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BULLETIN N° 249 des Laboratoires de Géologie, Minéralogie, Geophysique
et du Musée géologique de I’Université de Lausanne

Calcul, caractérisation et identification
des associations unitaires en biochronologie'

PAR

Jean GUEX?

A bstract. — A graph theoretic approach of the biochronological problem
is presented. The graph representing the stratigraphic relationships
between the fossil species (biostratigraphic graph) is transformed into an
interval graph which can easily be interpreted in terms of a chronology
by using the principle of reproducibility in the identifiability of the
unitary associations.

INTRODUCTION

Divers aspects du probléme posé par lutilisation des fossiles comme
outil de datation ont été abordés par l'auteur dans plusieurs travaux
récents (Guex, 1977, 1978, 1979). Ces études antérieures ne seront donc
pas résumées ici: seuls les points directement liés a la présente discussion
seront repris. L’objet de cette note est de présenter une formalisation
mathématique des idées exposées dans ces travaux: calcul et caractéri-
sation des associations unitaires, identification de ces associations dans
les profils stratigraphiques. Ces idées peuvent étre formulées de maniére
adéquate en utilisant certains concepts de la Théorie des Graphes. Les
concepts fondamentaux de cette théorie ont été mis a la portée des non
spécialistes dans plusieurs ouvrages récents: Harary, 1969; BerGE, 1970;
RogerTs, 1976; CARRE, 1979. Les stratigraphes concernés par les problémes
théoriques de la biochronologie peuvent donc utiliser ces travaux de
référence: ils y trouveront d’une part des discussions complétes sur les
concepts mathématiques simples qui sont utilisés plus loin et d’autre part
des exposés détaillés sur la terminologie des graphes. On commencera
cette note en donnant quelques définitions indispensables a la compré-
hension du texte ainsi que la liste des termes biostratigraphiques introduits

" Travail effectué dans le cadre du projet 2.024.078 du Fonds national suisse de larecherche
scientifique et publié dans le cadre du projet .G.C.P. N° 148.

? Institut de Géologie, Palais de Rumine, Lausanne.



112 J. GUEX

par I'auteur dans les travaux sus-mentionnés et qui ont une correspon-
dance stricte avec la terminologie employée par les spécialistes des
graphes.

TERMINOLOGIE ET DEFINITIONS

A) Graphes et «graphe biostratigraphique»

Un graphe non orienté G = (X,E) est un schéma constitu¢ par un
ensemble fini de points X ={x,...,Xs} et par une famille E = {e;,...,en} de
paires non ordonnées de points distincts de X. Chaque paire e = (x,y) est
appelée une aréte du graphe et les points sont appelés les sommets du
graphe.

Un graphe orienté G = (X,U) est un schéma constitué par un ensemble
fini de sommets X = {xi,...,Xa} et par une famille U = {uj,...,um} de
paires ordonnées de sommets distincts de X. Chaque paire u = (x,y) est
appelé un arc du graphe.

On notera G le graphe semi-orienté qui est une combinaison des deux
graphes précédents.

Dans le probléme étudié ici, les sommets du graphe sont les espéces
fossiles.

a) Deux especes «compatibles» (Guex, 1977, p. 311) sont reliées par une
aréte dans un graphe G.

b) Deux especes non compatibles dont la relation stratigraphique est
connue sont reliées par un arc dans un graphe

¢) Deux espéces non compatibles dont la coexistence virtuelle (=déduite
et non pas observée) ne peut étre établie et dont la relation stratigraphique
n’est pas connue ne sont reliées ni par une aréte dans G ni par un arc dans

Le graphe G montrant la totalit¢ des informations relatives aux
positions stratigraphiques des especes (associations, exclusions avec
relation stratigraphique connue ou indéterminée) sera appelé «graphe
biostratigraphique» (fig. 2-f).

B) Nomenclature biostratigraphique et terminologie des graphes

1) Espéces compatibles: sommets voisins dans G

2) Spectre d’association d’une espece X (Guex, 1977, p. 311): ensemble
des sommets voisins de x dans G (fig. l—g)

3) Matrice associée: considérons un graphe G = (X,E) et ’ensemble de
ses sommets (X), X2,...Xn). La matrice associée a G est la matrice (aj;)

définie par: .
4 = 1si(xix)€E
Y 0 sinon
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4) Matrice des spectres d’association: matrice associée au graphe G

5) Ensemble d’espéces mutuellement compatibles: clique de G (fig. 1-f)

6) n-clique: clique contenant n sommets

7) Clique maximale: une clique est maximale si elle n’est pas contenue
dans une clique plus grande

8) Association unitaire (Guex, 1977, p. 311): clique maximale

9) Matrice d’incidence: Soit X= {Xi, X2,...Xn} un ensemble de sommets
et F={Si, S»,...,Sm} une famille de sous-ensembles de X. La matrice
d’incidence «sommet-ensemble de sommets» est une matrice n X m
dans laquelle I'entrée i, j vaut 1 si Pélément x; appartient a 'ensemble
S; et 0 sinon

10) Tableau ordonné d’associations unitaires: matrice d’incidence «cliques
maximales-sommets»; sous certaines conditions (cf. p. 116) une telle
matrice correspond a un graphe d’intervalle (déf. 11)

11) Graphe d’intervalle (BerGe, 1970, p. 358): Considérons, sur une droite,
une famille J = (Jy, Ja,...,Jn) d’intervalles. On peut former un graphe
dont les sommets X, X2,...,Xn représentent respectivement les inter-
valles Ji, Jo,...,Jn, deux sommets étant reli€és par une aréte si et seule-
ment si les intervalles correspondants intersectent. Un tel graphe est
appelé «graphe d’intervalle».

12) Propriété des 1 consécutifs: se dit d’'une matrice de 1 et de 0 dont les
lignes peuvent étre permutées de maniére a ce que les 1 soient consé-
cutifs dans toutes les colonnes (sans 0 intercalés entre eux).

13) Chemin: dans un graphe non orienté ﬁ, un chemin est une séquence
alternante de sommets et d’arétes distincts commengant par un sommet
et aboutissant a un autre sommet. - '

14) Un triplet de sommets x, y et z dans G est appelé «astéroidal» s’il
existe des chemins C; entre x ety, Coentre x et zet C; entre y et z tels
qu’il n’y ait pas d’aréte de x a C3, de y a C; et de z a C, (fig. 1-a).

15) Cardinalité d’un ensemble X: nombre d’éléments appartenant a X.

16) Cycle: cf. fig. 1-b

17) Circuit; cf. fig. 1-c

18) Corde: aréte reliant 2 sommets non consécutifs d’un cycle.

19) Chaine: séquence d’arcs telle que chaque arc de la séquence a une
extrémité en commun avec l’arc qui le précéde et I’autre extrémité
en commun avec ’arc qui le suit.

C) Notation

Ji): intervalle d’existence d’une espéce x
Jix,y): intervalle de coexistence du couple (x, y)

I'G(xi) = {x;} : ensemble des x; voisins de x; dans G (NB: x; ¢15(xi1))
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Zn,: cycle de longueur n sans corde dans G (fig. 1-b)
S; et S4: circuits semi-orientés de longueur 3 ou 4 dans G (fig. 1-d/e)
| X| : cardinalité d’un ensemble X

a) Triplet astéroidal (cf. texte)

b) Cycle de longueur 5 sans corde

¢) Circuit de longueur 5

d) Circuit semi-orienté S;

e) Circuit semi-orienté S4

f) Clique a 5 sommets (5-clique)

g) Spectre d’association d’une espéce x

NATURE DU PROBLEME

Imaginons une situation idéale dans laquelle:

1) la sédimentation est continue dans le temps et dans I’espace

2) I’enregistrement fossile des roches sédimentaires est parfait: toutes

les espéces qui ont existé a un moment donné sont fossilisées partout

3) toutes les especes sont ubiquistes au cours de leur durée d’existence

respective. _

Dans une telle situation, la séquence d’associations unitaires engen-
drées par les relations de coexistence entre les espéces correspondrait
exactement a un graphe d’intervalle (définition 11). La réalité n’a bien
entendu rien a voir avec une telle utopie car la nature de la distribution
biogéographique des especes fossiles (fortement limitée par les contraintes
écologiques et a fortiori par le caractére fragmentaire de la documentation
paléontologique) implique qu’un graphe représentant les relations de
coexistence entre les espéces fossiles ne correspond pas a une chrono-
logie méme s’il satisfait les conditions qui en font un graphe d’intervalle.
Cette assertion est explicitée dans la figure 2 (b a d) et le probléme est
discuté en détail dans Guex, 1978.

On sait cependant qu’une séquence ordonnée d’associations unitaires
peut fort bien étre interprétée en termes chronologiques (principe de
reproductibilité; Guex, 1978): ceci est donc €galement valable pour un
graphe d’intervalle.
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Le premier probléme qui doit étre résolu lorsqu’on veut traiter de
maniere précise un ensemble de données biostratigraphiques éparses et
fragmentaires est celui posé par la construction d’une séquence ordonnée
d’associations unitaires. Dans le langage de la théorie des graphes ce
probléme peut étre formulé ainsi: étant donné un graphe biostratigra-
phique, comment transformer ce graphe en un graphe d’intervalle? Cet
aspect de la question va constituer I’essentiel de la discussion qui suit.

00~ en & — D

12345678
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Fig. 2.

a) Matrice A, «espéce-espéce» (définition: cf. p.116), contenant les informations biostrati-
graphiques tirées des profils p1 a ps de la figure 2-b. '

b) Distribution spatio-temporelle de 8 espéces (1 a 8). Pointillés verticaux: tracé de 4 profils
stratigraphiques (p: 4 ps) qui traversent (dans les blocs noirs) les domaines d’existence
(surfaces fermées) des 8 espéces. T = axe du temps. E = «espace».

c) Position chronologique réelle des intervalles I a VI de la matrice d’incidence «cliques
maximales-espéces» de la figure 2-d.

d) Matrice d’incidence «cliques maximales-espéces» (Ki-xi): cette matrice représente les
relations d’association et d’exclusion entre les espéces 1 a 8 (exprimées en termes de
«séquence d’associations unitaires»); elle posséde la propriété des l-consécutifs (c’est
donc un graphe d’intervalle) mais la séquence ordonnée des K (i = I a VI) ne correspond
pas a I'ordre chronologique réel représenté dans la figure 2-c (d’aprés GUEX, 1978).

e) Matrice «profils-cliques maximales» identifiables dans les profils 1 a 4. Cette matrice
montre que seules les cliques I et VI sont identifiables de maniére reproductible.

f) Graphe G montrant les relations stratigraphiques globales (association, exclusion et
superposition) observées entre les espéces 1 a 8 dans les profils p1 a ps de la figure 2-b.

g) Graphe G montrant les relations de coexistence observées entre les espéces 1 a 8 dans les
profils p1 a ps de la figure 2-b. Dans le cas particulier, ce graphe est un graphe d’intervalle.

h) Graphe G montrant les relations de superposition observées entre les espéces 1'a 8 dans
les profils p1 a ps de la figure 2-b.
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N ATURE DES DONNEES

Considérons un ensemble de profils stratigraphiques P = (pi,...pm!:

Chacun des profils pi est constitué d’un ensemble N; de niveaux sédi-
mentaires; le niveau j du profil i a un contenu fossile Xj; qui est une partie
de ’ensemble des espéces X = {Xi,...,Xa}. Les informations sur la distribu-
tion stratigraphique locale (c’est-a-dire dans p;) des especes sont intro-
duites dans une matrice A = (a;) (i,jJ = 1,...,n); on posera:

au méme niveau que X;j

1 si x; se trouve dans un niveau inférieur a celui de x; ou
aij = {
0 sinon

La figure 2-a montre une matrice A qui contient les informations
biostratigraphiques tirées des profils 1 a 4 de la figure 2-b. G sera le graphe
dont A est la matrice d’incidence sommets-sommets (fig. 2-f):

si a; = 1 et a;; = 1 on dira qu’on a une aréte (i, j)
si ai; = 1 et a;; = 0, on aura un arc (i, j).

= (X, E) sera le graphe formé par I’ensemble E des arétes de G (fig. 2-g),
alors que G = (X, U) sera formé par ’ensemble U des arcs de G (fig. 2-h).

CONSTRUCTION DU GRAPHE D’INTERVALLE

Deux théorémes de base vont nous étre utiles dans la recherche d’une
solution au probléme posé par la transformation d’un graphe biostrati-
graphique en un graphe d’intervalle:

I) FuLkerson & Gross (1965):

«Un graphe est un graphe d’intervalle si et seulement si sa matrice
d’incidence cliques maximales-sommets posséde la propriété des |1
consécutifs.»

II) LEkkerRkERKER & BoLanp (1962):

«Un graphe est un graphe d’intervalle si et seulement si il ne contient
aucun cycle Zn (n > 4) et si il ne contient pas de triplets astéroidaux.»
L’idée de la methode consiste a détruire les cycles Z, et les triplets
astéroidaux de G en fonction d’une série de critéres dont I'admissibilité
est préalablement discutée. Son développement s’effectue en 6 étapes:
1) destruction des cycles de longueur 4 de G
2) détermination des cliques maximales de G
3) destruction des circuits semi-orientés S; et Sq dans G
4) identification des cliques maximales de G dans les profils
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5) construction d’un graphe orienté montrant les relations stratigraphiques
entre les cliques maximales identifiables dans les profils
6) destruction des cycles Z, (n > 4) et des triplets astéroidaux dans G
La derniére étape aboutit a la construction d’un graphe d’intervalle
(théorémes I et II) que I’on sait interpréter en termes chronologiques.

1) Destruction des cycles Zs (¢f. Appendices)

Les relations d’association et d’exclusion entre 4 espéces Xi, Xj, Xk, X1
peuvent engendrer un cycle Zs dans G pour deux raisons distinctes: le
remaniement ou insuffisance documentaire.

En P’absence de criteres sedimentologiques directs (res€édimentation
évidente, altération physique des fossiles etc....), le remaniement d’une
espéce ne peut €tre présumé que dans la mesure ou cette espece montre
une discontinuité nette dans sa distribution biochronologique: il est
évident que si une espéce x se trouve dans 2 zones adjacentes A et B, il est
exclu de soupgonner que x n’existe chronologiquement que dans la zone A
et qu’il est remanié dans la zone B qui suit... La démonstration d’un
remaniement par des critéres purement biochronologiques ne peut se
faire qu’avec l'aide des especes dont les relations engendrent des associa-
tions unitaires identifiables de maniére reproductible. En I’absence de
preuve «physique» directe, on est donc obligé de commencer par admettre
que les discontinuités dans la distribution des espéces sont dues a une
insuffisance documentaire et non pas a des remaniements: I’interprétation
de ces discontinuités en termes de remaniements est discutée plus loin
(p.124 et Appendice II).

Trois types de Z4 en «situation non remaniée » peuvent étre schéma-
tisés:

Situation 1)

Si la relation stratigraphique est connue pour ’'un des couples d’especes
mutuellement exclusives et impliquées dans le Z4, ’autre couple a alors
nécessairement coexisté virtuellement. La figure 3-a démontre cette
affirmation. :

Situation 2)

Si la relation stratigraphique est connue pour les 2 couples d’espéces
mutuellement exclusives qui sont impliquées dans le Zs, ces 2 couples
sont nécessairement virtuellement compatibles: cette affirmation est
démontréee par la figure 3-b. Le sché ma ci-dessous (fig. 3-¢) montre qu’une
telle situation risque de se produire tres souvent lorsque 2 espéces appa-
raissent a peu pres simultanément au cours d’un intervalle de temps
pendant lequel 2 autres especes disparaissent de maniere subconcomit-
tante.
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Situation 3

La relation stratigraphique est inconnue pour les 2 couples mutuelle-
ment exclusifs impliqués dans le Zs. Une telle situation peut également
étre due a une configuration relationnelle du type illustré dans la figure
3-c.

Les informations contenues dans la matrice A permettent de détecter
facilement les Zs, de voir a quelle situation (1, 2 ou 3) on a a faire et d’en
déduire les coexistences virtuelles.

Fig. 3.

Schémas illustrant le fait qu’en «situation non remaniée», on peut détruire les cycles Zs
par adjonction d’arétes dans ces cycles. Les ellipses limitent les domaines d’existence des
espéces i, j, k et . T = axe du temps.

a) larcij indique que la relation stratigraphique entre les espéces i et j est connue.

b) les arcs ij et kl indiquent que la relation stratigraphique entre les couples d’espéces ij et ki
est connue,

c¢) Configuration relationnelle hypothétique (cf. p,118) engendrant un Z4. Les petits traits
verticaux indiquent respectivement les frontiéres inféricures et supérieures des domaines
d’existence des espéces j et | d’une part et i et k d’autre part.

d) Schéma montrant la procédure d’adjonction d’une aréte dans la situation 1 (cf. p.119)

e) Schéma montrant la procédure d’adjonction de 2 arétes dans la situation 2 (cf. p.119)

f) Schéma montrant la procédure facultative d’adjonction de 2 arétes dans la situation 3
(cf. p.119)
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Commengons par examiner les Z4 qui contiennent un arc entre x; et X;
(situations 1 et 2):

Pour chaque couple (x;, X;) dans G tel que a;; = 1 et a;; = 0 dans la matrice
A, on cherche I’ensemble des especes communes aux 2 spectres d’asso-
ciation en calculant:

L_] = I:G(Xi) N I%(Xj)

Si|Iii|< 1 on ne fait rien car il n’y a pas de Z4
> 2

|
Si |I;| , on note {{xi, xi}} le(s) couple(s) d’espéce(s) qui se trouvent

dans Iij E

Situation 1 (fig. 3a + d): Si axi = ax = 0 (NB: kl et 1k sont les indices ij et
ji des couples d’espéces (xk, X)), on ajoute une aréte a Z4 en posant
ax1 = aix = 1 dans la matrice A.

Situation 2 (fig. 3b +¢e): Siax = 1etax =0, on remplace les 2 arcs du Z4
considéré par 2 arétes en posant aj; = a;; = ax = ai = 1 dans la matrice A.

Situation 3 (fig. 3¢ + f): Pour chaque couple (xi, x;) dans G, tel que
aij = a;i = 0 on calcule

i = a(xi) N IE(x)

SiI = @ ousi I est une clique, on ne fait rien (pas de Z4) : sinon on ajoute
2 arétes dans le Z4 en posant a;; = aji = ax = ai = 1 dans la matrice A.

Remarque: En «situation remaniée», I'adjonction d’arétes a un Zs de type 3
(fig. 3-f) peut induire une perte sérieuse dans les informations chronologiques
potentiellement contenues dans le graphe G de départ: en pratique il est donc
nécessaire de comparer les résultats biochronologiques obtenus aprés avoir
effectué la totalité des opérations décrites ici avec ceux que I’on obtient en omettant
certaines de ces opérations.

2) Calcul des cliques maximales

Plusieurs algorithmes permettant de déterminer les cliques maximales
d’un graphe ont été publiés dans la littérature récente: une discussion
générale de ce probléme est présentée par Jounston (1976).

Un algorithme voisin de celui de BiersToNE (in AucusTtsoN & MINKER,
1970) a été construit par 'auteur. On n’en donnera ici que I’'idée générale.

L’algorithme procede parinduction: connaissant ’ensemble des cliques
maximales d’un graphe d’ordre n (= a n sommets) 'Gn, on sait déterminer
I’ensemble des cliques maximales de ce graphe au rang n+1 (= apres lui
avoir ajouté un sommet).
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Considérons un graphe Gn = (Xn, E) ou X, = {xy,...,Xn} est I’ensemble
des sommets.
{Xn+1} sera un sommet ajouté au graphe Gn
I35, (Xn+1) sera ’ensemble des voisins de {Xn+1} dans X,
Ko = {{kn}} sera Pensemble des cliques maximales de Gn (= au rang n)
Cn+1 sera un ensemble de cliques pas forcément maximales au rang n+1

Kn+1 sera ’ensemble des cliques maximales de G, au rang n+1

Il est évident que si:
1) { kan N I3, (Xn+l)} = @, alors ka et {Xa+1} sont 2 cliques distinctes au

rang n+1

2) { ka N I3, (Xn+])} = Kkn, alors { kn U {Xn+1} } est une clique maximale

nouvelle au rang n+1

3) { ka N IE, (Xn+1) } # (0 et # kn, alors kn est une clique maximale recon-
duite au rang n+1 et { (kn n Ig, (xn+1)) U {Xn+1} } est une clique
nouvelle au rang n+1.

On peut donc écrire

Ch+1 = {kn s (kn N Fﬁn (Xn+1)) U {Xn+1}

kn € Kn}
Notons R, 'opération qui consiste a éliminer par inclusion toutes les
cliques non maximales au rang n+1. On peut alors écrire:
Kn+1 = R (Cn+1)
L’algorithme opére de maniére itérative: au début, on pose

X = {x1}, Ki = {xi}et [§, (x2) = {x1} ou vide.

3) Suppression des circuits semi-orientés S3 et Sa

Apres avoir déterminé les cliques maximales de G, on effectue encore
la modification suivante sur ce graphe: étant donné 2 cliques maximales
K; et K, soit

a = {x € K;| Jarc (y, x) avec y € K, x ¢ Kj}

B={xeK;|Jarc(x,y)avecy € Kj, x ¢ K;}
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Si « et B sont tous deux non vides, alors Ki est remplacé par KiUeUB
(ceci introduit de nouvelles arétes dans G) En répétant ceci on détruit
tous les circuits semi-orientés S3 et S4 de G.

Les schémas ci-dessous (fig. 4) montrent quels genres de configurations
relationnelles entre les espéces induisent de tels circuits.

Fig. 4.

a) Exemple de configuration relationnelle engendrant un circuit semi-orienté Ss. Les ellipses
fermées sont les frontiéres des domaines d’existence respectifs des espéces 1 et 2 qui inter-
sectent (surface noire). L’ellipse ouverte montre comment la distribution spatiale disconti-
nue de l'espece 3 engendre des relations contradictoires. T = axe du temps. Dans cet
exemple Ki = {1, 2}, K; = 3 a = p = 3 (cf. p.120)

b) Exemple de configuration relationnelle engendrant un circuit semi-orienté Sa; la position
de ’intervalle de coexistence des especes 3 et 4 (J3, 4) par rapporta J1, 2) est indéterminée.

T = axe du temps. Dans cet exemple Ki ={1,2};Kj={3,4 , a =3 etp=4

4) Identification des cliques maximales dans les profils stratigraphiques

Il résulte du théoreme de FuLkersoN & Gross (I) que chaque clique
maximale d’un graphe d’intervalle peut étre caractérisée par un sous-
ensemble de sommets qui n’appartient qu’a cette clique maximale:
on parlera de sommet simplicial si ce sous-ensemble se réduit a un sommet
(dont tous les voisins engendrent une clique) ou une paire simpliciale si ce
sous-ensemble se réduit a 2 sommets.

Chaque sommet (ou paire) simplicial(e) d’une clique maximale la
caractérise entierement puisque ce sommet ou cette paire n apparalt dans
aucune autre clique maximale.

Appelons K = {K,,...K;}’ensemble des cliques maximales de G (modi-
fié), numérotées pour I'instant dans un ordre quelconque.
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Commencons par identifier ces cliques dans les niveaux sédimentaires
des profils pi a 'aide de leurs espéces caractéristiques (espéces et/ou
paires simpliciales); pour chaque niveau n; de chaque profil p; on calcule

Yij = max. lXij n KII
l=1,....p

S’il y a une valeur unique / pour laquelle Y est maximum, cela signifie
que n; contient au moins une espéce (ou une paire d’especes) caractéris-
tique de K;: on attribue donc la clique K, au niveau n;; du profil p; et on dit
que cette clique est identifiable dans le profil p;. S’il y a plusieurs valeurs
de / on ne fait rien.

Remarques:

1) L’utilisation des espéces (paires) simpliciales pour identifier les cliques
maximales correspond exactement a I'opération d’identification des associations
unitaires décrite par I'auteur dans des travaux antérieurs.

2) Les associations virtuelles déduites au cours des étapes 1 et 3 ci-dessus
restent sans influence sur la procédure d’identification car les éventuelles paires
simpliciales engendrées par ces manipulations n’ont (par définition) pas été
observées dans les profils stratigraphiques: une conséquence de ceci peut étre
que certaines cliques maximales ne seront éventuellement identifiables nulle part:
ces cliques peuvent étre éliminées.

5) Construction du graphe Gy

Les informations sur les relations stratigraphiques locales (dans p,)
entre les cliques maximales identifiables dans les profils p. peuvent €tre
introduites dans une matrice B = (bj;); on posera

b = { 1 si Ki se trouve au-dessous de K; dans un profil pi
Y 0 sinon

Dans le graphe orienté Gk = (K, Ux) associé a B, les cliques maximales qui
présentent le plus grand nombre de contradictions dans leurs relations de
position stratigraphique observée (b = bji = 1) peuvent étre éliminées
(p. ex. les cliques emballées dans les surfaces pointillees de la fig. 5-a): G
n’a ainsi plus de circuits. Certaines cliques maximales dont les relations
sont indéterminées (b;j = bj; = 0) peuvent étre trivialement réunies
(fig. 5-a: surfaces blanches).
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L ’

Fig. 5.

Graphe orienté associé a une matrice B (c¢f. p.122) hypothétique, montrant les relations
stratigraphiques entre des cliques maximales identifiables dans des profils imaginaires.

a) Les 2 cliques maximales emballées dans les surfaces pointillées sont celles qui montrent
le plus grand nombre de relations contradictoires (arcs opposés: bi; = bji = 1): ces cliques
sont éliminées.

Les cliques emballées dans les surfaces blanches sont réunies.

b) Les cliques maximales emballées dans les surfaces pointillées n’appartiennent pas a L.

¢) Séquence ordonnée de cliques maximales obtenue aprés avoir achevé les opérations
décrites dans le texte.

6) Construction du graphe d’intervalle

a) Recherche de la plus longue chaine de cliques de G

Appelons L la plus longue chaine de cliques maximales de Gk (fig. 5-b:
les cliques se trouvant dans les surfaces hachurées n’appartiennent pas a
L) et rebaptisons ces cliques K, p = 1,..., pL (s’il y a plusieurs L possibles
on choisit celle qui contient les cliques identifiables dans le plus grand
nombre de pi). Le graphe réduit Gk donné par la séquence L n’engendre
pas forcément un graphe d’intervalle par suppression de I'orientation: il
peut encore contenir des cycles Z, et des triplets astéroidaux: ces configu-
rations interdites induisent des discontinuités dans la distribution des |
dans les colonnes de la matrice d’incidence «cliques maximales-especes»
(cf. fig. 1-f). Ces discontinuités peuvent étre supprimées': on remplace
simplement par des 1 les 0 qui sont intercalés entre des 1 dans les colonnes
de cette matrice. On obtient ainsi un graphe d’intervalle dans lequel ’ordre
obtenu sur ’ensemble des cliques est établi uniquement a ’aide des
cliques maximales identifiables de manieére reproductible dans les pi
(celles-ci appartiennent nécessairement a L).

! NB: ceci ne modifie pas ’ordre qui existe sur ’ensemble des cliques.
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b) Réintégration d’une partie des cliques éliminées
Appelons K’ I’ensemble des cliques qui ne sont pas dans L (fig. 5 a/b;
surfaces hachurées). Pour chaque Ky € K on calcule

Wk = max [Ki N Ky
p= 1,..., PL

S’ily a une valeur unique p pour laquelle W,k est maximum on remplace
K, par K, U K, sauf si cela réintroduit une relation contradictoire, auquel
cas on élimine Ky définitivement. S’il y a plusieurs valeurs de p, on élimine
également K. On obtient finalement une séquence L’ de K, (fig. 5-¢) qui
est ordonnée de maniére univoque; cette séquence est transformee en un
graphe d’intervalle selon la procédure decrite plus haut: celle-ci ne
préserve pas forcément la maximalité des cliques: si cela s’avére néces-
saire, on peut €liminer les cliques qui ne sont plus maximales.

INTERPRETATION CHRONOLOGIQUE
1) Etablissement des biochronozones

Le graphe d’intervalle (= tableau ordonné des associations unitaires)
¢tant construit, on peut maintenant I'utiliser pour Iinterprétation
chronologique.

On a déja vu (Guex, 1979, p. 179) comment les associations unitaires
identifiables de maniére reproductible servaient de point de départ a la
définition de biochronozones. La maniére précise selon laquelle les asso-
ciations unitaires sont groupées pour constituer une zone (choix des
limites) ne peut étre qu’empirique. Dans une optique informatique on
pourrait cependant dire que le groupement des associations unitaires non
reproductibles autour de celles qui le sont (= squelette chronologique)
releve d’une optimisation du contréle superpositionnel entre les bio-
chronozones dont on veut définir les limites.

2) Interpretation des discontinuites dans la distribution zonale des especes

On a dit plus haut qu’en I’absence de critéres physiques directs, le
remaniement d’une espéce ne pouvait étre supposé que dans la mesure ou
celle-ci montrait une discontinuité nette dans sa distribution biochrono-
logique. En d’autres termes le remaniement de cette espéce ne peut étre
diagnostiqué qu’apres Pattribution de chaque ensemble de niveaux de
chaque profil stratigraphique aux différentes zones établies. Une fois ces
corrélations effectuées, on peut construire un diagramme qui montre le
contenu spécifique de chacune des zones: ce contenu est I'union des
contenus fossiliferes (Xj) des niveaux attribuables a une zone donnée.
Si certaines espéces montrent une distribution discontinue dans ce
diagramme, on peut éventuellement supposer qu’elles ont été remaniées.
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APPENDICES
1) Les graphes extrémes

Une raison purement technique de chercher d’abord a éliminer les Zs
est la suivante : Moon & Moskr (1965) ont démontré que le nombre maxi-
mum de cliques maximales d’un graphe a n sommets pouvait étre égal
é 3n/3-

De tels graphes sont appelés «graphes extrémes» ou «graphes de Moon
& Moser». Il est évident que la recherche des cliques maximales d’un
graphe biostratigraphique est sans intérét pour nous si le nombre de ces
cliques devient trop grand: la premiére chose a faire consiste donc a isoler
eta traiter les structures susceptibles d’étre a I’origine d’une telle situation.

On laissera au lecteur le soin de vérifier qu’un graphe extréme conte-
nant 3" cliques maximales devient une n-clique si ’on detruit tous ses
Z4 par adjonction d’arétes: cette opération «empéche» un graphe quel-
conque (comme ceux que nous €tudions) d’étre localement extréme
(i.ede contenir des sous-graphes qui sont une imbrication de Z4).

Il) Remarque géneérale sur la destruction des cycles et des circuits

Les lecteurs se demanderont peut-étre s’il ne serait pas plus simple
d’utiliser la matrice A pour chercher directement un ordre sur ’ensemble
des espéces et d’en déduire ultérieurement la séquence d’associations
unitaires résultant de cet ordre. La raison pour laquelle nous ne procédons
pas ainsi est simple: Les cycles ou les circuits du graphe G (engendrés
par les espéces dont la distribution est discontinue) pourraient aisément
étre détruits en retirant certaines espéces de ce graphe. Une telle réduction
de G se justifierait sil’on savait a priori quelles especes ont une distribution
discontinue dans le temps: or ¢a n’est évidemment pas le cas puisque c’est
précisément I'une des choses que l'on cherche a établir. Exemple:
considérons 2 especes A et C pour lesquelles la relation stratigraphique
est indéterminée et admettons qu’il existe une espéce B située au-dessus
de A dans un profil et au-dessous de C dans un autre profil. Il est évidem-
ment faux de conclure que C est plus récent que A si ces espéces sont
impliquées dans un cycle ou dans un circuit. Il est également clair que
’élimination de 'une des especes du cycle ou du circuit n’aide en rien a la
mise en évidence de la discontinuité dans la distribution chronologique
de 'une des espéces. Il n’existe d’autre part aucun critére objectivement
valable pour choisir ’espéce qui devrait étre éliminée: retirer les espéces
impliquées dans des cycles ou dans des circuits en fonction de leur rareté
géographique reviendrait a conserver uniquement celles qui ont statisti-
quement le plus de chance d’avoir subi des remaniements. En consé-
quence il nous a donc paru préférable de mettre en évidence le plus possi-
ble d’associations virtuelles déductibles a I’aide des configurations
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relationnelles entre les espéces et entre les cliques maximales. Cette
procédure présente I’avantage de prendre en considération la totalité des
espéces dans un probléme donné.
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