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d’anomalies géochimiques par statistique:
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Abstract. -JABOYEDOFF M., BAUCHAU C. et MAIGNAN M., 1996. Simple
statistical elements to identify geochemical anomalies: mineral exploration and
environnmental aspects. Bull. Soc. vaud. Sc. nat. 84.1: 73-108.

The present paper discusses some useful criteria to identify natural or anthropogeneous
geochemical anomalies. Such an identification can be done with simple univariate
statistical tools. First, simple statistical parameters are reminded. In order to determine
the applicability of the normal and log-normal distributions, the signification of those
distributions is discussed. The relation between the grades’ histogram shape and the type
of the anomaly and sampling support is emphasized. Histograms are considered to be a
good approximation of the true distributions, thus allowing the analyst to try an
identification of one or more populations with the probability plots. If an anomalous
distribution is detected, it is possible to define criteria to delineate zones where the
concentrations are abnormal. This approach is illustrated by examples. Its efficiency is
essentially due to its rapidity and well structured processes.

Key words: Geochemical anomalies, mineral exploration, pollutions, statistics, geostatis-
tics, geochemical threshold.

Résumé —JABOYEDOFF M., BAUCHAU C. et MAIGNAN M., 1996. Eléments
simples d’identification d’anomalies géochimiques par statistique: aspects miniers et
environnementaux. Bull. Soc. vaud. Sc. nat. 84.1: 73-108.

On présente un certain nombre de criteres permettant 1’identification d’anomalies
géochimiques tant naturelles que d’origine anthropogeéne, a ’aide d’outils statistiques
univariés simples. On rappelle la détermination des parameétres statistiques de base, puis
la signification des lois normale et log-normale afin de cerner leur champ d’application.
On souligne les relations qui peuvent exister entre 1’histogramme des teneurs et le type
d’anomalie étudiée, la maille et la forme du support des prélevements. On étudie les
histogrammes qui sont supposés étre une approximation des distributions, dans le but de
savoir s’il y a plusieurs populations a I’aide de «probability plots». Si I'on obtient une
population anomale, on peut définir des criteres pour délimiter des zones générées par
des processus de concentration anormaux. Au travers d’exemples, on montre la
problématique liée a cette approche et son efficacité, essentiellement due a sa rapidité et
a la démarche structurée. Une bréve description de logiciels pertinents est également
effectuée.

Mots clefs: Anomalies géochimiques, prospection miniére, pollutions, statistiques, géo-
statistiques, seuil géochimique.

|. INTRODUCTION

«Comment identifier une anomalie géochimique?» est une question certaine-
ment réactualisée. En effet, si elle reste essentiellement posée aux géologues
prospecteurs, elle devient aussi d’actualité pour le géologue qui s’occupe
d’environnement et plus particulierement de pollutions. Pour les premiers, la
détermination de I'importance, de la valeur, d’une anomalie géochimique est
primordiale. La géochimie de sols précéde la phase, coliteuse, des forages et
doit en fournir les premires cibles, si possible de haut potentiel. C’est pour-
quoti il importe de disposer de critéres de sélection pratiques et fiables afin de
choisir les anomalies les plus prometteuses, en évitant ainsi un gaspillage de
metres de forage et donc des dépenses inutiles. Il en va de méme pour I’éco-
logue de pollutions, bien qu’ici les engagements de dépenses soient en général
sensiblement moindres, si I’on ne fore pas.

Nous nous sommes donc interrogés depuis de nombreuses années sur la
définition des anomalies géochimiques, par le biais notamment d’un enseigne-
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ment de la prospection miniere par simulation. Ces simulations furent déve-
loppées par R. Woodtli a I'Université de Lausanne, puis avec la collaboration
de M. Vannier a I’Ecole des Mines de Paris et par la suite avec celle des
auteurs (VANNIER et WOODTLI 1992, BAUCHAU et JABOYEDOFF 1990, BAUCHAU
et al. 1993). Elles ont permis d’expérimenter, par simulations, des méthodes et
des stratégies de détection d’anomalies géochimiques et d’en dégager les
points essentiels. D’autre part le traitements des données de pollutions fait
maintenant partie de cette démarche générale (MAIGNAN and MAIGNAN in
press, POURCHET ef al. in press, KANEVSKI et al. in press).

L.’ objet pratique du présent article est d’indiquer des méthodes simples per-
mettant la détection d’anomalies géochimiques, c’est-a-dire de valeurs élevées
qui peuvent représenter une population anomale. Du point de vue de la géolo-
gie miniere, on débouche ensuite sur des indices et dans le cadre des sciences
de I'environnement sur des pollutions, par exemple. Dans ce dernier cas, on
suppose que les teneurs anomales appartiennent a des populations engendrées
par des processus de concentration anormaux ou par une source anormale. 1l
faut voir la le contraire de la notion de seuil défini a priori. Les teneurs ano-
males peuvent n’étre alors qu’une expression exceptionnelle due a la variabili-
té d’un processus normal. Les concentrations exceptionnelles -par rapport a un
fond géochimique (background)- liées a des minéralisations, ou bien encore
‘les pollutions, se caractérisent justement par la présence d’une ou de plusieurs
populations anomales.

D’autre part, dans le cas des pollutions, la recherche de la population for-
mée par le fond géochimique est importante, car elle indique la distribution
des teneurs a atteindre lors de la réhabilitation complete d’un site pollué.

Dans la pratique, on est souvent confronté a un grand nombre de données
géochimiques ou de pollutions distribuées dans ’espace, en général simple-
ment dans un plan. Il faut donc, pour commencer, définir quelles teneurs sont
anomales, soit un seuil. Si le seuil est fixé a priori, et cela peut étre le cas lors-
qu’il existe des réglementations en termes de pollution, une réponse partielle
est donnée, sauf en ce qui concerne la taille minimale de I’anomalie (tonnage,
volume, surface) pour la considérer comme «dangereuse». Méme dans ce cas,
du fait que les normes OSOL, par exemple, définissent des teneurs limites,
mais pas le support volumétrique, des investigations complémentaires sont
recommandables. Au contraire, si I’on cherche a mettre en évidence des pro-
cessus exceptionnels, ’emploi des statistiques univariées permet souvent de
dégager rapidement des populations et des seuils au-dessus desquels les popu-
lations anomales sont dominantes. Il faut analyser la signification des popula-
tions du point de vue de leur répartition spatiale, et il n’est pas toujours simple
de lier une population statistique donnée a un processus physico-chimique par-
ticulier. Les processus de diffusion ou autres ayant engendré une anomalie
n’étant généralement pas connus et mesurés a priori, il y a lieu de compenser
’absence d’un modele déterministe par une approche statistique. De plus, la
complexité spatiale d’un processus de diffusion, par exemple, justifie une
démarche statlsthue en complement d’un eventuel modele déterministe. Nous
exposons ici quelques principes et méthodes, ainsi que les problemes liés a ces
méthodes. Des exemples sont donnés pour souligner certains problémes. La
démarche adoptée dans cet article suit intentionnellement une approche
«manuelle», c’est-a-dire faisant plus appel a la réflexion qu’a la mécanique
informatique.



1.1. Représentation des données

Le document de base est une carte des teneurs (cf. par exemple figures 15,
p. 94 et 21, p. 99), car elle permet de voir immédiatement s’il y a des zones
anomales (a teneurs élevées) et localisées. L’analyse proprement dite des don-
nées s’effectue a partir d’histogrammes en échelles linéaires ou logarithmiques
et de statistiques simples (DAvis 1986, JOURNEL 1989, MARSAL 1987, RUEGG
1989, SAPORTA 1990, VENTSEL 1987) telles que les estimations «non-biaisées»
m de la moyenne i d’une variable aléatoire X et S2 de sa variance (moment
d’ordre 2) et de I’écart type S sont:

l =Ny,
Moyenne =m= —— ) X, (1
le i=1
. 1 i=Nyot 2
Variance = 82 = ——— % (x, -m (2)
(Ntot _1) i=l1 ( r )

ou N, est le nombre total d’échantillons. Plus généralement, la moyenne m
est 'estimation de I’espérance mathématique notée E[X]. De méme la varian-
ce S2 est I’estimation de I’espérance mathématique du moment d’ordre 2 cen-
tré E[(X-m)?Z]. On rencontre fréquemment les autres moments statistiques qui,
de fagcon générale, sont notés:

=Ny,
Moment d’ordre k = m, = 1 > (x,- - m)k 3)
i=1

to!

Le coefficient d’aplatissement, appel€ aussi kurtosis a une constante pres, et
le coefficient d’asymétrie (skewness) sont définis comme:

Coefficient d’asymétrie = —-;
coefficient d’aplatissement —: -3 = kurtosis - 3 (4)
S

Le coefficient d’asymétrie est positif si la distribution s’étale plus du coté
des valeurs élevées et inversement; il est nul pour des distributions symé-
triques. On soustrait 3 dans le calcul de I’aplatissement pour obtenir zéro dans
le cas d’une distribution normale. Si I’aplatissement est positif, ¢’est que la
distribution est plus aplatie qu’une gaussienne.

1.2. Des données aux distributions

L’analyse attentive d’un histogramme en regard des paramétres décrits ci-des-
sus permet souvent de mettre en évidence les tendances et les éventuels sous-
ensembles. Ces ensembles peuvent étre modélisés par des distributions. On
note généralement la fonction de distribution (= I’histogramme) f(x) et la fonc-
tion de répartition (= I’histogramme cumulé) F(x) ol x représente les valeurs
prises par une variable aléatoire X. Les histogrammes sont des estimations des
fonctions de distribution et de répartition. La distribution est généralement une
densité de probabilité, c’est pour cela qu’une probabilité doit étre notée
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f(x)Ax. Remarquons que la fonction de distribution est la dérivée de la fonc-
tion de répartition F(x) (fig. 1):

F’(x) = f{(x) ou encore F(x)= [ f(x)dx (5)

d’autre part: F(x),,, =1 ou 100% (6)

F(x) est équivalent a la probabilité P(X<x;) que la variable X soit inférieure a
X; de sorte que:

X<x;

P(X <x;)= F(x;) ~ (7)

tot
ou Ny.,; est le nombre des valeurs inférieures a x;. 1l faut choisir des classes
de valeurs Ax pour pouvoir visualiser I’estimation de la fonction de distribu-
tion, I’histogramme, c¢’est-a-dire la probabilité que la variable X prenne une
valeur comprise entre x; - Ax/2 et x; + Ax/2:

P(x; -ax < X <x; +ax) = f(x;)Ax (8)
avec
+0 i=Nyot

[f(x)ax évaluépar X f(x)Ax=1 ou 100% 9)
—0 i=

en pratique on fait I’approximation:
N(x; = %Ax,x; +'2Ax)
N(ot

ou N, représente le nombre total de données, N(x; - Ax/2, x; + AX/2) le
nombre de données appartenant a une classe. Ou si I’histogramme est construit
en nombres on utilise:

f(xi)Ax ~ (10)

Niof (x)Ax = N(x; - Valx,x; + %24x) (11)

Souvent, on examine I’histogramme simple et I’histogramme cumulé, puis
celui-ci sur papier de probabilité (probability plot). Ce dernier s’ apparente a
un histogramme cumulé dont I'échelle des fréquences a été modifiée; de ce
fait, si I’on traite un ensemble présentant les caractéristiques d’une loi normale
(en général on utilise I'hypothese de normalité ou de log-normalité), les points
s alignent sur une droite, la droite de Henry (fig. 2). En fait, il s’agit de la pro-
jection des pourcentages cumulés de la loi normale ou de la loi log-normale
sur un axe des valeurs normées qui représente I'échelle des fréquences.
L’avantage de cette représentation «cumulée» est qu’elle associe a chaque
valeur observée x; de la variable X une valeur de F(x;). Ce n’est pas le cas de
I’histogramme simple qui est compos€ de classes. Une fois 1’ajustement d’une
loi réalisé, quelle que soit la méthode, un test du 2 est toujours possible, mais
n’est pas nécessaire dans la phase exploratoire.
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Figure 1.-Dans la pratique, la fonction de répartition est proche de 1’histogramme
cumulé et la fonction de distribution de I"histogramme. Le schéma présente la termino-
logie généralement utilisée pour décrire un histogramme. Le mode est la classe la plus
représentée et la médiane est la valeur qui divise la distribution en deux parts égales de
50% des observations.
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Figure 2.—On illustre ici la construction d’un «probability plot» de type normal (voir
texte). (A) Transformation des valeurs de la fonction de répartition sur I'échelle des
valeurs. En B un histogramme proche de la loi normale. Les points représentent cet his-
togramme sur un «probability plot» (C). Sur I’échelle des fréquences, on reporte la
valeur cumulée 62%, comme s’il s’agissait d’une loi normale, et la teneur 45 sur
l’éA(:helle' des valeurs. Le résultat est une droite si la distribution est normale. Il en va de
méme si on choisit une échelle logarithmique. On note la légere différence qui existe
entre les distributions normales suivant qu’on utilise directement la moyenne et I’écart
type de la population ou la droite de Henry. Les premiers sont calculés dans 1’espace
des fréquences simples et I'autre dans 1’espace cumulé. Les écarts types sont compa-
rables, ce sont les moyennes qui différent un peu. Il faut garder cette remarque en
mémoire lors des interprétations (d’aprés PAcE et CLUZEL 1968).
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1.3. Choix de classes des histogrammes: régle «empirique»

La mesure la plus simple de la dispersion des valeurs est 1’écart-type. Nous
proposons ici dans un premier temps d’utiliser la valeur (fig. 3):

Ax ~(de 06 @ 12)S (12)

ou Ax est la largeur des classes de I’histogramme et ou S provient de la formu-
le 2. En effet, si on veut que la classe la mieux fournie comporte approximati-
vement de 20 a 40% des données, on supposera avoir affaire a une distribution
de type normal (voir plus loin); sachant que I’accroissement pour 2 S est de
68%, la pente de I"histogramme cumulé est d’environ:

6g de 2 a4
;*:*—:sz[de 6 a 1.2]8 (13)
28 Ax

S’il y a asymétrie de I’histogramme, S peut étre plus grand que dans le cas
symétrique, de sorte que Ax augmente, et cette relation n’est plus nécessaire-
ment valable. On peut passer en échelle logarithmique si ce n’est pas déja fait.

A
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Figure 3.-L’examen de I'histogramme cumulé permet, a I'aide de sa plus forte pente,
de choisir la classe 1a mieux représentée, d’apres le principe énoncé dans le texte. Ici le
cas gaussien.

2. INTERPRETATION EN TERMES DE POPULATIONS SOUS-JACENTES
(INFERENCE STATISTIQUE)

2.1. Qu’est-ce qu’une anomalie géochimique?

Une anomalie géochimique est définie comme un ensemble de teneurs éle-
vées, par rapport a la moyenne, spatialement proches les unes des autres ou
plus simplement «contourables» d’un point de vue cartographique (fig. 4),
voire comme un sous-ensemble connexe.



80 M. Jaboyedoff, C. Bauchau, M. Maignan

Anomalie
/
O0O0O0O00O0O0 O 00O
OO0 000000 O 00O
Points _E,Q_o—@—e»oooo O 00O
anomaux ™ OO0 O0O0 000O0O0
O O 0O O0OOO\8e/0O00 0O
O 0 O0O000O0O000O0O0
O 00O O00O00000O0O0
Q0000000000000 O0

® Teneurs >ty O Teneurs < ty
Figure 4.—La notion de «contourable» est importante dans la définition d’anomalies, car
un point isolé n’est pas significatif. Il faut qu’une surface soit définie sinon il peut ne
s’agir que d’un point aléatoire. Dans le cas d’un point unique, il faut effectuer des préle-
vements plus rapprochés pour déterminer s’il s’agit d’une anomalie. La notion d’ano-
malie est aussi dépendante de I'échelle de travail.

Des valeurs élevées non contigués ne constituent pas une anomalie, elles
peuvent étre aléatoirement distribuées dans I’espace. La notion d’anomalie est
fortement dépendante de 1’échelle a laquelle on travaille. Par exemple, des
anomalies d’une taille de 100 m recherchées avec une grille de préleévements
de 1000 m ne se manifesteront que par des points anomaux isolés, sans signifi-
cation spatiale. Mais I’existence de I’anomalie sera sans doute décelée avec
une maille inférieure & 50 m: on peut alors espérer qu’au moins deux préleve-
ments contigus appartiendront a la méme anomalie.

La notion d’anomalie implique nécessairement la notion de background (ou
fond géochimique), qu’on peut définir comme un ensemble de valeurs oscil-
lant autour d’une valeur moyenne (ou d’une tendance régionale), avec une
variabilité constante partout dans I’espace. On ne peut pas «contourer» de
zone a I'intérieur de cet ensemble de valeurs sur les données brutes. D autre
part, la notion de background peut aussi avoir une signification locale, par
exemple en présence d’une dérive régionale: la variance et la moyenne peu-
vent évoluer. On tente généralement de définir des anomalies par rapport a un
background: rapport anomalie/background.

Il faut nuancer la notion de « contourage », car il se peut que des valeurs
¢levées soient localisées mais pas contourables parce qu’il existe des valeurs
plus faibles entre les points anomaux. Il y a a cela plusieurs raisons. Dans un
exemple que nous analyserons au paragraphe 4.1, les teneurs en cuivre des
roches présentent de grande variations; en effet, certaines lithologies sont
beaucoup plus riches en cuivre que d’autres pour différentes raisons: altéra-
tions, minéralogie, etc. Une anomalie n’apparait alors que lors du lissage des
valeurs, opération nécessaire pour dresser une carte de teneurs. Du point de
vue des pollutions, on peut rencontrer le méme type de problémes lorsqu’une
substance est dispersée en grains. Si on dispose de suffisamment de temps, on
peut toujours trier les données suivant d’autres caractéristiques telles que
lithologie, autres €léments chimiques, matiere organique, argiles, etc., afin de
conditionner les investigations statistiques.
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2.2. Ensemble de données statistiques

Les teneurs géochimiques ne représentent qu’un ensemble limité d’échan-
tillons. On suppose presque toujours que les caractéristiques de cet échan-
tillonnage tendent vers celui de la population globale, c’est-a-dire de la popu-
lation qu’on obtiendrait si on connaissait compleétement, ou mieux, contini-
ment la zone étudiée (ergodicité). De sorte que la distribution (histogramme),
sa variance, sa moyenne, ses modes, etc. tendent vers celles de la population
globale, en conséquence de la loi des grands nombres.

Un ensemble de données est homogene, ou régulier, si les deux types d’his-
togrammes par classe et cumulé (échelles linéaires ou logarithmiques), sont
continus et que leurs dérivées sont « réguliéres » de part et d’autres d’un mode
unique pour I’histogramme simple. Dans ce cas, I'usage des probability plot
nous indique si cet ensemble respecte éventuellement une loi normale ou log-
normale.

Lorsque les histogrammes ne sont pas « réguliers » (c’est-a-dire qu’une
unique distribution ne permet pas d’interpréter 1’histogramme), on est amené a
diviser I’ensemble des données en plusieurs sous-ensembles. En présence de
plusieurs modes ou quand la dérivée ne suit pas une tendance réguliere, on
peut soupconner I’existence de plusieurs distributions et faire des hypotheses
quant a la normalité ou la log-normalité des distributions.

2.3. Le probleme du support

Pour interpréter des données spatiales par des statistiques univariées, 1l faut
veiller a ce que la maille de prélevements soit appropriée, que la zone étudiée
soit centrée et que la distribution de I’information soit homogene. Il faut donc
considérer les points suivants:

I.-La maille de la grille ou du profil de prélevements doit étre appropriée a
la cible recherchée. Dans un premier stade, on se contentera souvent d’une
maille l[égerement inférieure a la taille de la cible définie d’apres les objectifs
de teneurs et de tonnage (fig. 5 et 6). Mais cela ne permet pas nécessairement

Profil Géochimique
Variation locale du

» A bruit de fond (20)
8 Moyenne du
S | Seuil ou teneur espérée fond géochimique
}_
-+
Taille maximale

de la maille

\j

Distance
Figure 5.-Les dimensions de la maille de la grille de prélevements sont définies par la
forme, la taille et la teneur de I’'anomalie a détecter. Ici le mot grille décrit aussi des pro-
fils.
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de définir d’anomalies. Puis, une fois un point anomal localisé, on resserre la
maille (fig. 6). Cette fois, celle-ci devrait €tre inférieure a la moitié de la taille
de la cible. Le choix d’une grille ou de profils géochimiques doit étre adapté a
d’éventuelles anisotropies. Il est dispendieux d’avoir une grille carrée si
I’objet recherché est allongé. Il est important de consulter une carte géolo-
gique, pédologique, hydrologique, d’activité anthropogene, etc. si c’est pos-
sible, afin de pouvoir localiser les éventuels sites favorables a la recherche et
d’évaluer leurs formes et leurs tailles. On peut aussi utiliser une grille aléatoire
et/ou tester I’homogénéité par la dimension fractale afin de définir les zones
de basse densité d’information (FLAMM et al. 1994, LOVEIOY et al. 1986).

A B

\ ¢ Prélevements

et Contour de l'anomalie
recherchée a une
teneur seuil donnée

Figure 6.-Exemple idéalisé de choix d’un écartement et d’une orientation des mailles
de prélevement de sols (d’aprés ELLIOT and FLETCHER 1975). Si I'on recherche une ano-
malie elliptique (A) la maille est trop lache et mal orientée. En (B) maille optimale pour
une anomalie supposée circulaire de rayon r. Pour qu'un prélevement touche a coup sar
I"anomalie, la plus grande distance entre deux points successifs de la maille doit étre
¢gale ou inférieure au diametre du cercle (2r). Dans le cas elliptique il suffit de faire une
homothétie & partir du cas circulaire. (C) exemple de maille inadéquate dans la premiére
phase de reconnaissance: beaucoup de prélevement sont inutiles. Par contre, lors de la
phase suivante qui sert a définir une anomalie, une telle maille peut se justifier; si
::()[rll.entatlon est connue, on oriente alors la maille parallelement a "allongement de
ellipse.

2.—Pour interpréter des histogrammes, il faut prendre garde a ce que les
anomalies ne soient pas en bordure de la zone d’étude ou qu’elles ne soient
que partiellement reconnues, car la connaissance d’un background de part et
d’autre de I"anomalie est importante. Dans le meilleur des cas, il faudrait
méme que le domaine d’étude soit centré sur I’anomalie et de méme forme
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que cette derniere, c’est-a-dire dans un cas théorique qu’il soit circulaire ou
elliptique, pour ne pas sur-représenter le background dans les histogrammes
(fig. 7).
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Figure 7.—Effet de la forme du support sur la distribution des teneurs d’une anomalie
générée par un processus de diffusion, échantillonnée de fagon homogene, en A sur un
support circulaire et carré en B. L’effet se voit sur les faibles teneurs (grisé). Une distri-
bution des teneurs produites uniquement par diffusion est inversement proportionnelle a
la teneur en échelle linéaire (JABOYEDOFF and MAIGNAN in prep.)

3.—Le probleme de I’homogénéité est peut-étre le plus pervers, car on effec-
tue en général une campagne a maille lache afin de mettre en évidence des
points anomaux, puis on resserre la maille autour de ces points pour vérifier
s’il s’agit d’anomalies; de ce fait, la densité d’informations varie en fonction
des teneurs (fig. 8). Pour remédier a ce genre de problémes, on pourrait se
limiter aux zones a densité constante; malheureusement les contraintes écono-
miques font que les zones de background sont souvent a plus faible densité de
prélevements. On peut aussi supprimer des données afin que la densité soit
homogene. Une méthode courante, le declustering (description détaillée dans
Issaks and SRIVASTAVA 1989 et DEUTSCH and JOURNEL 1992), consiste a pon-
dérer les valeurs par I'inverse de la densité. Si on connait dans un domaine «j»
la densité p; et le nombre gj(x;) de prelevements dont les valeurs des teneurs
appartlennent 3 un intervalle centré sur X;, on obtient pour m domaines le
nombre N, de données corrigées contenues entre les valeurs x;-Ax/2 et x,+Ax/2
et en posant py, la densité désirée on obtient:
J=m q,' (xf)
Ne(x; + Ax < X <x; + Ax) = N (x;) = py, > =

4=1 J

d’ou si n est le nombre de classes de valeurs centrées sur les x;, le nombre total
corrigé vaut:

(14)
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I=n (]5)
N = Z]Nc(xi)
1=
et la probabilité est donnée par:
1 Nc (xi)
P(x; —Y2Ax < X < x; +Y%Ax) = f(x;)Ax » ———= Ax (16)
Nto!
4
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Figure 8.—Exemple synthétique de I'effet pervers di a la densité inhomogene de préle-
vements sur les histogrammes des teneurs. Les prélévements supplémentaires (carrés)
induisent une population artificielle. Si le fond géochimique était représenté on aurait
une classe [0-1] tres grande: en fait I’histogramme est proche d’un histogramme de dif-
fusion tronqué.

2.4. Lois normale et log-normale: distributions usuelles

Il est commode de comparer les histogrammes d’ensembles de teneurs géochi-
miques & certaines lois de distribution de référence. Les plus fréquemment uti-
lisées sont les lois normale et log-normale. En effet elles découlent de proces-
sus simples et sont souvent proches des observations. Mentionnons le théore-
me central limite (suivant I'énoncé donné dans VENTSEL 1987), pour com-
prendre I'intérét de ces deux distributions.

Théoreme central limite: Soient X,, X,, X,,..... X, des variables aléatoires
indépendantes de méme loi de répartition, d’espérance mathématique u
(moyenne) et de variance &2; lorsque n augmente indéfiniment, la loi de
répartition de la somme
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k=n
b= S (17)
(=1

tend vers la loi normale.

De facon intuitive, le théoréme central limite est facilement compréhensible
au travers d’un exemple (fig. 9). En présence d’un phénomene qui génére une
distribution de type tout ou rien, celle-ci a une forme de créneau. Si, par
exemple, la population d’origine ne prend que la valeur b, alors, apres
I’accomplissement du processus, la population a une probabilité unique dans
un intervalle [b-a,b+a] et en dehors la probabilité est nulle. La deuxieme fois
que le phénoméne se produira sur la population nouvellement formée, on
obtiendra un chapeau de base [b-2a,b+2a] avec des probabilités variables.
Puis, si ce phénomene affecte plusieurs fois de suite la population nouvelle-
ment créée, on obtiendra la distribution normale:

flrpo?) = #e'(x_”z)z (18)
’ s G\/Z[‘ 20-

ou x est la variable aléatoire, p la moyenne (espérance mathématique), 62 la
variance et f(x, 1, 62) la densit€ de probabilité. Il existe des formes de ce théo-
réeme ou la contrainte sur les lois de répartition est relachée: il a donc une por-
tée encore plus générale. Ce théoreme signifie que si plusieurs phénomenes
aléatoires indépendants ou faiblement liés s’additionnent, alors plus ils sont
nombreux, plus on s’approche de la loi normale. L’exemple classique en est le
tir dans une cible.

- A B

Distibution géneree par le
processus consideré sur une
distribution de valeur unique b.

2x 5x

I b I

7 5

a a
Figure 9.—Illustration graphique du théoréme central limite. b est la valeur unique prise
par I’ensemble des données avant que le' phénorr_léne n’affecte une fois (A) puis plu-
sieurs fois (2x, 5x et 10x) (B) la distribution. Ceci est formellement égal i des produits

de convolution successifs.

En géologie, des phénomenes d’agrégation devraient étre de type normal.
La loi normale s’applique par exemple a la quantité de silice dans les basaltes
ou les rhyolites (SIEGEL 1974). En général, les teneurs en métaux suivent plu-
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tot la loi log-normale, comme par exemple la géochimie des stream sediments
de zinc et cuivre du Guatemala (LEPELTIER 1969). La loi log-normale est plus
fréquente. Elle est la conséquence de phénomenes proportionnels. On rempla-
ce simplement dans la loi normale la variable aléatoire X par le logarithme de
la variable aléatoire Y, donc:

1
dx =—dy (19)
&
Dans un phénomene de type proportionnel, on sait que deux étapes succes-
sives sont reli€es par un coefficient €; et on peut alors écrire:

(¥, =¥;4)
(¥, =¥,.1)=%¢€,¥,, ouencore - . s =€, (20)
J-1

On considere alors les g comme des variables aléatoires, et si on répete n
fois le processus, on obtient"

Ji" i =y-0 _ Jingj 21)
=1

Jj=1 y_j—-]
Sin est trés grand, on passe au continu (y;-y; |)=dy et il vient:

y” dy
] f—— =Iny, —Iny, (22)
Yo y

de sorte que

Iny, =Inys +&; +8; + €3+ ccmenn... +€ (23)

est une somme de variables aléatoires a laquelle on peut appliquer le théoreme
central limite. La densité de distribzution log-normale est donnée par:

l (X—HL)
2 - .

X Wy 07 ) ——— 9
S(xpp.07) , o e 262

ou X represente les valeurs prises par la variable aléatoire X (X=In Y), p,
I"espérance mathématique du logarithme et ¢ 7 sa variance (fig. 10). Mais on
écrit la densité de probabilité log-normale I(Iny, p;, 6 7):

y=y2
P(Y<y,Y<y,)= I I(Iny,u,, UL) dy carx=Iny (25)

=y

La relation entre la moyenne arlthmethue p et géométrique u; d’une
vgnable distribuée log-normalement est donné par (AITCHISON and BROWN
1963):

(}J.L+'/20’%)
p=e

et les variances sont reliées par:

L= p.z((ec%) —1) (27)

(24)

(26)
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Figure 10.—Somme de deux distributions, A et B log-normales, représentées sur des
échelles linéaire et logarithmique. 11 faut surtout noter le déplacement du mode de la
distribution B entre les deux échelles et le fait que la moyenne et la variance ne sont pas
égales via le logarithme (ou I’exponentielle) d’une représentation a I’autre. L.’exemple
est volontairement particulier pour souligner I’effet du changement d’échelle.

Les réactions chimiques sont régies par des effets proportionnels (loi
d’action de masse), de méme que les processus de désagrégation (EPSTEIN
1947). 11 n’est donc pas surprenant que plusieurs éléments chimiques soient
répartis suivant cette loi. Les tailles de particules de sédiments de sols (granu-
lométrie), etc. sont aussi fréquemment distribuées de cette fagon.

Notons quelques restrictions a ces lois. Les teneurs infinies n’existent pas,
par conséquent la loi log-normale ne s’applique pas aux minerais a haute
teneur, car il y a une limite supérieure (MATHERON 1962). Ceux-ci présentent
plutdt une asymétrie inverse. Ce n’est pas notre propos. Les teneurs nulles, ce
qui est possible pour certains éléments rares, donneraient la valeur moins infi-
ni dans le cas log-normal. La loi normale souffre du méme probléeme de la
limite supérieure, mais en plus il n’existe pas de teneur négative. Notons que
la loi de Poisson peut s’appliquer pour les teneurs faibles, celle-ci décrivant
des processus du type oui-non.

En pratique lorsqu’on modélise une distribution donnée par inférence statis-
tique, on utilise les estimateurs m et S? respectivement de la moyenne p et de
la variance 62.

2.5. Utilisation du probability plot

Un histogramme cumulé tracé sur un tel graphique dessine une droite s’il
s’agit d’une distribution normale ou log-normale au choix (fig. 2, 11 et 12); le
principe étant le méme, seule 1’échelle des variables change.

Pour une loi normale, la médiane (50%) se confond avec la moyenne.
Ainsi, la lecture de la moyenne est aisée. D’autre part, on peut trés facilement
mesurer la variance sur une droite de Henry. Il suffit de faire la différence
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entre les valeurs de la variable a 15,9% et 84,1% pour obtenir la valeur de 2
écarts type:

X15.9% — X84.1%
2

On opere de maniere inverse si on veut tracer une droite de Henry sur un
probability plot (figures 11 et 2).

=5 (28)

t  Probability plot
99%4 Log-normal
A
95% A+B
90%
é Moyenne B/
E 70% geometrique A /
=
o 50% e
S 30% N
§ ¢ Moyenne
g geométrique B
= 10%
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Figure 11.—Probability plot des deux distributions de la figure 10 et de leur somme. Ce
cas est intéressant car les deux distributions ont des moyennes proches, mais des
variances différentes. De ce fait leurs droites de Henry se recoupent. Par conséquent, la
distribution la plus dispersée «domine» dans les valeurs faibles et €levées. C’est le cas
ici de la distribution la moins importante (B). Remarquons que deux droites de Henry
se recoupent presque toujours, mais que cela se passe souvent dans des domaines de
valeurs qui ne nous concernent pas.

Généralement pour analyser des données, on examine simultanément I”his-
togramme (avec au moins six classes) et le probability plot adapté. S’il s’agit
d’une population unique et qu’elle est normale ou log-normale, elle trace une
droite sur le probability plot; il n’y a plus, en prospection miniere, qu’a choisir
un seuil assez élevé pour sélectionner quelques zones intéressantes. Pour des
pollutions il faut déterminer si cette distribution est causée par un processus
anthropogene. Cependant, il peut arriver que la distribution apparaisse comme
une distribution unique cohérente mais sans étre normale ou log-normale. Sur
un probability plot on observe alors une courbe réguliére a laquelle on appli-
quera un critere de «seuillage» (voir paragraphe 2.6.)
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PAFA+ PBFB=78.6°/0
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Figure 12.—Probability plot normal représentant la somme de distributions dont on a fait
varier le poids. En petit, histogrammes de deux de ces courbes. Les points de plus forte
courbure ou les points d’inflexion indiquent & peu prés le poids des deux distributions.

On trouvera au paragraphe 4 des applications de la démarche suivante, qui
traite de fagon théorique I’analyse des probability plot en présence de plu-
sieurs distributions. Si on soupgonne plusieurs distributions du méme type que
I'échelle du probability plot utilisé, on peut les mettre en évidence par I’ins-
pection visuelle d’un histogramme qui présente plusieurs modes ou par
conjectures. On essaie alors de caractériser les populations par leurs para-
metres respectifs (S2, m). Les calculs de ces derniers s’effectuent sur les popu-
lations supposées obtenues en décomposant I’histogramme en plusieurs «dis-
tributions». Ainsi, on peut représenter les droites de Henry de chaque distribu-
tion déduite sur le probability plot (SINCLAIR 1989, 1991). Pour vérifier la qua-
lité de I’interprétation on construit la courbe cumulée de la somme des distri-
butions en ajoutant les pourcentages cumulés (€chelle du probability plot) F;
de chacune d’entre elles et en les multipliant par leur poids respectif P;. De
sorte que le pourcentage du mélange des distributions A, B, .... est donne par:

= F Py + FpPp+iicecsars (29)
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En présence de deux distributions, I’examen du probability plot des don-
nées peut permettre de les mettre directement en évidence. Un point de plus
forte courbure ou un point d’inflexion du probability plot, si une des popula-
tions domine, indique a peu pres le poids respectif des deux distributions
directement sur I’échelle des fréquences (fig. 11) comme on le constate sur
I’exemple synthétique de la figure 12 ou le point de plus forte courbure
(78.6%) est proche des proportions respectives de chaque distribution (80% et
20%). Mais cette analyse doit étre faite conjointement avec 1’histogramme
simple. Généralement la courbe du probability plot des données suit une droite
proche de celle de la distribution la plus importante en proportion puis elle
s’infléchit sous I'influence de la seconde distribution (exemples de cas parti-
culiers aux figures 11 et 23). En s’appuyant sur le probability plot et I’histo-
gramme, comme précédemment, on dégage la moyenne et I’écart-type de la
distribution dominante, puis il est possible avec I’histogramme d’obtenir la
seconde distribution par soustraction. Les paramétres qui permettent la cons-
truction d’un histogramme de loi normale sont donnés entre parentheses a la
figure 2. On applique a nouveau la formule 29 et comme précédemment on
peut vérifier si les ensembles choisis «miment» bien les observations. Si ce
n’est pas le cas on recommence, on révise I'interprétation et on réitere la dé-
marche décrite ci-dessus. S’il y a plus de deux distributions superposées,
I'interprétation est délicate et il faut avoir de bonnes raisons de penser qu’elles
sont présentes, car on peut a la limite tout simuler avec un grand nombre de
distributions.

Pour les données de pollution, la définition d’un background est de grande
importance. Si le background posséde une distribution normale ou log-norma-
le, on peut obtenir sa distribution a I’aide d un probability plot. Ceci est parti-
culierement utile dans le cas de la réhabilitation d’un site pollué, car le but
d’une telle action est de retrouver le background naturel (FLEISHHAUER and
KORTE 1990). FLEISHHAUER and KORTE (1990) indiquent que pour déduire un
background normal ou log-normal, on peut calculer successivement le coeffi-
cient d’asymétrie en enlevant un a un les points de teneur les plus élevées,
Jusqu’a ce que le coefficient soit nul. Ils proposent aussi de décomposer direc-
tement les données en deux populations point par point, en les divisant en
deux groupes, puis en reportant chacun d’eux sur un probability plot pour voir
si ces groupes respectent les lois normales ou log-normales.

Dans cette phase, le traitement informatique est essentiel; il permet en effet
de visualiser trés vite tous les types de graphiques (les programmes statistiques
courants sont par exemple: SpSs©, STATLABO, S+© et en géostatistique le pro-
gramme vétéran du domaine public GEOEAS, ENGLUND and SPARKS 1991). Ils
permettent surtout de sélectionner les données pour n’en traiter qu’une partie.

2.6. Seuil et retour aux cartes

Une fois effectuée I’analyse univariée des données, examinons ce qui se passe
spatialement. L’étape suivante est de trouver une limite inférieure (seuil
d’anomalie) au-dessus de laquelle les valeurs sont intéressantes ou ont une
signification particuliére, afin de poursuivre I’objectif fixé.

Dans le cas d’un seul ensemble apparemment homogéne de données, on
tache de choisir une limite qui mette en évidence des anomalies comme défini
au paragraphe 2.1. En début de campagne, on ne trouve souvent que des points
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anomaux isolés. Puis on cherche a établir, par I’acquisition de données supplé-
mentaires a I’aide d’une maille plus serrée (paragraphe 2.3), s’ils appartien-
nent a des zones a teneurs élevées. Il n’y a pas de régle absolue: souvent, on
choisit les 3 a4 5% supérieurs de la distribution (moyenne +2S). Il ne faut pas
perdre de vue les dimensions de la maille utilisée, et 1l est important de se rap-
porter a la carte géologique ou autre, car elle permet de dire si des sites peu-
vent étre intéressants ou non. Une teneur relativement élevée corrélée avec un
site favorable (géologique, pédologique, hydro-géologique, etc.) est a retenir
méme si un seuil relativement haut la faisait disparaitre.

Si on a pu mettre en évidence avec ou sans probability plot deux ou plu-
sieurs distributions, comme décrit au paragraphe 2.5, la détermination du seuil
est en principe plus facile. Soit F et F,; les valeurs des fonctions de réparti-
tion (échelle cumulée du probability plot), respectivement de la population a
hautes teneurs et celles de ’ensemble des populations a plus basses teneurs.
On placera le seuil en principe au plus bas, la ou la distribution la plus haute
en teneurs F,, dépasse I'autre en pourcentage c’est-a-dire:

F, Psup > Finf Pinf (30)

sup
ou Py, et P;,; sont les proportions de chacune des distributions. F,, ne respec-
te pas.forcément une loi log-normale. De nouveau, il est préféraﬁle alors de
contourer ces zones anomales. Si celles-ci sont trop étendues, on tente une
nouvelle interprétation pour dégager un seuil plus élevé. On sera particuliere-
ment attentif a la répartition spatiale de la distribution supérieure, afin d’établir
s’il y a des corrélations de sites pédologiquement, géologiquement, hydro-
géologiquement, etc., particuliers avec cet ensemble de valeurs.

2.7. Discriminer

Les traitements décrits plus haut peuvent étre appliqués en réduisant le nombre
d’échantillons, c¢’est-a-dire en imposant des criteres de sélection. On pourra,
par exemple, ne travailler que sur un environnement particulier ou ne traiter
les données qu’au-dessus d’un certain seuil, ou avec la présence d’un seul €lé-
ment si on en analyse plusieurs a la fois, ou encore effectuer des seuillages
croisés entre éléments.

3. AUTRES OUTILS
3.1. Evaluation quantitative des anomalies

Cette méthode est utile en prospection miniere et pour la quantification de
I’ampleur de pollutions. Elle est une aide au choix des meilleures cibles (figu-
re 13, BARBIER 1989). Elle consiste a4 mettre en regard le tonnage par métre
d’approfondissement ou simplement la teneur t; (ou tonnage dans le premier
metre de sol) avec la surface. Cela est particulierement utile pour comparer le
potentiel des anomalies; en effet, certaines anomalies peuvent apparaitre
comme assez vastes, mais d’autres, plus petites, peuvent s avérer plus impor-
tantes et il peut étre intéressant de savoir a quelle teneur I’une devient plus
importante que I’autre en « quantité¢ de métal ». Une mesure comparable et le
tonnage/métre est donné par:
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p Xt X S(1-At t+At) (31)

ot p est la masse volumique du matériel analysé, t; la teneur et S(t;-At, t;+At)
la surface occupée par les valeurs comprise entre t,-At et t+At. Pour un domai-

ne dont la teneur est supérieure a une teneur donnée, le tonnage par métre est
donné par:

Jj=n

T(t;)=p 24:8;(t; — Atg; + Ar) (32)
J=1

avec n entier de  ‘max ~fmin g L= (e - J X AD (33)

At
ou t;.« et t;, sont les teneurs maximale et minimale.
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Figure 13.—Courbes de teneurs-surface en Pb pour quatre minéralisations sulfurées en
France (d’aprés BARBIER 1989). Les surfaces sont délimitées par les courbes isano-
males. On observe que I’anomalie de St Salvy est toujours plus importante en tonnage

que les autres. Par contre Rouez est une anomalie plus grande que Bodennec seulement
a partir de 60 ppm.

3.2. Le variogramme

Le variogramme est I’outil de base de la géostatistique (JOURNEL 1989,
MATHERON 1962, LOKOSHA 1991, IssAKS and SRIVASTAVA 1989, BRUNO et
RASPA 1994, PANNATIER 1996). Il permet de mettre en évidence le lien spatial
pouvant exister entre des points de prélévements. On le définit comme:
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A o
Y(h) =g E] [2(d; ) -z(d; +h)] (34)

ou N(h) est le nombre de paires de points se trouvant a une distance h les uns
des autres, z(d;) la teneur et d; la distance (fig. 14) (ces notations sont stan-
dard). De facon formelle le varlogramme se note comme la variance de
’accroissement de la valeur z(...) entre deux points séparés d’une distance h:
Var[z(d;)-z(d;+h)], ou bien comme I’espérance mathématique des accroisse-
ments E[(z(d;)-z(d;+h))?].

) A B

h
Y( ) Variance de z

/

Effet de
- I pépite N
Zone 2 h h
d'influence

Figure 14—En A schéma d’un variogramme stationnaire et en B variogramme non sta-
tionnaire avec effet de pépite.

De facon pratique, il faut faire des classes de distance et méme déterminer
des directions de recherche. Le grand intérét du variogramme est de définir
une zone d’influence, c’est-a-dire d’indiquer jusqu’a quelle distance les
variables sont corrélées, ou a partir de quelle distance les variations devien-
nent aléatoires. Plusieurs variogrammes calculés dans différentes directions
permettent aussi de mettre en évidence d’éventuelles anisotropies, sous réser-
ve de I'hypothese de stationnarité. Le variogramme est égal a la variance lors-
qu’on est en dehors de la zone d’influence (cas stationnaire). En d’autres
termes lorsque I’espace a les mémes propriétés partout, on obtient un plateau a
partir de la zone d’influence. Dans certains cas, le variogramme présente une
variation de pente tout en continuant d’augmenter: on est alors en présence
d’une dérive régionale (cas non stationnaire). Le comportement a 1’origine du
variogramme est important mais difficile a obtenir, car il faut des préleve-
ments rapprochés. Lorsque le variogramme n’est pas nul a I’origine, une
teneur supérieure a z€ro peut directement jouxter une teneur nulle: ¢’est I’ effet
de pépite (en environnement, I"'exemple typique est une dispersion de parti-
cules polluantes).

Le variogramme est complété par la covariance spdtmle et le corrélogram-
me. La forme du variogramme donne de précieux renseignements sur la maille
d’échantillonnage qui “doit étre en tout cas inférieure i la zone d’influence,
sinon les points de mesure n’appartiennent en moyenne plus a la méme ano-
malie. En réduisant la maille de prélevement on augmente la précision,
puisque la variance va diminuer depuis le palier du variogramme jusqu’a
I’effet de pépite. Il faut chercher si le variogramme présente plusieurs struc-
tures, comme par exemple un plateau intermédiaire. Il faut remarquer que le



variogramme peut montrer, entre autre, la taille de I’anomalie étudiée, ce qui
est une information importante. Ceci peut se produire lorsqu’on effectue le
variogramme sur une zone riche, car alors le background n’est pas suffisam-
ment représenté.

Cet outil a pris un essor considérable dans le traitement des pollutions, dans
le but de définir les dimensions des anomalies et la corrélation spatiale des
teneurs élevées (MAIGNAN and MAIGNAN in press, ATTEIA et al. 1994, FLAMM
1994, WEBSTER and OLIVER 1990).

4. EXEMPLES
4.1. Exemples miniers

Nous avons analysé «a la main» des données géochimiques en cuivre (ppm),
qui proviennent d’une prospection géochimique miniere systématique en
roches de surface dans la région désertique du Hoggar —Algérie du sud-
(DieDDOU 1991). Les prélevements ont été faits en moyenne tous les 20 m
selon des profils plus ou moins continus espacés de 250 ou 500 metres. La
carte a été dressée par I’ajustement de séries de Fourier a deux dimensions
(programme utilisé par I’Institut de Géophysique de I’Université de Lausanne)
par la méthode des moindres carrés, ce qui explique que les trés hautes valeurs
aient disparu (fig. 15). Ceci se justifie parce que les différents types de roches
assimilent de facon variable les éléments chimiques. Dans le cas présent le lis-
sage des valeurs est donc applicable. Les anomalies ne sont que partiellement
centrées et I’information n’est pas parfaitement homogene. On peut donc
s’attendre a avoir des anomalies sur-représentées. En fait, en pondérant par 1/2
le nombre de points, I’ensemble de la zone ou les profils sont doublés (for-
mules 14 a 16), donc la ot le nombre de prélevements est deux fois supérieur
au reste de I’étude, on vérifie que I’histogramme n’est que peu modifié
(fig. 16).
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Figure 15.—Carte de géochimie de surface. Les lignes NE-SW indiquent les profils de
prélevements qui sont espacés de 250 m dans la partie sud (d’aprés Dieppou 1991).
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Figure 16.-Histogramme en logarithmes des teneurs Cu ppm. On peut noter que les
caractéristiques en échelle linéaire ou logarithmique sont évidemment différentes. Les
formules 26 et 27 qui relient les moyennes dans les échelles normale et log-normale,
nous donnent les moyennes et les écarts types arithmétiques des deux distributions: m,
= 33,0, =43 et my = 755, 05 = 2000 ppm. Ceci caractérise bien le background (le clar-
ke ou teneur moyenne de la croiite terrestre est de Cu=55 ppm) et les teneurs €levées
(distribution 2). On rappelle que la moyenne est toujours plus élevée que la médiane
dans une distribution log-normale; cela ne contredit pas le seuil choisi. L histogramme
le plus clair est celui pour lequel on a pondéré les données par 1/2, dans la zone délimi-
tée par un traitillé dans la figure 15. On voit que la méme interprétation (histogramme
en traitillés) est valable au nombre de valeurs prés. Remarquons que le nombre de
points considérés en échelle logarithmique est moins grand qu’en échelle linéaire car
les point de teneurs nulles (invalides) ne sont pas pris en compte.

L’histogramme logarithmique (fig. 16) présente une trés nette asymétrie en
échelle log-normale vers les hautes teneurs et sa décroissance n’est pas régu-
liere. Nous pouvons supposer qu'il se compose de deux populations log-nor-
males. Le probability plot présente un comportement relativement linéaire
jusqu’'a 80%,. que représenterait une premiere distribution dont le poids est
estimé a 0.88 (88% de I'effectif total, fig. 17); c’est a cette valeur environ
qu’on observe en effet la plus grande courbure. Lorsqu’une des distributions
est dix fois supérieure a I'autre, le point d’inflexion est trop décalé, et de plus
nous ne sommes plus en présence d’un cas purement log-normal. A 'aide de
I’histogramme, nous avons estimé les moyennes et les variances des distribu-
tions. La plus importante a une moyenne de 3.0 In (Cu ppm) et un écart type
de 1. La seconde une moyenne de 5.5 et un écart-type de 1.5 In (Cu ppm).
Avec ces informations, on peut construire le probability plot simulé.

Apres avoir mis en évidence ou créé deux distributions, il faut trouver un
seuil. La distribution 2 domine au-dessus de 150 ppm environ (5 In (Cu ppm)).
Cela représente 10% des données, ce qui est considérable, et occupe une trop
grande surface. La distribution étant étalée, il est préférable de considérer
I’ensemble des valeurs lorsque I'influence de la premiére distribution est qua-
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Figure 17.—Probability plot de I’histogramme de la figure 16. On observe une bonne
concordance entre la courbe réelle et la simulation. Le poids des deux distributions a été
en partie choisi a I’aide de I’histogramme simple, car le point d’inflexion ne correspond
a rien sur le probability plot. C’est le point de plus grande courbure qui a été choisi.
siment nulle. Cela se produit autour de 500 ppm (6.2 In (Cu ppm)), et repré-
sente 5% des échantillons. La répartition des zones ainsi définies sur la carte
est assez satisfaisante, car elle met en évidence quelques zones anomales bien
individualisées, de 200 m a plus d’un kilometre d’extension, dimensions tout a
fait raisonnables pour I'implantation de sondages a la tariére, par exemple.
Naturellement, les données géologiques vont aussi intervenir dans le choix des
sites de sondage. Ces zones présentent une grande probabilité de concentra-
tions élevées provenant de processus anormaux (minéralisateurs?). Le premier
seuil ne mettait en évidence qu'une grande zone étalée, qui ne permettait pas
de choisir des cibles précises pour les sondage.

L’interprétation ci-dessus est statistique, et on se pose la question de sa
signification génétique. La premiére distribution est censée représenter un
background, ¢’est-a-dire les valeurs normales des teneurs en cuivre dans cette
région. La seconde représenterait un apport dii a des roches plus riches en
cuivre et redistribué chimiquement dans les zones proches de ces roches.
D’autre explications sont envisageables. Si on suppose que la distribution
régionale de base est un peu plus faible et moins variable, on peut inférer que
I"asymétrie soulignée par un maximum local sur I’histogramme est plutot due
a I'effet de zones & trés haute teneur, qui auraient diffusé dans les zones
proches (fig. 7, 18 et 19); et comme la zone de diffusion est limitée, cela expli-
querait le maximum local de I’histogramme. Ce type de phénomene génere de
telles asymeétries, méme en échelle logarithmique (JABOYEDOFF and MAIGNAN
in prep.). On peut aussi observer qu’un profil au travers d’une anomalie est
assez proche de celui d’une diffusion.
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Figure 18.—Exemple d’interprétation de distributions dues a une diffusion et a un back-
ground log-normal. La moyenne arithmétique de la distribution du background est
d’environ 20 ppm Cu et I'écart type de 10 ppm Cu. C’est peu, mais si on considere que
les teneurs au-dessus de 50 ppm sont inexistantes, il s’agirait d’un background sans
aucun effet de I’anomalie, ce qui n’est pas le cas de I'interprétation précédente. Le reste
proviendrait de 1’addition du background et de la diffusion des zones riches, qui repré-
sentent environ 30 4 40% des échantillons.

Il importe peu que, dans un premier temps, les populations possedent ou
non une « réalité » génétique, car cette méthode permet de trouver des criteres
de choix simples a partir des données et non pas a partir de choix préétablis.
Par la suite, une identification des populations dans un sens génétique permet-
tra de valider ou non les hypothéses faites a partir des statistiques, et par la de
tenter une hiérarchisation des phénomenes. Dans I’exemple précédent il n’y a
pas de différences majeures entre les deux interprétations, dont les populations
jouent essentiellement le méme rdle, bien que les valeurs soient 1égérement

différentes.
4.2. Un exemple de variogramme

L’exemple qui suit montre les difficultés lies a I'échantillonnage et au calcul
pratique d'un variogramme. Nous avons calculé le variogramme (formule 34)
pour les teneurs en cuivre (ppm) en gé€ochimie de roches représentées 2 la
figure 20. 11 a été effectué parallelement aux profils avec une tolérance de 5° et
un pas de 75 m pour une tolérance de 10 m. D’emblée, on s apercoit qu’il n’y
a pas de stationnarité. En effet, sur les 2000 premiers metres de portée du
variogramme sa valeur ne fait qu’augmenter. Ceci est en principe di a une
tendance régionale. Ici, les anomalies sont importantes par rapport a la surface
de I'étude et elles forment un «ilot» dont le diameétre dépasse localement les
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Figure 19.—Profil des teneurs a travers le maximum de I’anomalie principale. La courbe
a été établie a partir de la carte (lissage) et parallelement au profil. Le profil théorique
est tres proche de celui de I’anomalie. Notons qu’une moyenne mobile sur les teneurs
brutes donne un résultat tout a fait similaire.
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Figure 20.—Variogramme des données de la figure 15. La direction de recherche est
celle des profils +5° et le pas de h est de 75 m +10m.
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3 km. Les fluctuations de cette dérive sont vraisemblablement dues aux zones
dont la teneur est supérieure a 300 ppm Cu, car lorsque h est égal a la distance
séparant deux maxima de ces zones, le variogramme diminue. La diminution
rapide au dela de 2000 m suggere un effet de bordure: en effet le centre de
I’anomalie principale se trouve a 2 km du bord de I’étude et son importance
diminue alors trés vite. Les autres variations doivent étre liées au méme type
de probleme ou au fait que les profils ne sont pas tous continus, donc qu’il y a
un probleme de tolérance. A 3500 m environ, on ne percoit plus que les varia-
tions de hackground.

4.3. Exemple de traitement de pollutions

L’exemple proposé provient de données collectées par le laboratoire cantonal
d’agronomie de Jussy GE (CELARDIN et al. 1992, fig. 21). 102 sites ont été
analysés (grande culture: 65, prairie: 15, vigne: 9, forét: 9, arboriculture: 1,
culture maraichere: 1 et réserve naturelle: 1) sur quatre niveaux différents (0-
20, 20-40, 40-60, 60-80 cm), mais tous n’ont pas toujours été analysés (102,
101, 95, 73). Les méthodes d’analyse sont décrites dans CELARDIN ef al.
(1989). Parmi ces données nous avons choisi les teneurs en zinc.
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Figure 21.—Carte des teneurs Zn €tablie pour le niveau | par la méthode d'inverse dis-
tance d’ordre 2. L’effet de pépite important du variogramme autorise cette méthode
pour la représentation. Le rayon de recherche pour I'interpolation est de 2500 m et la
grille carrée posséde un pas de 250 m et 6 points au maximum sont utilisés. On constate
les effets de bord inhérents a toute interpolation. On note les grandes structures du
background (voir texte).
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Enumérons quelques-unes des propriétés du zinc sans entrer dans les détails
du comportement de cet élément dans les sols. C’est un oligo-élément chalco-
phile (tendance a former des liaisons covalentes) dont la teneur moyenne dans
la crofte terrestre est de 70 ppm. L’ordre de grandeur des teneurs dans les sols
est identique et le domaine de variation d’environ 10-300 ppm. Les plantes
manquent de Zn lorsqu’elles en contiennent moins de 20 ppm et la teneur est
toxique lorsqu’elle dépasse 400 ppm; pour les animaux le zinc est toxique s’ils
en contiennent plus de 1000 ppm (BOLT and BRUGGENWERT 1976).

La quantité et la mobilité du zinc sont affectées par plusieurs facteurs. C’est
essentiellement le pH qui contréle sa mobilité. D’une facon générale, la solu-
bilité du zinc décroit avec le pH, d’environ 100 fois par unité (ASRARUL
HAQUE and SUBRAMANIAN 1982). Dans les sols, le zinc, selon IYENGAR et al.
(1981), se présente sous différentes formes: adsorbé échangeable ou non
(< 4%), 1ié a la matiere organique (o< 2%), associé aux hydroxydes de Mn
(< 2%), associé aux hydroxydes d’Al et Fe (o< 24%) et 68% sont résiduels,
c’est-a-dire essentiellement insérés ou intimement associés aux minéraux de la
fraction argileuse.

Le stock de zinc utilisable par les plantes provient essentiellement de la
fraction échangeable et de la matiére organique. De faibles pH provoquent la
libération du zinc associé aux hydroxydes (Fe, Mn), et favorise sa lixiviation:
elle est observée dans les horizons superficiels des sols forestiers acides du
canton de Geneve alors qu’elle ne I’est pas dans les sols plus alcalins, ou le
lessivage est moins intense (CELARDIN et CHATENOUX 1990).

Une part importante de zinc dans les sols peut avoir une origine anthro-
pique. Par exemple, certains engrais phosphatés peuvent contenir jusqu’a
0.1% de Zn (WEDEPOHL 1969), cet élément peut méme éEtre ajouté comme
nutriment (TROEH and THOMPSON 1973).

En raison du nombre élevé de variables chimiques qui contrdlent le com-
portement du zinc dans les sols, bien qu’un petit nombre prédomine, on sup-
posera qu’on peut obtenir pour le background une distribution log-normale
(paragraphe 2.4): ceci est conforme aux observations faites dans le Jura. De
plus le zinc posséde un comportement géochimique relativement différent des
autres €léments qui se regroupent par affinités (WEBSTER ef al. 1994). 11
semble donc cohérent de supposer que le fond géochimique est de type log-
normal.

L’examen des histogrammes normés pour chaque niveau montre que les
populations sont assez snmllauea avec une légere diminution avec la profon-
deur. Seuls les niveaux 1 et 2 présentent des teneurs supérieures a 100 ppm.
Notons que certaines des données utilisées pour les histogrammes se trouvent
en dehors de la carte (fig. 21 et 22), elles ont tout de méme été utilisées vu le
nombre relativement restreint d’échantillons.

L’ examen du probability plot du niveau 1, en échelle logarithmique,
montre clairement une population qui suit une distribution log-normale (figure
23). Celle-ci peut étre attribuée a un backgound, quelques valeurs plus élevées
n’en font pas partie (voir paragraphe 2.5). Ainsi on peut, a partir du probabili-
ty plot, déduire les caractéristiques de la distribution du fond géochimique,
dont la moyenne In (Zn ppm) vaut 4 et I'écart type 0.25. En échelle linéaire on
obtient respectivement 56.3 ppm et 14.3 ppm Zn (tab. 1). On constate qu’il
existe une population anomale au-dela de 4.6 In (Zn ppm), ¢’est-a-dire qu’au-
dessus de 100 ppm plus des deux tiers des données sont anomales. Si on ne
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Figure 23.—Probability plot de In (Zn ppm) du niveau 1. La tendance log-normale du
background est assez claire. La modélisation est effectuée avec un poids de 97% pour le
background (1) et 3% pour la distribution anomale (2).



Tableau 1.—Parameétres statistiques des populations des différents niveaux. Ceux du
niveau | sont recalculés pour les teneurs inférieures & 100 ppm Zn et comparés a la
population déduite du probability plot.

Moyenne Ecart type Moyenne Ecart type Coefficient

arithmétique  arithmétique  logarithmique  logarithmique ~ d’asymétrie
Niveau | 60.8 35 4.02 0.36 1.78
Niveau 2 513 325 397 0.26 1.91
Niveau 3 49.1 12.1 3.86 0.26 -0.17
Niveau 4 49.1 10.6 387 0.22 -0.03
Niveau | <100 ppm 550 14.0 397 0.26 0.01
Valeur de la
population déduite 56.33 14.3 40 0.25 0

(background niveau 1)

tient pas compte des données élevées on s’apercoit que les caractéristiques de
la distribution résultante sont tres proches de la distribution log-normale
déduite a I'aide du probability plot (tab. 1). Il existe donc des teneurs ano-
males, dont on ne connait pas le type de distribution vu le nombre restreint de
données. On peut néanmoins tenter de ’approcher a I’aide d’une distribution
log-normale de moyenne 5.5 In (Zn ppm) et d’écart-type de 0.8 In (Zn ppm).
La simulation obtenue est bonne (fig. 23). Il faut remarquer que pour les
faibles valeurs, méme si en quantité cela est négligeable, la population anoma-
le devient plus importante que 1’autre, ce qui est génant. Par conséquent on
suppose que |’approximation faite ici n’est valable que pour les teneurs sufi-
samment élevées.

Il existe donc clairement une source autre que le background dans la partie
superficielle, qui est probablement d’origine anthropogéne comme I’ont souli-
gné CELARDIN et al. (1992). La légere différence qui existe entre les niveaux
supérieurs (fig. 22 et tab. 1), méme «nettoyés» de leurs teneurs anomales, et
les niveaux inférieurs provient vraisemblablement du fait que les échantillons
qui sont issus des cultures sont en plus grand nombre que ceux provenant des
foréts qui présentent un enrichissement vers le bas (CELARDIN et CHATENOUX
1990, LANDRY et CELARDIN 1988). La différence entre les teneurs des bois et
des cultures n’est pas suffisante pour provoquer une bimodalité des teneurs, ce
qui, vu le nombre restreint d’échantillons, nous a autorisés a tous les traiter
ensemble.

Les points anomaux qu’on observe sur la carte des teneurs du niveau 1
(fig. 21) ne permettent pas de définir I’étendue des anomalies. Elles ne doivent
pas dépasser un kilometre de diametre, et il faudrait donc resserrer la maille a
ces endroits. Par contre, un variogramme effectué uniquement sur les valeurs
inférieures a 100 ppm montre un léger lien jusqu’a 2500 m avec un fort effet
de pépite. C’est bien approximativement le rayon des zones de teneurs légére-
ment plus élevées au sein du background. On ne peut pas juger si les valeurs
du background sont 1égerement enrichies par rapport aux teneurs naturelles.
Dans le Jura (ATTEIA ef al. 1994), la teneur moyenne du zinc est de 78.5 ppm
et 'écart type de 38.5 ppm (en logarithme naturel la moyenne vaut 4.3 In (Zn
ppm), I"écart type 0.18 In (Zn ppm) et le coefficient d’asymétrie 0.28). Nos
valeurs ne sont donc pas trés élevées. En fait les valeurs élevées du back-
ground semblent associées a la molasse chattienne et les valeurs basses aux
alluvions. L apport extérieur de zinc, s’il existe, est tout a fait raisonnable au
regard des normes OSOL (limite supérieure: 200 ppm). On peut considérer



qu’au-dela de 100 ppm I’essentiel des valeurs sont liées a des processus anor-
maux, et par conséquent dans le cas d’une réhabilitation de site, qu’il faudrait
revenir au-dessous de cette valeur.

Notons que dans le cas de pollutions par appauvrissement des teneurs, ce
qui est envisageable pour le zinc qui est un oligo-élément, le probléme peut
étre traité de la méme maniere mais 1’échelle des teneurs est inversée.

5. MISE EN (EUVRE INFORMATIQUE

Au niveau d’une analyse extrémement simple déja, des descriptions statis-
tiques et des représentations cartographiques élaborées peuvent étre aisément
obtenues sur PC.

Tout en étant simples d’utilisation, ces programmes performants sont dis-
ponibles et utilisables avec un minimum d’apprentissage. Il faut néanmoins
insister sur la nécessité de comprendre les méthodes, afin d’en choisir une adé-
quatement, et de pouvoir juger les différences de résultats qui en découlent.
De plus, certains de ces programmes ne couvrent qu’une partie de la problé-
matique, et il ne faut en aucun cas utiliser des parametres par défaut, si ’on
n’a pas réalisé les étapes précédentes d’analyse.

5.1. Statistiques spatiales

Le module S+© spatial statistics permet d’effectuer les investigations de sta-
tistiques spatiales au niveau des méthodes déterministes, de la variographie, et
de I’estimation.

La répartition spatiale des prélevements est caractérisée de maniere quantitati-
ve par:

—la statlﬂthue des plus proches voisins point & point: pourcentage de points
par rapport a I’ensemble, en fonction de la distance de voisinage,

—la statistique des plus proches voisins entre points de prélevement et
nceuds d’une grille,

—le nombre de points de mesure par unité de surface, ou intensité, a repré-
senter sous la forme d’une carte raster,

—le nombre de mesures a une distance inférieure a d par rapport & une
mesure spécifiée, pondéré par I'intensité (fonction K de Ripley),

—les indices de Moran et de Geary pour mesurer le niveau de significativité
de I’autocorrélation.

En ce qui concerne la démarche géostatistique, les quatre démarches de
base successives sont:

—I’estimation de variogrammes et corrélogrammes expérimentaux, avec
compléments des nuages variographiques,

—I’ajustement des variogrammes par des modeles théoriques,

—I’estimation par calculs BLUE (Best Linear Unbiased Estimator) de kri-
geage, avec ou sans dérive; la présence éventuelle d’une dérive étant mise en
évidence par median polishing par exemple,

—les simulations, afin de reconsituter la variabilité des observations parmi
I’ensemble des résultats interpolés.
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Certains types de données ne se prétent pas a interpolation et doivent étre
représentés avec une valeur constante sur une zone définie. Parmi ces lattice
data citons bien entendu les indications de la carte géologique, ol il n’est pas
question d’interpoler entre granite et calcaire, mais d’étendre la valeur « grani-
te » et la valeur « calcaire » a la zone dont le périmetre a été défini.-

Les calculs d’autocorrélation et de régression spatiale sont adéquatement
utilisés pour la valorisation de ce type de données.

5.2. Représentation cartographique

SURFER©® permet d’établir des cartes d’interpolation, et de les représenter soit
en cartes planes d’isolignes, soit en perspective 3-D. Les cartes d’interpolation
sur une maille seront représentées telles quelles, ou sur un fond de carte digita-
lisé représentant des limites administratives ou des caractéristiques topogra-
phiques. On prendra garde de calculer préalablement les variogrammes dont
les parametres (modeles, effet de pépite, zones d’influence, paliers, dérive,
anisotropie) sont a indiquer pour effectuer I’interpolation sur une grille par kri-
geage.

Les différentes méthodes déterministes d’interpolation a disposition:
minimum curvature, nearest neighbor, polynomial regression, radial basis
Sfunctions (quadric, cubic spline, etc.), Shepard’s method (inverse de distance
améliorée par moindre carré) et triangulation fourniront des cartes différentes
de celles établies par krigeage, ou I’on aura pris soin de fournir une indication
correcte du modele de variogramme.

5.3. Corrélations spatiales, estimations et simulations

Le logiciel GSLIB (DeuTscH and JOURNEL 1992) est utilisable avec 1’élabora-
tion d’un court fichier de parametres, et comporte une grande panoplie de
méthodes géostatistiques. Les outputs peuvent étre visualisés sur des impri-
mantes habituelles, par exemple a I’aide du programme de post-processing

Upfile.
Les nombreux programmes GSLIB couvrent les aspects de:

—variographie,

—krigeages: estimator BLUE (Best Linear Unbiased Estimator), avec ou
sans dérive, krigeage factoriel, cokrigeage, krigeage d’indicatrices, et diverses
variantes,

—simulations: simulations gaussiennes séquentielles, simulation par indica-
trices, recuit (annealing).

6. CONCLUSION

La finalité de cet article est de souligner I'intérét des statistiques univariées
pour I'identification d’anomalies géochimiques, du fait notamment de leur
mise en ceuvre tres rapide a I'aide de programmes informatiques (Spss®©,
STATLABO, S+©, GSLIB et GEOEAS). On peut, grice aux outils statistiques,
dégager des tendances avant d’élaborer des hypothéses sur les processus natu-
rels (fig. 24). Puis une fois ce travail effectué, il faut s’interroger sur la signifi-
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cation des populations statistiques en termes de processus physico-chimiques,
une telle démarche pouvant induire des modifications dans la définition des
populations. La structure induite par une analyse statistique constitue donc une
base pour poursuivre d’autres investigations. Par ailleurs, dans les conditions
actuelles ou les laboratoires automatisés et les bases de données sur Internet
ou CD-Rom nous submergent de données, il faut saisir rapidement les faits
importants dans ce foisonnement d’informations: 1a aussi, les indicateurs uni-
variés résumant I’information sont utiles. Certaines techniques multivariées,
non abordées ici, telles que I'analyse factorielle, s’avéreront utiles. La vario-
graphie est un outil important, elle permet en effet d’évaluer comment et
jusqu’a quelle distance les prélevements sont liés entre eux (zone d’influence),
point capital lors de la définition de la maille de prélevement.

Il est clair que cette panoplie d’outils rapidement et assez facilement appli-
cables est devenu un atout majeur pour analyser efficacement et utilement les
données géochimiques, quelle que soit leur origine. A 1’heure ou beaucoup
d’organismes, publics ou privés, voient leurs ressources se restreindre ou étre
soumises a un controle beaucoup plus serré, il est évident que de telles
méthodes peuvent représenter une économie substantielle, en temps et en
argent, en permettant une sélection mieux assurée des meilleures anomalies, et
ceci dans différents contextes de recherches.
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