qui pour-
ront avoir 383 (défectives), 384 (régulieres) ou 385 (abondantes) jours.

Les regles d’intercalation des années embolismiques se font suivant le
cycle de Méton de 19 années et les années embolismiques y seront placées aux
rangs 3, 6, 8, 11, 14 et 19. Le choix de la nature de I’année, défective, régulie-
re ou abondante suit 5 regles, dites regles de Hillel. Hillel II est un patriarche
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qui fit les calculs vers 350 de notre ere. Ce systéeme fut définitivement adopté
vers le Xe¢ siecle apres bien des discussions. Il n’est pas question d’entrer dans
les détails de ces regles dans le présent exposé.

Il y a finalement six types d’années et trois mois peuvent voir leur durée
varier. Le systeme est fort complexe, d’autant plus qu’il y a a la fois une année
civile commencant vers 1’équinoxe d’automne et une année religieuse com-
mencant vers 1’équinoxe de printemps. Si le décompte des années se fait
d’apres le calendrier civil, le mois supplémentaire des années embolismique
est ajouté a la fin de I'année religieuse, c¢’est-a-dire au milieu de 1’année ci-
vile !

Années
Communes Embolismiques
Défectives Régulieres Abondantes Deéfectives Régulieres Abondantes
Tisri 30 30 30 30 30 30
Heshvan 29 29 30 29 29 30
Kislev 29 30 30 29 30 30
Tevet 29 29 29 29 29 29
Shevat 30 30 30 30 30 30
Adar 29 29 29 30 30 30
Véadar 0 0 0 29 29 29
Nisan 30 30 30 30 30 30
lyar 29 29 29 29 29 29
Sivan 30 30 30 30 30 30
Tamouz 29 29 29 29 29 29
Av 30 30 30 30 30 30
Elul 29 29 29 29 29 29
TOTAL 353 354 355 383 384 385

Dans la pratique religieuse, lors des années embolismiques, ¢’est le mois de
Véadar qui voit célébrer les fétes du mois de Adar. Tout se passe comme si on
ajoutait un mois de 30 jours entre le 11¢ et le 12¢ mois de I’année religieuse.

5.4.2. La date de Pdques

La date de Paques a été fixée aux premiers temps de 1’église chrétienne en liai-
son avec le calendrier luni-solaire juif. C’est pourquoi elle suit sensiblement
un cycle de 19 ans. Elle est théoriquement fixée au premier dimanche qui suit
le 14¢ jour de la lune (la pleine lune) qui atteint cet age a I’équinoxe de prin-
temps ou immédiatement apres.

Dans le calendrier julien, il est relativement facile de concilier cette défini-
tion en un cycle de 19 x 28 = 532 ans. On construit alors tres facilement des
calendriers religieux perpétuels comme ceux qu’on trouve dans les livres des
heures (les tres riches heures du Duc de Berry par exemple). Attention il s agit
de lunes théoriques qui peuvent avoir un ou deux jours d’écart avec la lune
réelle.

Dans le calendrier grégorien, la date de Paques suit un rythme tres compli-
qué qui fait bien évidemment intervenir le cycle de Méton, le cycle solaire et
aussi ce qu’on appelle I'épacte et qui est rattaché a 1’dge de la lune au 1¢r jan-
vier. L’épacte peut prendre 30 valeurs différentes et saute parfois lors des
changements de siecle !
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6. CONCLUSION: VERS UNE REFORME ?

Quand les révolutionnaires francais de 1789 déciderent d’inventer le systéme
métrique, il faisait ceuvre unificatrice dans un royaume morcelé en divers sys-
temes de mesure. Malgré des tentatives d’unification depuis Charlemagne, les
unités de méme nom avaient des valeurs différentes d’une province a 1’autre,
d’une ville a I’autre. L’unification fut accueillie avec soulagement par tous les
marchands et commercants et il fut relativement aisé de convaincre d’autres
royaumes européens de se rallier au systeme métrique. Ce ne fut pas le cas de
I’ Angleterre qui disposait depuis le XIII¢ siecle d’un systéme unifié méme s’il
n’était pas simple.

Quand les révolutionnaires francais voulurent, sur leur lancée, décimaliser
la mesure du temps ils se heurtérent a bien plus forte partie. Des questions de
pouvoir intervenaient, mais le systeme était unifié et ce fut un échec.

Aujourd’hui le temps est mesuré en seconde, unité légale. Le calendrier
civil grégorien est d’usage quasi généralisé sur toute la terre et le changer n’est
pas a I’ordre du jour. Les scientifiques disposent d’unités commodes comme
le jour julien ou I’année julienne de 365,25 jours qui permettent de comparer
des dates anciennes et les progres techniques dispensent de conversions fasti-
dieuses entre les différentes unités.

Finalement, ce n’est pas le simple que 1’on cherche mais ’unité. Alors, a
moins d’un bouleversement complet de la civilisation actuelle, le calendrier
grégorien a encore de belles années devant lui.
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