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Afo/rarf.-JABOYEDOFF M.. BAUCHAU C. et MAIGNAN M.. 1996. Simple
Statistical elements to identify geochemical anomalies: mineral exploration and
environnmental aspects. Bull. Soc. vaud. Sc. nat. 84.1: 73-108.
The present paper discusses some useful criteria to identify natural or anthropogeneous
geochemical anomalies. Such an identification can be done with simple univariate
statistical tools. First, simple statistical parameters are reminded. In order to determine
the applicability of the normal and log-normal distributions, the signification of those
distributions is discussed. The relation between the grades' histogram shape and the type
of the anomaly and sampling support is emphasized. Histograms are considered to be a
good approximation of the true distributions, thus allowing the analyst to try an
identification of one or more populations with the probability plots. If an anomalous
distribution is detected, it is possible to define criteria to delineate zones where the
concentrations are abnormal. This approach is illustrated by examples. Its efficiency is
essentially due to its rapidity and well structured processes.

Key words: Geochemical anomalies, mineral exploration, pollutions, statistics, geostatis-
tics. geochemical threshold.

/?éj«me'.-JABOYEDOFF M.. BAUCHAU C. et MAIGNAN M., 1996. Eléments
simples d'identification d'anomalies géochimiques par statistique: aspects miniers et
environnementaux. Bull. Soc. vaud. Se. nat. 84.1: 73-108.
On présente un certain nombre de critères permettant I"identification d'anomalies
géochimiques tant naturelles que d'origine anthropogène, à l'aide d'outils statistiques
univariés simples. On rappelle la détermination des paramètres statistiques de base, puis
la signification des lois normale et log-normale afin de cerner leur champ d'application.
On souligne les relations qui peuvent exister entre l'histogramme des teneurs et le type
d'anomalie étudiée, la maille et la forme du support des prélèvements. On étudie les

histogrammes qui sont supposés être une approximation des distributions, dans le but de
savoir s'il y a plusieurs populations à l'aide de «probability plots». Si l'on obtient une
population anomale, on peut définir des critères pour délimiter des zones générées par
des processus de concentration anormaux. Au travers d'exemples, on montre la
problématique liée à cette approche et son efficacité, essentiellement due à sa rapidité et
à la démarche structurée. Une brève description de logiciels pertinents est également
effectuée.

Mots clefs: Anomalies géochimiques, prospection minière, pollutions, statistiques,
géostatistiques, seuil géochimique.

1. Introduction

«Comment identifier une anomalie géochimique?» est une question certainement

réactualisée. En effet, si elle reste essentiellement posée aux géologues
prospecteurs, elle devient aussi d'actualité pour le géologue qui s'occupe
d'environnement et plus particulièrement de pollutions. Pour les premiers, la
détermination de l'importance, de la valeur, d'une anomalie géochimique est
primordiale. La géochimie de sols précède la phase, coûteuse, des forages et
doit en fournir les premières cibles, si possible de haut potentiel. C'est pourquoi

il importe de disposer de critères de sélection pratiques et fiables afin de
choisir les anomalies les plus prometteuses, en évitant ainsi un gaspillage de
mètres de forage et donc des dépenses inutiles. Il en va de même pour l'éco-
logue de pollutions, bien qu'ici les engagements de dépenses soient en général
sensiblement moindres, si l'on ne fore pas.

Nous nous sommes donc interrogés depuis de nombreuses années sur la
définition des anomalies géochimiques, par le biais notamment d'un enseigne-
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ment de la prospection minière par simulation. Ces simulations furent
développées par R. Woodtli à l'Université de Lausanne, puis avec la collaboration
de M. Vannier à l'Ecole des Mines de Paris et par la suite avec celle des
auteurs (Vannier et Woodtli 1992, Bauchau et Jaboyedoff 1990, Bauchau
et al. 1993). Elles ont permis d'expérimenter, par simulations, des méthodes et
des stratégies de détection d'anomalies géochimiques et d'en dégager les
points essentiels. D'autre part le traitements des données de pollutions fait
maintenant partie de cette démarche générale (Maignan and Maignan in
press, Pourchet et al. in press, Kanevski et al. in press).

L'objet pratique du présent article est d'indiquer des méthodes simples
permettant la détection d'anomalies géochimiques, c'est-à-dire de valeurs élevées
qui peuvent représenter une population anomale. Du point de vue de la géologie

minière, on débouche ensuite sur des indices et dans le cadre des sciences
de l'environnement sur des pollutions, par exemple. Dans ce dernier cas, on
suppose que les teneurs anomales appartiennent à des populations engendrées
par des processus de concentration anormaux ou par une source anormale. Il
faut voir là le contraire de la notion de seuil défini a priori. Les teneurs
anomales peuvent n'être alors qu'une expression exceptionnelle due à la variabilité

d'un processus normal. Les concentrations exceptionnelles -par rapport à un
fond géochimique (background)- liées à des minéralisations, ou bien encore
les pollutions, se caractérisent justement par la présence d'une ou de plusieurs
populations anomales.

D'autre part, dans le cas des pollutions, la recherche de la population
formée par le fond géochimique est importante, car elle indique la distribution
des teneurs à atteindre lors de la réhabilitation complète d'un site pollué.

Dans la pratique, on est souvent confronté à un grand nombre de données

géochimiques ou de pollutions distribuées dans l'espace, en général simplement

dans un plan. Il faut donc, pour commencer, définir quelles teneurs sont
anomales, soit un seuil. Si le seuil est fixé a priori, et cela peut être le cas
lorsqu'il existe des réglementations en termes de pollution, une réponse partielle
est donnée, sauf en ce qui concerne la taille minimale de l'anomalie (tonnage,
volume, surface) pour la considérer comme «dangereuse». Même dans ce cas,
du fait que les normes OSOL, par exemple, définissent des teneurs limites,
mais pas le support volumétrique, des investigations complémentaires sont
recommandables. Au contraire, si l'on cherche à mettre en évidence des
processus exceptionnels, l'emploi des statistiques univariées permet souvent de

dégager rapidement des populations et des seuils au-dessus desquels les
populations anomales sont dominantes. Il faut analyser la signification des populations

du point de vue de leur répartition spatiale, et il n'est pas toujours simple
de lier une population statistique donnée à un processus physico-chimique
particulier. Les processus de diffusion ou autres ayant engendré une anomalie
n'étant généralement pas connus et mesurés a priori, il y a lieu de compenser
l'absence d'un modèle déterministe par une approche statistique. De plus, la
complexité spatiale d'un processus de diffusion, par exemple, justifie une
démarche statistique en complément d'un éventuel modèle déterministe. Nous
exposons ici quelques principes et méthodes, ainsi que les problèmes liés à ces
méthodes. Des exemples sont donnés pour souligner certains problèmes. La
démarche adoptée dans cet article suit intentionnellement une approche
«manuelle», c'est-à-dire faisant plus appel à la réflexion qu'à la mécanique
informatique.



76 M. Jaboyedoff, C. Bauchau, M. Maignan

1.1. Représentation des données

Le document de base est une carte des teneurs (cf. par exemple figures 15,

p. 94 et 21, p. 99), car elle permet de voir immédiatement s'il y a des zones
anomales (à teneurs élevées) et localisées. L'analyse proprement dite des données

s'effectue à partir d'histogrammes en échelles linéaires ou logarithmiques
et de statistiques simples (Davis 1986, Journel 1989, Marsal 1987, Ruegg
1989, Saporta 1990, Ventsel 1987) telles que les estimations «non-biaisées»
m de la moyenne J4 d'une variable aléatoire X et S2 de sa variance (moment
d'ordre 2) et de l'écart type S sont:

1 '="„,
Moyenne m V x, 1

"loi /=l

1 '=^tOl -,

Variance P=— £ (x,-mf (2)
\Ntot - 1) 1=1

où Nto[ est le nombre total d'échantillons. Plus généralement, la moyenne m
est l'estimation de l'espérance mathématique notée E[X]. De même la variance

S2 est l'estimation de l'espérance mathématique du moment d'ordre 2 centré

E[(X-m)2]. On rencontre fréquemment les autres moments statistiques qui,
de façon générale, sont notés:

1 •=Ki„<, kMoment d'ordre k mk= ]T lx. _ m\ (3)
NtOt 1=1

Le coefficient d'aplatissement, appelé aussi kurtosis à une constante près, et
le coefficient d'asymétrie (skewness) sont définis comme:

Coefficient d'asymétrie — - •

3 '

coefficient d'aplatissement —— -3 kurtosis - 3 (4)
S4

Le coefficient d'asymétrie est positif si la distribution s'étale plus du côté
des valeurs élevées et inversement; il est nul pour des distributions
symétriques. On soustrait 3 dans le calcul de l'aplatissement pour obtenir zéro dans
le cas d'une distribution normale. Si l'aplatissement est positif, c'est que la
distribution est plus aplatie qu'une gaussienne.

1.2. Des données aux distributions

L'analyse attentive d'un histogramme en regard des paramètres décrits ci-dessus

permet souvent de mettre en évidence les tendances et les éventuels sous-
ensembles. Ces ensembles peuvent être modélisés par des distributions. On
note généralement la fonction de distribution l'histogramme) f(x) et la fonction

de répartition l'histogramme cumulé) F(x) où x représente les valeurs
prises par une variable aléatoire X. Les histogrammes sont des estimations des
fonctions de distribution et de répartition. La distribution est généralement une
densité de probabilité, c'est pour cela qu'une probabilité doit être notée
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f(x)Ax. Remarquons que la fonction de distribution est la dérivée de la fonction

de répartition F(x) (fig. 1):

F'(x)=f(x) ou encore F(x)=\f(x)dx (5)

d'autre part: F(x)x^a0 1 ou 100% (6)

F(x) est équivalent à la probabilité P(X<Xj) que la variable X soit inférieure à

Xj de sorte que:

NX<x
PyX<xi) F{xi)*--r^ (7)

"tot
où Nx<xi est le nombre des valeurs inférieures à Xj. Il faut choisir des classes
de valeurs Ax pour pouvoir visualiser l'estimation de la fonction de distribution,

l'histogramme, c'est-à-dire la probabilité que la variable X prenne une
valeur comprise entre X; - Ax/2 et x( + Ax/2:

P(xt - lAx < X < x,- + l/2x) * /(x, Ax (8)

avec

jf(x)cix évalué par Z/(x,-)Ax l ou 100% (9)
-00 I"'

en pratique on fait l'approximation:

rr x N(x,-V2Ax,x.+l/2Ax)
f(x,)Ax * -^ -î-! '- 10)

"tot
où Nto, représente le nombre total de données, N(x; - Ax/2, X| + Ax/2) le
nombre de données appartenant à une classe. Ou si l'histogramme est construit
en nombres on utilise:

Nl0!f(x,)Ax ~ N(Xj - '/2Ax,x, + !4Ax) (11)

Souvent, on examine l'histogramme simple et l'histogramme cumulé, puis
celui-ci sur papier de probabilité (probability plot). Ce dernier s'apparente à

un histogramme cumulé dont l'échelle des fréquences a été modifiée; de ce
fait, si l'on traite un ensemble présentant les caractéristiques d'une loi normale
(en général on utilise l'hypothèse de normalité ou de Iog-normalité), les points
s'alignent sur une droite, la droite de Henry (fig. 2). En fait, il s'agit de la
projection des pourcentages cumulés de la loi normale ou de la loi log-normale
sur un axe des valeurs normées qui représente l'échelle des fréquences.
L'avantage de cette représentation «cumulée» est qu'elle associe à chaque
valeur observée Xj de la variable X une valeur de F(Xj). Ce n'est pas le cas de

l'histogramme simple qui est composé de classes. Une fois l'ajustement d'une
loi réalisé, quelle que soit la méthode, un test du %2 est toujours possible, mais
n'est pas nécessaire dans la phase exploratoire.
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Figure l.-Dans la pratique, la fonction de répartition est proche de l'histogramme
cumulé et la fonction de distribution de l'histogramme. Le schéma présente la terminologie

généralement utilisée pour décrire un histogramme. Le mode est la classe la plus
représentée et la médiane est la valeur qui divise la distribution en deux parts égales de
50% des observations.

A Loi normale (o=1

Histogramme
(lonction
de distribution)

B Histogramme

(85%) (Fréquences
cumulées)

(92%)

Histogramme cumule
(lonction de répartition)-84 1°

(Valeur de la loi normale
(valeur divisée par 0 399)

62%

(35%)£?

£ (15%

(4°; (96%)2 3% 15 9% 50% 84 1% 97 7%

\ Fréquences cumulées

62°/< 15 25 35 45 55 65 75 85

C Probability plot

Exemple d'histogramme observe
et modélisé:
Droite de Henry
Moyenne + variance
de la population

Figure 2.-On illustre ici la construction d'un «probability plot» de type normal (voir
texte). (A) Transformation des valeurs de la fonction de répartition sur l'échelle des
valeurs. En B un histogramme proche de la loi normale. Les points représentent cet
histogramme sur un «probability plot» (C). Sur l'échelle des fréquences, on reporte la
valeur cumulée 62%, comme s'il s'agissait d'une loi normale, et la teneur 45 sur
l'échelle des valeurs. Le résultat est une droite si la distribution est normale. Il en va de
même si on choisit une échelle logarithmique. On note la légère différence qui existe
entre les distributions normales suivant qu'on utilise directement la moyenne et l'écart
type de la population ou la droite de Henry. Les premiers sont calculés dans l'espace
des fréquences simples et l'autre dans l'espace cumulé. Les écarts types sont comparables,

ce sont les moyennes qui diffèrent un peu. Il faut garder cette remarque en
mémoire lors des interprétations (d'après Pace et Cluzel I968).
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1.3. Choix de classes des histogrammes: règle «empirique»

La mesure la plus simple de la dispersion des valeurs est l'écart-type. Nous
proposons ici dans un premier temps d'utiliser la valeur (fig. 3):

Ax « [de 0.6 à U)S (12)

où Ax est la largeur des classes de l'histogramme et où S provient de la formule
2. En effet, si on veut que la classe la mieux fournie comporte approximativement

de 20 à 40% des données, on supposera avoir affaire à une distribution
de type normal (voir plus loin); sachant que l'accroissement pour 2 S est de
68%, la pente de l'histogramme cumulé est d'environ:

de .2 à .4
¦=>L\x<*\de .6 à 1215 (13)

.68

2S Ax

S'il y a asymétrie de l'histogramme, S peut être plus grand que dans le cas
symétrique, de sorte que Ax augmente, et cette relation n'est plus nécessairement

valable. On peut passer en échelle logarithmique si ce n'est pas déjà fait.

9. 1.0

ï
co
oo
CD

Valeurs

2o—
Figure 3.-L'examen de l'histogramme cumulé permet, à l'aide de sa plus forte pente,
de choisir la classe la mieux représentée, d'après le principe énoncé dans le texte. Ici le

cas «aussien.

2. Interprétation en termes de populations sous-jacentes
(inference statistique)

2.1. Qu 'est-ce qu 'une anomalie géochimique:

Une anomalie géochimique est définie comme un ensemble de teneurs
élevées, par rapport à la moyenne, spatialement proches les unes des autres ou
plus simplement «contourables» d'un point de vue cartographique (fig. 4),
voire comme un sous-ensemble connexe.
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Figure 4.-La notion de «contourable» est importante dans la définition d'anomalies, car
un point isolé n'est pas significatif. Il faut qu'une surface soit définie sinon il peut ne
s'agir que d'un point aléatoire. Dans le cas d'un point unique, il faut effectuer des
prélèvements plus rapprochés pour déterminer s'il s'agit d'une anomalie. La notion d'anomalie

est aussi dépendante de l'échelle de travail.

Des valeurs élevées non contiguës ne constituent pas une anomalie, elles
peuvent être aléatoirement distribuées dans l'espace. La notion d'anomalie est
fortement dépendante de l'échelle à laquelle on travaille. Par exemple, des
anomalies d'une taille de 100 m recherchées avec une grille de prélèvements
de 1000 m ne se manifesteront que par des points anomaux isolés, sans signification

spatiale. Mais l'existence de l'anomalie sera sans doute décelée avec
une maille inférieure à 50 m: on peut alors espérer qu'au moins deux prélèvements

contigus appartiendront à la même anomalie.
La notion d'anomalie implique nécessairement la notion de background (ou

fond géochimique), qu'on peut définir comme un ensemble de valeurs oscillant

autour d'une valeur moyenne (ou d'une tendance régionale), avec une
variabilité constante partout dans l'espace. On ne peut pas «contourer» de
zone à l'intérieur de cet ensemble de valeurs sur les données brutes. D'autre
part, la notion de background peut aussi avoir une signification locale, par
exemple en présence d'une dérive régionale: la variance et la moyenne peuvent

évoluer. On tente généralement de définir des anomalies par rapport à un
background: rapport momuWdbackground.

Il faut nuancer la notion de « contourage », car il se peut que des valeurs
élevées soient localisées mais pas contourables parce qu'il existe des valeurs
plus faibles entre les points anomaux. Il y a à cela plusieurs raisons. Dans un
exemple que nous analyserons au paragraphe 4.1, les teneurs en cuivre des
roches présentent de grande variations; en effet, certaines lithologies sont
beaucoup plus riches en cuivre que d'autres pour différentes raisons: altérations,

minéralogie, etc. Une anomalie n'apparaît alors que lors du lissage des
valeurs, opération nécessaire pour dresser une carte de teneurs. Du point de
vue des pollutions, on peut rencontrer le même type de problèmes lorsqu'une
substance est dispersée en grains. Si on dispose de suffisamment de temps, on
peut toujours trier les données suivant d'autres caractéristiques telles que
lithologie, autres éléments chimiques, matière organique, argiles, etc., afin de
conditionner les investigations statistiques.
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2.2. Ensemble de données statistiques

Les teneurs géochimiques ne représentent qu'un ensemble limité d'échantillons.

On suppose presque toujours que les caractéristiques de cet
échantillonnage tendent vers celui de la population globale, c'est-à-dire de la population

qu'on obtiendrait si on connaissait complètement, ou mieux, continûment

la zone étudiée (ergodicité). De sorte que la distribution (histogramme),
sa variance, sa moyenne, ses modes, etc. tendent vers celles de la population
globale, en conséquence de la loi des grands nombres.

Un ensemble de données est homogène, ou régulier, si les deux types
d'histogrammes par classe et cumulé (échelles linéaires ou logarithmiques), sont
continus et que leurs dérivées sont « régulières » de part et d'autres d'un mode
unique pour l'histogramme simple. Dans ce cas, l'usage des probability plot
nous indique si cet ensemble respecte éventuellement une loi normale ou log-
normale.

Lorsque les histogrammes ne sont pas « réguliers » (c'est-à-dire qu'une
unique distribution ne permet pas d'interpréter l'histogramme), on est amené à

diviser l'ensemble des données en plusieurs sous-ensembles. En présence de
plusieurs modes ou quand la dérivée ne suit pas une tendance régulière, on
peut soupçonner l'existence de plusieurs distributions et faire des hypothèses
quant à la normalité ou la log-nortnalité des distributions.

2.3. Le problème du support

Pour interpréter des données spatiales par des statistiques univariées, il faut
veiller à ce que la maille de prélèvements soit appropriée, que la zone étudiée
soit centrée et que la distribution de l'information soit homogène. Il faut donc
considérer les points suivants:

l.-La maille de la grille ou du profil de prélèvements doit être appropriée à

la cible recherchée. Dans un premier stade, on se contentera souvent d'une
maille légèrement inférieure à la taille de la cible définie d'après les objectifs
de teneurs et de tonnage (fig. 5 et 6). Mais cela ne permet pas nécessairement

Profil Géochimique

*3
m
c
0)

Variation locale du
bruit de fond (2g)

Moyenne du
fond géochimiqueSeuil ou teneur espérée

Taille maximale
de la maille

Distance
Figure 5.-Les dimensions de la maille de la grille de prélèvements sont définies par la

forme, la taille et la teneur de l'anomalie à détecter. Ici le mot grille décrit aussi des profils.
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de définir d'anomalies. Puis, une fois un point anomal localisé, on resserre la
maille (fig. 6). Cette fois, celle-ci devrait être inférieure à la moitié de la taille
de la cible. Le choix d'une grille ou de profils géochimiques doit être adapté à
d'éventuelles anisotropics. Il est dispendieux d'avoir une grille carrée si

l'objet recherché est allongé. Il est important de consulter une carte géologique,

pédologique, hydrologique, d'activité anthropogène, etc. si c'est
possible, afin de pouvoir localiser les éventuels sites favorables à la recherche et
d'évaluer leurs formes et leurs tailles. On peut aussi utiliser une grille aléatoire
et/ou tester l'homogénéité par la dimension fractale afin de définir les zones
de basse densité d'information (Flamm et al. 1994, Lovejoy et al. 1986).

A B

•^ /2 r

3

/2a

/2 bC

Prélèvements

p. Contour de l'anomalie
M recherchée à une

teneur seuil donnée

Figure 6.-Exemple idéalisé de choix d'un écartement et d'une orientation des mailles
de prélèvement de sols (d'après Elliot and Fletcher 1975). Si l'on recherche une
anomalie elliptique (A) la maille est trop lâche et mal orientée. En (B) maille optimale pour
une anomalie supposée circulaire de rayon r. Pour qu'un prélèvement touche à coup sûr
l'anomalie, la plus grande distance entre deux points successifs de la maille doit être
égale ou inférieure au diamètre du cercle (2r). Dans le cas elliptique il suffit de faire une
homothétie à partir du cas circulaire. (C) exemple de maille inadéquate dans la première
phase de reconnaissance: beaucoup de prélèvement sont inutiles. Par contre, lors de la
phase suivante qui sert à définir une anomalie, une telle maille peut se justifier; si
l'orientation est connue, on oriente alors la maille parallèlement à rallongement de
l'ellipse.

2.-Pour interpréter des histogrammes, il faut prendre garde à ce que les
anomalies ne soient pas en bordure de la zone d'étude ou qu'elles ne soient
que partiellement reconnues, car la connaissance d'un background de part et
d'autre de l'anomalie est importante. Dans le meilleur des cas, il faudrait
même que le domaine d'étude soit centré sur l'anomalie et de même forme
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que cette dernière, c'est-à-dire dans un cas théorique qu'il soit circulaire ou
elliptique, pour ne pas sur-représenter le background dans les histogrammes
(fig. 7).

B

A

OJ a

A

200 400 600 800

B

Teneurs

o 200 400 600 800 Teneurs

Figure 7-Effet de la forme du support sur la distribution des teneurs d'une anomalie
générée par un processus de diffusion, échantillonnée de façon homogène, en A sur un
support circulaire et carré en B. L'effet se voit sur les faibles teneurs (grisé). Une
distribution des teneurs produites uniquement par diffusion est inversement proportionnelle à

la teneur en échelle linéaire (Jaboyedoff and Maignan in prep.)

3.-Le problème de l'homogénéité est peut-être le plus pervers, car on effectue

en général une campagne à maille lâche afin de mettre en évidence des

points anomaux, puis on resserre la maille autour de ces points pour vérifier
s'il s'agit d'anomalies; de ce fait, la densité d'informations varie en fonction
des teneurs (fig. 8). Pour remédier à ce genre de problèmes, on pourrait se
limiter aux zones à densité constante; malheureusement les contraintes
économiques font que les zones de background sont souvent à plus faible densité de

prélèvements. On peut aussi supprimer des données afin que la densité soit
homogène. Une méthode courante, le declustering (description détaillée dans
ISSAKS and Srivastava 1989 et Deutsch and Journel 1992), consiste à

pondérer les valeurs par l'inverse de la densité. Si on connaît dans un domaine «j»
la densité p: et le nombre q:(X;) de prélèvements, dont les valeurs des teneurs
appartiennent à un intervalle centré sur x:, on obtient pour m domaines le
nombre Nc de données corrigées contenues entre les valeurs x,-Ax/2 et x,+Ax/2
et en posant ph la densité désirée on obtient:

j-m q (x
Nc(xi+Ax<X<xi+Ax)=Nc(xi)*ph2Z -^—î- (14)

7=i Py

d'où si n est le nombre de classes de valeurs centrées sur les xr le nombre total
corrigé vaut:
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Nlot =I7VC(JC,)
i=l

et la probabilité est donnée par:

P(xi - '/2Ax <X<Xj+ !/2Ax) /(x,-)Ax « ^j~Ax

(15)

(16)

\
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Figure 8.-Exemple synthétique de l'effet pervers dû à la densité inhomogène de
prélèvements sur les histogrammes des teneurs. Les prélèvements supplémentaires (carrés)
induisent une population artificielle. Si le fond géochimique était représenté on aurait
une classe |0-l ] très grande: en fait l'histogramme est proche d'un histogramme de
diffusion tronqué.

2.4. Lois normale et log-normale: distributions usuelles

Il est commode de comparer les histogrammes d'ensembles de teneurs géochimiques

à certaines lois de distribution de référence. Les plus fréquemment
utilisées sont les lois normale et log-normale. En effet elles découlent de processus

simples et sont souvent proches des observations. Mentionnons le théorème

central limite (suivant l'énoncé donné dans Ventsel 1987), pour
comprendre l'intérêt de ces deux distributions.

Théorème central limite: Soient X,. X2, X3 X„ des variables aléatoires
indépendantes de même loi de répartition, d'espérance mathématique p
(moyenne) et de variance a2: lorsque n augmente indéfiniment, la loi de
répartition de la somme
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y„ kfxk d?)
k=\

tend vers la loi normale.
De façon intuitive, le théorème central limite est facilement compréhensible

au travers d'un exemple (fig. 9). En présence d'un phénomène qui génère une
distribution de type tout ou rien, celle-ci a une forme de créneau. Si, par
exemple, la population d'origine ne prend que la valeur b, alors, après
l'accomplissement du processus, la population a une probabilité unique dans
un intervalle [b-a,b+a] et en dehors la probabilité est nulle. La deuxième fois
que le phénomène se produira sur la population nouvellement formée, on
obtiendra un chapeau de base [b-2a,b+2a] avec des probabilités variables.
Puis, si ce phénomène affecte plusieurs fois de suite la population nouvellement

créée, on obtiendra la distribution normale:
\2

f(x,ri,a2)
1

2y (18)

où x est la variable aléatoire, p la moyenne (espérance mathématique), G2 la
variance et f(x, |4, o2) la densité de probabilité. Il existe des formes de ce théorème

où la contrainte sur les lois de répartition est relâchée: il a donc une portée

encore plus générale. Ce théorème signifie que si plusieurs phénomènes
aléatoires indépendants ou faiblement liés s'additionnent, alors plus ils sont
nombreux, plus on s'approche de la loi normale. L'exemple classique en est le
tir dans une cible.

Distribution générée par le
processus considéré sur une
distribution de valeur unique b.

Figure 9.-Illustration graphique du théorème central limite, b est la valeur unique prise
par l'ensemble des données avant que le phénomène n'affecte une fois (A) puis
plusieurs fois (2x, 5x et lOx) (B) la distribution. Ceci est formellement égal à des produits
de convolution successifs.

En géologie, des phénomènes d'agrégation devraient être de type normal.
La loi normale s'applique par exemple à la quantité de silice dans les basaltes

ou les rhyolites (Siegel 1974). En général, les teneurs en métaux suivent plu-
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tôt la loi log-normale, comme par exemple la géochimie des stream sediments
de zinc et cuivre du Guatemala (Lepeltier 1969). La loi log-normale est plus
fréquente. Elle est la conséquence de phénomènes proportionnels. On remplace

simplement dans la loi normale la variable aléatoire X par le logarithme de
la variable aléatoire Y, donc:

dx -dy (19)
y

Dans un phénomène de type proportionnel, on sait que deux étapes successives

sont reliées par un coefficient 8: et on peut alors écrire:

(y -y J
(y, - yj-x z,yit ou encore — — e (20)

y--.
On considère alors les £¦. comme des variables aléatoires, et si on répète n

fois le processus, on obtient:

J="(yi -yi i) 7=«sUW0-l7=I (21)
j=* yj~\ 7=i

Si n est très grand, on passe au continu (yj-yj i)=>dy et il vient:
y, dy

=> J -- \nyn-\nyr) (22)
*o y

de sorte que

ln>>„ ln_y0 + e, +e2 +e3+ +e„ (23)

est une somme de variables aléatoires à laquelle on peut appliquer le théorème
central limite. La densité de distribution log-normale est donnée par:

1 V^Ll
/(x,pL,o-2) „- 22 (24)

G £VZ7t c

où x représente les valeurs prises par la variable aléatoire X (X=ln Y), uL
l'espérance mathématique du logarithme et a \ sa variance (fig. 10). Mais on
écrit la densité de probabilité log-normale l(ln y, pL, O 2 ):

P(V<yi,Y<y2)= J lQny,\iL,<jl)-dy carx lny (25)

y=y\ y
La relation entre la moyenne arithmétique p et géométrique pL d'une

variable distribuée log-normalement est donné par (Aitchison and Brown
1963):

p e1 '' (26)

et les variances sont reliées par:

a2=u2[Mi-l] (27)
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Figure I0.-Somme de deux distributions, A et B log-normales, représentées sur des
échelles linéaire et logarithmique. Il faut surtout noter le déplacement du mode de la
distribution B entre les deux échelles et le fait que la moyenne et la variance ne sont pas
égales via le logarithme (ou l'exponentielle) d'une représentation à l'autre. L'exemple
est volontairement particulier pour souligner l'effet du changement d'échelle.

Les réactions chimiques sont régies par des effets proportionnels (loi
d'action de masse), de même que les processus de désagrégation (Epstein
1947). Il n'est donc pas surprenant que plusieurs éléments chimiques soient
répartis suivant cette loi. Les tailles de particules de sédiments de sols
(granulometrie), etc. sont aussi fréquemment distribuées de cette façon.

Notons quelques restrictions à ces lois. Les teneurs infinies n'existent pas,
par conséquent la loi log-normale ne s'applique pas aux minerais à haute
teneur, car il y a une limite supérieure (Mathéron 1962). Ceux-ci présentent
plutôt une asymétrie inverse. Ce n'est pas notre propos. Les teneurs nulles, ce
qui est possible pour certains éléments rares, donneraient la valeur moins infini

dans le cas log-normal. La loi normale souffre du même problème de la
limite supérieure, mais en plus il n'existe pas de teneur négative. Notons que
la loi de Poisson peut s'appliquer pour les teneurs faibles, celle-ci décrivant
des processus du type oui-non.

En pratique lorsqu'on modélise une distribution donnée par inference statistique,

on utilise les estimateurs m et S2 respectivement de la moyenne [i et de
la variance o2.

2.5. Utilisation du probability plot

Un histogramme cumulé tracé sur un tel graphique dessine une droite s'il
s'agit d'une distribution normale ou log-normale au choix (fig. 2, 11 et 12); le
principe étant le même, seule l'échelle des variables change.

Pour une loi normale, la médiane (50%) se confond avec la moyenne.
Ainsi, la lecture de la moyenne est aisée. D'autre part, on peut très facilement
mesurer la variance sur une droite de Henry. Il suffit de faire la différence
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entre les valeurs de la variable à 15,9% et 84,1% pour obtenir la valeur de 2
écarts type:

*15.9% ~XM.\% s (28)

On opère de manière inverse si on veut tracer une droite de Henry sur un
probability plot (figures 11 et 2).
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Figure 11.-Probability plot des deux distributions de la figure 10 et de leur somme. Ce
cas est intéressant car les deux distributions ont des moyennes proches, mais des
variances différentes. De ce fait leurs droites de Henry se recoupent. Par conséquent, la
distribution la plus dispersée «domine» dans les valeurs faibles et élevées. C'est le cas
ici de la distribution la moins importante (B). Remarquons que deux droites de Henry
se recoupent presque toujours, mais que cela se passe souvent dans des domaines de
valeurs qui ne nous concernent pas.

Généralement pour analyser des données, on examine simultanément
l'histogramme (avec au moins six classes) et le probability plot adapté. S'il s'agit
d'une population unique et qu'elle est normale ou log-normale, elle trace une
droite sur le probability plot; il n'y a plus, en prospection minière, qu'à choisir
un seuil assez élevé pour sélectionner quelques zones intéressantes. Pour des
pollutions il faut déterminer si cette distribution est causée par un processus
anthropogène. Cependant, il peut arriver que la distribution apparaisse comme
une distribution unique cohérente mais sans être normale ou log-normale. Sur
un probability plot on observe alors une courbe régulière à laquelle on appliquera

un critère de «seuillage» (voir paragraphe 2.6.)
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Figure 12.—Probability plot normal représentant la somme de distributions dont on a fait
varier le poids. En petit, histogrammes de deux de ces courbes. Les points de plus forte
courbure ou les points d'inflexion indiquent à peu près le poids des deux distributions.

On trouvera au paragraphe 4 des applications de la démarche suivante, qui
traite de façon théorique l'analyse des probability plot en présence de
plusieurs distributions. Si on soupçonne plusieurs distributions du même type que
l'échelle du probability plot utilisé, on peut les mettre en évidence par
l'inspection visuelle d'un histogramme qui présente plusieurs modes ou par
conjectures. On essaie alors de caractériser les populations par leurs
paramètres respectifs (S2, m). Les calculs de ces derniers s'effectuent sur les
populations supposées obtenues en décomposant l'histogramme en plusieurs
«distributions». Ainsi, on peut représenter les droites de Henry de chaque distribution

déduite sur le, probability plot (Sinclair 1989, 1991). Pour vérifier la qualité
de l'interprétation on construit la courbe cumulée de la somme des

distributions en ajoutant les pourcentages cumulés (échelle du probability plot) Fj
de chacune d'entre elles et en les multipliant par leur poids respectif P:. De
sorte que le pourcentage du mélange des distributions A, B, est donne par:

A+B... FAPA+FBPB+.. (29)
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En présence de deux distributions, l'examen du probability plot des données

peut permettre de les mettre directement en évidence. Un point de plus
forte courbure ou un point d'inflexion du probability plot, si une des populations

domine, indique à peu près le poids respectif des deux distributions
directement sur l'échelle des fréquences (fig. 11) comme on le constate sur
l'exemple synthétique de la figure 12 où le point de plus forte courbure
(78.6%) est proche des proportions respectives de chaque distribution (80% et
20%). Mais cette analyse doit être faite conjointement avec l'histogramme
simple. Généralement la courbe du probability plot des données suit une droite
proche de celle de la distribution la plus importante en proportion puis elle
s'infléchit sous l'influence de la seconde distribution (exemples de cas
particuliers aux figures 11 et 23). En s'appuyant sur le probability plot et
l'histogramme, comme précédemment, on dégage la moyenne et l'écart-type de la
distribution dominante, puis il est possible avec l'histogramme d'obtenir la
seconde distribution par soustraction. Les paramètres qui permettent la
construction d'un histogramme de loi normale sont donnés entre parenthèses à la
figure 2. On applique à nouveau la formule 29 et comme précédemment on
peut vérifier si les ensembles choisis «miment» bien les observations. Si ce
n'est pas le cas on recommence, on révise l'interprétation et on réitère la
démarche décrite ci-dessus. S'il y a plus de deux distributions superposées,
l'interprétation est délicate et il faut avoir de bonnes raisons de penser qu'elles
sont présentes, car on peut à la limite tout simuler avec un grand nombre de
distributions.

Pour les données de pollution, la définition d'un background est de grande
importance. Si le background possède une distribution normale ou log-normale,

on peut obtenir sa distribution à l'aide d'un probability plot. Ceci est
particulièrement utile dans le cas de la réhabilitation d'un site pollué, car le but
d'une telle action est de retrouver le background naturel (Fleishhauer and
Korte 1990). Fleishhauer and Korte (1990) indiquent que pour déduire un
background normal ou log-normal, on peut calculer successivement le coefficient

d'asymétrie en enlevant un à un les points de teneur les plus élevées,
jusqu'à ce que le coefficient soit nul. Ils proposent aussi de décomposer
directement les données en deux populations point par point, en les divisant en
deux groupes, puis en reportant chacun d'eux sur un probability plot pour voir
si ces groupes respectent les lois normales ou log-normales.

Dans cette phase, le traitement informatique est essentiel; il permet en effet
de visualiser très vite tous les types de graphiques (les programmes statistiques
courants sont par exemple: SpssO, Statlab©, S+© et en géostatistique le
programme vétéran du domaine public Geoeas, Englund and Sparks 1991). Ils
permettent surtout de sélectionner les données pour n'en traiter qu'une partie.

2.6. Seuil et retour aux cartes

Une fois effectuée l'analyse univariée des données, examinons ce qui se passe
spatialement. L'étape suivante est de trouver une limite inférieure (seuil
d'anomalie) au-dessus de laquelle les valeurs sont intéressantes ou ont une
signification particulière, afin de poursuivre l'objectif fixé.

Dans le cas d'un seul ensemble apparemment homogène de données, on
tâche de choisir une limite qui mette en évidence des anomalies comme défini
au paragraphe 2.1. En début de campagne, on ne trouve souvent que des points
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anomaux isolés. Puis on cherche à établir, par l'acquisition de données
supplémentaires à l'aide d'une maille plus serrée (paragraphe 2.3), s'ils appartiennent

à des zones à teneurs élevées. Il n'y a pas de règle absolue: souvent, on
choisit les 3 à 5% supérieurs de la distribution (moyenne +2S). Il ne faut pas
perdre de vue les dimensions de la maille utilisée, et il est important de se

rapporter à la carte géologique ou autre, car elle permet de dire si des sites peuvent

être intéressants ou non. Une teneur relativement élevée corrélée avec un
site favorable (géologique, pédologique, hydro-géologique, etc.) est à retenir
même si un seuil relativement haut la faisait disparaître.

Si on a pu mettre en évidence avec ou sans probability plot deux ou
plusieurs distributions, comme décrit au paragraphe 2.5, la détermination du seuil
est en principe plus facile. Soit F et Fjnf les valeurs des fonctions de répartition

(échelle cumulée du probability plot), respectivement de la population à

hautes teneurs et celles de l'ensemble des populations à plus basses teneurs.
On placera le seuil en principe au plus bas, là où la distribution la plus haute
en teneurs Fsup dépasse l'autre en pourcentage c'est-à-dire:

F P > F r P r (30)* sup' sup ' l ini * ini v '
où Psup et Pinf sont les proportions de chacune des distributions. F ne respecte

pas forcément une loi log-normale. De nouveau, il est préférable alors de

contourer ces zones anomales. Si celles-ci sont trop étendues, on tente une
nouvelle interprétation pour dégager un seuil plus élevé. On sera particulièrement

attentif à la répartition spatiale de la distribution supérieure, afin d'établir
s'il y a des corrélations de sites pédologiquement, géologiquement, hydro-
géologiquement, etc., particuliers avec cet ensemble de valeurs.

2.7. Discriminer

Les traitements décrits plus haut peuvent être appliqués en réduisant le nombre
d'échantillons, c'est-à-dire en imposant des critères de sélection. On pourra,
par exemple, ne travailler que sur un environnement particulier ou ne traiter
les données qu'au-dessus d'un certain seuil, ou avec la présence d'un seul
élément si on en analyse plusieurs à la fois, ou encore effectuer des seuillages
croisés entre éléments.

3. Autres outils

3.1. Evaluation quantitative des anomalies

Cette méthode est utile en prospection minière et pour la quantification de
l'ampleur de pollutions. Elle est une aide au choix des meilleures cibles (figure

13, Barbier 1989). Elle consiste à mettre en regard le tonnage par mètre
d'approfondissement ou simplement la teneur tj (ou tonnage dans le premier
mètre de sol) avec la surface. Cela est particulièrement utile pour comparer le

potentiel des anomalies; en effet, certaines anomalies peuvent apparaître
comme assez vastes, mais d'autres, plus petites, peuvent s'avérer plus importantes

et il peut être intéressant de savoir à quelle teneur l'une devient plus
importante que l'autre en « quantité de métal ». Une mesure comparable et le

tonnage/mètre est donné par:
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pxt,xS(trAt, t;+At) (31)

où p est la masse volumique du matériel analysé, tj la teneur et S(trAt, tj+At)
la surface occupée par les valeurs comprise entre trAt et tj+At. Pour un domaine

dont la teneur est supérieure à une teneur donnée, le tonnage par mètre est
donné par:

T(tl) P2ZtiSj(tl-Aui+At)
7=1

-jxAt)avec n entier de max 'min et f. t[
At

où tmax et tmin sont les teneurs maximale et minimale.

(32)

(33)
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Figure 13.-Courbes de teneurs-surface en Pb pour quatre minéralisations sulfurées en
France (d'après Barbier 1989). Les surfaces sont délimitées par les courbes
isanomales. On observe que l'anomalie de St Salvy est toujours plus importante en tonnage
que les autres. Par contre Rouez est une anomalie plus grande que Bodennec seulement
à partir de 60 ppm.

3.2. Le variogramme

Le variogramme est l'outil de base de la géostatistique (Journel 1989,
Matheron 1962, Lokosha 1991, Issaks and Srivastava 1989, Bruno et
Raspa 1994, Pannatier 1996). Il permet de mettre en évidence le lien spatial
pouvant exister entre des points de prélèvements. On le définit comme:
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1(h)-
2N(h)

N(h)I [z(d,)-z(d,+h)]2 (34)
i=l

où N(h) est le nombre de paires de points se trouvant à une distance h les uns
des autres, z(dj) la teneur et dj la distance (fig. 14) (ces notations sont
standard). De façon formelle le variogramme se note comme la variance de
l'accroissement de la valeur z(...) entre deux points séparés d'une distance h:

Var[z(dj)-z(dj+h)], ou bien comme l'espérance mathématique des accroissements

E[(z(dj)-z(dj+h))2].

A B
Yhyh)

Variance de z

Effet de
pépite

Zone
d'influence

Figure 14.-En A schéma d'un variogramme stationnaire et en B variogramme non
stationnaire avec effet de pépite.

De façon pratique, il faut faire des classes de distance et même déterminer
des directions de recherche. Le grand intérêt du variogramme est de définir
une zone d'influence, c'est-à-dire d'indiquer jusqu'à quelle distance les
variables sont corrélées, ou à partir de quelle distance les variations deviennent

aléatoires. Plusieurs variogrammes calculés dans différentes directions
permettent aussi de mettre en évidence d'éventuelles anisotropics, sous réserve

de l'hypothèse de stationnante. Le variogramme est égal à la variance
lorsqu'on est en dehors de la zone d'influence (cas stationnaire). En d'autres
termes lorsque l'espace a les mêmes propriétés partout, on obtient un plateau à

partir de la zone d'influence. Dans certains cas, le variogramme présente une
variation de pente tout en continuant d'augmenter: on est alors en présence
d'une dérive régionale (cas non stationnaire). Le comportement à l'origine du
variogramme est important mais difficile à obtenir, car il faut des prélèvements

rapprochés. Lorsque le variogramme n'est pas nul à l'origine, une
teneur supérieure à zéro peut directement jouxter une teneur nulle: c'est l'effet
de pépite (en environnement, l'exemple typique est une dispersion de particules

polluantes).
Le variogramme est complété par la covariance spatiale et le corrélogram-

me. La forme du variogramme donne de précieux renseignements sur la maille
d'échantillonnage qui doit être en tout cas inférieure à la zone d'influence,
sinon les points de mesure n'appartiennent en moyenne plus à la même
anomalie. En réduisant la maille de prélèvement on augmente la précision,
puisque la variance va diminuer depuis le palier du variogramme jusqu'à
l'effet de pépite. Il faut chercher si le variogramme présente plusieurs structures,

comme par exemple un plateau intermédiaire. Il faut remarquer que le
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variogramme peut montrer, entre autre, la taille de l'anomalie étudiée, ce qui
est une information importante. Ceci peut se produire lorsqu'on effectue le
variogramme sur une zone riche, car alors le background n'est pas suffisamment

représenté.
Cet outil a pris un essor considérable dans le traitement des pollutions, dans

le but de définir les dimensions des anomalies et la corrélation spatiale des
teneurs élevées (Maignan and Maignan in press, Atteia et al. 1994, Flamm
1994, Webster and Oliver 1990).

4. Exemples

4.1. Exemples miniers

Nous avons analysé «à la main» des données géochimiques en cuivre (ppm),
qui proviennent d'une prospection géochimique minière systématique en
roches de surface dans la région désertique du Hoggar -Algérie du sud-
(Djeddou 1991). Les prélèvements ont été faits en moyenne tous les 20 m
selon des profils plus ou moins continus espacés de 250 ou 500 mètres. La
carte a été dressée par l'ajustement de séries de Fourier à deux dimensions
(programme utilisé par l'Institut de Géophysique de l'Université de Lausanne)
par la méthode des moindres carrés, ce qui explique que les très hautes valeurs
aient disparu (fig. 15). Ceci se justifie parce que les différents types de roches
assimilent de façon variable les éléments chimiques. Dans le cas présent le
lissage des valeurs est donc applicable. Les anomalies ne sont que partiellement
centrées et l'information n'est pas parfaitement homogène. On peut donc
s'attendre à avoir des anomalies sur-représentées. En fait, en pondérant par 1/2
le nombre de points, l'ensemble de la zone où les profils sont doublés
(formules 14 à 16), donc là où le nombre de prélèvements est deux fois supérieur
au reste de l'étude, on vérifie que l'histogramme n'est que peu modifié
(fig. 16).

Teneur
A/o^ Cu PPm

O

K/"
PJ/

A /»
i£ff

U

y-y

Figure 15.-Carte de géochimie de surface. Les lignes NE-SW indiquent les profils de
prélèvements qui sont espacés de 250 m dans la partie sud (d'après DJEDDOU 1991).
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Figure l6.-Histogramme en logarithmes des teneurs Cu ppm. On peut noter que les
caractéristiques en échelle linéaire ou logarithmique sont évidemment différentes. Les
formules 26 et 27 qui relient les moyennes dans les échelles normale et log-normale,
nous donnent les moyennes et les écarts types arithmétiques des deux distributions: irq

33, O"] 43 et m2 ~ 755, 02 ~ 2000 ppm. Ceci caractérise bien le background (le clar-
ke ou teneur moyenne de la croûte terrestre est de Cu=55 ppm) et les teneurs élevées
(distribution 2). On rappelle que la moyenne est toujours plus élevée que la médiane
dans une distribution log-normale; cela ne contredit pas le seuil choisi. L'histogramme
le plus clair est celui pour lequel on a pondéré les données par I/2, dans la zone délimitée

par un traitillé dans la figure 15. On voit que la même interprétation (histogramme
en traitillés) est valable au nombre de valeurs près. Remarquons que le nombre de

points considérés en échelle logarithmique est moins grand qu'en échelle linéaire car
les point de teneurs nulles (invalides) ne sont pas pris en compte.

L'histogramme logarithmique (fig. 16) présente une très nette asymétrie en
échelle log-normale vers les hautes teneurs et sa décroissance n'est pas régulière.

Nous pouvons supposer qu'il se compose de deux populations log-nor-
males. Le probability plot présente un comportement relativement linéaire
jusqu'à 80%, que représenterait une première distribution dont le poids est
estimé à 0.88 (88% de l'effectif total, fig. 17); c'est à cette valeur environ
qu'on observe en effet la plus grande courbure. Lorsqu'une des distributions
est dix fois supérieure à l'autre, le point d'inflexion est trop décalé, et de plus
nous ne sommes plus en présence d'un cas purement log-normal. A l'aide de
l'histogramme, nous avons estimé les moyennes et les variances des distributions.

La plus importante a une moyenne de 3.0 In (Cu ppm) et un écart type
de 1. La seconde une moyenne de 5.5 et un écart-type de 1.5 In (Cu ppm).
Avec ces informations, on peut construire le probability plot simulé.

Après avoir mis en évidence ou créé deux distributions, il faut trouver un
seuil. La distribution 2 domine au-dessus de 150 ppm environ (5 In (Cu ppm)).
Cela représente 10% des données, ce qui est considérable, et occupe une trop
grande surface. La distribution étant étalée, il est préférable de considérer
l'ensemble des valeurs lorsque l'influence de la première distribution est qua-
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Figure I7.—Probability plot de l'histogramme de la figure 16. On observe une bonne
concordance entre la courbe réelle et la simulation. Le poids des deux distributions a été
en partie choisi à l'aide de l'histogramme simple, car le point d'inflexion ne correspond
à rien sur le probability plot. C'est le point de plus grande courbure qui a été choisi.

siment nulle. Cela se produit autour de 500 ppm (6.2 In (Cu ppm)), et représente

5% des échantillons. La répartition des zones ainsi définies sur la carte
est assez satisfaisante, car elle met en évidence quelques zones anomales bien
individualisées, de 200 m à plus d'un kilomètre d'extension, dimensions tout à

fait raisonnables pour l'implantation de sondages à la tarière, par exemple.
Naturellement, les données géologiques vont aussi intervenir dans le choix des
sites de sondage. Ces zones présentent une grande probabilité de concentrations

élevées provenant de processus anormaux (minéralisateurs?). Le premier
seuil ne mettait en évidence qu'une grande zone étalée, qui ne permettait pas
de choisir des cibles précises pour les sondage.

L'interprétation ci-dessus est statistique, et on se pose la question de sa
signification génétique. La première distribution est censée représenter un
background, c'est-à-dire les valeurs normales des teneurs en cuivre dans cette
région. La seconde représenterait un apport dû à des roches plus riches en
cuivre et redistribué chimiquement dans les zones proches de ces roches.
D'autre explications sont envisageables. Si on suppose que la distribution
régionale de base est un peu plus faible et moins variable, on peut inférer que
l'asymétrie soulignée par un maximum local sur l'histogramme est plutôt due
à l'effet de zones à très haute teneur, qui auraient diffusé dans les zones
proches (fig. 7, 18 et 19); et comme la zone de diffusion est limitée, cela
expliquerait le maximum local de l'histogramme. Ce type de phénomène génère de
telles asymétries, même en échelle logarithmique (Jaboyedoff and Maignan
in prep.). On peut aussi observer qu'un profil au travers d'une anomalie est
assez proche de celui d'une diffusion.
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Figure l8.-Exemple d'interprétation de distributions dues à une diffusion et à un
background log-normal. La moyenne arithmétique de la distribution du background est
d'environ 20 ppm Cu et l'écart type de 10 ppm Cu. C'est peu, mais si on considère que
les teneurs au-dessus de 50 ppm sont inexistantes, il s'agirait d'un background sans
aucun effet de l'anomalie, ce qui n'est pas le cas de l'interprétation précédente. Le reste
proviendrait de l'addition du background et de la diffusion des zones riches, qui
représentent environ 30 à 40% des échantillons.

Il importe peu que, dans un premier temps, les populations possèdent ou
non une « réalité » génétique, car cette méthode permet de trouver des critères
de choix simples à partir des données et non pas à partir de choix préétablis.
Par la suite, une identification des populations dans un sens génétique permettra

de valider ou non les hypothèses faites à partir des statistiques, et par là de
tenter une hiérarchisation des phénomènes. Dans l'exemple précédent il n'y a

pas de différences majeures entre les deux interprétations, dont les populations
jouent essentiellement le même rôle, bien que les valeurs soient légèrement
différentes.

4.2. Un exemple de variogramme

L'exemple qui suit montre les difficultés liées à l'échantillonnage et au calcul
pratique d'un variogramme. Nous avons calculé le variogramme (formule 34)
pour les teneurs en cuivre (ppm) en géochimie de roches représentées à la
figure 20. Il a été effectué parallèlement aux profils avec une tolérance de 5° et
un pas de 75 m pour une tolérance de 10 m. D'emblée, on s'aperçoit qu'il n'y
a pas de stationnarité. En effet, sur les 2000 premiers mètres de portée du
variogramme sa valeur ne fait qu'augmenter. Ceci est en principe dû à une
tendance régionale. Ici, les anomalies sont importantes par rapport à la surface
de l'étude et elles forment un «îlot» dont le diamètre dépasse localement les
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3 km. Les fluctuations de cette dérive sont vraisemblablement dues aux zones
dont la teneur est supérieure à 300 ppm Cu, car lorsque h est égal à la distance
séparant deux maxima de ces zones, le variogramme diminue. La diminution
rapide au delà de 2000 m suggère un effet de bordure: en effet le centre de
l'anomalie principale se trouve à 2 km du bord de l'étude et son importance
diminue alors très vite. Les autres variations doivent être liées au même type
de problème ou au fait que les profils ne sont pas tous continus, donc qu'il y a

un problème de tolérance. A 3500 m environ, on ne perçoit plus que les variations

de background.

4.3. Exemple de traitement de pollutions

L'exemple proposé provient de données collectées par le laboratoire cantonal
d'agronomie de Jussy GE (Célardin et al. 1992, fig. 21). 102 sites ont été
analysés (grande culture: 65, prairie: 15, vigne: 9, forêt: 9, arboriculture: I,
culture maraîchère: 1 et réserve naturelle: 1) sur quatre niveaux différents (0-
20, 20-40, 40-60, 60-80 cm), mais tous n'ont pas toujours été analysés (102,
101, 95, 73). Les méthodes d'analyse sont décrites dans Célardin et al.
(1989). Parmi ces données nous avons choisi les teneurs en zinc.
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Figure 21.-Carte des teneurs Zn établie pour le niveau 1 par la méthode d'inverse
distance d'ordre 2. L'effet de pépite important du variogramme autorise cette méthode

pour la représentation. Le rayon de recherche pour l'interpolation est de 2500 m et la

grille carrée possède un pas de 250 m et 6 points au maximum sont utilisés. On constate
les effets de bord inhérents à toute interpolation. On note les grandes structures du

background (voir texte).
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Enumérons quelques-unes des propriétés du zinc sans entrer dans les détails
du comportement de cet élément dans les sols. C'est un oligo-élément chalco-
phile (tendance à former des liaisons covalentes) dont la teneur moyenne dans
la croûte terrestre est de 70 ppm. L'ordre de grandeur des teneurs dans les sols
est identique et le domaine de variation d'environ 10-300 ppm. Les plantes
manquent de Zn lorsqu'elles en contiennent moins de 20 ppm et la teneur est
toxique lorsqu'elle dépasse 400 ppm; pour les animaux le zinc est toxique s'ils
en contiennent plus de 1000 ppm (Bolt and Bruggenwert 1976).

La quantité et la mobilité du zinc sont affectées par plusieurs facteurs. C'est
essentiellement le pH qui contrôle sa mobilité. D'une façon générale, la
solubilité du zinc décroît avec le pH, d'environ 100 fois par unité (Asrarul
Haque and Subramanian 1982). Dans les sols, le zinc, selon Iyengar et al.
(1981), se présente sous différentes formes: adsorbé échangeable ou non
(oc 4%), lié à la matière organique (°c 2%), associé aux hydroxydes de Mn
(»c 2%), associé aux hydroxydes d'Al et Fe (°= 24%) et 68% sont résiduels,
c'est-à-dire essentiellement insérés ou intimement associés aux minéraux de la
fraction argileuse.

Le stock de zinc utilisable par les plantes provient essentiellement de la
fraction échangeable et de la matière organique. De faibles pH provoquent la
libération du zinc associé aux hydroxydes (Fe, Mn), et favorise sa lixiviation:
elle est observée dans les horizons superficiels des sols forestiers acides du
canton de Genève alors qu'elle ne l'est pas dans les sols plus alcalins, où le
lessivage est moins intense (Célardin et Chatenoux 1990).

Une part importante de zinc dans les sols peut avoir une origine anthropique.

Par exemple, certains engrais phosphatés peuvent contenir jusqu'à
0.1% de Zn (Wedepohl 1969), cet élément peut même être ajouté comme
nutriment (Troeh and Thompson 1973).

En raison du nombre élevé de variables chimiques qui contrôlent le

comportement du zinc dans les sols, bien qu'un petit nombre prédomine, on
supposera qu'on peut obtenir pour le background une distribution log-normale
(paragraphe 2.4): ceci est conforme aux observations faites dans le Jura. De
plus le zinc possède un comportement géochimique relativement différent des

autres éléments qui se regroupent par affinités (Webster et al. 1994). Il
semble donc cohérent de supposer que le fond géochimique est de type log-
normal.

L'examen des histogrammes normes pour chaque niveau montre que les
populations sont assez similaires, avec une légère diminution avec la profondeur.

Seuls les niveaux 1 et 2 présentent des teneurs supérieures à 100 ppm.
Notons que certaines des données utilisées pour les histogrammes se trouvent
en dehors de la carte (fig. 21 et 22), elles ont tout de même été utilisées vu le
nombre relativement restreint d'échantillons.

L'examen du probability plot du niveau 1, en échelle logarithmique,
montre clairement une population qui suit une distribution log-normale (figure
23). Celle-ci peut être attribuée à un bcickgoitnd; quelques valeurs plus élevées
n'en tont pas partie (voir paragraphe 2.5). Ainsi on peut, à partir du probability

plot, déduire les caractéristiques de la distribution du fond géochimique,
dont la moyenne ln (Zn ppm) vaut 4 et l'écart type 0.25. En échelle linéaire on
obtient respectivement 56.3 ppm et 14.3 ppm Zn (tab. 1). On constate qu'il
existe une population anomale au-delà de 4.6 ln (Zn ppm), c'est-à-dire qu'au-
dessus de 100 ppm plus des deux tiers des données sont anomales. Si on ne
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Figure 23.-Probability plot de ln (Zn ppm) du niveau 1. La tendance log-normale du

background est assez claire. La modélisation est effectuée avec un poids de 97% pour le

background (1) et 3% pour la distribution anomale (2).
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Tableau 1-Paramètres statistiques des populations des différents niveaux. Ceux du
niveau 1 sont recalculés pour les teneurs inférieures à 100 ppm Zn et comparés à la
population déduite du probability plot.

Moyenne Ecart type Moyenne Ecart type Coefficient

arithmétique arithmétique logarithmique logarithmique d'asymétrie
Niveau 1 60.8 35 4.02 0.36 1.78

Niveau 2 57.3 32.5 3.97 026 1.91

Niveau 3 49.1 12.1 3.86 0.26 -0.17
Niveau 4 49.1 10.6 3.87 0.22 -0.0.3

Niveau 1 < 100 ppm 55.0 14.0 3.97 0.26 0.01

Valeur de la

population déduite 56.33 14.3 4.0 0.25 0

(background niveau 1)

tient pas compte des données élevées on s'aperçoit que les caractéristiques de
la distribution résultante sont très proches de la distribution log-normale
déduite à l'aide du probability plot (tab. 1). Il existe donc des teneurs
anomales, dont on ne connaît pas le type de distribution vu le nombre restreint de
données. On peut néanmoins tenter de l'approcher à l'aide d'une distribution
log-normale de moyenne 5.5 ln (Zn ppm) et d'écart-type de 0.8 ln (Zn ppm).
La simulation obtenue est bonne (fig. 23). Il faut remarquer que pour les
faibles valeurs, même si en quantité cela est négligeable, la population anomale

devient plus importante que l'autre, ce qui est gênant. Par conséquent on
suppose que l'approximation faite ici n'est valable que pour les teneurs sufi-
samment élevées.

Il existe donc clairement une source autre que le background dans la partie
superficielle, qui est probablement d'origine anthropogène comme l'ont souligné

Célardin et al. (1992). La légère différence qui existe entre les niveaux
supérieurs (fig. 22 et tab. 1 même «nettoyés» de leurs teneurs anomales, et
les niveaux inférieurs provient vraisemblablement du fait que les échantillons
qui sont issus des cultures sont en plus grand nombre que ceux provenant des
forêts qui présentent un enrichissement vers le bas (Célardin et Chatenoux
1990, Landry et Célardin 1988). La différence entre les teneurs des bois et
des cultures n'est pas suffisante pour provoquer une bimodalité des teneurs, ce
qui, vu le nombre restreint d'échantillons, nous a autorisés à tous les traiter
ensemble.

Les points anomaux qu'on observe sur la carte des teneurs du niveau 1

(fig. 21) ne permettent pas de définir l'étendue des anomalies. Elles ne doivent
pas dépasser un kilomètre de diamètre, et il faudrait donc resserrer la maille à
ces endroits. Par contre, un variogramme effectué uniquement sur les valeurs
inférieures à 100 ppm montre un léger lien jusqu'à 2500 m avec un fort effet
de pépite. C'est bien approximativement le rayon des zones de teneurs légèrement

plus élevées au sein du background. On ne peut pas juger si les valeurs
du background sont légèrement enrichies par rapport aux teneurs naturelles.
Dans le Jura (Atteia et al. 1994), la teneur moyenne du zinc est de 78.5 ppm
et l'écart type de 38.5 ppm (en logarithme naturel la moyenne vaut 4.3 ln (Zn
ppm), l'écart type 0.18 ln (Zn ppm) et le coefficient d'asymétrie 0.28). Nos
valeurs ne sont donc pas très élevées. En fait les valeurs élevées du
background semblent associées à la molasse chattienne et les valeurs basses aux
alluvions. L'apport extérieur de zinc, s'il existe, est tout à fait raisonnable au
regard des normes OSOL (limite supérieure: 200 ppm). On peut considérer
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qu'au-delà de 100 ppm l'essentiel des valeurs sont liées à des processus
anormaux, et par conséquent dans le cas d'une réhabilitation de site, qu'il faudrait
revenir au-dessous de cette valeur.

Notons que dans le cas de pollutions par appauvrissement des teneurs, ce
qui est envisageable pour le zinc qui est un oligo-élément, le problème peut
être traité de la même manière mais l'échelle des teneurs est inversée.

5. Mise en œuvre informatique

Au niveau d'une analyse extrêmement simple déjà, des descriptions statistiques

et des représentations cartographiques élaborées peuvent être aisément
obtenues sur PC.

Tout en étant simples d'utilisation, ces programmes performants sont
disponibles et utilisables avec un minimum d'apprentissage. Il faut néanmoins
insister sur la nécessité de comprendre les méthodes, afin d'en choisir une
adéquatement, et de pouvoir juger les différences de résultats qui en découlent.
De plus, certains de ces programmes ne couvrent qu'une partie de la
problématique, et il ne faut en aucun cas utiliser des paramètres par défaut, si l'on
n'a pas réalisé les étapes précédentes d'analyse.

5.1. Statistiques spatiales

Le module S+© spatial statistics permet d'effectuer les investigations de

statistiques spatiales au niveau des méthodes déterministes, de la variographie, et
de l'estimation.
La répartition spatiale des prélèvements est caractérisée de manière quantitative

par:
-la statistique des plus proches voisins point à point: pourcentage de points

par rapport à l'ensemble, en fonction de la distance de voisinage,
-la statistique des plus proches voisins entre points de prélèvement et

nœuds d'une grille,
-le nombre de points de mesure par unité de surface, ou intensité, à

représenter sous la forme d'une carte raster,
-le nombre de mesures à une distance inférieure à d par rapport à une

mesure spécifiée, pondéré par l'intensité (fonction K de Ripley),
-les indices de Moran et de Geary pour mesurer le niveau de significativité

de l'autocorrélation.
En ce qui concerne la démarche géostatistique, les quatre démarches de

base successives sont:
-l'estimation de variogrammes et corrélogrammes expérimentaux, avec

compléments des nuages variographiques,
-l'ajustement des variogrammes par des modèles théoriques,
-l'estimation par calculs BLUE (Best Linear Unbiased Estimator) de kri-

geage, avec ou sans dérive; la présence éventuelle d'une dérive étant mise en
évidence par median polishing par exemple,

-les simulations, afin de reconsituter la variabilité des observations parmi
l'ensemble des résultats interpolés.
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Certains types de données ne se prêtent pas à interpolation et doivent être
représentés avec une valeur constante sur une zone définie. Parmi ces lattice
data citons bien entendu les indications de la carte géologique, où il n'est pas
question d'interpoler entre granite et calcaire, mais d'étendre la valeur « granite

» et la valeur « calcaire » à la zone dont le périmètre a été défini. *

Les calculs d'autocorrélation et de régression spatiale sont adéquatement
utilisés pour la valorisation de ce type de données.

5.2. Représentation cartographique

Surfer© permet d'établir des cartes d'interpolation, et de les représenter soit
en cartes planes d'isolignes, soit en perspective 3-D. Les cartes d'interpolation
sur une maille seront représentées telles quelles, ou sur un fond de carte digitalisé

représentant des limites administratives ou des caractéristiques topographiques.

On prendra garde de calculer préalablement les variogrammes dont
les paramètres (modèles, effet de pépite, zones d'influence, paliers, dérive,
anisotropie) sont à indiquer pour effectuer l'interpolation sur une grille par kri-
geage.

Les différentes méthodes déterministes d'interpolation à disposition:
minimum curvature, nearest neighbor, polynomial regression, radial basis
functions (quadric, cubic spline, etc.), Shepard's method (inverse de distance
améliorée par moindre carré) et triangulation fourniront des cartes différentes
de celles établies par krigeage, où l'on aura pris soin de fournir une indication
correcte du modèle de variogramme.

5.3. Corrélations spatiales, estimations et simulations

Le logiciel GSLIB (Deutsch and Journel 1992) est utilisable avec l'élaboration

d'un court fichier de paramètres, et comporte une grande panoplie de
méthodes géostatistiques. Les outputs peuvent être visualisés sur des
imprimantes habituelles, par exemple à l'aide du programme de post-processing
Upfile.

Les nombreux programmes GSLIB couvrent les aspects de:

-variographie,
-krigeages: estimator BLUE (Best Linear Unbiased Estimator), avec ou

sans dérive, krigeage factoriel, cokrigeage, krigeage d'indicatrices, et diverses
variantes,

-simulations: simulations gaussiennes séquentielles, simulation par indicatrices,

recuit (annealing).

6. Conclusion

La finalité de cet article est de souligner l'intérêt des statistiques univariées
pour l'identification d'anomalies géochimiques, du fait notamment de leur
mise en œuvre très rapide à l'aide de programmes informatiques (Spss©,
Statlab©, S+©, GSLIB et Geoeas). On peut, grâce aux outils statistiques,
dégager des tendances avant d'élaborer des hypothèses sur les processus naturels

(fig. 24). Puis une fois ce travail effectué, il faut s'interroger sur la signifi-
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Figure 24.-Organigramme simplifié de la démarche menant à l'identification d'anomalies

géochimiques essentiellement à l'aide d'outils statistiques univariés.
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cation des populations statistiques en termes de processus physico-chimiques,
une telle démarche pouvant induire des modifications dans la définition des

populations. La structure induite par une analyse statistique constitue donc une
base pour poursuivre d'autres investigations. Par ailleurs, dans les conditions
actuelles où les laboratoires automatisés et les bases de données sur Internet
ou CD-Rom nous submergent de données, il faut saisir rapidement les faits
importants dans ce foisonnement d'informations: là aussi, les indicateurs uni-
variés résumant l'information sont utiles. Certaines techniques multivariées,
non abordées ici, telles que l'analyse factorielle, s'avéreront utiles. La vario-
graphie est un outil important, elle permet en effet d'évaluer comment et
jusqu'à quelle distance les prélèvements sont liés entre eux (zone d'influence),
point capital lors de la définition de la maille de prélèvement.

Il est clair que cette panoplie d'outils rapidement et assez facilement
applicables est devenu un atout majeur pour analyser efficacement et utilement les
données géochimiques, quelle que soit leur origine. A l'heure où beaucoup
d'organismes, publics ou privés, voient leurs ressources se restreindre ou être
soumises à un contrôle beaucoup plus serré, il est évident que de telles
méthodes peuvent représenter une économie substantielle, en temps et en
argent, en permettant une sélection mieux assurée des meilleures anomalies, et
ceci dans différents contextes de recherches.
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