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Introduction aux travaux de Zeeman
sur la propagation de l'influx nerveux1

PAR

Pierre de la HARPE 2

I. Quelques rappels sur les travaux expérimentaux

Un axone est une partie d'une cellule nerveuse. Sa forme est celle
d'un tube, qui est rempli de liquide. Chez l'homme, les dimensions
de ce tube sont de l'ordre suivant: le micron pour le diamètre, quelques
millimètres pour la longueur; toutefois, chez certaines espèces animales

comme les calmars, le diamètre est presque mille fois plus grand, et la
longueur peut atteindre 10 cm. Depuis le début des années 1940 environ,
les expérimentateurs savent isoler un axone et mesurer certains processus
dont il est le siège. La fonction principale de l'axone est de transmettre
l'influx nerveux. Les grandeurs mises en évidence pour décrire la
propagation d'un tel influx sont définies comme suit.

1. La différence de potentiel entre l'intérieur et l'extérieur du tube:
v v, —• ve. Au repos (absence d'influx), l'observation indique une
grandeur vr de l'ordre de —50 mV. Il est pratique de manipuler la
différence V v — vr, qui est nulle au repos, plutôt que la quantité v
elle-même.

2. La perméabilité gNa de la membrane aux ions sodium Na+, définie
comme suit:

Au repos, les concentrations Naj et Nae des ions sodium dans le

liquide à l'intérieur du tube et dans l'eau de mer ambiante sont différentes:

le rapport Naj/Nae est de l'ordre de 1/10. La différence de potentiel
qui produirait ce rapport de concentration si la membrane était parfaitement

perméable est donnée théoriquement par la loi de Nernst:

1 Exposé à la SVSN dans les séances des 26 février et 12 mars 1975.
2 Institut de mathématiques de l'Université, 1015 Dorigny-Lausanne.
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RT
vNa — -— ln (Nai/Nae), où R [resp. F] est la constante des gaz

F
parfaits [resp. de Faraday] et où T est la température absolue ; on définit
alors VNa vNa — vr.

Lorsque la membrane est soumise à une différence de potentiel v, il
existe un courant électrique transversal par unité de surface dû au passage
des ions sodium, désigné ci-dessous par INa. La grandeur gNa est alors
définie par

INa Sua (v — vNa) gNa (V — VNa).

3. La perméabilité gK de la membrane aux ions potassium K+, définie
de même par

Ik gK (V - VK)

4. La perméabilité gcl de la membrane aux ions chlore CL, définie par

Ici gci(V-Vcl)

Parmi les expériences réalisées sur les axones, nous en retiendrons
deux types.

a) L'expérimentateur inflige brutalement une différence de potentiel
entre l'intérieur et l'extérieur, ceci tout au long du tube; une fois
l'interrupteur fermé, V ne varie donc plus. On observe alors que gNa augmente
très rapidement, puis revient beaucoup plus doucement à sa valeur initiale.
Au contraire gK ne varie que très peu pendant un certain temps, puis se

modifie jusqu'à atteindre asymptotiquement une nouvelle valeur
constante. Enfin gCI reste constant. La variable espace n'intervient évidemment

pas dans la description de ce type d'expériences: le système est
local.

b) L'expérimentateur fournit une excitation à une extrémité du
tube. Il observe alors comment les quantités gNa, gK, V dépendent du
temps et de l'endroit du tube où elles sont mesurées: il s'agit d'observer
la propagation de l'influx nerveux. L'ordre de grandeur des vitesses de

propagation est 20 ms-1.
Même pendant les phénomènes de propagation, il est avantageux de

bien distinguer le phénomène local d'interdépendance entre gNa, gK et V
du phénomène global de propagation. (De même que dans la diffusion
d'une épidémie de grippe, on distinguerait l'incubation individuelle de
la contagion sociale; ou dans l'arrosage d'une jungle avec des bombes à

retardement, la trajectoire des avions de l'explosion des gadgets.)
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Autrement dit, il s'agit de distinguer deux phénomènes d'apparence
mathématique inadéquatement semblable: l'onde de polarisation
(global) et l'onde de dépolarisation (local).

Les expériences sont décrites en détail dans Katz [6], qui est un
ouvrage de semi-vulgarisation.

IL Les équations de Hodgkin et Huxley

Ces deux auteurs furent les premiers à proposer un système d'équations

pour décrire l'évolution des trois grandeurs importantes gNa, gK, V,
qu'ils avaient pour une bonne part eux-mêmes mises en évidence. Ils
obtinrent un accord remarquable entre leur théorie et l'expérience,
ainsi que le prix Nobel.

Les équations proposées s'écrivent au moyen de quantités annexes

n, m, h, pour l'instant restées sans interprétation physique claire. Nous
ne résisterons pas à la vicieuse envie d'écrire les équations qui décrivent
les expériences du type A. On désigne par I le courant total transversal
à la membrane, par unité de surface (dirigé vers l'intérieur), et par CM la
capacité de la membrane par unité de surface (c'est une constante);
enfin g~^, g~, g^ gCi sont des constantes.

Système différentiel

I CM ^ + ^n* (V-Vk) + i7am% (V-VNa) + fe (V-VC1)

dn
— <xn (1-n) — ßnn

dm
— <xm (1-m) — ßmm

dh
dt ah (1-h) - ßhh

Equations de liaison (en unités ad hoc)

ocn 0,01 (V + 10) { exp (^ct) - l }
_1

ßa= 0,125 expj^}

am 0,1 (V + 25) { exp Ç~^j ~ * } ~*
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ßm 4 exp{^}

ah 0,07 exp 12Q j
[ V + 30 Ì -ißh j exp 10 + 1 j

Les expériences du type B sont décrites par un système d'équations
déduit de celui-ci en modifiant la première d'entre elles. Voir Hodgkin
et Huxley [4].

Vu leur succès en physiologie, les mathématiciens se sont bien sûr
emparés fébrilement de systèmes différentiels de ce type, parfois en
oubliant d'ailleurs la biologie sous-jacente. Nous renvoyons à ce sujet au
cours (EPFL, février-mars 1975) et au livre (en préparation) de K. P.

Hadeler; d'ici là, voir [3].

III. La démarche de Zeeman: aspect qualitatif

Le point de départ de Zeeman [8] est la considération des propriétés
cinématiques simples des grandeurs mesurées. Cette considération est

accompagnée d'un oubli volontaire et total des processus physico-chimiques

microscopiques sous-jacents, qui sont complexes et mal connus.
On cherche donc des équations qui puissent décrire l'évolution d'un
système présentant les qualités suivantes.

I : Equilibre stable

II: Action rapide
seuil, pour une perturbation externe

,ir „ I ou bien brusque (Illa)
111: Retour a 1 équilibre initial { ,ITti-\n | ou bien doux (Illb).

Il y a deux problèmes consistant à trouver des équations différentielles

dont des solutions exhibent, pour le premier, l'ensemble des

qualités I, II et Illa, et pour le second I, Il et IHb. Le premier cas est
motivé par le comportement d'une cellule musculaire cardiaque; son
état, mesuré par sa longueur, varie bien de I diastole à II contraction

dans l'état systolique (suite à une excitation issue du pace-maker),
puis finalement revient brusquement (Illa) au repos diastolique. Le
second cas est motivé par le comportement de gNa décrit plus haut.

La solution de Zeeman au premier problème l'amène à étudier deux
équations différentielles (où x désigne la dérivée par rapport au temps de
la fonction x) de la forme:



X =_i(X3_X+b)=-f(x,b) (Ir)

b x—1 =g(x,b) (11)
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(1)

où s est un nombre réel positif petit non nul. L'ingrédient essentiel du
système (1) est son équation rapide (lr).

Quant au second problème (avec IHb), il conduit à un système de

trois équations de la forme

x - \[ (x3 + ax + b) (2r)
z

à=—2a—2x (21')

b=—a—1 (21")

(2)

La justification de ces choix est exposée dans la première partie de

l'article [8]. Le lecteur désireux d'aborder les bases mathématiques de

cette discussion pourra s'introduire au sujet en consultant les chapitres 4
et 5 du livre de Hurewicz [5], qui est particulièrement clair. Toutefois,
il est probablement avantageux de se familiariser d'abord avec des dessins
à la Zeeman avant de lire et écrire trop d'équations.

IV. Le système (1)

IV.1. L'équation rapide (lr)
On considère une famille de systèmes indexée par un paramètre b,

l'état de chaque système étant décrit par une variable x. Supposons
que le système défini par une valeur b du paramètre évolue (en l'absence
d'action externe) selon

ex -(x3 - x + b) —f„ (x) (lr).
Les états d'équilibre possibles sont fournis par les racines de la fonction fb.

C'est un exercice facile de vérifier que :

-> Si |b| 2/3V3, l'équation (lr) n'a qu'une position d'équilibre,
qui est stable.

-> Si |b| 2/3V3, l'équation (Ir) a trois positions d'équilibre, une
instable prise en sandwich entre deux stables.

Si l'on reporte la position d'équilibre sur un graphique en fonction
de b, on obtient une figure de la forme
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< \ X-

l/*/t tjt/r -t.

-/

On remarquera que la restriction à la courbe de la projection verticale
du plan sur l'axe x 0 présente une singularité en b +2/3 V3; cette
situation est en relation étroite avec la catastrophe élémentaire que
Thom a baptisée le pli (voir [7] page 117). En général, si l'on perturbe
légèrement un système à l'équilibre en changeant b (on « déplace le
système dans la famille considérée »), la position d'équilibre varie peu.
Par contre, au voisinage des valeurs exceptionnelles +2/3 V 3, un petit
changement de b peut modifier beaucoup la position d'équilibre.

IV.2. Le système (1)

Le système a une unique position d'équilibre donnée par x 1 et
b 0 (solution de f (x, b) g (x, b) 0).

Si s est très petit, les lignes intégrales sont presque verticales en
dehors d'un petit voisinage de la variété lente, qui est la ligne d'équation
x3 — x + b 0; en d'autres termes, les lignes intégrales sont presque
confondues avec les lignes du feuilletage rapide, qui est l'ensemble des
droites b constante.

Quelques lignes intégrales :

r*-ft

ftft ¦¦<,-,M
*ï<

ft
; .;

T̂S1

• • ii
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Schématiquement :

t

47

J

Ì î T
On peut penser que ce système différentiel est obtenu à partii de

l'équation (lr) en ajoutant une influence de l'état sur le contrôle, ou un
« feed-back » de x sur b.

IV.3. Un cas limite

A la limite s^Oet sans scrupule convergent, on doit poser

->(3x2-l)x ftx-1 =0.

Le signe de x est positif si x < —1/ V3 ou 1/V3 x < 1, négatif si

—1/ V3 \ x < 1/ V 3 ou x > 1, et nul si x 1. Et x n'est pas défini si

jx| 1/ V 3. Les solutions de l'équation différentielle limite ci-dessus,
lorsque la valeur initiale imposée est inférieure à 1/ V 3, ne sont pas
définies pour t trop grand.

0 x3 —x + b

yf
7^
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On prendra garde que, pour e \ 0, le système (1) a des propriétés
qualitatives très différentes du cas envisagé ici. On trouvera dans Davies-
James [2] une discussion très complète d'équations de ce type.

Mathématiquement, l'étude du cas limite est importante. Elle met en
évidence le fait que (lr) doit être considérée comme une famille d'équations

différentielles indexées par s, et présentant une singularité en
s 0. L'étude de telles familles est abordée par Arnold dans [1].

V. Le système (2)

V. 1. L'équation rapide (2 r)

Le même calcul que celui indiqué en IV. 1 montre que
-*¦ Si a > 0 ou si a < 0 et b2 > 4 |aj3/27, l'équation (2r) n'a qu'une

position d'équilibre, qui est stable.

-> Si a < 0 et b2 < 4 |a|3/27, l'équation (2r) a deux positions d'équilibre

stable et une position d'équilibre instable.
Les deux domaines du plan (a, b) sont indiqués sur la figure

T-i

V

>̂W>\\\ \ \^\ \ \\\ \\ \\ \ V

x3 4
L'équivalent de la courbe dessinée page 47 est la surface d'équation

ax 4 b 0, de forme

ve*hç.m.fj

/ (kort hon tilMJK

La catastrophe élémentaire associée est la fronce (voir [7] page 118).
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V.2. Le système (2)

Le système a une unique position d'équilibre donnée par x 1 b 0

a —1, qui est stable. Une petite perturbation extérieure de b modifie

peu cet équilibre. Par contre, si b dépasse le seuil b^^ 2/3 V 3, la
variable x varie beaucoup.

VI. Equations qualitatives pour l'inplux nerveux:
COMPORTEMENT LOCAL DE L'AXONE

Les expériences A (section I) conduisent à relier gNa au x des équations

(2); dans une première approximation, très grossière, il suffit de

poser x —gNa. La perturbation extérieure qui induit une action rapide
lorsqu'elle dépasse un certain seuil est évidemment b, identifié à V. Il
reste à égaler gK et a.

11 est instructif à ce stade de dessiner les courbes intégrales du
système (2) associées aux expériences A ; nous en laissons le soin au lecteur.

VIL Sur les équations quantitatives

La démarche de Zeeman est en plusieurs temps :

1. Poser des relations fonctionnelles entre x et gNa, entre b et V, et
entre a et gK, qui s'adaptent mieux au problème que les égalités
grossières définies à la section VI.

2. Conserver l'équation rapide canonique (2r), déduire l'une des

équations lentes de la conservation de la charge électrique, et ajuster la
deuxième équation lente au mieux, afin d'adhérer aux résultats des
expériences A.

3. Mettre en équation le phénomène de propagation (« onde de

polarisation »), ce qui n'est pas trop difficile.

4. Faire quelques calculs, dont les détails sont longs.

5. Tester les résultats de ces calculs soit en relation avec les expériences,
soit en relation avec les solutions de Hodgkin et Huxley.

Ce programme est l'objet des sections 2.4 à 2.10 de [8].
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