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Apercu de ’histoire de I’équation
du deuxieme degré

par

Jacques SESIANO!

Summary.—SESIANO J., 1992. Historical survey of the quadratic equation. Bull. Soc.
vaud. Sc. nat. 81: 271-298.
A historical survey of the resolution of quadratic equations to early modern times.

Key-words: History of mathematics, early algebra.

Résumé.—Sesiano J., 1992. Apercu de I'histoire de 1'équation du deuxie¢me degré. Bull.
Soc. vaud. Sc. nat. 81: 271-298.

Survol historique de la résolution des équations du second degré, des origines au début
des temps modernes.

On enseigne aujourd’hui dans les gymnases que 1’équation du second degré
ax?+bx+c=0, dans laquelle les coefficients a, b, ¢ sont réels (positifs ou
négatifs, avec a # 0), possede les deux solutions

—b++/b2 —4ac
X2 = ’

.2a . ” . . ’ .
et que ces solutions seront réelles et différentes si b>>dac, ou bien égales si
b?=4ac, et qu’elles seront toutes deux complexes, ou imaginaires, si b?<4ac.

Si I’on suppose tous les termes divisés par a, 1’équation s’écrira, posant
p=L et g =%, x>+px+q=0, dont les solutions seront
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272 J. Sesiano

Il apparait de cette derniere expression que, sous cette forme réduite, les
relations unissant solutions et coefficients seront

X - Xy =-p

XX =49, _
des relations que 1'on associe au nom du mathématicien frangais F. Viete
(1540-1603), qui en a généralisé la forme a des équations de degrés plus
élevés?.

Que ces solutions soient réelles —inégales ou confondues— ou bien
complexes, elles sont au nombre de deux, qui est le nombre caractérisant le
degré de 1’équation. En effet, C.F. GauB3 (1777-1855) a plus généralement
démontré que toute équation de degré n possédait exactement n solutions,
réelles ou complexes (cette derniere dénomination nait avec lui).
L’affirmation de ce théoréme, souvent appelé aujourd’hui «théoreme
fondamental de I’algebre», était apparue néanmoins quelque deux siecles
auparavant, lorsque A. Girard (1595-1632) avait mentionné dans son
«Invention nouvelle en algebre» (Amsterdam 1629) que «toutes les equations
d’ algebre recoivent autant de solutions que la denomination de la plus haute
quantite le demonstre». Descartes (1596-1650) lui faisait en quelque sorte
écho, amplifiant méme la notoriété du théoreme du fait de la célébrité de sa
«Géométrie» —parue en 1637 en appendice du «Discours de la méthode»— ou
il déclarait dans les premieres pages du Livre IIl: «Scachés donc qu’en
chasque Equation, autant que la quantité inconnue a de dimensions, autant
peut il y avoir de diverses racines, c’est a dire de valeurs de cete quantité.
Puis: Au reste tant les vrayes racines que les fausses (les négatives) ne sont
pas tousjours reelles;, mais quelquefois seulement imaginaires; c’est a dire
qu’on peut bien tousjours en imaginer autant que jay dit en chasque
Equation; mais qu'il n’y a quelquefois aucune quantité, qui corresponde a
celles qu’on imagine». Telle est, incidemment, la premiére apparition de la
dénomination d’imaginaires pour ces nombres, restée encore en vigueur
aujourd’hui, et qui garde la mémoire de la défiance avec laquelle ils furent
longtemps regardés.

Aussi n’est-on pas peu surpris de voir que, dans le premier recueil des
«Bulletins des séances de la Société vaudoise des Sciences naturelles», le
professeur J. Gay se doive de s’inscrire en faux contre 1’affirmation de L.
Lefébure de Fourcy, qui pensait avoir montré, dans les §§185-186 de ses
«Lecons d’algebre» (Paris 1833 —1¢re édition—, ..., 1880 —9¢ éd.) destinées a la
préparation des examens d’entrée a 1’Ecole polytechnique, qu’une équation
du second degré pouvait posséder, dans le cas ou a tendait vers zéro, une
troisi¢éme solution.

L’existence méme de ce débat pourrait suggérer au lecteur actuel que la
résolution de 1’équation du deuxieme degré était encore matiere a débat au
milieu du XIXe siecle. L’apercu qui suit a pour but de montrer qu’elle a en
fait une histoire antérieure fort longue, commencant aux premiers temps de
I’histoire des mathématiques, mais que la reconnaissance de ses deux

2Si l'équation x"+a,_x"1+a, ,x"2+..+ax+ay=0 a les solutions x;, x,,..., X,,, alors
—a,_1 est la somme de ces racines, +a,,, la somme de tous les produits de paires de ces
racines, -a,,_3 celle de tous les produits de trois racines, et ainsi de suite avec alternance
des signes, a; se réduisant au produit des » racines multiplié par (-1)".



Equatton du deuxiéme degré 273

solutions devint surtout effective en relation avec le théoréme fondamental de
I’algebre plutdt qu’elle ne fut liée aux extensions successives du domaine des
nombres jalonnant I’évolution des mathématiques. On ne se soucia en effet
tout d’abord, et plus de trois millénaires durant, que de solutions positives. A
la fin du moyen age, on fut amené a considérer des solutions en nombres
négatifs, mais le réle de I’équation du deuxieme degré y fut presque
inexistant. Enfin, le XVIe siécle vit I’apparition des nombres complexes, mais
la encore cela ne concerna guere 1’équation du deuxiéme degré.

1. L’EQUATION DU DEUXIEME DEGRE EN MESOPOTAMIE

Notre connaissance des mathématiques mésopotamiennes remonte a une
cinquantaine d’années, lorsque débuta la traduction de tablettes mathé-
matiques qui dataient, pour la plupart, de -1800 environ. Quoique les textes
en fussent écrits en accadien, la langue des envahisseurs sémitiques venus en
Mésopotamie vers -2000, divers indices amenerent a penser que leur contenu
devait remonter aux habitants antérieurs de la Mésopotamie, les Sumériens.

Deux traits marquants de ces mathématiques d’origine sumérienne sont a
relever. Le premier est l'utilisation d’un systeme de numération de base
sexagésimale qui, repris par les Accadiens, leur servit non seulement a
transcrire sur des tablettes les textes mathématiques susmentionnés, mais
aussi a enregistrer leurs propres observations des mouvements planétaires.
Une telle quantité d’informations ne disparut pas complétement avec
I’écriture cunéiforme: les astronomes grecs, en particulier Hipparque (-150) y
eurent acces, et Ptolémée (+150) mentionne dans son ouvrage majeur, la
«Syntaxe mathématique» ou «Almageste» (III,7), que, depuis le début du
regne de Nabonassar (747 av. J.-C.), «l'on posséde les anciennes
observations, qui, en général, ont été conservées jusqu’'a présent».
L’utilisation de ces observations était d’autant facilit€e que le méme systéme
sexagésimal avait entre-temps été adopté en Greéce pour 1’astronomie. De
mémes causes appelant de mémes effets, il allait encore étre maintenu lors de
la transmission de 1’astronomie grecque au monde musulman, puis lors du
passage de 1’astronomie grecque et arabe en Europe par les traductions latines
du XII¢ siecle, en sorte que la division du cercle en degrés, minutes et
secondes est restée en usage jusqu’a aujourd’hui.

Cette digression sur le systeme sexagésimal était souhaitable pour que
soient rapportés ici des exemples illustrant une seconde découverte capitale
des mathématiciens mésopotamiens, a savoir la résolution d’équations et de
systemes algébriques du second degré.

L’équation générale du second degré n’a pas toujours été considérée sous
sa forme actuelle ax2+bx+c=0. Depuis les temps mésopotamiens jusqu’a la
Renaissance, voire —mais d’une mani€re moins rigide— au-dela, elle apparait
sous trois formes que 1’on dirait immuables, qui toutes ne contiennent que
des termes a coefficients positifs et peuvent ou doivent posséder une solution
positive, la seule qui fit alors acceptée3. Ces trois types sont:

3Si Descartes avait posé I'égalité a zéro, on retrouve encore bien apres lé%ahte entre
termes. Méme Newton utilise dans son «Arithmetica universalis» de 1707 (1¢r¢ édition)
(1722 -2¢ éd.) la forme, pour lui générale, xx = -px +q (xx pour x2 est alors usuel), ou le
point tient la place de 1'un ou l'autre signe.
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1. ax? + bx = c, avec la solution positive

_!21-'-"(%)2 +ac

a

b . # o ~
2. ax? + ¢ = bx, avec —pour autant que ( 5)2 soit supérieur a ac— les deux
solutions positives

giJ(%)z — G

a

X =

3. ax? = bx + ¢, avec la solution positive

g+1}(%)2 +ac *

a

Les tablettes cunéiformes conservées ne contiennent que peu d’exemples
d’équations quadratiques. Il en ressort toutefois la connaissance des formules
des premier et troisiéme types ci-dessus, comme 1’attestent les deux
problémes suivants, contenus dans la tablette 13901 du British Museum5.

xX=

«J’ai additionné la surface et le coté de mon carré: 45°. Tu poseras 1,
U'unité. Tu fractionneras en deux 1: 30°. Tu multiplieras 30’ et 30’: 15°. Tu
ajouteras 15 a 45’ : 1. C’est le carré de 1. Tu soustrairas 30°, que tu as
multiplié, de 1: 30°, le coté du carré».

L’équation de ce probleme est donc de la forme xZ4+px=q, avec p=1 et
g=45'. Les calculs successivement effectués dans le texte sont les suivants:

L_3p
5

(%)2 =(900"'=)15'

Py yg=1
(2) q

w/(§)2+qr=1

Lip g~ ~ A0 =00'=
(2) 93 X,

4L'équation ax?+bx+c=0 avec a, b, c positifs n'a pas de solution positive.

5Voir THUREAU-DANGIN (1938), p. 1. Dans la transcription ci-aprés des chiffres
sexagésimaux, les fractions sexagésimales sont désignées par ' (parties de 60), " (parties
de 602), alors que les entiers sexagésimaux sont représentés par la juxtaposition des
facteurs des puissances de 60. Il importe de remarquer que l'écriture cunéiforme n'a
aucun symbole permettant de distinguer les puissances (positives ou négatives) de 60,
de sorte que l'ordre de grandeur des quantités connues ou calculées doit étre déduit de
quelque indication trouvée dans le probléme.
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Le traitement du probléme qui le suit est tout a fait similaire:

«[’ai soustrait de la surface le coté de mon carré: 14 30. Tu poseras 1,
Punité. Tu fractionneras en deux 1: 30°. Tu multiplieras 30" et 30": 15". Tu
(') ajouteras a 14 30: 14 30 15’. C’est le carré de 29 30°. Tu ajouteras 30’,
que tu as multiplié, a 29 30’ : 30, le c6té du carré».

L’équation proposée, x2-x=14 30, est de la forme x=px+q, avec p=1 et
g=14 30=14-60+30=870. La résolution montre que les calculs correspondent
a I’application de la formule

/£2+ .
(2) q 5 X,

On ne connait pas, comme il a déja été suggéré ci-dessus, un tel exemple
d’application pour la formule du second cas. On se gardera toutefois de
conclure a l’ignorance de cette formule: les exemples mésopotamiens
d’équations quadratiques conservés sont rares, comme ils 1’étaient sans doute
déja, relativement, au début du deuxieéme millénaire. En effet, beaucoup plus
fréquents que les équations sont les systémes du second degré, lesquels
systémes ne sont pas ramenés a des équations simples par élimination d’une
variable, comme nous le ferions aujourd’hui, mais résolus par l’usage
d’identités appropriées.

Tels sont par exemple les systémes

{x+y=p ou {x—y=p
xlyzq x~y=q,

ou sont connus le produit et la somme, respectivement la différence, de deux
grandeurs cherchées. Grace a 1’identité

(55 -5

2 2 )’

la demi-différence ou la demi-somme sera connue apreés 1’extraction d’une
racine, et 1’identité

_Xty_ x-y

2 2

permettra la détermination des valeurs individuelles de nos deux inconnues.
De méme, dans I’un et 1’autre des deux systémes

{x2+y2 =p {X“ryz =p
ou
x+y=q X —y=q,

’application de 1’identité

(x+y]2 +(x—y)2 _x24y?
2 2 2

nous fera connaitre la demi-différence ou la demi-somme des inconnues, et
nous ramenera ainsi a la situation finale précédente.

Les systtmes proposés n’apparaissent pas toujours sous ces formes
simples, mais y sont souvent ramenés par des changements de variables
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appropriés. L’exemple ci-aprés —qui correspondrait & une équation du type
x2+qg=px si I’on éliminait 1’une des variables— en servira d’illustration®.

«Un rectangle. J'ai multiplié la longueur par la largeur, j ai ainsi
construit une surface. Ensuite, j’ai ajouté a la surface ce dont la longueur
excede la largeur: 3 3. Enfin, j’ai additionné la longueur et la largeur: 27.
Que sont la longueur, la largeur et la surface? (...)”.  Opére ainsi. Ajoute
27, la somme de la longueur et de la largeur, a 3 3: 3 30. Ajoute 2 a 27: 29.
Tu fractionneras en deux 29: 14 30°. 14 30" fois 14 30’: 3 30 15°. De 3 30
15, tu soustrairas 3 30: 15 est le reste. 15’ est le carré de 30°. Ajoute 30" au
premier 14 30’: 15, la longueur. Tu retrancheras 30" du deuxiéme 14 30’:
14, la largeur. 2, que tu as ajouté a 27, tu soustrairas de 14, la largeur: 12,
la largeur vraie. Multiplie 15, la longueur, par 12, la largeur; 12 fois 15: 3 0,
la surface. (...)8».

Le systeme a résoudre est donc, désignant par x la longueur et par y la
largeur?:

X+ (x—y)=33(=3-60+3=183)
x+y=127,

L’auteur ajoute alors a la premiere équation la seconde, puis augmente de 2 la
seconde. Il obtient ainsi ce que nous écririons

Xy+2x=x(y+2)=330 (=210)
x+y+2=29,

que I’on peut écrire, en posant y’ = y+2,

&'=330
g+ y'=29,

Or, ce nouveau systeme permet ’application d’une des identités vues
précédemment. On aura en effet

2 2 2
x-y x+y , 29]
[ B el 2] wd
( 2 ) ( 2 ) Y [2

en sorte que 1’on trouvera que

e S
)

Tel est bien le cheminement des calculs du texte, qui aboutissent finalement &

x,y':%iﬂ =14 30'+30'=15 respectivement 14;

la longueur est ainsi x =135, la «largeur» y'=14, la «largeur vraie» étant y=12.

5Voir THUREAU-DANGIN (1938), p. 65.
7Le texte donne ici les résultats que la résolution va établir.
8Suit la preuve numérique des résultats trouvés.

9Les mots sumériens pour «longueur» et «largeur», conservés dans la traduction
accadienne, jouent de fait le rdle de dénominations d'inconnues, au point de se détacher,
dans certains probléemes, de leur sens originel.
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Ces trois exemples nous permettent déja de remarquer 1’aspect qu1 est pour
nous le plus caractéristique des mathématiques mésopotamiennes, a savoir le
défaut d’explications. Ainsi, les résolutions ne contiennent aucune
justification des calculs; elles paraissent présupposer la connaissance de
formules ou d’identités de base dont le lecteur sait qu’on doit les appliquer,
éventuellement apres un travail préalable de transformation du probleme. On
remarque aussi que le détail des opérations arithmétiques n’est pas effectué;
le lecteur est censé s’appuyer sur des tables de multiplication ou d’extractions
de racines simples, et il est vrai que ce matériel ne devait pas lui faire défaut:
il n’est guére de musée archéologique qui ne posséde aujourd’hui quelque
fragment de table de multiplication en écriture cunéiforme!0.

2. L’EQUATION DU DEUXIEME DEGRE EN GRECE

L’algébre en Grece se présente sous trois aspects. L’un est pratique, ou du
moins en a 1’apparence, et consiste a appliquer des formules dans des cas
précis. Ce premier aspect, qui présente beaucoup d’analogie avec les
méthodes mésopotamiennes —soit qu’il s’agisse d’une influence directe ou
que 1’usage d’identités pour la résolution de problémes algébriques soit une

écrits attribués a Héron d’ Alexandrie (env. +60). Le second aspect, beaucoup
plus théorique celui-la (il fait intervenir les propriétés arithmétiques de
classes de nombres entiers), est celui qui intervient dans [’algebre
indéterminée de Diophante (env. +250), qui utilise tant un raisonnement
qu’un symbolisme algébrique. Enfin, les «Eléments» d’Euclide (vers -300),
I"ouvrage de base des mathématiques antiques, contient nombre de théorémes
démontrés géométriquement qui représentent en fait des relations entre
grandeurs que l'on peut transcrire, avec une relative aisance, en langage
algébrique. Celles qui concernent les équations du second degré seront
mentionnées lorsque sera étudiée la période islamique.

Dans 1’'un et I'autre des deux premiers aspects on trouve des exemples
d’équations du second degré. Le caractére succinct de leur résolution, avec
peu ou pas de calculs intermédiaires (la solution étant parfois donnée
directement), a provoqué chez les historiens des mathématiques jusqu’a la
premiére moitié de ce siecle de longues discussions, dont I’objet était de
savoir si oui ou non les Grecs étaient en possession d’une formule générale
de résolution. L’étude ultérieure des textes cunéiformes a rendu de telles
questions caduques, la connaissance de ces résolutions rétrogradant au
domaine des mathématiques élémentaires.

La survivance de I’algebre des identités est illustrée par I’exemple suivant
de Héron, qui calcule selon une formule qui n’est pas établie, mais que 1’on
peut déduire d’identités élémentaires, déja utilisées en Mésopotamie et dont
I’équivalent géométrique apparait dans le livre II des «Eléments» d’Euclide.
Il s’agit de déterminer la longueur des cotés u, v, w (en nombres rationnels)
d’un triangle rectangle (donc tel que u 2+ v2 = w2) de fagcon que la somme de

10L'utilisation de tables de multiplication était en Mésopotamie une nécessité
impérieuse; la connaissance des produits des 59 chiffres sexagésimaux entre eux —en
négligeant les opérations de leur multiplication par O et 1 ainsi que les répétitions dues a
la commutativité du produit— aurait imposé de retenir 1711 résultats.
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son périmetre et de sa surface soit un nombre donné!l. Le probleme est
indéterminé, et il est en outre soumis a une condition de rationalité.

Soit donc a résoudre

U+v+w+suv =Kk,
avec k donné (Héron pose k=280). Le texte de la résolution de Héron montre
qu’il n’a rien a envier, du point de vue de la didactique, a ses prédécesseurs
mésopotamiens:

«L’ aire d’'un triangle rectangle avec son périmétre est de 280 pieds;
déterminer individuellement les cotés et trouver I'aire. Je fais ainsi. Cherche
toujours'? les diviseurs entiers; or, 280 est 2 fois 140, 4 fois 70, 5 fois 56, 7
fois 40, 8 fois 35, 10 fois 28, 14 fois 20._J'ai noté que 8 et 35 rempliront
I'exigence donnée ((oxe\paunv, 8tL O M ®ol Ae :n:omoovcn 1O 000év
€mitayno). Prenant g des 280, il vient 35 pieds. Enléve a chaque fois 2 de 8;
il reste 6 pieds. Ainsi, 35 et 6f0nt ensemble 41 pieds. Multiplie ceci par lui-
méme; il vient 1681 pieds. 35 fois 6 font 210 pieds. Fais-en toujours le
prodmr avec Spwhvient 1680 pieds. Enléve-les de 1681, il reste 1, dont la
racine carrée ﬂ(ﬂ:hevga TETQOYWVXN) est 1. Conszdere alors les 41, et
enléves-en I'unité, 1; le reste est 40. Ea moitié en est 20. Tel sera le coté
perpendiculaire: 20 pieds. Considére a nouveau les 41, et ajoute-leur 1, il
vient 42 pieds. La moitié en est 21. Soit la base de 21 pieds. Considere les 35,
et enléves-en les 6, il reste 29 pieds. Consideére alors le coté
perpendiculaire fois la base; la moitié en sera 210 pieds. Et les trois cotés du
périmétre font 70 pieds. L’ ajoutant a la surface, il vient 280 pieds».

I1 apparait des calculs de cette résolution que Héron applique les formules

1
u.v=5[(p+q—2)iJ<p+q—2)2—8p(q—2)], w=p-(g-2),

ol p-g=k, ces deux facteurs de k étant choisis d’une maniere appropriée
(comme on 1’'imagine, afin que la quantité sous le radical soit un carré).

Etablissons ces formules selon les identités connues dans 1’antiquité.
Comme

1
uv= 5[(14 +v)? =(u2 +v?)], on aura

lm):l[(quv)z_WQ]:[u+v+w](u+v—w).
2 - 2 2

Selon la donnée, il faudra donc que

u+v+w \(u+v—-w U+v+w| u+v—w
u+v+w+ = +2
( 2 )( z ) 2 [ 2 ]

Posons donc, utilisant la décomposition de k choisie, que

k.

ll\/01r ses «Geometrica» —dans HERON (1899-1914), IV—, p. 422-425.
12«Toujours» ou (plus loin) «a chaque fois» signifie que 1'opération a effectuer est
générale et nullement liée aux données numériques particuliéres du probléme.
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— . Utv—w
W—w+2=(smt —_—=q-2.

On aura alors d’une part

u+v+w+ u+v—w
2 2

et d’autre part

U+v+w Uu+v—w 1 .
— — —2’ Soit
( 2 )( s ) 2uv plg=2)

4uv=8p(q-2).
Comme (u-v)? = (u+v)? -4uv = (p+q-2)? - 8p(g-2),
la formule de la demi-somme et de la demi-différence ameénera

uv=3(r+-2)|(p+4-2)"~8p(¢-2) ], cependant que

=u+v=p+q-2

u+v+w u+v-—-w

w=—0 S—=r-(a-2)

Comme déja dit, il nous faut en outre que les deux facteurs de k choisis
rendent la quantité sous le radical rationnelle. C’est ce qu’opere le choix
particulier p=35, g=8 de Héron.

Quant aux quelques équations quadratiques que I’on trouve chez Héron,
soit elles sont résolues en complétant le carré —I’équation ax? + bx = ¢ étant
par exemple transformée en a%x? + abx = ac, puis, par addition de ( )%, en
(ax + —)2— (5 b )2 + ac— soit le résultat est donné directement.

L algebrlste Diophante a, lui aussi, un petit nombre d’équations
quadratiques dans les livres conservés de son «Arithmetica»!3. Dans les
problemes "VI".6 & 7, les solutions (positives) de 84x2+7x=7 et de
84x2=7x+7 sont indiquées directement. Dans le probléme "IV",31, ol une
premiere détermination I’amene a 1’équation 5x?=3x+18, Diophante remarque
que «cette équation n’est pas rationnelle (0Ux 0TV 1 l0WOLL ONTAH)», ce qui
serait le cas, ajoute -t-il, si le coefficient de x2 multiplié par 18 et augmenté du
carré de la moitié de 3, le coefficient de x, était un carré. Il reforme alors son
hypothese de départ en accord avec cette exigence.

On peut s’étonner qu’un ouvrage d’algébre ne contienne que peu
d’équations quadratiques. Cela tient a la nature des problemes traités par
Diophante, qui sont pour la plupart indéterminés, 1’auteur posant les
grandeurs cherchées en fonction d’une inconnue de maniére a aboutir a une
équation de résolution ne contenant plus que deux termes avec des puissances
consécutives de I'inconnue, ce qui lui assure la rationalité de la solution. Il
promet toutefois dans I’introduction de présenter aussi des cas ou 1’équation

13Selon I'indication de son introduction, 1'«Arithmetica» devait comprendre treize
livres (chapitres). Six livres en grec furent connus en Europe occidentale depuis la
Renaissance, qui avaient été numérotés selon la tradition byzantine de I a2 VI. En
1968 ont été découverts quatre autres livres en traduction arabe, qui trouvaient leur
place au milieu des livres grecs conservés. On posséde donc actuellement les livres I
a Il en grec, IV a VII en arabe et "IV" a "VI" en grec (vraisemblablement les livres
originels VIII a X).
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finale contiendra trois termes, mais ceci manque dans la partie aujourd’hui
conservée de 1’«Arithmetica». Les quelques exemples mentionnés ci-dessus
suffisent néanmoins a se convaincre que la résolution de 1’équation du
deuxieme degré en Greéce faisait partie du domaine des connaissances
courantes.

3. L’EQUATION DU DEUXIEME DEGRE DANS LE MONDE ISLAMIQUE

Les mathématiciens grecs que nous avons mentionnés avaient un autre point
commun que celui de toucher, de pres ou de loin, a I’équation quadratique: ils
avaient tous élu domicile dans la colonie grecque d’Alexandrie qui, depuis
I’époque d’Euclide jusqu’a la fin de I’empire romain, était restée le pole de
I’activité scientifique. Leurs oeuvres, ou certaines d’entre elles, allaient
revivre dans la cité qui devint, dés les premieres décennies suivant sa
fondation (762), la capitale du monde musulman et le nouveau centre du
monde lettré. Trois héritages scientifiques se retrouverent a Bagdad. Il y avait
d’abord le vieil héritage babylonien, ayant peu ou prou survécu dans le
monde oriental (en Perse en particulier) et ayant laissé ca et la des traces dans
les écrits grecs. Un deuxieme héritage provenait d’une science qui connaissait
alors sa premicre apogée et qui avait intégré des €éléments des sciences
mésopotamiennes et grecques, la science indienne. Un contact direct avec des
savants indiens a Bagdad apporta aux mathématiciens musulmans les
éléments de la trigonométrie et de 1’astronomie indiennes. Sans doute
connaissaient-ils déja le systeme de numération reposant sur les chiffres
qu’ils appelaient «indiens» et que nous appeldmes «arabes» —le donataire
attribuant di crédit au donateur—, puisqu’on en trouve déja la mention en
Syrie au VIIe siecle!4. En tout cas, ils se formerent a son utilisation pour les
opérations arithmétiques avant le début du IXe siecle, et peut-€tre adoptérent-
ils aussi des Indiens cette prédilection dont ils firent montre pour
I’application de 1’algebre et de I’arithmétique aux problemes de la vie
courante, en particulier au négoce. Toute théorique, ou presque, est la
formation qu’apporterent les traductions arabes des classiques mathématiques
grecs. Ce troisieme héritage mit notablement plus de temps que les autres a
étre assimilé: il ne s’agissait plus d’apprendre quelque recette ou méthode de
calcul, mais de comprendre une suite de démonstrations sur lesquelles, de
théoréme en théoréme, se construisait la théorie faisant I’objet du traité. On
congoit que rendre de tels raisonnements, ou chaque mot avait son
importance, exigeait de la part des traducteurs tant une aptitude insigne aux
mathématiques qu’une compétence philologique aigué€, l'une et 1’autre
qualités étant seules a méme de remédier aux éventuelles corruptions du texte
ou de combler les inévitables lacunes des copistes de la basse antiquité.
D’aucuns eurent méme a rechercher, ou a faire rechercher, de meilleurs
manuscrits, ce qui n’était point une mince affaire: la filiation des oeuvres
scientifiques depuis la fin de I’antiquité était devenue fort ténue, et ne tenait
parfois qu’a un seul exemplaire, ce qui incidemment explique que plusieurs
traités grecs ne nous soient parvenus que dans leur traduction arabe.

14En 662 par Severus Sebokht, évéque de Qinnisrin; cf. Nau (1910), p. 225-227.
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La science grecque donnant une place privilégiée a la démonstration
géométrique, il était inévitable que 1’étude de 1’équation du second degré a
I’époque islamique s’en trouvit influencée. Aux illustrations géométriques
intuitives des formules de résolution apparaissant dans les anciens traités en
arabe succéderont ainsi des illustrations utilisant des théore¢mes d’Euclide,
puis des démonstrations de la construction géométrique des solutions, un
point qui mettra en évidence le lien entre opérations arithmétiques pouvant
étre effectuées a 1’aide des deux instruments admis par la géométrie
d’Euclide, la régle et le compas, et résolution des équations algébriques. Car
la résolution de 1’équation du second degré, ne dépendant que des opérations
d’addition, de soustraction, de multiplication, de division, et d’extraction de
racines carrées, appartient encore au domaine commun, au contraire de
I’équation du troisieme degré, qui fait intervenir des extractions de racines
cubiques.

3.1. lllustrations intuitives des formules

On attribue le premier traité d’algebre en arabe a un auteur d’ascendance
persane, mais travaillant a Bagdad, Muhammad ibn Misa al-Khwarizmi
(vers 820)15. Bien qu’il existdt déja une premiére version des «Eléments»
d’Euclide, ses illustrations des formules de résolution n’y font nulle
référence. Il est vrai que son ouvrage, qui était dans I’intention de 1’auteur
destiné a un large public, ne pouvait en exiger la connaissance préalable des
«Eléments» dont la lecture n’était pas plus aisée pour un lecteur d’alors
qu’elle ne ’est pour le lecteur d’aujourd’hui. En bref, al-Khwarizmi désire
simplement montrer que, dans chacun des trois cas, un segment de droite
représentant la solution satisfera bien a la donnée de 1’équation.

Casdex2+px=gq

Representons par AB (fig. 1) le carré x2 16, Prolongeant d’abord chacun de
ses cOtés, de part et d’autre, du segment connu %, on construit ensuite le carré
extérieur DE. La surface de ce plus grand carré vaudra donc d’une part
(x +£)2, d autre part, par addition des neuf éléments qui la composent, x2 +
4% x ’y 452 =x2+ px + (%)%, qui égale, selon la donnée de 1’équation, ¢ +
(5)2. Le cote de ce carré vaudra donc

2
p p )
x+-=4l =] +g, d’ou
2 (2] !

15Texte arabe avec traduction anglaise dans ROSEN (1831).

16Deux lettres placées aux angles opposés d'une figure rectangulaire servent a en
désigner la surface; ce mode de désignation était déja en usage en Grece.
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Figure 1.

e Casde x2 +q=px

Soit (fig. 2) AD=x2, et tragons DN=p. Ainsi, la surface GN vaut px, et, selon
I’équation, AN égalera g. Prenons DT—TN-i et dessinons sur TN le carré
TM=()2. Alors, KH=AH—§— x (on suppose donc que ’2’> x). Posant maintenant
HZ=AH, il vient que KZ = (5- x)2. Les surfaces AT et LE, dont les cdtés sont
égaux, sont égales. Il suit de 1a que la différence des surfaces KN et AN
égalera d’une part (5 )2-q, d’autre part KZ= (5 - x)2, en sorte que I’on aura

aussi

Figure 2.
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Quoique al-Khwarizmi mentionnit pour ce cas I’existence d’une seconde
solution par addition de la racine, son ouvrage n’en contient point
d’illustration. On en trouve une chez 1’'un de ses contemporains, ‘Abd al-
Hamid ibn Turk, présenté ultérieurement comme son concurrent!’. Le
fragment conservé de son traité d’algébre contient la démonstration
suivante!ls,

Supposant donc cette fois 5< x, représentons (fig. 3) x2 par AD et p par
DZ, en sorte que AZ=q. Prenons DH=HZ= 3 et construisons TZ=(§)2. Alors,
TN=AN= x - 5. Menant HL=HB, on formera le carré LB égal a (x - % )2.
Donc, comme fes surfaces TM et AK sont égales, la différence des surfaces
TZ et AZ vaudra d’une part (1%)2 - g, d’autre part LB=(x -%’)2, en sorte que

2 \2
_p, |(p)_
=t (2) 1
G A E
T N K
L M
D H B Y4
Figure 3.

Le cas de la racine double survient lorsque (5)2 = ¢, donc lorsque les paires
de points B,H et A,T du dessin précédent sont confondues, comme le
représente encore ‘Abd al-Hamid (fig. 4). En ce cas,

17Selon son petit-fils, c'est a lui que devait revenir la primeur de la composition d'un
ouvrage d'algébre en arabe; Abu Kamil (dont il sera question plus loin) s'est toutefois
vivement élevé contre cette prétention de reléguer al-Khwarizmi au second rang,
comme nous l'apprend le bibliographe Hajji Khalifa (1609-1657); voir FLUGEL (1835-
58), V, p. 68 & 168.

18 edit fragment a été édité et traduit en anglais par SAYILI (1962).



284 J. Sesiano

G £ e
D B Z
Figure 4.

«Casdex?2=px+gq

Soient, selon al-Khwarizmi (fig. 5), AD=x2 et BE=p; donc, ZD=q. Posons
que BH=HE=%. Tragant en outre, perpendiculairement & BE, HT=HE, on
aura TE=("§’ )2. f’rolongeant HT de TL=ED=NM, on aura HL=HD= x -£. Mais
TK=NZ, en conséquence de quoi les surfaces LK et ZM sont égales. La
différence des surfaces LD et TE est donc d’une part égale a (x -5)2 - (5)2,
d’autre part aussi 8 ZD=q, en sorte que

2
x-£Z- (E] +g, d’ou
2 2

2

P P
=4 = | +4.
(2) ?

2
A z G
L N M
T K
B H E D

Figure 5.
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3.2. llustrations a I’ aide de deux théorémes d’ Euclide

Si I'ouvrage d’al-Khwarizmi visait un large public, tel n’était pas le cas de
celui de son successeur Abt Kamil (env. 880)!°. Ce dernier s’adresse en effet
a un cercle de mathématiciens formés, dont il suppose la connaissance des
«Eléments» d’Euclide. Il peut ainsi présenter des illustrations de la solution
des trois types d’équations quadratiques a 1’aide d’un raisonnement simplifié
s’appuyant sur la connaissance de deux théorémes des «Eléments», & savoir
les théorémes S et 6 du livre 11, qui sont les suivants.

I1,5: «Si un segment de droite est partagé en deux parties égales et en deux
parties inégales, le rectangle (=le produit) formé par les deux segments
inégaux, avec le carré sur le segment compris entre les points de section,
sera égal au carré sur la moitié».

Donc (fig. 6): AD-DB+FD?=AF2.

A - ) B
Figure 6.

I1,6: «Si un segment de droite est partagé en deux parties égales et qu’on
lui joigne un segment dans sa continuation, le rectangle formé par la droite
entiére avec le segment ajouté et le segment ajouté, avec le carré de la
moitié, sera égal au carré sur le segment formé par la moitié et le segment
ajouté».

Donc (fig. 7): AD-DB+FB2=FD2.

A :

Q

Figure 7.

Dépouillées de leurs atours géométriques, ces deux propositions se
réduisent a une seule identité algébrique, la méme qui était a la base de la
résolution mésopotamienne de certains systémes du second degré, soit

2 2
u-—v u+v
uv + = ,
( 2 ) [ 2 j

comme on le voit en posant AD=u, DB=v.

Pour présenter les démonstrations d’Abi Kamil sous un aspect uniforme,
nous utiliserons les mémes lettres pour désigner les quantités de méme
dénomination, convenant que AC=x?, AB=p -la surface BC représentant
alors la quantité g— et que F soit le milieu de AB.

19Reproduction de 1'unique manuscrit arabe dans ABUKAMIL (1986). 11 existe de ce
texte une traduction latine médiévale incompléte aux fol. 71V-97" du manuscrit latin
7377A de la Bibliotheque Nationale de Paris. Une traduction médiévale en hébreu a
été (incomplétement et médiocrement) éditée, traduite et commentée par LEVEY
(1966).



286 J. Sesiano

» Cas de x2 + px = g (fig. 8)
Par 11,6, AD-DB+FB2=FD2, en sorte que ¢ + (5)2 = (x +5)2.

C

D A F B
Figure 8.

* Cas de x2 + g = px (fig. 9-10)

Par 11,5, AD-DB+FD?=AF2, en sorte que g + (x _g)z = (’%)2, ol I’on prendra x -
’5’ positif ou négatif, ou nul dans le cas ou F et D coincident.

C

Figure 9.

A D F B

Figure 10.
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* Cas de x2 = px + ¢ (fig. 11)
Par 11,6, AD- DB+FB2 FD2. en sorte que ¢ + (5)2 = (x - §)2,

C

Figure 11.

On retrouve ainsi les formules vues précédemment.
3.3. Construction géométrique des solutions

Tout ceci n’est, comme déja dit, qu’une illustration des formules de
I’équation du second degré. Or, I'usage de la regle et du compas permet de
construire les solutions en partant des segments de droites ayant la valeur des
coefficients p et g, et ceci grice aux deux théorémes généraux VI,28-29 des
«Eléments» d’Euclide, dits des «applications d’aires». Dans notre cas
particulier des équations quadratiques, le probléme revient a construire un
rectangle d’aire donnée g ayant sa base sur une droite de longueur donnée p
—Eventuellement prolongée—, en sorte qu’il differe du rectangle de méme
hauteur et de base p par une surface carrée.

* Cas de x2 + px = ¢, mise sous la forme x(x+p)=¢

Construisons (fig. 12) sur la moitié de AB—p, le carre CB=(%5)2, sur la base
duquel nous construisons le plus grand carré CE = (5)2 + q%O Le rectangle
cherché est alors AE, différant de AD par la surface Carree BE=x2, en sorte
que BF=BD est la solution cherchée.

» Cas de x2 + g = px, mise sous la forme x(p-x)=q¢

Dans ce cas (fig. 13), le carré CE = (p )2 - g (ou (p )2 > q) est plus petit que le
carré CB=()2. Deux rectangles remphssent les COIIdlthIlS AE, correspondant
 Ia solution DE=DB=x,, et le rectangle de méme surface DG, correspondant
a la solution AD=DH=x,. Les relations de Viete (cf. p. 272) apparaissent de
la figure, puisque I’on a

20Comment construire le coté de ce carré (donc la racine de la quantité connue) est
expliqué dans le théoréme 11,14 des «Eléments». Si a est la quantité connue représentée
comme un segment de droite, on prolongera ce segment du segment unitaire, puis on
tracera la demi-circonférence de diamétre a+1; alors, la hauteur élevée de l'extrémité de
a jusqu'a la demi-circonférence aura la longueur Ja.
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x1+x2=AB=p
x,-x,=DF=DG=DI+DK=¢ 21
______ D E
- T
| |
L
A = — F
C
Figure 12. H &
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2lLa relation de Viete sous la forme moderne est notée x;+x,=-p, car on écrit
1'équation sous la forme x2+px+¢=0.
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* Cas de x2 = px + g, mise sous la forme x(x-p)=¢g
La méme construction que pour le premier cas montre que, cette fois, x=AF
et BE=(x-p)2.

Si cette construction n’apparait pas chez les deux premiers grands
algébristes que nous avons mentionnés, c’est qu’elle supposait, au moins
chez le lecteur, une connaissance profonde des «Eléments» d’Euclide. On la
trouve chez le plus célebre des algébristes ultérieurs, ‘Umar Khayyam (env.
1048 - env. 1131), le premier qui et résolu géométriquement tous les cas a
solution positive de I’équation du troisieme degré dans ses diverses formes a
termes positifs, ce qui n’avait jusqu’alors été fait que pour quelques cas par
ses prédécesseurs et en Greéce?2. Ladite construction des solutions de
I’équation du deuxieme degré était toutefois connue auparavant, puisqu’elle
apparait dans une compilation anonyme de divers traités d’algébre composée
en I’an 395 de I’hégire (1004/5 de I’ére chrétienne)?3. L’auteur remarque a la
fin qu’une telle construction des solutions dans le cas de 1’équation du
troisieme degré n’est pas faisable par la régle et le compas, mais qu’elle
pourra étre effectuée si ’on utilise les sections coniques; il mentionne en
outre les treize formes de 1’équation concernées?4.

Que ce soit pour l'illustration ou la construction, le recours a la figure
géométrique est un élément caractéristique de I’étude de 1’équation du
deuxieme degré dans les pays islamiques. Le méme recours a la
représentation par des figures apparait aussi dans les démonstrations
d’identités algébriques ou de théoremes d’addition de racines. Dans tous ces
cas ou presque, des figures analogues se retrouvent chez Euclide, mais y
restent toujours confinées dans un cadre purement théorique; la différence
réside donc dans l'application des théorémes d’Euclide a I’algebre. En
particulier, les segments irrationnels d’Euclide, correspondant a des racines
carrées (ou quatriemes), deviennent, dans les problémes arabes, des racines
carrées (ou quatriemes) de nombres rationnels. Avec ceci nait la premiere
extension du domaine des nombres: cependant que jusqu’alors une solution
devait, pour qu’elle fiit acceptable, étre rationnelle et positive, 1’algébre fait
désormais intervenir, tant comme constantes données que comme solutions,
des quantités irrationnelles (positives).

Ce support de la géométrie a 1’algébre s’étendit méme a la résolution de
problemes particuliers. Ainsi, Abli Kamil présente souvent, lors de la
résolution de systémes d’équations, une détermination géométrique de la
solution, établie avec référence explicite aux théorémes d’Euclide. Il est aussi
significatif que, souvent, cette résolution précéde la résolution purement
algébrique, ou bien qu’elle la suit avec le dessein de la justifier. L algébre
n’avait pas encore tout a fait gagné son autonomie.

22Voir 1'édition avec traduction francaise de WOEPCKE (1851).

23Manuscrit 5325 de la Bibliothéque du Mausolée de 1'Tmam Reza 2 Mechhed.

24S0it (outre le cas banal X3 =c¢): 3+ bx=c, x3 + ¢ = bx, X3 = bx + ¢; ¥ + ax? =c,
Brcec=a, B3=a2+c, 3 +ax2+bx=c, x3+ax2 + ¢ =bx, X3+ bx +c = ax?,
B=za2+bx+ce,3+a=bx+c; 3 +bx=ax2+c;x3 +c=ax? + bx.
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4. L.’ APPARITION DES NOMBRES NEGATIFS DURANT LE MOYEN AGE CHRETIEN

Les traités d’algebre d’al-Khwarizmi et d’Abt Kamil eurent une influence
non seulement en Orient au début de la science musulmane, mais aussi en
Occident musulman, car ils y devinrent le fondement des ouvrages de
mathématiques, alors que les recherches ultérieures, telles que celle d”*Umar
Khayyam, n’y furent pas transmises.

Aussi les premiers ouvrages mathématiques de 1’Occident chrétien nous
présentent-ils un visage familier. Le «Liber mahameleth» de Johannes
Hispalensis, écrit a Toléde vers 1150, peu avant les premiéres traductions de
I’arabe, contient des problémes qui rappellent ceux des deux premiers
algébristes mentionnés, sauf qu’ils y sont beaucoup plus nombreux, détaillés
a I'extréme dans les calculs, et augmentés presque systématiquement d’une
résolution géométrique?S. Les illustrations des formules de 1’équation du
deuxieme degré sont répandues par les traductions, et si bien adoptées
qu’elles subsisteront jusqu’au XVIe siecle: méme 1’«Ars magna» de Cardan,
parue en 1545, qui pourtant enseignait la résolution des équations des deux
degrés supérieurs, les maintiendra, Cardan allant méme jusqu’a exposer des
illustrations analogues, mais a ’aide de figures dans |’espace, pour les
formules de résolution des équations du troisieme degré.

L’évolution de I’algebre se fit plutdt dans une autre direction, et ceci
surtout griace a I’oeuvre de Léonard Fibonacci de Pise (env. 1220), dont les
voyages autour de la Méditerranée lui avaient assuré une formation
supérieure a celle que I'on pouvait acquérir par les seules traductions faites
en Espagne. Son domaine de prédilection est la résolution de systémes
linéaires de n équations a n inconnues, qu’il classe en types, pour lesquels il
¢établit dans de nombreux cas une formule de résolution générale en fonction
des constantes données et du nombre n. Faisant alors varier ses constantes, il
fait varier a loisir la valeur des solutions, allant jusqu’a proposer des
exemples dans lesquels 1’'une des solutions prend une valeur non seulement
nulle, ce qui était inhabituel, mais aussi négative. Méme s’il ne 1’accepte pas
a proprement parler, il tente de 1’interpréter, ouvrant ainsi la voie menant a la
reconnaissance des solutions négatives et donc des nombres négatifs26, Deux
exemples suffiront a illustrer ceci.

Dans I'un des types de systemes €tudiés chez Léonard, trois hommes
possedent en commun un capital dont chacun détient une part connue, et
qu’ils décident d’enfermer dans un coffre. Mal leur en prend, car, profitant de
I’absence des deux autres comperes, chacun va a tour de rdle voler
furtivement une partie de 1’argent, le dernier laissant le coffre vide. Ils
conviennent alors que chacun remettra dans le coffre une fraction donnée de
ce qu’il a volé, cet argent récupéré devant ensuite €tre distribué entre eux a
parts égales. Les données du probleme sont ainsi faites que, avec 1’argent
qu’ils ont conservé de leur vol, tous retrouvent leur mise initiale.

25Manuscrit latin 7377A de la Bibliothéque Nationale de Paris, fol. 997-203". Le titre
mahameleth est la transcription (approximative) de 1'arabe mu‘amalat, qui désigne les
textes dont I'objet est 1'application de I'algebre au négoce.

2611 ne faut pas confondre le calcul avec des termes soustraits (la régle des signes
était connue des les débuts de 1'algeébre) et la mise en évidence de quantités négatives,
qui n'apparait donc que relativement tard.
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Parmi les divers problemes de ce genre proposés par Léonard, I’'un amene
une solution négative pour un des partenaires?’. Désignons par S le capltal
initial, dont les trois partenaires possédent respectivement ; S, S et 5.
Sment en outre x, x,, X3 les montan}s respectifs de leurs vols; il est dit qu ils
doivent remettre dans le coffre lxl, 37X, et 1x3 respectivement, de sorte que le
systeme a résoudre est

1 /1 1 1 ] 1
—X | =X+ =k X (28
2 3 2 3 6 "1 2
2 1[1 1 ] 2

L’indétermination du probléme permet & Léonard de choisir la valeur de S,
qu’il pose ici égale a 470 (il donne souvent la préférence a des valeurs
menant a des solutions entieres). Les parts initiales se monteront donc
respectivement a 235, 188, 47. 1l calcule alors les solutions, qui sont x;=326,
X,=174, x;=-30. Autrement dit, comme il le remarque, 1’argent volé par les
deux premiers, soit 500, apparait supérieur au montant du capital S. Il
propose alors de considérer que le troisiéme, en toute confiance, avait placé
30 de son argent propre, non compris dans le capital, dans le coffre, de sorte
que, lorsque les deux premiers ont gagné par leur vol, lui a perdu, outre sa
part, ses 30. Lors de la remise d’une partie de I’ ‘argent volé, les deux premiers
remettent éxl 163 et3x2 58; le dernier, censé rendre + ¢ X3=-5, profite en fait
de subtiliser 5 de I’argent que viennent de remettre ses deux partenalres 1=
partage du reste en trois rétablit ensuite chacun dans son droit, le troisieme,
recevant lui aussi 72, recouvrant avec les 5 qu’il a déja récupérés sa mise
initiale de 47 et son bien propre de 30.

De telles contorsions intellectuelles ne sont pas toujours nécessaires a
Léonard pour trouver un sens a sa solution négative. C’est le cas dans les
problémes dits de I’achat d’un cheval, oll un nombre fixe de ¢ partenaires pris
consécutivement n’a pas assez d’argent pour acquérir le cheval, mais en
atteindra juste le prix en recevant des n-t autres une fraction donnée de leur
avoir. Léonard en a de nombreux exemples —dont certains avec des solutions
négatives— le cas le plus simple étant celui d’un seul des partenaires recevant
la fraction donnée des n-1 autres. Le probleme est dans ce cas

x+m Yy x, =y (i=1,..,n),

k#i

les x; représentant les sommes individuelles, les m; les fractions données, et
y le prix du cheval (donné ou posé). La formule de résolution qu’établit
Léonard s’écrirait

x.-=(S—y>[ O, Nk B }oﬁ S=$x£.

n—-111-m, 1-m,

27Voir BoONCOMPAGNI (1857), p. 296-297. Sur l'ensemble des problemes
médiévaux a solutions négatives, voir SESIANO (1985).
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On voit que le bien du i®me partenaire sera négatif si l_m est supérieur a la
somme des 7, divisée par le nombre des participants moins 1. Dans un tel
cas, Léonard dit simplement que le probléme est impossible, 2 moins que 1’on
ne considére que le participant concerné a une dette, qui devra €tre soustraite
des biens des autres.

L’attitude de Léonard par rapport aux solutions négatives est claire: on ne
levera I’impossibilité qu’en interprétant le résultat négatif par une inversion
du concept qu’il représente —par quoi la solution négative est de facto
transformée en une solution positive. Pourtant, cette attitude de refus eut pour

conséquence que 1’on n’exclut plus a przorz des solutions négatives. Le pas
suivant fut franchi dans un traité anonyme, €crit en provencal vers 1435, qui,
lui, admit une solution négative sans l’interpréter. Son auteur le fit pour un
systtme comme celui que nous venons de voir, concernant cette fois
I’acquisition d’une pieéce de drap par cinq marchands, soit

(x,+x,+x,+x. =Yy

X, +

(x Fx40% 4 1 =y

b

—5

¥

[
™
|
|
{x,+=(x, +x,+x, +x,)
Ix4+g(x5+x]+x +.%5 )
|
L

1
-f—g(x1 +x,+x,+x,) =Y,

lequel probléme suit le traitement des deux cas similaires pour n=3 et 4, qui,
eux, ont des solutions posmvels28 En posant daps ce dergner systeme S-y—60
il calcule que x,3-103, x,=197, x3—29 1, X4=34 7, xs=37 7 . Or, il dit bien que
le premier a 10 ; 7 «moins que rien (mens de nonres)», mais la particularité du
résultat apparait du fait que dans ce probléeme, et dans ce probléme
seulement, la validité de la solution est prouvée par 1’introduction des valeurs
trouvées dans chacune des équations.

Cette acceptation arrivait a son heure: la deuxieéme moitié du XVe siecle
verra quelques exemples d’autres acceptations —certes toujours timides—,
que ce soit dans des problémes a données concrétes ou en nombres. Mais il
s’en faudra de beaucoup que les nombres négatifs gagnent plein droit de cité:
ils resteront longtemps des numeri ficti (Cardan) ou des racines fausses
(Descartes), et seule 1’exigence axiomatique de leur nécessaire introduction
pour que la soustraction puisse étre effectuée sans restriction allait, au XIXe
siecle, les détacher du probleme de leur application occasionnelle a des
phénomenes réels.

Z8Manuscrit frangais n. acq. 4140 de la Bibliothéque Nationale de Paris, fol. 100r-
101V,
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5. L’ APPARITION DES NOMBRES COMPLEXES AU XVI¢ SIECLE

Depuis la fin du XIVe siecle on savait, en Italie, qu’une équation compléte du
troisieme degré
Y+ayz+by+c=0
(en écriture moderne, puisque I’on n égalait pas encore a zéro) pouvait étre
transformée en posant y = x -- en une equatlon du troisiecme degré déficiente
du terme quadratique. Ainsi, én particulier, I’équation a coefficients positifs
y3 + ay? + by =c,
qui a toujours une solution positive, devenait
x3+px=q.
L’identité —connue au moins depuis 1’ anthulte grecque—
(u-v)3 = u3 -3u?v + 3uv? - v3 pouvait s’écrire
(u-v)3 + 3uv(u-v) = ud - v3,
ce qui permettait de poser, par identification avec 1’équation précédente,

U-v=Xx
uv—g

Gréce a I’'identité bien connue depuis les temps mésopotamiens (cf. p. 275),

u +v3 ) us —yi '\ ;
) = > +u3y3, on avait alors

-\(3) (4
=l =] =] .
2 . 3

Comme d’autre part

2 2

on obtenait par 1’application de la formule de la demi-somme et de la demi-
différence

2 3
Wy = [1] +(£) L4
2 3 2

et donc

e ORCER{OROE

On sait que, vers 1500, Scipione del Ferro était en possession de cette
formule, qui donna naissance aux formules des autres cas par ses successeurs
Tartaglia et Cardan. Quoique 1’on ne connaisse des recherches de del Ferro
que le résultat ci-dessus, 1l n’y a guere de doute qu’il 1’ait obtenu de la
maniere vue.

La formule de del Ferro correspondait donc au cas x3 + px =g avec, en
particulier, p positif. La formule générale, applicable aux deux autres formes
réduites a solutions positives, soit x3 = px +¢ et x3 + g =px, est

2
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A CROR R ORG)

dite «formule de Cardan».

La découverte de la résolution de I’équation du troisieme degré eut une
consequence notable. On voit que, dans le cas ou p<0, on peut avoir ( )2+
(5)3 <0, c’est-a-dire que la quantité sous le radical de la racine carrée peut
devemr négative —ce qui, incidemment, est précisément le cas ou les frois
racines de 1’équation sont réelles et distinctes. Ainsi, dans son «Algebra» de
1572, R. Bombelli avait remarqué que 1’équation x3 = 15x + 4 qui, selon la
formule de Cardan (avec p=-15, g=-4), avait la solution

V244121 +42-v—121

€tait pourtant satisfaite numériquement par la solution évidente x=4. Il avait
en outre démontré géométriguement que 1’équation x> = px +q, avec p et g
positifs, devait avoir une solution positive, et ceci quelles que fussent les
grandeurs respectives de p et de g. Il eut donc I'idée de poser, dans son cas
particulier de x3 = 15x + 4,

Y2+4/-121 =2+7r/-1
Y2-4—121 =2 -1,

qui donnait bien la valeur x=4 par addition; élevant chaque co6té des deux
égalités au cube, il obtenait

241131 =8+12r/-1-6r2 —r34/-1
2-11v-1=8-12rV/-1-6r2 + r34/-1,

et la détermination r=1 se déduisait de 1’égalisation des parties réelles et
imaginaires. Il avait ainsi réussi a mettre en évidence la solution désirée,
«benché, ajoutait-il, a molti parera questa cosa stravagante». Il avait ici
appliqué les régles de calcul par lui introduites pour le produit de quantités
imaginaires, a savoir, selon sa dénomination de piu di meno pour ++/-k et de
men(o) di meno pour - y/-k (k positif):

piu di meno via piu di meno fa meno =—k, donc(+i)(+i)= _1.

= +k, donc(+i)(=i)=+]

4

pi di meno via men di meno fa piu

129
=—k, donc(-i)(—i)=-1|

( )
( )

meno di meno via piu di meno fa piu (—\/_k) ) =+k, donc(—i)(+i)=+1
(-V=k)(-=k)

meno di meno via men di meno fa meno [

29Pour ces diverses contributions de Bombelli, voir la nouvelle édition de
I'«Algebra», enrichie d'une partie pas publiée en 1572, par BORTOLOTTI (1966), p.
225, 228-229, 133-134.
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La généralisation au cas ou la solution positive €tait inconnue posait toutefois
une difficulté. Avec

x::\/u-}-f\/jv +§/u_\/:;, on poserait
Vu+~-v =s+-1
Yu—+-v =s—+/-t, avecs,t>0,

et la solution réelle positive était x=2s. Toutefois, la détermination de s par
€élévation au cube puis élimination de ¢ entre les deux relations 1’amenait en
général a une équation de la forme s3 = as +f3, donc a une équation du méme
type que celle du début: c’était le casus irreducibilis des mathématiciens de
I’époque. F. Viete parvint a contourner la difficulté rencontrée par Bombelli
en utilisant une résolution trigonométrique qui donnait méme les trois
solutions réelles pour le cas du discriminant négatif. A Bombelli revient
néanmoins la premiere tentative de calcul avec les quantités imaginaires —
mais, comme on 1’a vu, dans le but purement utilitaire d’en déduire les
solutions réelles.

6. EPILOGUE

Nous avons assisté a l1a naissance de deux extensions successives du domaine
des nombres, celle des nombres négatifs et celle des nombres complexes,
mais nous n’avons mentionné en relation avec elles que des exemples de
systémes linéaires et 1’équation du troisieme degré, respectivement. Il nous
convient de dire quelques mots de I’équation du deuxieme degré a cette
époque et de ses rapports avec ces deux extensions.

On ne connait gueére d’exemples d’équations du deuxiéme degré avec des
résultats négatifs au XVe siecle. Le seul exemple s’en trouve chez Luca
Pacioli, I’auteur d’une vaste et influente —quoique dépourvue d’originalité—
«Summa de arithmetica», parue en 1494 a Venise puis en 1523 a Toscolano.
Or, ledit exemple de Pacioli ne se trouve pas dans la «Summa», mais dans un
manuscrit écrit vers 1480 a l’intention de ses étudiants a Pérouse.
Examinant les solutions de

(x+k)k+(%]2 =1,

avec k et I donnés, Pacioli indique que la solution sera x = 2(/I - k), puis il
passe a des exemples numériques: /=100 avec k=4, /=101 avec k=4, puis a
nouveau /=100 avec k=6 et k=20. Il remarque que dans ce dernier cas 20 ne
peut étre soustrait de+/100 : «avenga che (20) non si possa chavare dela
R(adice) 100»; il ajoute néanmoins que la solution serait /400 - 40, «e tanto
seria el numero tutto».

30Manuscrit latin 3129 de la Bibliothéque Vaticane, fol.351" (seule la dédicace est
en latin).
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Dans le méme manuscrit (fol. 229v-230r), la solution (complexe) du
systeme

x+y=10
l+x=5,
X

équivalent a une équation du type x2 + g = px (avec g=10 et p=6), est quali-
fiée d’ 1mp0551ble soustrayant g de (5)2, «restara non so quanto, dit Pacioli,
perche I'é pin el numero [donc g]| che non ve la multiplicatione dela
! (du coefficient) dele chose [des x]3! in se. Impossibile».

Au XVIe siecle, nonobstant 1’utilisation croissante des nombres négatifs
voire des nombres complexes, leurs applications a des solutions d’équations
quadratiques sont rares. Le premier exemple que 1’on connaisse pour une
solution complexe est celui de Cardan dans le chapitre XXXVII de I’«Ars
magna», qui remarque que la solution, qualifiée plus loin de sophistica, du
systéme

x+y=10
{x- y=40

serait 5 +V/—15et 5 - v—15 —ou, comme Cardan I’écrit, 5 PR m 15 respective-
ment 5 MR M 15, avec les abréviations d’écriture p pour piu et m pour meno
(fig. 14; on notera la remarque initiale «manifestum est quod casus seu
quaestio est impossibilis»).

Recvra 1L

Secundum genas pofitionis fal(z, eft per
radicem m. Etdabo exemplum, {i quisdi-
cat, diuide 10. in duas partes , ex quarum
vnius in reliquam ductu , producatur ;zo.
aut 40. manifeftum eft quad cafus feu qua.
ftio eft impoffibilis , fic tamen operabimur,
dividemus ro. per zqualia , & fiet eius me-
dietas 5. duc in {e fic 2§. auferes ex 25.
lpfum producendum , vtpote 40. vt docui
te, in capitulo operationum., in quarto li-
bro, fiet refiduum m. 1. cuius %. addita &
detracta a . oftendit partes , quz inuicem
ductz producunt 4o. eruntigitur hz , §. p.
B.m. I1§.& §. M. B M. 15.

Figure 14.

31Le latin res puis I'italien cosa rendent 1’arabe chay’, utilisé pour la dénomination
de I’inconnue au premier degré.
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Méme Bombelli rechigna a admettre une solution complexe pour
I’équation x2 + 20 = 8x:32 «questo agguagliamento non si puo fare se non in
questo modo sofistico», a savoir d’écrire 4 ++/—4et 4 - \/J—% , «e ciascuna di
queste quantita da sé sara la valuta del Tanto (de x)».

Deux siecles apres, Euler remarque dans son «Algebra» (I,§151) que les

solutions de

x+y=12
x-y=40

sont 6 +/—4 et 6 - /-4, en sorte que «die zwei gesuchten Teile (...) unméglich
sind» —ce qui ne l’empéche pas de considérer que «diese Lehre (der
unmdoglichen Zahlen) ist in der That von der grofiten Wichtigkeit».

Il faut se rendre a 1’évidence que I’équation du deuxieme degré, dont
I’exposition de la résolution et les applications avaient été pendant trente-cing
siecles 1’une des préoccupations principales des mathématiciens, ne présentait
plus qu’un moindre intérét, et que ses solutions négatives et surtout
complexes n’étaient en quelque sorte regardées que comme des curiosités. La
situation devait changer avec la démonstration du théoreme fondamental de
I’algebre. Mais 1’équation du deuxieme degré allait alors s’en trouver
reléguée au rang de cas particulier.
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