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BULLETIN N° 249 des Laboratoires de Géologie, Minéralogie, Géophysique
et du Musée géologique de l'Université de Lausanne

Calcul, caractérisation et identification
des associations unitaires en biochronologie1

PAR

Jean GUEX2

A bstract. - A graph theoretic approach of the biochronological problem
is presented. The graph representing the stratigraphie relationships
between the fossil species (biostratigraphic graph) is transformed into an
interval graph which can easily be interpreted in terms of a chronology
by using the principle of reproducibility in the identifiability of the
unitary associations.

Introduction

Divers aspects du problème posé par l'utilisation des fossiles comme
outil de datation ont été abordés par l'auteur dans plusieurs travaux
récents (Guex, 1977, 1978, 1979). Ces études antérieures ne seront donc
pas résumées ici : seuls les points directement liés à la présente discussion
seront repris. L'objet de cette note est de présenter une formalisation
mathématique des idées exposées dans ces travaux: calcul et caractérisation

des associations unitaires, identification de ces associations dans
les profils stratigraphiques. Ces idées peuvent être formulées de manière
adéquate en utilisant certains concepts de la Théorie des Graphes. Les
concepts fondamentaux de cette théorie ont été mis à la portée des non
spécialistes dans plusieurs ouvrages récents: Harary, 1969; Berge, 1970;

Roberts, 1976; Carre, 1979. Les stratigraphes concernés par les problèmes
théoriques de la biochronologie peuvent donc utiliser ces travaux de

référence : ils y trouveront d'une part des discussions complètes sur les

concepts mathématiques simples qui sont utilisés plus loin et d'autre part
des exposés détaillés sur la terminologie des graphes. On commencera
cette note en donnant quelques définitions indispensables à la compréhension

du texte ainsi que la liste des termes biostratigraphiques introduits

1

Travail effectué dans le cadre du projet 2.024.078 du Fonds national suisse de la recherche
scientifique et publié dans le cadre du projet I.G.C.P. N° 148.

2 Institut de Géologie, Palais de Rumine, Lausanne.
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par l'auteur dans les travaux sus-mentionnés et qui ont une correspondance

stricte avec la terminologie employée par les spécialistes des

graphes.

Terminologie et définitions

A) Graphes et «graphe biostratigraphique»

Un graphe non orienté G (X,E) est un schéma constitué par un
ensemble fini de points X ={xi,...,xn}etparune famille E ={ei,...,em}de
paires non ordonnées de points distincts de X. Chaque paire e (x,y) est

appelée une arête du graphe et les points sont appelés les sommets du
graphe.

_^
Un graphe orienté G (X,U) est un schéma constitué par un ensemble

fini de sommets X {xi,...,xn> et par une famille U {ui,...,um} de

paires ordonnées de sommets distincts de X. Chaque paire u (x,y) est
appelé un arc du graphe.

On notera G le graphe semi-orienté qui est une combinaison des deux
graphes précédents.

Dans le problème étudié ici, les sommets du graphe sont les espèces
fossiles.
a) Deux espèces «compatibles» (Guex, 1977, p. 311) sont reliées par une
arête dans un graphe G.
b) Deux espèces non compatibles dont la relation stratigraphique est
connue sont reliées par un arc dans un graphe G.
c) Deux espèces non compatibles dont la coexistence virtuelle déduite
et non pas observée) ne peut être établie et dont la relation stratigraphique
n'est pas connue ne sont reliées ni par une arête dans G ni par un arc dans G.

Le graphe G montrant la totalité des informations relatives aux
positions stratigraphiques des espèces (associations, exclusions avec
relation stratigraphique connue ou indéterminée) sera appelé «graphe
biostratigraphique» (fig. 2-f).

B) Nomenclature biostratigraphique et terminologie des graphes

1) Espèces compatibles: sommets voisins dans G
2) Spectre d'association d'une espèce x (Guex, 1977, p. 311): ensemble

des sommets voisins de x dans G (fig. 1-g)

3) Matrice associée: considérons un graphe G (X,E) et l'ensemble de

ses sommets (xi, X2,...x„). La matrice associée à G est la matrice (a,,)

définie par:
1 si (xi, Xj) e E

a" **
0 sinon
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4) Matrice des spectres d'association: matrice associée au graphe G
5) Ensemble d'espèces mutuellement compatibles : clique de G (fig. 1-0
6) n-clique : clique contenant n sommets
7) Clique maximale : une clique est maximale si elle n'est pas contenue

dans une clique plus grande
8) Association unitaire (Guex, 1977, p. 311): clique maximale
9) Matrice d'incidence: Soit X= {xi, x2,...xn}un ensemble de sommets

et F {Si, S2,...,Sm} une famille de sous-ensembles de X. La matrice
d'incidence «sommet-ensemble de sommets» est une matrice n x m
dans laquelle l'entrée i, j vaut 1 si l'élément Xj appartient à l'ensemble
Sj et 0 sinon

10) Tableau ordonné d'associations unitaires: matrice d'incidence «cliques
maximales-sommets»; sous certaines conditions (cf. p. 116) une telle
matrice correspond à un graphe d'intervalle (déf. 11)

11) Graphe d'intervalle (Berge, 1970, p. 358): Considérons, sur une droite,
une famille J (Ji, J2,...,Jn) d'intervalles. On peut former un graphe
dont les sommets xi, X2,...,xn représentent respectivement les
intervalles Ji, J2,...,Jn, deux sommets étant reliés par une arête si et seulement

si les intervalles correspondants intersectent. Un tel graphe est
appelé «graphe d'intervalle».

12) Propriété des 1 consécutifs: se dit d'une matrice de 1 et de 0 dont les

lignes peuvent être permutées de manière à ce que les 1 soient consécutifs

dans toutes les colonnes (sans 0 intercalés entre eux).
13) Chemin: dans un graphe non orienté 5, un chemin est une séquence

alternante de sommets et d'arêtes distincts commençant par un sommet
et aboutissant à un autre sommet.

14) Un triplet de sommets x, y et z dans G est appelé «astéroïdal» s'il
existe des chemins Ci entre x et y, C2 entre x et z et C3 entre y et z tels

qu'il n'y ait pas d'arête de x à C3, de y à C2 et de z à Ci (fig. 1-a).

15) Cardinalité d'un ensemble X: nombre d'éléments appartenant à X.
16) Cycle : cf. fig. 1-b

17) Circuit: cf. fig. 1-c

18) Corde: arête reliant 2 sommets non consécutifs d'un cycle.
19) Chaîne : séquence d'arcs telle que chaque arc de la séquence a une

extrémité en commun avec l'arc qui le précède et l'autre extrémité
en commun avec l'arc qui le suit.

C) Notation

J(x): intervalle d'existence d'une espèce x
J(x,y>: intervalle de coexistence du couple (x, y)

Tg(xì) {Xj} : ensemble des Xj voisins de x, dans G (NB: x, ^Ig(xi))
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Zn : cycle de longueur n sans corde dans G (fig. 1-b)
S3 et S4: circuits semi-orientés de longueur 3 ou 4 dans G (fig. 1-d/e)
IXI : cardinalité d'un ensemble X

C c

c

Fig. 1.

a)
b)
O
d)
e)
0
g)

Triplet astéroïdal (cf. texte)
Cycle de longueur 5 sans corde
Circuit de longueur 5

Circuit semi-orienté S3

Circuit semi-orienté S4

Clique à 5 sommets (5-clique)
Spectre d'association d'une espèce x

Nature du problème

Imaginons une situation idéale dans laquelle :

1) la sédimentation est continue dans le temps et dans l'espace
2) l'enregistrement fossile des roches sédimentaires est parfait: toutes

les espèces qui ont existé à un moment donné sont fossilisées partout
3) toutes les espèces sont ubiquistes au cours de leur durée d'existence

respective.
Dans une telle situation, la séquence d'associations unitaires engendrées

par les relations de coexistence entre les espèces correspondrait
exactement à un graphe d'intervalle (définition 11). La réalité n'a bien
entendu rien à voir avec une telle utopie car la nature de la distribution
biogéographique des espèces fossiles (fortement limitée par les contraintes
écologiques et à fortiori par le caractère fragmentaire de la documentation
paléontologique) implique qu'un graphe représentant les relations de
coexistence entre les espèces fossiles ne correspond pas à une chronologie

même s'il satisfait les conditions qui en font un graphe d'intervalle.
Cette assertion est explicitée dans la figure 2 (b à d) et le problème est
discuté en détail dans Guex, 1978.

On sait cependant qu'une séquence ordonnée d'associations unitaires
peut fort bien être interprétée en termes chronologiques (principe de

reproductibilité; Guex, 1978): ceci est donc également valable pour un
graphe d'intervalle.
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Le premier problème qui doit être résolu lorsqu'on veut traiter de
manière précise un ensemble de données biostratigraphiques éparses et
fragmentaires est celui posé par la construction d'une séquence ordonnée
d'associations unitaires. Dans le langage de la théorie des graphes ce
problème peut être formulé ainsi: étant donné un graphe biostratigraphique,

comment transformer ce graphe en un graphe d'intervalle? Cet
aspect de la question va constituer l'essentiel de la discussion qui suit.

P, P2 P3 P4

1 0 1 1 1 0 1 0 0
2 1 0 1 1 1 0 0 0
3 1 1 0 1 0 1 0 0
4 0 0 0 0 0 0 0 1

5 0 1 0 1 0 0 0 1

6 1 0 1 1 0 0 1 0
7 1

1 1 1 1 1 0 1

8 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 n
0 0 0 0 0 1 1 0 7
0 0 0 0 1 1 0 0 LT

0 0 1 1 1 0 0 0 ni
0 1 1 1 0 0 0 0 n

1 1 0 0 0 0 0 0 I
7 6 1 3 2 5 8 4 K

en @

^D

1 1 1 1 YI
0 0 0 1 7
0 0 1 0 n?
0 1 0 0 ni

1 0 0 0 n
1 1 1 1 i

Pl P2P3 P4 K

Fig. 2.
a) Matrice A, «espèce-espèce» (définition: cf. p.l 16i, contenant les informations biostrati¬

graphiques tirées des profils pi à P4 de la figure 2-b.
b) Distribution spatio-temporelle de 8 espèces (1 à 8). Pointillés verticaux: tracé de 4 profils

stratigraphiques (pi à p*,) qui traversent (dans les blocs noirs) les domaines d'existence
(surfaces fermées) des 8 espèces. T axe du temps. E «espace».

c) Position chronologique réelle des intervalles I à VI de la matrice d'incidence «cliques
maximales-espèces» de la figure 2-d.

d) Matrice d'incidence «cliques maximales-espèces» (K,-x,): cette matrice représente les

relations d'association et d'exclusion entre les espèces 1 à 8 (exprimées en termes de

«séquence d'associations unitaires»); elle possède la propriété des 1-consécutifs (c'est
donc un graphe d'intervalle) mais la séquence ordonnée des K, (i I à VI) ne correspond
pas à l'ordre chronologique réel représenté dans la figure 2-c (d'après GUEX, 1978).

e) Matrice «profils-cliques maximales» identifiables dans les profils 1 à 4. Cette matrice
montre que seules les cliques I et VI sont identifiables de manière reproductible.

f) Graphe G montrant les relations stratigraphiques globales (association, exclusion et

superposition) observées entre les espèces 1 à 8 dans les profils pi à P4 de la figure 2-b.

g) Graphe G montrant les relations de coexistence observées entre les espèces 1 à 8 dans les

profils pi à P4 de la figure 2-b. Dans le cas particulier, ce graphe est un graphe d'intervalle.
h) Graphe G* montrant les relations de superposition observées entre les espèces l'a 8 dans

les profils pi à P4 de la figure 2-b.
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Nature des données

Considérons un ensemble de profils stratigraphiques P lpi,...pml:
Chacun des profils pi est constitué d'un ensemble Ni de niveaux

sédimentaires; le niveau j du profil i a un contenu fossile Xy qui est une partie
de l'ensemble des espèces X {xi,...,xn}. Les informations sur la distribution

stratigraphique locale (c'est-à-dire dans pi) des espèces sont
introduites dans une matrice A (au) (i, j l,...,n); on posera:

r 1 si xi se trouve dans un niveau inférieur à celui de Xj ou

ay < au même niveau que Xj
L 0 sinon

La figure 2-a montre une matrice A qui contient les informations
biostratigraphiques tirées des profils 1 à 4 de la figure 2-b. G sera le graphe
dont A est la matrice d'incidence sommets-sommets (fig. 2-f):

si ay 1 et aji 1 on dira qu'on a une arête (i, j)
si a,j 1 et aji 0, on aura un arc (i, j).

G (X, E) sera le graphe formé par l'ensemble E des arêtes de G (fig. 2-g),
alors que G (X, U) sera formé par l'ensemble U des arcs de G (fig. 2-h).

Construction du graphe dtntervalle

Deux théorèmes de base vont nous être utiles dans la recherche d'une
solution au problème posé par la transformation d'un graphe
biostratigraphique en un graphe d'intervalle :

I) Fulkerson & Gross (1965):

«Un graphe est un graphe d'intervalle si et seulement si sa matrice
d'incidence cliques maximales-sommets possède la propriété des I
consécutifs. »

II) Lekkerk.erk.er & Boland (1962) :

«Un graphe est un graphe d'intervalle si et seulement si il ne contient
aucun cycle Zn (n^ 4) et si il ne contient pas de triplets astéroïdaux. »

L'idée de la méthode consiste à détruire les cycles Zn et les triplets
astéroïdaux de G en fonction d'une série de critères dont l'admissibilité
est préalablement discutée. Son développement s'effectue en 6 étapes:
1) destruction des cycles de longueur 4 de G
2) détermination des cliques maximales de G
3) destruction des circuits semi-orientés S3 et S4 dans G
4) identification des cliques maximales de G dans les profils
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5) construction d'un graphe orienté montrant les relations stratigraphiques
entre les cliques maximales identifiables dans les profils

6) destruction des cycles Zn (n > 4) et des triplets astéroïdaux dans G
La dernière étape aboutit à la construction d'un graphe d'intervalle

(théorèmes I et II) que l'on sait interpréter en termes chronologiques.

1) Destruction des cycles Z» (cf. Appendices)

Les relations d'association et d'exclusion entre 4 espèces Xi, Xj, Xk, xi
peuvent engendrer un cycle Z4 dans G pour deux raisons distinctes: le

remaniement ou l'insuffisance documentaire.
En l'absence de critères sédimentologiques directs (resédimentation

évidente, altération physique des fossiles etc....), le remaniement d'une
espèce ne peut être présumé que dans la mesure où cette espèce montre
une discontinuité nette dans sa distribution biochronologique: il est
évident que si une espèce x se trouve dans 2 zones adjacentes A et B, il est

exclu de soupçonner que x n'existe chronologiquement que dans la zone A
et qu'il est remanié dans la zone B qui suit... La démonstration d'un
remaniement par des critères purement biochronologiques ne peut se

faire qu'avec l'aide des espèces dont les relations engendrent des associations

unitaires identifiables de manière reproductible. En l'absence de

preuve «physique» directe, on est donc obligé de commencer par admettre
que les discontinuités dans la distribution des espèces sont dues à une
insuffisance documentaire et non pas à des remaniements : l'interprétation
de ces discontinuités en termes de remaniements est discutée plus loin
(p.124 et Appendice II).

Trois types de Z4 en «situation non remaniée» peuvent être schématisés:

Situation 1)

Si la relation stratigraphique est connue pour l'un des couples d'espèces
mutuellement exclusives et impliquées dans le Z4, l'autre couple a alors
nécessairement coexisté virtuellement. La figure 3-a démontre cette
affirmation.

Situation 2)

Si la relation stratigraphique est connue pour les 2 couples d'espèces
mutuellement exclusives qui sont impliquées dans le Z4, ces 2 couples
sont nécessairement virtuellement compatibles: cette affirmation est
démontrée par la figure 3-b. Le schéma ci-dessous (fig. 3-c) montre qu'une
telle situation risque de se produire très souvent lorsque 2 espèces
apparaissent à peu près simultanément au cours d'un intervalle de temps
pendant lequel 2 autres espèces disparaissent de manière subconcomit-
tante.
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Situation 3

La relation stratigraphique est inconnue pour les 2 couples mutuellement

exclusifs impliqués dans le Z4. Une telle situation peut également
être due à une configuration relationnelle du type illustré dans la figure
3-c.

Les informations contenues dans la matrice A permettent de détecter
facilement les Z4, de voir à quelle situation (1, 2 ou 3) on a à faire et d'en
déduire les coexistences virtuelles.

® ®

®

»-*=?

Fig. 3.

Schémas illustrant le fait qu'en «situation non remaniée», on peut détruire les cycles Z4

par adjonction d'arêtes dans ces cycles. Les ellipses limitent les domaines d'existence des
espèces i, j, k et 1. T axe du temps.
a) l'arc ij indique que la relation stratigraphique entre les espèces i etj est connue.
b) les arcs ij et kl indiquent que la relation stratigraphique entre les couples d'espèces ij et kl

est connue.
c) Configuration relationnelle hypothétique (cf. p.l 18) engendrant un Z4. Les petits traits

verticaux indiquent respectivement les frontières inférieures et supérieures des domaines
d'existence des espèces j et 1 d'une part et i et k d'autre part.

d) Schéma montrant la procédure d'adjonction d'une arête dans la situation 1 (cf. p. 119)

e) Schéma montrant la procédure d'adjonction de 2 arêtes dans la situation 2 (cf. p. 119)

0 Schéma montrant la procédure facultative d'adjonction de 2 arêtes dans la situation 3

(cf. p. 119)
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Commençons par examiner les Z4 qui contiennent un arc entre xi et Xj

(situations 1 et 2):
Pour chaque couple (Xj, Xj) dans G tel que ay 1 et aji 0 dans la matrice

A, on cherche l'ensemble des espèces communes aux 2 spectres d'association

en calculant:

lu Is(xi) n ig(xj)

Si |lij|< 1 on ne fait rien car il n'y a pas de Z4

Si |lij| > 2, on note {{xk, xi}} le(s) couple(s) d'espèce(s) qui se trouvent

dans Iij :

Situation 1 (fig. 3a + d) : Si aki aik 0 (NB : kl et lk sont les indices ij et

ji des couples d'espèces (xk, xi)), on ajoute une arête à Z4 en posant
aki aik 1 dans la matrice A.

Situation 2 (fig. 3b +e): Siaki 1 et aik 0, on remplace les 2 arcs du Z4

considéré par 2 arêtes en posant au aji aki aik 1 dans la matrice A.

Situation 3 (fig. 3c + f): Pour chaque couple (xi, Xj) dans G, tel que
au aji 0 on calcule

I« l3(xi) fi Ig(xj)

Si Iy 0 ou si lu est une clique, on ne fait rien (pas de Z4) : sinon on ajoute
2 arêtes dans le Z4 en posant au aji aki aik 1 dans la matrice A.

Remarque: En «situation remaniée», l'adjonction d'arêtes à un Z4 de type 3

(fig. 3-0 peut induire une perte sérieuse dans les informations chronologiques
potentiellement contenues dans le graphe G de départ: en pratique il est donc
nécessaire de comparer les résultats biochronologiques obtenus après avoir
effectué la totalité des opérations décrites ici avec ceux que l'on obtient en omettant
certaines de ces opérations.

2) Calcul des cliques maximales

Plusieurs algorithmes permettant de déterminer les cliques maximales
d'un graphe ont été publiés dans la littérature récente: une discussion
générale de ce problème est présentée par Johnston (1976).

Un algorithme voisin de celui de Bierstone (in Augustson & Minker,
1970) a été construit par l'auteur. On n'en donnera ici que l'idée générale.

L'algorithme procède par induction : connaissant l'ensemble des cliques
maximales d'un graphe d'ordre n à n sommets) Gn, on sait déterminer
l'ensemble des cliques maximales de ce graphe au rang n+1 après lui
avoir ajouté un sommet).
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Considérons un graphe Gn (Xn, E) où X„ {xi,...,xn} est l'ensemble
des sommets.

{Xn+i} sera un sommet ajouté au graphe Gn

rgn (xn+i) sera l'ensemble des voisins de {xn+i} dans X„

Kn {{kn}} sera l'ensemble des cliques maximales de Gn au rang n)

Cn+i sera un ensemble de cliques pas forcément maximales au rang n+1

Kn+i sera l'ensemble des cliques maximales de Gn au rang n+1

Il est évident que si :

1) \ kn fi Ign (Xn+i)[ 0, alors kn et {xn+i} sont 2 cliques distinctes au

rang n+1

2) < kn fi Ign (xn+i)(- kn, alors < kn U {xn+i} t est une clique maximale

nouvelle au rang n+1

3) l kn fl Ign (xn+i) [ / 0 et f kn, alors kn est une clique maximale reconduite

au rang n+1 et \ lk„C\ Ign (xn+i) U {xn+i} > est une clique

nouvelle au rang n+1.

On peut donc écrire

kn eKnCn+1 j kn kn H rgn (xn+l)l U {Xn+

Notons R, l'opération qui consiste à éliminer par inclusion toutes les

cliques non maximales au rang n+1. On peut alors écrire:

Kn+l R (Cn+l)

L'algorithme opère de manière itérative : au début, on pose

Xi {xi}, Ki {xi} et Ign (X2) {xi} ou vide.

3) Suppression des circuits semi-orientés & et &
Après avoir déterminé les cliques maximales de G, on effectue encore

la modification suivante sur ce graphe : étant donné 2 cliques maximales
Ki et Kj, soit

a {x e Kj | 3 arc (y, x) avec y e Ki, x £ Ki}

ß {x 6 K | 3 arc (x, y) avec y e Ki, x $ K}



BIOCHRONOLOGIE 121

Si a et ß sont tous deux non vides, alors Ki est remplacé par KUaUß
(ceci introduit de nouvelles arêtes dans G). En répétant ceci on détruit
tous les circuits semi-orientés S3 et S4 de G.

Les schémas ci-dessous (fig. 4) montrent quels genres de configurations
relationnelles entre les espèces induisent de tels circuits.

®O

®®

®

"»(O ®

®

rli HlC

t Cl.2)

(3.4)

Fig. 4.

a) Exemple de configuration relationnelle engendrant un circuit semi-orienté S3. Les ellipses
fermées sont les frontières des domaines d'existence respectifs des espèces 1 et 2 qui inter-
sectent (surface noire). L'ellipse ouverte montre comment la distribution spatiale discontinue

de l'espèce 3 engendre des relations contradictoires. T axe du temps. Dans cet
exemple K, {1, 2), K, {3|; a ß 3 (cf. p.120)
b) Exemple de configuration relationnelle engendrant un circuit semi-orienté S4; la position
de l'intervalle de coexistence des espèces 3 et 4 (Jo, 41) par rapport à J(i. 2) est indéterminée.
T= axe du temps. Dans cet exemple Ki {l,2);Kj (3,4 1; a 3 etß 4

4) Identification des cliques maximales dans les profils stratigraphiques

Il résulte du théorème de Fulkerson & Gross (I) que chaque clique
maximale d'un graphe d'intervalle peut être caractérisée par un sous-
ensemble de sommets qui n'appartient qu'à cette clique maximale:
on parlera de sommet simplicial si ce sous-ensemble se réduit à un sommet
(dont tous les voisins engendrent une clique) ou une paire simpliciale si ce
sous-ensemble se réduit à 2 sommets.

Chaque sommet (ou paire) simplicial(e) d'une clique maximale la
caractérise entièrement puisque ce sommet ou cette paire n'apparaît dans

aucune autre clique maximale.

Appelons K= {Ki,...Kp}l'ensemble des cliques maximales de G (modifié),

numérotées pour l'instant dans un ordre quelconque.
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Commençons par identifier ces cliques dans les niveaux sédimentaires
des profils Pi à l'aide de leurs espèces caractéristiques (espèces et/ou
paires simpliciales); pour chaque niveau nu de chaque profil pi on calcule

Yu max. |Xij D K/1

/= 1.....P

S'il y a une valeur unique / pour laquelle Yu est maximum, cela signifie
que ny contient au moins une espèce (ou une paire d'espèces) caractéristique

de K/: on attribue donc la clique K/ au niveau nu du profil Pi et on dit
que cette clique est identifiable dans le profil pi. S'il y a plusieurs valeurs
de / on ne fait rien.

Remarques :
1) L'utilisation des espèces (paires) simpliciales pour identifier les cliques

maximales correspond exactement à l'opération d'identification des associations
unitaires décrite par l'auteur dans des travaux antérieurs.

2) Les associations virtuelles déduites au cours des étapes 1 et 3 ci-dessus
restent sans influence sur la procédure d'identification car les éventuelles paires
simpliciales engendrées par ces manipulations n'ont (par définition) pas été
observées dans les profils stratigraphiques: une conséquence de ceci peut être

que certaines cliques maximales ne seront éventuellement identifiables nulle part:
ces cliques peuvent être éliminées.

5) Construction du graphe Gk

Les informations sur les relations stratigraphiques locales (dans p;)
entre les cliques maximales identifiables dans les profils pt peuvent être
introduites dans une matrice B (by); on posera

1 si K se trouve au-dessous de K dans un profil Pi

0 sinon

Dans le graphe orienté Gk (K Uk) associé à B, les cliques maximales qui
présentent le plus grand nombre de contradictions dans leurs relations de

position stratigraphique observée (by bji 1) peuvent être éliminées
(p. ex. les cliques emballées dans les surfaces pointillées de la fig. 5-a) : Gk
n'a ainsi plus de circuits. Certaines cliques maximales dont les relations
sont indéterminées (by bji 0) peuvent être trivialement réunies
(fig. 5-a: surfaces blanches).



BIOCHRONOLOGIE 123

G L'
K6

K4

t R3

o K2

Fig. 5.

Graphe orienté associé à une matrice B (cf. p.122) hypothétique, montrant les relations
stratigraphiques entre des cliques maximales identifiables dans des profils imaginaires.
a) Les 2 cliques maximales emballées dans les surfaces pointillées sont celles qui montrent

le plus grand nombre de relations contradictoires (arcs opposés: b„ bji 1): ces cliques
sont éliminées.
Les cliques emballées dans les surfaces blanches sont réunies.

b) Les cliques maximales emballées dans les surfaces pointillées n'appartiennent pas à L.
c) Séquence ordonnée de cliques maximales obtenue après avoir achevé les opérations

décrites dans le texte.

6) Construction du graphe d'intervalle

a) Recherche de la plus longue chaîne de cliques de Gk

Appelons L la plus longue chaîne de cliques maximales de Gk (fig. 5-b :

les cliques se trouvant dans les surfaces hachurées n'appartiennent pas à

L) et rebaptisons ces cliques Kp, p 1,..., pl (s'il y a plusieurs L possibles
on choisit celle qui contient les cliques identifiables dans le plus grand
nombre de pi). Le graphe réduit Gk donné par la séquence L n'engendre
pas forcément un graphe d'intervalle par suppression de l'orientation: il
peut encore contenir des cycles Zn et des triplets astéroïdaux: ces configurations

interdites induisent des discontinuités dans la distribution des 1

dans les colonnes de la matrice d'incidence «cliques maximales-espèces»
(cf. fig. 1-f). Ces discontinuités peuvent être supprimées1: on remplace
simplement par des 1 les 0 qui sont intercalés entre des 1 dans les colonnes
de cette matrice. On obtient ainsi un graphe d'intervalle dans lequel l'ordre
obtenu sur l'ensemble des cliques est établi uniquement à l'aide des

cliques maximales identifiables de manière reproductible dans les pi
(celles-ci appartiennent nécessairement à L).

NB: ceci ne modifie pas l'ordre qui existe sur l'ensemble des cliques.
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b) Réintégration d'une partie des cliques éliminées
Appelons K* l'ensemble des cliques qui ne sont pas dans L (fig. 5 a/b :

surfaces hachurées). Pour chaque Kk e K* on calcule

Wpk max|Kkn Kp|

P I,---, PL

S'il y a une valeur unique p pour laquelle WPk est maximum on remplace
Kp par KpU Kk, sauf si cela réintroduit une relation contradictoire, auquel
cas on élimine Kk définitivement. S'il y a plusieurs valeurs de p, on élimine
également Kk. On obtient finalement une séquence L' de KP (fig. 5-c) qui
est ordonnée de manière univoque; cette séquence est transformée en un
graphe d'intervalle selon la procédure décrite plus haut: celle-ci ne
préserve pas forcément la maximalité des cliques: si cela s'avère nécessaire,

on peut éliminer les cliques qui ne sont plus maximales.

Interpretation chronologique

1) Etablissement des biochronozones

Le graphe d'intervalle tableau ordonné des associations unitaires)
étant construit, on peut maintenant l'utiliser pour l'interprétation
chronologique.

On a déjà vu (Guex, 1979, p. 179) comment les associations unitaires
identifiables de manière reproductible servaient de point de départ à la
définition de biochronozones. La manière précise selon laquelle les
associations unitaires sont groupées pour constituer une zone (choix des

limites) ne peut être qu'empirique. Dans une optique informatique on
pourrait cependant dire que le groupement des associations unitaires non
reproductibles autour de celles qui le sont squelette chronologique)
relève d'une optimisation du contrôle superpositionnel entre les
biochronozones dont on veut définir les limites.

2) Interprétation des discontinuités dans la distribution zonale des espèces

On a dit plus haut qu'en l'absence de critères physiques directs, le
remaniement d'une espèce ne pouvait être supposé que dans la mesure où
celle-ci montrait une discontinuité nette dans sa distribution biochronologique.

En d'autres termes le remaniement de cette espèce ne peut être

diagnostiqué qu'après l'attribution de chaque ensemble de niveaux de

chaque profil stratigraphique aux différentes zones établies. Une fois ces
corrélations effectuées, on peut construire un diagramme qui montre le
contenu spécifique de chacune des zones: ce contenu est l'union des

contenus fossilifères (Xy) des niveaux attribuables à une zone donnée.
Si certaines espèces montrent une distribution discontinue dans ce

diagramme, on peut éventuellement supposer qu'elles ont été remaniées.
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Appendices

I) Les graphes extrêmes

Une raison purement technique de chercher d'abord à éliminer les Z4
est la suivante : Moon & Moser (1965) ont démontré que le nombre maximum

de cliques maximales d'un graphe à n sommets pouvait être égal
à 3n/3.

De tels graphes sont appelés «graphes extrêmes» ou «graphes de Moon
& Moser». Il est évident que la recherche des cliques maximales d'un
graphe biostratigraphique est sans intérêt pour nous si le nombre de ces
cliques devient trop grand: la première chose à faire consiste donc à isoler
et à traiter les structures susceptibles d'être à l'origine d'une telle situation.

On laissera au lecteur le soin de vérifier qu'un graphe extrême contenant

3n/3 cliques maximales devient une n-clique si l'on détruit tous ses
Z4 par adjonction d'arêtes: cette opération «empêche» un graphe
quelconque (comme ceux que nous étudions) d'être localement extrême
(i.ede contenir des sous-graphes qui sont une imbrication de Z4).

II) Remarque générale sur la destruction des cycles et des circuits

Les lecteurs se demanderont peut-être s'il ne serait pas plus simple
d'utiliser la matrice A pour chercher directement un ordre sur l'ensemble
des espèces et d'en déduire ultérieurement la séquence d'associations
unitaires résultant de cet ordre. La raison pour laquelle nous ne procédons
pas ainsi est simple: Les cycles ou les circuits du graphe G (engendrés
par les espèces dont la distribution est discontinue) pourraient aisément
être détruits en retirant certaines espèces de ce graphe. Une telle réduction
de G se justifierait si l'on savait à priori quelles espèces ont une distribution
discontinue dans le temps: or ça n'est évidemment pas le cas puisque c'est
précisément l'une des choses que l'on cherche à établir. Exemple:
considérons 2 espèces A et C pour lesquelles la relation stratigraphique
est indéterminée et admettons qu'il existe une espèce B située au-dessus
de A dans un profil et au-dessous de C dans un autre profil. Il est évidemment

faux de conclure que C est plus récent que A si ces espèces sont
impliquées dans un cycle ou dans un circuit. Il est également clair que
l'élimination de l'une des espèces du cycle ou du circuit n'aide en rien à la
mise en évidence de la discontinuité dans la distribution chronologique
de l'une des espèces. Il n'existe d'autre part aucun critère objectivement
valable pour choisir l'espèce qui devrait être éliminée : retirer les espèces

impliquées dans des cycles ou dans des circuits en fonction de leur rareté
géographique reviendrait à conserver uniquement celles qui ont
statistiquement le plus de chance d'avoir subi des remaniements. En
conséquence il nous a donc paru préférable de mettre en évidence le plus possible

d'associations virtuelles déductibles à l'aide des configurations
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relationnelles entre les espèces et entre les cliques maximales. Cette
procédure présente l'avantage de prendre en considération la totalité des

espèces dans un problème donné.
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