
Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 81 (1992)

Heft: 1

Artikel: Aperçu de l'histoire de l'équation du deuxième degré

Autor: Sesiano, Jacques

DOI: https://doi.org/10.5169/seals-279870

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-279870
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


^) <£ ^ ^ Bull Soc Vaud. Se. Nat. 81, 1992: 271-298. ISSN 0037-9603

Aperçu de l'histoire de l'équation
du deuxième degré

par

Jacques SESIANO1

Summary.-SESIANO J., 1992. Historical survey of the quadratic equation. Bull. Soc.
vaud. Sc. nat. 81:211-29%.
A historical survey of the resolution of quadratic equations to early modem times.

Key-words: History of mathematics, early algebra.

Résumé.-Sesiano J., 1992. Aperçu de l'histoire de l'équation du deuxième degré. Bull.
Soc. vaud. Se. nat. 81: 271-298.
Survol historique de la résolution des équations du second degré, des origines au début
des temps modernes.

On enseigne aujourd'hui dans les gymnases que l'équation du second degré
ax2+bx+c=0, dans laquelle les coefficients a, b, c sont réels (positifs ou
négatifs, avec a * 0), possède les deux solutions

_
-b±4b2-Aac

*" * 2a
et que ces solutions seront réelles et différentes si b2>4ac, ou bien égales si
b2=4ac, et qu'elles seront toutes deux complexes, ou imaginaires, si b2<4ac.

Si l'on suppose tous les termes divisés par a, l'équation s'écrira, posant
p=% et q g x2+px+q=0, dont les solutions seront

-p±^P2-Aq
2
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Il apparaît de cette dernière expression que, sous cette forme réduite, les
relations unissant solutions et coefficients seront

x]+x2 -p
xvx2 q,

des relations que l'on associe au nom du mathématicien français F. Viète
(1540-1603), qui en a généralisé la forme à des équations de degrés plus
élevés2.

Que ces solutions soient réelles -inégales ou confondues- ou bien
complexes, elles sont au nombre de deux, qui est le nombre caractérisant le
degré de l'équation. En effet, CF. Gauß (1777-1855) a plus généralement
démontré que toute équation de degré n possédait exactement n solutions,
réelles ou complexes (cette dernière dénomination naît avec lui).
L'affirmation de ce théorème, souvent appelé aujourd'hui «théorème
fondamental de l'algèbre», était apparue néanmoins quelque deux siècles
auparavant, lorsque A. Girard (1595-1632) avait mentionné dans son
«Invention nouvelle en algebre» (Amsterdam 1629) que «toutes les equations
d'algebre reçoivent autant de solutions que la denomination de la plus haute
quantité le demonstre». Descartes (1596-1650) lui faisait en quelque sorte
écho, amplifiant même la notoriété du théorème du fait de la célébrité de sa
«Géométrie» -parue en 1637 en appendice du «Discours de la méthode»- où
il déclarait dans les premières pages du Livre III: «Scachés donc qu'en
chasque Equation, autant que la quantité inconnue a de dimensions, autant
peut il y avoir de diverses racines, c'est a dire de valeurs de cete quantité.
Puis: Au reste tant les vrayes racines que les fausses (les négatives) ne sont
pas tousjours reelles; mais quelquefois seulement imaginaires; c'est a dire
qu'on peut bien tousjours en imaginer autant que jay dit en chasque
Equation; mais qu'il n'y a quelquefois aucune quantité, qui corresponde a
celles qu'on imagine». Telle est, incidemment, la première apparition de la
dénomination d'imaginaires pour ces nombres, restée encore en vigueur
aujourd'hui, et qui garde la mémoire de la défiance avec laquelle ils furent
longtemps regardés.

Aussi n'est-on pas peu surpris de voir que, dans le premier recueil des
«Bulletins des séances de la Société vaudoise des Sciences naturelles», le
professeur J. Gay se doive de s'inscrire en faux contre l'affirmation de L.
Lefébure de Fourcy, qui pensait avoir montré, dans les §§185-186 de ses

«Leçons d'algèbre» (Paris 1833 -lère édition-,..., 1880 -9e éd.) destinées à la
préparation des examens d'entrée à l'Ecole polytechnique, qu'une équation
du second degré pouvait posséder, dans le cas où a tendait vers zéro, une
troisième solution.

L'existence même de ce débat pourrait suggérer au lecteur actuel que la
résolution de l'équation du deuxième degré était encore matière à débat au
milieu du XIXe siècle. L'aperçu qui suit a pour but de montrer qu'elle a en
fait une histoire antérieure fort longue, commençant aux premiers temps de
l'histoire des mathématiques, mais que la reconnaissance de ses deux

2Si l'équation xn+an_ixn~1+an_2x"-2+...+aiX+a0=0 a les solutions xlt x2,..., xn, alors

-a„_i est la somme de ces racines, +an_2 la somme de tous les produits de paires de ces
racines, -a„_3 celle de tous les produits de trois racines, et ainsi de suite avec alternance
des signes, a0 se réduisant au produit des n racines multiplié par (-!)".
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solutions devint surtout effective en relation avec le théorème fondamental de
l'algèbre plutôt qu'elle ne fut liée aux extensions successives du domaine des
nombres jalonnant l'évolution des mathématiques. On ne se soucia en effet
tout d'abord, et plus de trois millénaires durant, que de solutions positives. A
la fin du moyen âge, on fut amené à considérer des solutions en nombres
négatifs, mais le rôle de l'équation du deuxième degré y fut presque
inexistant. Enfin, le XVIe siècle vit l'apparition des nombres complexes, mais
là encore cela ne concerna guère l'équation du deuxième degré.

1. L'ÉQUATION DU DEUXIÈME DEGRÉ EN MÉSOPOTAMIE

Notre connaissance des mathématiques mésopotamiennes remonte à une
cinquantaine d'années, lorsque débuta la traduction de tablettes
mathématiques qui dataient, pour la plupart, de -1800 environ. Quoique les textes
en fussent écrits en accadien, la langue des envahisseurs sémitiques venus en
Mésopotamie vers -2000, divers indices amenèrent à penser que leur contenu
devait remonter aux habitants antérieurs de la Mésopotamie, les Sumériens.

Deux traits marquants de ces mathématiques d'origine sumérienne sont à

relever. Le premier est l'utilisation d'un système de numération de base
sexagésimale qui, repris par les Accadiens, leur servit non seulement à
transcrire sur des tablettes les textes mathématiques susmentionnés, mais
aussi à enregistrer leurs propres observations des mouvements planétaires.
Une telle quantité d'informations ne disparut pas complètement avec
l'écriture cunéiforme: les astronomes grecs, en particulier Hipparque (-150) y
eurent accès, et Ptolémée (+150) mentionne dans son ouvrage majeur, la
«Syntaxe mathématique» ou «Almageste» (111,7), que, depuis le début du
règne de Nabonassar (747 av. J.-C), «l'on possède les anciennes
observations, qui, en général, ont été conservées jusqu'à présent».
L'utilisation de ces observations était d'autant facilitée que le même système
sexagésimal avait entre-temps été adopté en Grèce pour l'astronomie. De
mêmes causes appelant de mêmes effets, il allait encore être maintenu lors de
la transmission de l'astronomie grecque au monde musulman, puis lors du
passage de l'astronomie grecque et arabe en Europe par les traductions latines
du XIIe siècle, en sorte que la division du cercle en degrés, minutes et
secondes est restée en usage jusqu'à aujourd'hui.

Cette digression sur le système sexagésimal était souhaitable pour que
soient rapportés ici des exemples illustrant une seconde découverte capitale
des mathématiciens mésopotamiens, à savoir la résolution d'équations et de
systèmes algébriques du second degré.

L'équation générale du second degré n'a pas toujours été considérée sous
sa forme actuelle ax2+bx+c=0. Depuis les temps mésopotamiens jusqu'à la
Renaissance, voire -mais d'une manière moins rigide- au-delà, elle apparaît
sous trois formes que l'on dirait immuables, qui toutes ne contiennent que
des termes à coefficients positifs et peuvent ou doivent posséder une solution
positive, la seule qui fût alors acceptée3. Ces trois types sont:

3Si Descartes avait posé l'égalité à zéro, on retrouve encore bien après l'égalité entre
termes. Même Newton utilise dans son «Arithmetica universalis» de 1707 (lere édition)
(1722 -2e éd.) la forme, pour lui générale, xx -px 'q (xx pour x2 est alors usuel), où le
point tient la place de l'un ou l'autre signe.
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l.ax2 + bx c, avec la solution positive

2. ax2 + c bx, avec -pour autant que ~ )2 soit supérieur à ac- les deux
solutions positives

x

3. ax2 bx + c, avec la solution positive

W<f>—

Les tablettes cunéiformes conservées ne contiennent que peu d'exemples
d'équations quadratiques. Il en ressort toutefois la connaissance des formules
des premier et troisième types ci-dessus, comme l'attestent les deux
problèmes suivants, contenus dans la tablette 13901 du British Museum5.

«J'ai additionné la surface et le côté de mon carré: 45'. Tu poseras 1,
l'unité. Tu fractionneras en deux 1: 30'. Tu multiplieras 30' et 30' : 15'. Tu
ajouteras 15' à 45': 1. C'est le carré de 1. Tu soustrairas 30', que tu as
multiplié, de 1: 30', le côté du carré».

L'équation de ce problème est donc de la forme x2+px=q, avec p=l et
q=45'. Les calculs successivement effectués dans le texte sont les suivants:

^ 30'
2

(£)2=(900"=)15'

(y)2 +9=1

(^)2+<7-^ l-30'=30'=.x.
2 2

4L'équation ax2+bx+c=0 avec a, b, c positifs n'a pas de solution positive.
5Voir Thureau-Dangin (1938), p. 1. Dans la transcription ci-après des chiffres

sexagésimaux, les fractions sexagésimales sont désignées par
' (parties de 60), " (parties

de 602), alors que les entiers sexagésimaux sont représentés par la juxtaposition des
facteurs des puissances de 60. Il importe de remarquer que l'écriture cunéiforme n'a
aucun symbole permettant de distinguer les puissances (positives ou négatives) de 60,
de sorte que l'ordre de grandeur des quantités connues ou calculées doit être déduit de

quelque indication trouvée dans le problème.
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Le traitement du problème qui le suit est tout à fait similaire:
«J'ai soustrait delà surface le côté de mon carré: 14 30. Tu poseras 1,

l'unité. Tu fractionneras en deux 1: 30'. Tu multiplieras 30' et 30' : 15'. Tu
(ï) ajouteras à 14 30: 14 30 15'. C'est le carré de 29 30'. Tu ajouteras 30',
que tu as multiplié, à 29 30' : 30, le côté du carré».

L'équation proposée, x2-x=\A 30, est de la forme x=px+q, avec p=l et
q=\4 30=14-60+30=870. La résolution montre que les calculs correspondent
à l'application de la formule

(f».+,+f-
On ne connaît pas, comme il a déjà été suggéré ci-dessus, un tel exemple

d'application pour la formule du second cas. On se gardera toutefois de
conclure à l'ignorance de cette formule: les exemples mésopotamiens
d'équations quadratiques conservés sont rares, comme ils l'étaient sans doute
déjà, relativement, au début du deuxième millénaire. En effet, beaucoup plus
fréquents que les équations sont les systèmes du second degré, lesquels
systèmes ne sont pas ramenés à des équations simples par élimination d'une
variable, comme nous le ferions aujourd'hui, mais résolus par l'usage
d'identités appropriées.

Tels sont par exemple les systèmes

x+y=p ou \x~y=p
x-y q [x-y q,

où sont connus le produit et la somme, respectivement la différence, de deux
grandeurs cherchées. Grâce à l'identité

x+y\ (x-y
-xy

<

la demi-différence ou la demi-somme sera connue après l'extraction d'une
racine, et l'identité

x+y x-yx,y —± -2 2

permettra la détermination des valeurs individuelles de nos deux inconnues.
De même, dans l'un et l'autre des deux systèmes

x2+y2=p ou
\x2+y2=p

x + y q \x-y q,

l'application de l'identité

x + y | f x-y

nous fera connaître la demi-différence ou la demi-somme des inconnues, et
nous ramènera ainsi à la situation finale précédente.

Les systèmes proposés n'apparaissent pas toujours sous ces formes
simples, mais y sont souvent ramenés par des changements de variables
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appropriés. L'exemple ci-après -qui correspondrait à une équation du type
x2+q=px si l'on éliminait l'une des variables- en servira d'illustration6.

«Un rectangle. J'ai multiplié la longueur par la largeur, j'ai ainsi
construit une surface. Ensuite, j'ai ajouté à la surface ce dont la longueur
excède la largeur: 3 3. Enfin, j'ai additionné la longueur et la largeur: 27.
Que sont la longueur, la largeur et la surface? (...)7. Opère ainsi. Ajoute
27, la somme de la longueur et de la largeur, à 3 3: 3 30. Ajoute 2 à 27: 29.
Tu fractionneras en deux 29: 14 30'. 14 30' fois 14 30' : 3 30 15'. De 3 30
15', tu soustrairas 3 30:15' est le reste. 15' est le carré de 30'. Ajoute 30' au
premier 14 30' : 15, la longueur. Tu retrancheras 30' du deuxième 14 30' :
14, la largeur. 2, que tu as ajouté à 27, tu soustrairas de 14, la largeur: 12,
la largeur vraie. Multiplie 15, la longueur, par 12, la largeur; 12 fois 15: 3 0,
la surface. (...)8».

Le système à résoudre est donc, désignant par x la longueur et par y la
largeur9:

xy + (x-y) 3 3 (=3-60 + 3 183)
x + .y 27.

L'auteur ajoute alors à la première équation la seconde, puis augmente de 2 la
seconde. Il obtient ainsi ce que nous écririons

x>' + 2x ^(y + 2) 3 30 (=210)
x + y + 2 29,

que l'on peut écrire, en posant y' y+2,
fxy'=3 30

\jt + /=29.

Or, ce nouveau système permet l'application d'une des identités vues
précédemment. On aura en effet

*-/r_r*+/Y ^=W2_3 30,
v 2 ; v 2 j u

en sorte que l'on trouvera que^ 30'.
2

Tel est bien le cheminement des calculs du texte, qui aboutissent finalement à

x,y' ^-^-±^—^- lA 30'±30'=15 respectivement 14;

la longueur est ainsi x =15, la «largeur» /=14, la «largeur vraie» étant y=12.

6Voir Thureau-Dangin (1938), p. 65.
7Le texte donne ici les résultats que la résolution va établir.
8Suit la preuve numérique des résultats trouvés.
9Les mots sumériens pour «longueur» et «largeur», conservés dans la traduction

accadienne, jouent de fait le rôle de dénominations d'inconnues, au point de se détacher,
dans certains problèmes, de leur sens originel.
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Ces trois exemples nous permettent déjà de remarquer l'aspect qui est pour
nous le plus caractéristique des mathématiques mésopotamiennes, à savoir le
défaut d'explications. Ainsi, les résolutions ne contiennent aucune
justification des calculs; elles paraissent présupposer la connaissance de
formules ou d'identités de base dont le lecteur sait qu'on doit les appliquer,
éventuellement après un travail préalable de transformation du problème. On
remarque aussi que le détail des opérations arithmétiques n'est pas effectué;
le lecteur est censé s'appuyer sur des tables de multiplication ou d'extractions
de racines simples, et il est vrai que ce matériel ne devait pas lui faire défaut:
il n'est guère de musée archéologique qui ne possède aujourd'hui quelque
fragment de table de multiplication en écriture cunéiforme10.

2. L'ÉQUATION DU DEUXIÈME DEGRÉ EN GRÈCE

L'algèbre en Grèce se présente sous trois aspects. L'un est pratique, ou du
moins en a l'apparence, et consiste à appliquer des formules dans des cas
précis. Ce premier aspect, qui présente beaucoup d'analogie avec les
méthodes mésopotamiennes —soit qu'il s'agisse d'une influence directe ou
que l'usage d'identités pour la résolution de problèmes algébriques soit une
première phase— se retrouve dans les papyri scolaires ainsi que dans divers
écrits attribués à Héron d'Alexandrie (env. +60). Le second aspect, beaucoup
plus théorique celui-là (il fait intervenir les propriétés arithmétiques de
classes de nombres entiers), est celui qui intervient dans l'algèbre
indéterminée de Diophante (env. +250), qui utilise tant un raisonnement
qu'un symbolisme algébrique. Enfin, les «Éléments» d'Euclide (vers -300),
l'ouvrage de base des mathématiques antiques, contient nombre de théorèmes
démontrés géométriquement qui représentent en fait des relations entre
grandeurs que l'on peut transcrire, avec une relative aisance, en langage
algébrique. Celles qui concernent les équations du second degré seront
mentionnées lorsque sera étudiée la période islamique.

Dans l'un et l'autre des deux premiers aspects on trouve des exemples
d'équations du second degré. Le caractère succinct de leur résolution, avec
peu ou pas de calculs intermédiaires (la solution étant parfois donnée
directement), a provoqué chez les historiens des mathématiques jusqu'à la
première moitié de ce siècle de longues discussions, dont l'objet était de
savoir si oui ou non les Grecs étaient en possession d'une formule générale
de résolution. L'étude ultérieure des textes cunéiformes a rendu de telles
questions caduques, la connaissance de ces résolutions rétrogradant au
domaine des mathématiques élémentaires.

La survivance de l'algèbre des identités est illustrée par l'exemple suivant
de Héron, qui calcule selon une formule qui n'est pas établie, mais que l'on
peut déduire d'identités élémentaires, déjà utilisées en Mésopotamie et dont
l'équivalent géométrique apparaît dans le livre II des «Eléments» d'Euclide.
Il s'agit de déterminer la longueur des côtés u, v, w (en nombres rationnels)
d'un triangle rectangle (donc tel que u 2+ v2 w2) de façon que la somme de

10L'utilisation de tables de multiplication était en Mésopotamie une nécessité
impérieuse; la connaissance des produits des 59 chiffres sexagésimaux entre eux —en
négligeant les opérations de leur multiplication par 0 et 1 ainsi que les répétitions dues à

la commutativité du produit— aurait imposé de retenir 1711 résultats.
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son périmètre et de sa surface soit un nombre donné11. Le problème est
indéterminé, et il est en outre soumis à une condition de rationalité.

Soit donc à résoudre
u + v + w + 2uv k,

avec k donné (Héron pose £=280). Le texte de la résolution de Héron montre
qu'il n'a rien à envier, du point de vue de la didactique, à ses prédécesseurs
mésopotamiens:

«L'aire d'un triangle rectangle avec son périmètre est de 280 pieds;
déterminer individuellement les côtés et trouver l'aire. Je fais ainsi. Cherche
toujours12 les diviseurs entiers; or, 280 est 2 fois 140, 4 fois 70, 5 fois 56, 7
fois 40, 8 fois 35, 10 fois 28, 14 fois 20. J'ai noté que 8 et 35 rempliront
l'exigence donnée (éoxztyâ\ir\v, ôtt ó n xoù Xt Jtotfioouoi to òo0év
etc trayu/t). Prenant „ des 280, il vient 35 pieds. Enlève à chaque fois 2 de 8;
il reste 6 pieds. Ainsi, 35 et 6 font ensemble 41 pieds. Multiplie ceci par lui-
même; il vient 1681 pieds. 35 fois 6 font 210 pieds. Fais-en toujours le
produit avec 8» Obvient 1680 pieds. Enlève-les de 1681 ; il reste 1, dont la
racine carrée ^iikevQâ xeiioaYOJVxfij est 1. Considère alors les 41, et
enlèves-en l'unité, 1; le reste est 40. LcTmoitié en est 20. Tel sera le côté
perpendiculaire: 20 pieds. Considère à nouveau les 41, et ajoute-leur 1 ; il
vient 42 pieds. La moitié en est 21. Soit la base de 21 pieds. Considère les 35,
et enlèves-en les 6; il reste 29 pieds. Considère alors le côté
perpendiculaire fois la base; la moitié en sera 210 pieds. Et les trois côtés du
périmètre font 70 pieds. L'ajoutant à la surface, il vient 280 pieds».

Il apparaît des calculs de cette résolution que Héron applique les formules

U,v ^[(p + q-2)±^(p + q-2)2-&p(q-2)], w p-(q-2),

où pq=k, ces deux facteurs de k étant choisis d'une manière appropriée
(comme on l'imagine, afin que la quantité sous le radical soit un carré).

Etablissons ces formules selon les identités connues dans l'antiquité.
Comme

uv -[(u + v)2-(u2+v2)], on aura

1 1 r, s„ fu + v + w \(u + v-w-mv -|(m + v)2-w21=
2 4L \ 2

Selon la donnée, il faudra donc que

u + v + w }( u + v-w} u + v + w
U+V+W+

u+v—w _,+ 2

Posons donc, utilisant la décomposition de k choisie, que

u + v + w
p et

nVoir ses «Geometrica» —dans Héron (1899-1914), IV—, p. 422-425.
12«Toujours» ou (plus loin) «à chaque fois» signifie que l'opération à effectuer est

générale et nullement liée aux données numériques particulières du problème.
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u + v-w „ u + v-w
+ 2 (S0it q-2.

2 2

On aura alors d'une part
u+v+w u+v-w

1 u + v p + q-2
2 2

et d'autre part

u + v + w\(u + v-w\ 1
„s „ -.

^ Jl ^ J -«v ^-2), soit

4uv=8p(q-2).
Comme (u-v)2 (u+v)2 -4uv (p+q-2)2 - %p(q-2),
la formule de la demi-somme et de la demi-différence amènera

1

u,v —
2

M' :

{p + q-2)±^j{p + q-2) -Sp{q-2)

u + v + w u + v-w „sp-(q-2).

cependant que

Comme déjà dit, il nous faut en outre que les deux facteurs de k choisis
rendent la quantité sous le radical rationnelle. C'est ce qu'opère le choix
particulier p=35, q=8 de Héron.

Quant aux quelques équations quadratiques que l'on trouve chez Héron,
soit elles sont résolues en complétant le carré -l'équation ax2 + bx c étant
par exemple transformée en a2x2 + abx ac, puis, par addition de (-)2, en
(ax + j)2= j )2 + oc- soit le résultat est donné directement.

L'algébriste Diophante a, lui aussi, un petit nombre d'équations
quadratiques dans les livres conservés de son «Arithmetica»13. Dans les
problèmes "VI",6 & 7, les solutions (positives) de 84x2+7x=7 et de
%4x2=lx+l sont indiquées directement.'Dans le problème "IV",31, où une
première détermination l'amène à l'équation 5x2=3jc+18, Diophante remarque
que «cette équation n'est pas rationnelle (eux toxv f| loiootÇ qîittî)», ce qui
serait le cas, ajoute-t-il, si le coefficient de x2 multiplié par 18 et augmenté du
carré de la moitié de 3, le coefficient de x, était un carré. Il reforme alors son
hypothèse de départ en accord avec cette exigence.

On peut s'étonner qu'un ouvrage d'algèbre ne contienne que peu
d'équations quadratiques. Cela tient à la nature des problèmes traités par
Diophante, qui sont pour la plupart indéterminés, l'auteur posant les
grandeurs cherchées en fonction d'une inconnue de manière à aboutir à une
équation de résolution ne contenant plus que deux termes avec des puissances
consécutives de l'inconnue, ce qui lui assure la rationalité de la solution. Il
promet toutefois dans l'introduction de présenter aussi des cas où l'équation

13Selon l'indication de son introduction, IVArithmetica» devait comprendre treize
livres (chapitres). Six livres en grec furent connus en Europe occidentale depuis la
Renaissance, qui avaient été numérotés selon la tradition byzantine de I à VI. En
1968 ont été découverts quatre autres livres en traduction arabe, qui trouvaient leur
place au milieu des livres grecs conservés. On possède donc actuellement les livres I
à III en grec, IV à VII en arabe et "IV" à "VI" en grec (vraisemblablement les livres
originels VIII à X).
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finale contiendra trois termes, mais ceci manque dans la partie aujourd'hui
conservée de l'«Arithmetica». Les quelques exemples mentionnés ci-dessus
suffisent néanmoins à se convaincre que la résolution de l'équation du
deuxième degré en Grèce faisait partie du domaine des connaissances
courantes.

3. L'ÉQUATION DU DEUXIÈME DEGRÉ DANS LE MONDE ISLAMIQUE

Les mathématiciens grecs que nous avons mentionnés avaient un autre point
commun que celui de toucher, de près ou de loin, à l'équation quadratique: ils
avaient tous élu domicile dans la colonie grecque d'Alexandrie qui, depuis
l'époque d'Euclide jusqu'à la fin de l'empire romain, était restée le pôle de
l'activité scientifique. Leurs oeuvres, ou certaines d'entre elles, allaient
revivre dans la cité qui devint, dès les premières décennies suivant sa
fondation (762), la capitale du monde musulman et le nouveau centre du
monde lettré. Trois héritages scientifiques se retrouvèrent à Bagdad. Il y avait
d'abord le vieil héritage babylonien, ayant peu ou prou survécu dans le
monde oriental (en Perse en particulier) et ayant laissé çà et là des traces dans
les écrits grecs. Un deuxième héritage provenait d'une science qui connaissait
alors sa première apogée et qui avait intégré des éléments des sciences
mésopotamiennes et grecques, la science indienne. Un contact direct avec des
savants indiens à Bagdad apporta aux mathématiciens musulmans les
éléments de la trigonométrie et de l'astronomie indiennes. Sans doute
connaissaient-ils déjà le système de numération reposant sur les chiffres
qu'ils appelaient «indiens» et que nous appelâmes «arabes» -le donataire
attribuant dû crédit au donateur-, puisqu'on en trouve déjà la mention en
Syrie au VIIe siècle14. En tout cas, ils se formèrent à son utilisation pour les
opérations arithmétiques avant le début du IXe siècle, et peut-être adoptèrent-
ils aussi des Indiens cette prédilection dont ils firent montre pour
l'application de l'algèbre et de l'arithmétique aux problèmes de la vie
courante, en particulier au négoce. Toute théorique, ou presque, est la
formation qu'apportèrent les traductions arabes des classiques mathématiques
grecs. Ce troisième héritage mit notablement plus de temps que les autres à
être assimilé: il ne s'agissait plus d'apprendre quelque recette ou méthode de

calcul, mais de comprendre une suite de démonstrations sur lesquelles, de
théorème en théorème, se construisait la théorie faisant l'objet du traité. On
conçoit que rendre de tels raisonnements, où chaque mot avait son
importance, exigeait de la part des traducteurs tant une aptitude insigne aux
mathématiques qu'une compétence philologique aiguë, l'une et l'autre
qualités étant seules à même de remédier aux éventuelles corruptions du texte
ou de combler les inévitables lacunes des copistes de la basse antiquité.
D'aucuns eurent même à rechercher, ou à faire rechercher, de meilleurs
manuscrits, ce qui n'était point une mince affaire: la filiation des oeuvres
scientifiques depuis la fin de l'antiquité était devenue fort ténue, et ne tenait
parfois qu'à un seul exemplaire, ce qui incidemment explique que plusieurs
traités grecs ne nous soient parvenus que dans leur traduction arabe.

14En 662 par Severus Sebokht, évêque de Qinnisrîn; cf. Nau (1910), p. 225-227.
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La science grecque donnant une place privilégiée à la démonstration
géométrique, il était inévitable que l'étude de l'équation du second degré à

l'époque islamique s'en trouvât influencée. Aux illustrations géométriques
intuitives des formules de résolution apparaissant dans les anciens traités en
arabe succéderont ainsi des illustrations utilisant des théorèmes d'Euclide,
puis des démonstrations de la construction géométrique des solutions, un
point qui mettra en évidence le lien entre opérations arithmétiques pouvant
être effectuées à l'aide des deux instruments admis par la géométrie
d'Euclide, la règle et le compas, et résolution des équations algébriques. Car
la résolution de l'équation du second degré, ne dépendant que des opérations
d'addition, de soustraction, de multiplication, de division, et d'extraction de
racines carrées, appartient encore au domaine commun, au contraire de

l'équation du troisième degré, qui fait intervenir des extractions de racines
cubiques.

3.1. Illustrations intuitives des formules

On attribue le premier traité d'algèbre en arabe à un auteur d'ascendance
persane, mais travaillant à Bagdad, Muhammad ibn Mûsâ al-Khwârizmî
(vers 820)15. Bien qu'il existât déjà une première version des «Eléments»
d'Euclide, ses illustrations des formules de résolution n'y font nulle
référence. Il est vrai que son ouvrage, qui était dans l'intention de l'auteur
destiné à un large public, ne pouvait en exiger la connaissance préalable des
«Eléments» dont la lecture n'était pas plus aisée pour un lecteur d'alors
qu'elle ne l'est pour le lecteur d'aujourd'hui. En bref, al-Khwârizmî désire
simplement montrer que, dans chacun des trois cas, un segment de droite
représentant la solution satisfera bien à la donnée de l'équation.

• Cas de x2 + px q
Représentons par AB (fig. 1) le carré x2 lô. Prolongeant d'abord chacun de
ses côtés, de part et d'autre, du segment connu on construit ensuite le carré
extérieur DE. La surface de ce plus grand carré vaudra donc d'une part
(x +j)2, d'autre part, par addition des neuf éléments qui la composent, x2 +
41x + 4(f)2 x2 + px + (^)2, qui égale, selon la donnée de l'équation, q +
(f)2. Le côté de ce carré vaudra donc

-f-VfW d'où

^)2+q-P.212

15Texte arabe avec traduction anglaise dans Rosen (1831).
16Deux lettres placées aux angles opposés d'une figure rectangulaire servent à en

désigner la surface; ce mode de désignation était déjà en usage en Grèce.
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A

B

Figure 1.

• Cas de x2 + q px
Soit (fig. 2) AD=x2, et traçons DN=/?. Ainsi, la surface GN vaut px, et, selon
l'équation, AN égalera q. Prenons DT=TN=j et dessinons sur TN le carré
TM=(j)2. Alors, KH=AH=j- x (on suppose donc que j> x). Posant maintenant
HZ=ÄH, il vient que KZ (?- x)2. Les surfaces AT et LE, dont les côtés sont
égaux, sont égales. Il suit de là que la différence des surfaces KN et AN
égalera d'une part (f )2-q, d'autre part KZ=(2 - x)2, en sorte que l'on aura
aussi

S-x
2

x £~
2

!'¦ d'où

-q-

K

A
H Z

M

N

Figure 2.
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Quoique al-Khwârizmî mentionnât pour ce cas l'existence d'une seconde
solution par addition de la racine, son ouvrage n'en contient point
d'illustration. On en trouve une chez l'un de ses contemporains, 'Abd al-
Hamîd ibn Turk, présenté ultérieurement comme son concurrent17. Le
fragment conservé de son traité d'algèbre contient la démonstration
suivante18.

Supposant donc cette fois \< x, représentons (fig. 3) x2 par AD et p par
DZ, en sorte que AZ=q. Prenons DH=HZ= j et construisons TZ=(j)2. Alors,
TN=AN= x - Menant HL=HB, on formera le carré LB égal à (x - f )2.

Donc, comme les surfaces TM et AK sont égales, la différence des surfaces
TZ et AZ vaudra d'une part (2)2 - q, d'autre part LB=(x -^)2, en sorte que

x-P
2 VU q, d'où

T N

L M

K

H B

Figure 3.

Le cas de la racine double survient lorsque (f)2 q, donc lorsque les paires
de points B,H et A,T du dessin précédent sont confondues, comme le
représente encore 'Abd al-Hamîd (fig. 4). En ce cas,

x - {q.

17Selon son petit-fils, c'est à lui que devait revenir la primeur de la composition d'un
ouvrage d'algèbre en arabe; Abu Kämil (dont il sera question plus loin) s'est toutefois
vivement élevé contre cette prétention de reléguer al-Khwârizmî au second rang,
comme nous l'apprend le bibliographe Ha"jjî Khalîfa (1609-1657); voir Flügel (1835-
58), V, p. 68 & 168.

18Ledit fragment a été édité et traduit en anglais par Sayili (1962).
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Figure 4.

• Cas de x2 px + q
Soient, selon al-Khwârizmî (fig. 5), AD=ï2 et BE=/?; donc, ZD=q. Posons

que BH=HE=f. Traçant en outre, perpendiculairement à BE, HT=HE, on
aura TE=(f)2. Prolongeant HT de TL=ED=NM, on aura HL=HD= x -§. Mais
TK=NZ, en conséquence de quoi les surfaces LK et ZM sont égales. La
différence des surfaces LD et TE est donc d'une part égale à (x - ^)2 - (5 )2,

d'autre part aussi à ZD=q, en sorte que

d'où

+ q.

M

Figure 5.
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3.2. Illustrations à l'aide de deux théorèmes d'Euclide

Si l'ouvrage d'al-Khwârizmî visait un large public, tel n'était pas le cas de
celui de son successeur AbûKâmil (env. 880)19. Ce dernier s'adresse en effet
à un cercle de mathématiciens formés, dont il suppose la connaissance des
«Eléments» d'Euclide. Il peut ainsi présenter des illustrations de la solution
des trois types d'équations quadratiques à l'aide d'un raisonnement simplifié
s'appuyant sur la connaissance de deux théorèmes des «Eléments», à savoir
les théorèmes 5 et 6 du livre II, qui sont les suivants.

11,5: «Si un segment de droite est partagé en deux parties égales et en deux
parties inégales, le rectangle (=le produit) formé par les deux segments
inégaux, avec le carré sur le segment compris entre les points de section,
sera égal au carré sur la moitié».

Donc (fig. 6): ADDB+FD2=AF2.

Figure 6.

11,6: «Si un segment de droite est partagé en deux parties égales et qu' on
lui joigne un segment dans sa continuation, le rectangle formé par la droite
entière avec le segment ajouté et le segment ajouté, avec le carré de la
moitié, sera égal au carré sur le segment formé par la moitié et le segment
ajouté».

Donc (fig. 7): ADDB+FB2=FD2.

Figure 7.

Dépouillées de leurs atours géométriques, ces deux propositions se
réduisent à une seule identité algébrique, la même qui était à la base de la
résolution mésopotamienne de certains systèmes du second degré, soit

,'u-v\ fu + v
UV +

2 V 2

comme on le voit en posant AD=m, DB=v.

Pour présenter les démonstrations d'Abû Kâmil sous un aspect uniforme,
nous utiliserons les mêmes lettres pour désigner les quantités de même
dénomination, convenant que AC=x2, AB=/? -la surface BC représentant
alors la quantité q- et que F soit le milieu de AB.

l'Reproduction de l'unique manuscrit arabe dans AbüKämil (1986). Il existe de ce
texte une traduction latine médiévale incomplète aux fol. 71v-97r du manuscrit latin
1311A de la Bibliothèque Nationale de Paris. Une traduction médiévale en hébreu a
été (incomplètement et médiocrement) éditée, traduite et commentée par Levey
(1966).
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• Cas de x2 + px q (fig. 8)
Par 11,6, AD DB+FB2=FD2, en sorte que q + (?)2 (-V+?)2-

Figure 8.

• Cas de x2 + q px (fig. 9-10)
Par 11,5, AD DB+FD2=AP, en sorte que q + (x ¦ D2 (f )2
2 positif ou négatif, ou nul dans le cas où F et D coïncident.

où l'on prendra*

Figure 9

D F

Figure 10.
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• Cas de x2 px + q (fig. 11)
Par 11,6, ADDB+FB2=FD2. en sorte que q + (f)2 (x - \ )2.

C

M F B

Figure 11.

On retrouve ainsi les formules vues précédemment.

3.3. Construction géométrique des solutions

Tout ceci n'est, comme déjà dit, qu'une illustration des formules de

l'équation du second degré. Or, l'usage de la règle et du compas permet de
construire les solutions en partant des segments de droites ayant la valeur des
coefficients p et q, et ceci grâce aux deux théorèmes généraux VI,28-29 des
«Eléments» d'Euclide, dits des «applications d'aires». Dans notre cas
particulier des équations quadratiques, le problème revient à construire un
rectangle d'aire donnée q ayant sa base sur une droite de longueur donnée p
-éventuellement prolongée-, en sorte qu'il diffère du rectangle de même
hauteur et de base p par une surface carrée.

• Cas de x2 + px q, mise sous la forme x(x+p)=q
i2, sur la base

2 r t n- Le rectangle
cherché est alors AE, différant de AD par la surface carrée BE=x2, en sorte
que BF=BD est la solution cherchée.

- \^a» uc a—r^/A — i/, unse auua ìa lumie j.\x-ry)—l{
Construisons (fig. 12) sur la moitié de AB=p, le carré CB=(|)2
duquel nous construisons le plus grand carré CE (f)2 + q.20

• Cas de x2 + q px, mise sous la forme x(p-x)=q
Dans ce cas (fig. 13), le carré CE (f)2 - q (où (j)2 > q) est plus petit que le
carré CB=(|)2. Deux rectangles remplissent les conditions: AE, correspondant
à la solution DE=DB=x,, et le rectangle de même surface DG, correspondant
à la solution AD=DH=x2. Les relations de Viète (cf. p. 272) apparaissent de
la figure, puisque l'on a

20Comment construire le côté de ce carré (donc la racine de la quantité connue) est
expliqué dans le théorème 11,14 des «Eléments». Si a est la quantité connue représentée
comme un segment de droite, on prolongera ce segment du segment unitaire, puis on
tracera la demi-circonférence de diamètre a+1; alors, la hauteur élevée de l'extrémité de
a jusqu'à la demi-circonférence aura la longueur Va
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X\+x2=AB=p
Xl-;t2=DF=DG=DI+DK=<7 21.

F

D

r
i

i

""1

A B

Figure 12.

i 1

A, 2\

i - -

Figure 13.

2'La relation de Viète sous la forme moderne est notée xx+x2=-p, car on écrit
l'équation sous la forme x2+px+q=0.
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• Cas de x2 px + q, mise sous la forme x(x-p)=q
La même construction que pour le premier cas montre que, cette fois, x=AF
et BE=(x-p)2.

Si cette construction n'apparaît pas chez les deux premiers grands
algébristes que nous avons mentionnés, c'est qu'elle supposait, au moins
chez le lecteur, une connaissance profonde des «Eléments» d'Euclide. On la
trouve chez le plus célèbre des algébristes ultérieurs, 'Umar Khayyam (env.
1048 - env. 1131), le premier qui eût résolu géométriquement tous les cas à

solution positive de l'équation du troisième degré dans ses diverses formes à

termes positifs, ce qui n'avait jusqu'alors été fait que pour quelques cas par
ses prédécesseurs et en Grèce22. Ladite construction des solutions de
l'équation du deuxième degré était toutefois connue auparavant, puisqu'elle
apparaît dans une compilation anonyme de divers traités d'algèbre composée
en l'an 395 de l'hégire (1004/5 de l'ère chrétienne)23. L'auteur remarque à la
fin qu'une telle construction des solutions dans le cas de l'équation du
troisième degré n'est pas faisable par la règle et le compas, mais qu'elle
pourra être effectuée si l'on utilise les sections coniques; il mentionne en
outre les treize formes de l'équation concernées24.

Que ce soit pour l'illustration ou la construction, le recours à la figure
géométrique est un élément caractéristique de l'étude de l'équation du
deuxième degré dans les pays islamiques. Le même recours à la
représentation par des figures apparaît aussi dans les démonstrations
d'identités algébriques ou de théorèmes d'addition de racines. Dans tous ces
cas ou presque, des figures analogues se retrouvent chez Euclide, mais y
restent toujours confinées dans un cadre purement théorique; la différence
réside donc dans l'application des théorèmes d'Euclide à l'algèbre. En
particulier, les segments irrationnels d'Euclide, correspondant à des racines
carrées (ou quatrièmes), deviennent, dans les problèmes arabes, des racines
carrées (ou quatrièmes) de nombres rationnels. Avec ceci naît la première
extension du domaine des nombres: cependant que jusqu'alors une solution
devait, pour qu'elle fût acceptable, être rationnelle et positive, l'algèbre fait
désormais intervenir, tant comme constantes données que comme solutions,
des quantités irrationnelles (positives).

Ce support de la géométrie à l'algèbre s'étendit même à la résolution de
problèmes particuliers. Ainsi, Abu Kam il présente souvent, lors de la
résolution de systèmes d'équations, une détermination géométrique de la
solution, établie avec référence explicite aux théorèmes d'Euclide. Il est aussi
significatif que, souvent, cette résolution précède la résolution purement
algébrique, ou bien qu'elle la suit avec le dessein de la justifier. L'algèbre
n'avait pas encore tout à fait gagné son autonomie.

22Voir l'édition avec traduction française de Woepcke (1851).
23Manuscrit 5325 de la Bibliothèque du Mausolée de l'Imam Reza à Mechhed.
24Soit (outre le cas banal x3 c): Xs + bx c, x3 + c bx, x3 bx + c; x3 + ax2 =c,

x3 + c ax2, x3 ax2 + c; x3 + ax2 + bx c, x3 + ax2 + c bx, x3 + bx +c ax2,
x3 ax2 + bx + c; x3 + ax2 bx +c; x3 + bx ax2 + c; x3 + c ax2 + bx.
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4. L'APPARITION DES NOMBRES NÉGATIFS DURANT LE MOYEN AGE CHRÉTIEN

Les traités d'algèbre d'al-Khwârizmî et d'Abû Kâmil eurent une influence
non seulement en Orient au début de la science musulmane, mais aussi en
Occident musulman, car ils y devinrent le fondement des ouvrages de

mathématiques, alors que les recherches ultérieures, telles que celle d"Umar
Khayyâm, n'y furent pas transmises.

Aussi les premiers ouvrages mathématiques de l'Occident chrétien nous
présentent-ils un visage familier. Le «Liber mahameleth» de Johannes
Hispalensis, écrit à Tolède vers 1150, peu avant les premières traductions de

l'arabe, contient des problèmes qui rappellent ceux des deux premiers
algébristes mentionnés, sauf qu'ils y sont beaucoup plus nombreux, détaillés
à l'extrême dans les calculs, et augmentés presque systématiquement d'une
résolution géométrique25. Les illustrations des formules de l'équation du
deuxième degré sont répandues par les traductions, et si bien adoptées
qu'elles subsisteront jusqu'au XVIe siècle: même l'«Ars magna» de Cardan,
parue en 1545, qui pourtant enseignait la résolution des équations des deux
degrés supérieurs, les maintiendra, Cardan allant même jusqu'à exposer des
illustrations analogues, mais à l'aide de figures dans l'espace, pour les
formules de résolution des équations du troisième degré.

L'évolution de l'algèbre se fit plutôt dans une autre direction, et ceci
surtout grâce à l'oeuvre de Léonard Fibonacci de Pise (env. 1220), dont les

voyages autour de la Méditerranée lui avaient assuré une formation
supérieure à celle que l'on pouvait acquérir par les seules traductions faites
en Espagne. Son domaine de prédilection est la résolution de systèmes
linéaires de n équations à n inconnues, qu'il classe en types, pour lesquels il
établit dans de nombreux cas une formule de résolution générale en fonction
des constantes données et du nombre n. Faisant alors varier ses constantes, il
fait varier à loisir la valeur des solutions, allant jusqu'à proposer des
exemples dans lesquels l'une des solutions prend une valeur non seulement
nulle, ce qui était inhabituel, mais aussi négative. Même s'il ne l'accepte pas
à proprement parler, il tente de l'interpréter, ouvrant ainsi la voie menant à la
reconnaissance des solutions négatives et donc des nombres négatifs26. Deux
exemples suffiront à illustrer ceci.

Dans l'un des types de systèmes étudiés chez Léonard, trois hommes
possèdent en commun un capital dont chacun détient une part connue, et
qu'ils décident d'enfermer dans un coffre. Mal leur en prend, car, profitant de
l'absence des deux autres compères, chacun va à tour de rôle voler
furtivement une partie de l'argent, le dernier laissant le coffre vide. Ils
conviennent alors que chacun remettra dans le coffre une fraction donnée de
ce qu'il a volé, cet argent récupéré devant ensuite être distribué entre eux à

parts égales. Les données du problème sont ainsi faites que, avec l'argent
qu'ils ont conservé de leur vol, tous retrouvent leur mise initiale.

25Manuscrit latin 1311A de la Bibliothèque Nationale de Paris, fol. 99r-203r. Le titre
mahameleth est la transcription (approximative) de l'arabe mu'âmalât, qui désigne les
textes dont l'objet est l'application de l'algèbre au négoce.

26I1 ne faut pas confondre le calcul avec des termes soustraits (la règle des signes
était connue dès les débuts de l'algèbre) et la mise en évidence de quantités négatives,
qui n'apparaît donc que relativement tard.
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Parmi les divers problèmes de ce genre proposés par Léonard, l'un amène
une solution négative pour un des partenaires27. Désignons par S le capital
initial, dont les trois partenaires possèdent respectivement 2 S,
Soient en outre xx, x- 3;

ï3 les montants respectifs de leurs vols; il est dit qu ils
doivent remettre dans le coffre \xx, 3x2 et gx3 respectivement, de sorte que le
système à résoudre est

1 1

—x, + —
2 3

2 1

—x, + —
3 3

5 1

— x, + —
6

3
3

1 1 1

— x, + —x, H X,
2 ' 3

2

6
3

1 1

2
X' +

3
*2

1 1

is
2

J-S.
10

L'indétermination du problème permet à Léonard de choisir la valeur de S,

qu'il pose ici égale à 470 (il donne souvent la préférence à des valeurs
menant à des solutions entières). Les parts initiales se monteront donc
respectivement à 235, 188, 47. Il calcule alors les solutions, qui sont Xj=326,
x2=174, x3=-30. Autrement dit, comme il le remarque, l'argent volé par les
deux premiers, soit 500, apparaît supérieur au montant du capital S. Il
propose alors de considérer que le troisième, en toute confiance, avait placé
30 de son argent propre, non compris dans le capital, dans le coffre, de sorte
que, lorsque les deux premiers ont gagné par leur vol, lui a perdu, outre sa

part, ses 30. Lors de la remise d'une partie de l'argent volé, les deux premiers
remettent jxplóS et\x2= 58; le dernier, censé rendre g x3=-5, profite en fait
de subtiliser 5 de l'argent que viennent de remettre ses deux partenaires. Le
partage du reste en trois rétablit ensuite chacun dans son droit, le troisième,
recevant lui aussi 72, recouvrant avec les 5 qu'il a déjà récupérés sa mise
initiale de 47 et son bien propre de 30.

De telles contorsions intellectuelles ne sont pas toujours nécessaires à

Léonard pour trouver un sens à sa solution négative. C'est le cas dans les
problèmes dits de l'achat d'un cheval, où un nombre fixe de t partenaires pris
consécutivement n'a pas assez d'argent pour acquérir le cheval, mais en
atteindra juste le prix en recevant des n-t autres une fraction donnée de leur
avoir. Léonard en a de nombreux exemples -dont certains avec des solutions
négatives- le cas le plus simple étant celui d'un seul des partenaires recevant
la fraction donnée des n-l autres. Le problème est dans ce cas

x, +mf^_lxk ¦

kti
¦y 0=1,...,«),

les x,- représentant les sommes individuelles, les mt les fractions données, et

y le prix du cheval (donné ou posé). La formule de résolution qu'établit
Léonard s'écrirait

x=(S-y)
1 1

1 1 l-m.
1

ou S ^
27Voir Boncompagni (1857), p. 296-297. Sur l'ensemble des problèmes

médiévaux à solutions négatives, voir Sesiano (1985).
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On voit que le bien du /ième partenaire sera négatif si ,— est supérieur à la
somme des .^ divisée par le nombre des participants moins 1. Dans un tel
cas, Léonard dit simplement que le problème est impossible, à moins que l'on
ne considère que le participant concerné a une dette, qui devra être soustraite
des biens des autres.

L'attitude de Léonard par rapport aux solutions négatives est claire: on ne
lèvera l'impossibilité qu'en interprétant le résultat négatif par une inversion
du concept qu'il représente -par quoi la solution négative est de facto
transformée en une solution positive. Pourtant, cette attitude de refus eut pour
conséquence que l'on n'exclut plus a priori des solutions négatives. Le pas
suivant fut franchi dans un traité anonyme, écrit en provençal vers 1435, qui,
lui, admit une solution négative sans l'interpréter. Son auteur le fit pour un
système comme celui que nous venons de voir, concernant cette fois
l'acquisition d'une pièce de drap par cinq marchands, soit

x2 H—(x3 +x4 +x5 + x, y

•j x3+-(x4 +x5+X!+x2)=y

x4 + -(xs+x, + x2+x3)=y

,x5 + -(x,+x2 + x3+x4)=y,

lequel problème suit le traitement des deux cas similaires pour «=3 et 4, qui,
eux, ont des solutions positives28. En posant dans ce dernier système S-y=60,
il calcule quex,=-10|, x2=l9j, x3=29^, x4=343 ,x5=37^ Or, il dit bien que
le premier a 10 4 «moins que rien (mens de nonres)», mais la particularité du
résultat apparaît du fait que dans ce problème, et dans ce problème
seulement, la validité de la solution est prouvée par l'introduction des valeurs
trouvées dans chacune des équations.

Cette acceptation arrivait à son heure: la deuxième moitié du XVe siècle
verra quelques exemples d'autres acceptations —certes toujours timides—,
que ce soit dans des problèmes à données concrètes ou en nombres. Mais il
s'en faudra de beaucoup que les nombres négatifs gagnent plein droit de cité:
ils resteront longtemps des numeri fleti (Cardan) ou des racines fausses
(Descartes), et seule l'exigence axiomatique de leur nécessaire introduction
pour que la soustraction puisse être effectuée sans restriction allait, au XIXe
siècle, les détacher du problème de leur application occasionnelle à des

phénomènes réels.

28Manuscrit français n. acq. 4140 de la Bibliothèque Nationale de Paris, fol. 100r-
101v.
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5. L'APPARITION DES NOMBRES COMPLEXES AU XVIe SIECLE

Depuis la fin du XIVe siècle on savait, en Italie, qu'une équation complète du
troisième degré

y3 + ay2 + by +c 0

(en écriture moderne, puisque l'on n'égalait pas encore à zéro) pouvait être
transformée en posant y x -~ en une équation du troisième degré déficiente
du terme quadratique. Ainsi, en particulier, l'équation à coefficients positifs

y3 + ay2 + by =c,
qui a toujours une solution positive, devenait

x3 + px =q
L'identité -connue au moins depuis l'antiquité grecque-

(u-v)3 u3 -3u2v + 3uv2 - v3 pouvait s'écrire
(w-v)3 + 3uv(u-v) u3 - v3,

ce qui permettait de poser, par identification avec l'équation précédente,
u - v =x
"V=3
u3 - v3 q.

Grâce à l'identité bien connue depuis les temps mésopotamiens (cf. p. 275),

'm3+v3

2
+ «3v3, on avait alors

Comme d'autre part

2 2

on obtenait par l'application de la formule de la demi-somme et de la demi-
différence

§lV£ï^
et donc

x=u-v=

On sait que, vers 1500, Scipione del Ferro était en possession de cette
formule, qui donna naissance aux formules des autres cas par ses successeurs
Tartaglia et Cardan. Quoique l'on ne connaisse des recherches de del Ferro
que le résultat ci-dessus, il n'y a guère de doute qu'il l'ait obtenu de la
manière vue.

La formule de del Ferro correspondait donc au cas x3 + px =q avec, en
particulier, p positif. La formule générale, applicable aux deux autres formes
réduites à solutions positives, soit x3 px +q et x3 + q =px, est
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dite «formule de Cardan».

La découverte de la résolution de l'équation du troisième degré eut une
conséquence notable. On voit que, dans le cas où p<0, on peut avoir (f)2 +
(f)3 < 0, c'est-à-dire que la quantité sous le radical de la racine carrée peut
devenir négative —ce qui, incidemment, est précisément le cas où les trois
racines de l'équation sont réelles et distinctes. Ainsi, dans son «Algebra» de
1572, R. Bombelli avait remarqué que l'équation x3 15x + 4 qui, selon la
formule de Cardan (avec p=-l5, q=-4), avait la solution

V2 + V=T2T + 3v'2-V-12T,

était pourtant satisfaite numériquement par la solution évidente x=4. Il avait
en outre démontré géométriquement que l'équation x3 px +q, avec p et q
positifs, devait avoir une solution positive, et ceci quelles que fussent les

grandeurs respectives de p et de q. Il eut donc l'idée de poser, dans son cas
particulier de x3 15x + 4,

^ + V^T= 2 + rVZï

^7- 121

qui donnait bien la valeur x=4 par addition; élevant chaque côté des deux
égalités au cube, il obtenait

2 +1 lV-T 8 + 12rV-f -6r2 - r3 V^ï
2 -11V-ï 8 -12rV-f - 6r2 + r3 V-T,

et la détermination r=l se déduisait de l'égalisation des parties réelles et
imaginaires. Il avait ainsi réussi à mettre en évidence la solution désirée,
«benché, ajoutait-il, a molti parerà questa cosa stravagante». Il avait ici
appliqué les règles de calcul par lui introduites pour le produit de quantités
imaginaires, à savoir, selon sa dénomination de più di meno pour +4-k et de

men(o) di meno pour - -ffî (k positif):

più di meno via più di meno fa meno

più di meno via men di meno fa più

meno di meno via più di meno fa più

meno di meno via men di meno fa meno

{+4-k)[+4Zk) -k, donc(+/)(+/) =-1

(+V^t)(-VZit) +k, donc(+;')(-i) +l

(-V^)(+VZ^) +*, donc(-0(+;) +l

{-4Zk)[-4Zk) -k, donc(-;)(-() -l
29

29Pour ces diverses contributions de Bombelli, voir la nouvelle édition de
I'«Algebra», enrichie d'une partie pas publiée en 1572, par Bortolotti (1966), p.
225,228-229, 133-134.
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La généralisation au cas où la solution positive était inconnue posait toutefois
une difficulté. Avec

V*7

V" + V-v +V"-V-v, on poserait

+ V-V =s + ^-t
^u-4^v =s-4-t, avecs,f>0,

et la solution réelle positive était x=2s. Toutefois, la détermination de 5 par
élévation au cube puis élimination de t entre les deux relations l'amenait en
général à une équation de la forme s3 as +/?, donc à une équation du même
type que celle du début: c'était le casus irreducibilis des mathématiciens de

l'époque. F. Viète parvint à contourner la difficulté rencontrée par Bombelli
en utilisant une résolution trigonométrique qui donnait même les trois
solutions réelles pour le cas du discriminant négatif. A Bombelli revient
néanmoins la première tentative de calcul avec les quantités imaginaires —
mais, comme on l'a vu, dans le but purement utilitaire d'en déduire les
solutions réelles.

6. Epilogue

Nous avons assisté à la naissance de deux extensions successives du domaine
des nombres, celle des nombres négatifs et celle des nombres complexes,
mais nous n'avons mentionné en relation avec elles que des exemples de
systèmes linéaires et l'équation du troisième degré, respectivement. Il nous
convient de dire quelques mots de l'équation du deuxième degré à cette
époque et de ses rapports avec ces deux extensions.

On ne connaît guère d'exemples d'équations du deuxième degré avec des
résultats négatifs au XVe siècle. Le seul exemple s'en trouve chez Luca
Pacioli, l'auteur d'une vaste et influente —quoique dépourvue d'originalité—
«Summa de arithmetica», parue en 1494 à Venise puis en 1523 à Toscolano.
Or, ledit exemple de Pacioli ne se trouve pas dans la «Summa», mais dans un
manuscrit écrit vers 1480 à l'intention de ses étudiants à Pérouse30.
Examinant les solutions de

(x+k)k+i£j =i,

avec k et / donnés, Pacioli indique que la solution sera x 2(V7 - k), puis il
passe à des exemples numériques: /=100 avec k=4, /=101 avec k=4, puis à

nouveau /=100 avec k=6 et £=20. Il remarque que dans ce dernier cas 20 ne
peut être soustrait deVlOO : «avenga che (20) non si possa chavare delà
>?(adice) 700»; il ajoute néanmoins que la solution serait V4ÖÖ- 40, «e tanto
seria el numero tutto».

30Manuscrit latin 3129 de la Bibliothèque Vaticane, fol.351r (seule la dédicace est
en latin).



296 J. Sesiano

Dans le même manuscrit (fol. 229v-230r), la solution (complexe) du
système

fx + y 10

U + x 5,

équivalent à une équation du type x2 + q px (avec q=lO et p=6), est qualifiée

d'impossible: soustrayant q de (f)2, «restarà non so quanto, dit Pacioli,
perché l'è più el numero [donc q\ che non ve la multiplieadone delà

j (du coefficient) dele chose [des x]31 in se. Impossibile».
Au XVIe siècle, nonobstant l'utilisation croissante des nombres négatifs

voire des nombres complexes, leurs applications à des solutions d'équations
quadratiques sont rares. Le premier exemple que l'on connaisse pour une
solution complexe est celui de Cardan dans le chapitre XXXVII de l'«Ars
magna», qui remarque que la solution, qualifiée plus loin de sophistica, du
système

x+y 10

xy 40

serait 5 +V-15 et 5 - V—15 —ou, comme Cardan l'écrit, 5 pR m 15 respectivement
5 mR m 15, avec les abréviations d'écriture ppour più et m pour meno

(fig. 14; on notera la remarque initiale «manifestum est quod casus seu
quaestio est impossibilis»).

Regvia II.

Secundum genus pofitionis falfe, eft per
radicem m. Etdaboexemplum, fi quisdi-
cat, diuide i o. in duas partes ex quarum
vnius in reliquam ductu producatur 50.
aut 40. manifeftum eft quad cafusfeu qua%
ftio eft impoffibilis fie tarnen operabimur,
diuidemus 10. per aequalia & fiet eius
medietas 5. duc in fe fie 1$. auferes ex 25.
ipfum producendum vepoce 40. vt docui
te, in capitulo operationum, in quarto
libro, fiet refiduum m. ij.cuius jy. addita Sc

detraeva à 5. oftendit partes qua: inuicem
ducìx producunt 40. eruntigiturha:, 5. p.
iy. m. 15.& j. m. y. m. 15.

Figure 14.

31Le latin res puis l'italien cosa rendent l'arabe chay', utilisé pour la dénomination
de l'inconnue au premier degré.
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Même Bombelli rechigna à admettre une solution complexe pour
l'équation x2 + 20 8x:32 «questo agguagliamento non si può fare se non in
questo modo sofistico», à savoir d'écrire 4 + V-4 et 4 - V-4, «e ciascuna di
queste quantità da sé sarà la valuta del Tanto (de x)».

Deux siècles après, Euler remarque dans son «Algebra» (I,§ 151) que les
solutions de

x + y l2
x-y A0

sont 6 +f^Â et 6 - V-4, en sorte que «die zwei gesuchten Teile unmöglich
sind» -ce qui ne l'empêche pas de considérer que «diese Lehre (der
unmöglichen Zahlen) ist in der That von der größten Wichtigkeit».

Il faut se rendre à l'évidence que l'équation du deuxième degré, dont
l'exposition de la résolution et les applications avaient été pendant trente-cinq
siècles l'une des préoccupations principales des mathématiciens, ne présentait
plus qu'un moindre intérêt, et que ses solutions négatives et surtout
complexes n'étaient en quelque sorte regardées que comme des curiosités. La
situation devait changer avec la démonstration du théorème fondamental de
l'algèbre. Mais l'équation du deuxième degré allait alors s'en trouver
reléguée au rang de cas particulier.
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