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Catastrophes : aspects mathématiques '

PAR

J. B. WAGONER2

Cette conférence concerne une nouvelle branche des mathématiques
appelée « théorie des catastrophes » et inventée vers les années soixante

par le mathématicien français René Thom [5]. Une de ses intentions
originales était de fournir un modèle géométrique pour décrire les

formes successives d'un embryon en développement: pourquoi des

cellules de même dotation génétique se développent-elles selon les cas en
tissu cardiaque, ou hépatique, ou oculaire? Mais il y a beaucoup d'applications

dans d'autres domaines dont la physique, la psychologie, la
physiologie, la sociologie, l'économie et la politique. Nous allons illustrer
la théorie de Thom par des exemples dus au mathématicien anglais
E. C. Zeeman.

D'abord qu'est-ce qu'une catastrophe au sens commun du terme,
dans la vie courante Examinons quelques exemples : Une nation change
soudainement de gouvernement par un coup d'Etat militaire, ou entre en

guerre contre un autre pays de façon inattendue. La bourse tombe en

récession, ou pire fait complètement faillite, comme à New York en 1928.

Un barrage se rompt et inonde brusquement une vallée. Alors que vous
marchez tranquillement en montagne, vous entendez un craquement
formidable et une avalanche vous tombe dessus. Un tremblement de

terre dévastateur se produit par le soudain relâchement d'une tension qui
s'est lentement accumulée. Un pont s'écroule parce que les tensions dans
les poutres dépassent le point de rupture. Ces événements sont d'habitude
appelés « catastrophes » parce qu'ils sont soudains, imprévus, et entraînent

souvent des dommages matériels et des souffrances humaines. Le

1 Cette conférence a été présentée à l'Université de Lausanne au printemps 1974,
alors que l'auteur avait le privilège d'occuper la Chaire d'honneur pour l'année
académique 1973/1974. C'est un plaisir de remercier l'Université de Lausanne pour
l'hospitalité et les conditions de recherche offertes durant cette période. Je remercie
aussi S. Maumary et P. de la Harpe pour leur aide langagière lors de la préparation
de ce texte.

2 University of California, Berkeley, California 94720.
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caractère essentiel dans tous les cas est qu'un changement graduel et
relativement petit entraîne sous certaines conditions un grand changement,

c'est-à-dire un changement catastrophique. Voici encore d'autres
exemples. Vous avez laissé monter du lait; il déborde de la casserole et se

répand sur le fourneau: une augmentation graduelle de la température
a causé une diminution considérable de la densité, le résultat final étant
du lait brûlé. Des contraintes exercées sur l'économie, suivies d'un
relâchement des contrôles, peuvent entraîner un saut inflationniste des

prix. Un comité débat chaudement autour d'une motion et vote finalement

« non »; puis l'atmosphère se détend, l'opposition décroît légèrement,

le comité change d'avis, il adopte la motion. Combien de fois
n'avez-vous pas hésité sur un problème personnel, pris une décision,
puis changé complètement d'avis cinq minutes plus tard?

La théorie mathématique des catastrophes s'occupe des phénomènes
où un changement graduel et relativement lent produit un saut soudain de

comportement ; de tels phénomènes sont appelés catastrophes. Oublions
pour le moment le sens tragique associé au mot « catastrophe », et

essayons d'abstraire le caractère essentiel du comportement catastrophique

au sens précédent.

La machine a catastrophes

Zeeman a imaginé une machine simple et ingénieuse dont le comportement

catastrophique est typique de plusieurs situations politiques et
économiques [10], [2], [4], [7], [11]. Voici comment elle fonctionne et
comment il est facile de la construire. Prenez deux boucles élastiques de

A P'

Q' "

P \

^ Q

X
7Z

i /i /i/y/
Fig. 1
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même longueur, disons 15 cm, un disque de carton de 15 cm de
diamètre également, trois petits clous, et une planche d'environ 30 cm sur
90 cm. Fixez un clou dans le disque près du bord au point Z (voir le
schéma fig. 1), puis fixez le disque à la planche au point X de sorte
qu'il tourne librement autour de son centre. Passez maintenant les

élastiques autour de Z et fixez l'extrémité de l'un d'eux au point situé
30 cm juste au-dessous du point X. Le jouet est prêt à fonctionner.

Déplacez lentement et continûment l'extrémité C de l'élastique libre
dans la région supérieure de la planche. Vous remarquerez que le disque
tourne la plupart du temps graduellement; mais parfois, lorsque C

passe par certaines positions, le disque change soudainement d'orientation;

c'est un exemple de catastrophe. On appelle C la variable de «
contrôle », parce que la position du disque dépend de la position de
C. Marquez un point à l'encre sur la planche chaque fois qu'il y a un
changement soudain. En fin de compte, vous allez voir apparaître une courbe
33 en forme de losange, avec quatre fronces P, P', Q, Q' comme en (1).
On appelle 33 la courbe de bifurcation ou l'ensemble catastrophique.

Gardez maintenant fixe le point de contrôle C et forcez le disque à

prendre une autre orientation. Si vous le relâchez, le disque retourne
rapidement à une position de repos. Avec un peu d'expérience, vous
verrez que, si C est en dehors de 33, alors le disque revient toujours à sa

position initiale; mais si C est à l'intérieur de 33, alors il y a deux positions
de repos possibles.

Supposons maintenant que l'on déplace C le long de la ligne poin-
tillée du schéma fig. 2. Lorsque C traverse 33 au point E en venant de

l'extérieur, le mouvement du disque est continu. Mais lorsque C traverse
33 au point F, le disque saute soudainement à une nouvelle position.
En revenant le long de la même ligne, le mouvement du

Fig. 2

disque est continu lorsque C passe par F, mais il y a saut lorsque C
ressort en E. Pour chaque valeur de C, on peut mesurer l'angle 0 yxz
donnant la position du disque; on obtient dans un plan vertical au-dessus
de la ligne EF un graphique représentant le comportement décrit plus
haut:
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i saut

Fig. 3

Lorsque C est à gauche de E ou à droite de F, il y a seulement un point
sur le graphique au-dessus de C parce que C est à l'extérieur de la fronce
de 33. Lorsque C est entre E et F, il y a deux points au-dessus de C parce
que C est à l'intérieur de 33. Lorsque C va de gauche à droite, 6 se déplace
continûment le long de la courbe inférieure, jusqu'au moment où C
traverse 33 en F, puis 6 saute sur la courbe supérieure. Si C revient alors en
arrière, 6 décrit continûment la courbe supérieure jusqu'à ce que C
traverse 33 en E, puis retombe à ce moment sur la courbe inférieure.

Lorsque C varie autour de P, les phénomènes peuvent être décrits
par un graphique à trois dimensions; le graphique ci-dessus n'était que
la section de ce graphique à trois dimensions par le plan vertical au-
dessus de EF. Ce nouveau graphique est une surface, représentée dans
la fig. 4.

-*J

C (b,a)

Fig. 4

JB ensemble
catastrophique
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Lorsque C se déplace le long de la ligne EF dans un sens ou dans
l'autre, 0 varie sur la surface au-dessus de EF et on observe des sauts.
Cependant, après un premier saut, on peut aussi ramener le disque
continûment à sa position initiale: il suffit de ramener C à sa position
initiale en restant toujours à l'extérieur de la courbe S3.

Nous avons représenté un comportement discontinu par une surface
continue. En voici la raison. Si on mesure la position de C par une
coordonnée verticale a et une coordonnée horizontale b, on voit que le

comportement du disque (c'est-à-dire 6) dépend de deux facteurs; en
d'autres termes 0 est une fonction de deux variables: a et b. Supposons

pour simplifier que a et b sont nuls lorsque C est en P. Pour chaque
valeur du contrôle C (a, b), il y a une énergie potentielle qui est
fonction de la position du disque: Vc(0); les positions de repos du
disque sont celles qui minimalisent cette fonction énergie potentielle.
La loi physique de Hooke implique que la surface du graphique (fig. 4)
est donnée par l'équation

c-ft 63 + aO + b 0
C0

à un changement près des coordonnées a et b. En d'autres termes, les

positions de repos 0 du disque sont obtenues en résolvant cette équation
pour chaque valeur de a et b. Les parties ombrées sur la surface, qui
n'ont pas été mises en évidence par l'expérience, représentent des

positions instables du disque. Ce sont des positions dans lesquelles le
disque peut se trouver au repos, mais dont il s'éloignerait beaucoup à la
moindre perturbation. Au contraire, une position est stable si le disque
y revient après de petites perturbations. Lorque le point de contrôle C se

déplace, le disque prend instantanément une position stable.
Pour résumer : Nous avons un certain comportement — ici la position

du disque —¦ influencé par deux facteurs et déterminé par la surface du
graphique (fig. 4), dite surface de la catastrophe de la fronce ; ce comportement

illustre de plus la règle dite de l'attente (voir plus bas). La raison
de cette appellation est que la courbe de bifurcation 33, autrement dit
le lieu des points de catastrophe, a la forme d'une fronce près de P.

Colombes et faucons

Parmi les diverses catastrophes, celle de la fronce est la plus simple,
mais elle a un large champ d'applications. Voici un exemple dû à Isnard
et Zeeman [4]; il montre que cette catastrophe et la « règle d'attente »
fournissent un bon modèle pour décrire l'influence de l'opinion publique
sur une administration. Pour simplifier, ne considérons que l'influence



24 J.-B. WAGONER

de l'opinion publique sur la politique militaire; la méthode s'appliquerait

à bien d'autres situations analogues. Soit x un degré d'activisme
militaire susceptible d'être prôné par l'administration et soit P(x) le

nombre des gens en faveur de cette position x. A un instant donné,
on a une certaine distribution d'opinion publique, représentable par un
graphique (fig. 5).

/\

p

=>-»
paisible

(cessez-le-feu)
modérée agressive

(declaration de guerre)

Fig. 5. — x politique, P support public.

Le dessin illustre une situation dans laquelle la politique la plus populaire
est très agressive. On admet l'hypothèse que l'administration réagit
immédiatement et automatiquement dans le sens du support public;
cela signifie qu'à chaque instant la politique effectivement suivie par
l'administration correspond au x pour lequel le support public P(x)
est maximum. Par exemple, si l'administration poursuit une politique
modérée Xq à un certain moment où elle s'aperçoit que l'opinion publique

faucons

colombes

/~\

Fig. 6
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est comme dans (5), elle va immédiatement changer cette politique
de x0 à xx. Examinons cette hypothèse plus avant. Supposons qu'on
soit en état de guerre xv Supposons aussi que la guerre devienne plus
coûteuse en ressources matérielles et en vies humaines. Alors une partie
du public va changer d'opinion et les sondages fourniront un nouveau
graphique (fig. 6).

Ce graphique montre que l'administration continue la guerre, et que
l'opinion publique est divisée entre faucons et colombes, avec une
majorité de faucons. L'administration, évidemment, va changer la
politique de xx à x2. La guerre continue; elle renchérit encore et le

graphique devient (fig. 7)

faucons

colombes

Fig. 7

11 y a maintenant plus de colombes que de faucons. On a supposé que
l'administration réagit immédiatement et cherche le support public
maximum. Mais voilà que se pose une question : faut-il choisir la politique
x3 (poursuite de la guerre), ou au contraire x4 (cessez-le-feu) Il y a deux
règles distinctes qui permettent de prendre une décision, à savoir :

Règle de Maxwell : choisir la politique qui a le support maximum
absolu.

Règle d'attente : choisir la politique qui accroît au mieux le

support local.

Isnard et Zeeman suggèrent dans [4] que les administrations suivent la
règle d'attente dans la situation du graphique (fig. 7). La politique va
donc changer de x2 à x3, même si x4 (cessez-le-feu) devait recueillir davantage

de support.
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Voici des justifications pour cette hypothèse : Une situation de guerre
peut être riche en fluctuations de l'opinion, de sorte que la balance entre
faucons et colombes oscille sans cesse. Mais il serait embarrassant,
désastreux, et sans doute même impossible de changer d'une politique
de retraite à une politique d'attaque et vice versa chaque fois que la
balance entre faucons et colombes penche d'un côté ou de l'autre.
De fait, vu la complexité et la quantité de l'information fournie par les

services de renseignements et par les sondages d'opinion, il peut être
difficile de dire exactement qui l'emporte des colombes ou des faucons à

un moment donné. S'il s'agit de prendre rapidement des décisions, il est

plus facile d'estimer intuitivement les effets de petites variations de la

ligne politique que de comprendre globalement les effets d'un changement

majeur. Il est aussi plus facile et moins coûteux d'opérer un petit
changement qu'un grand.

La guerre continue donc. Bien que l'administration ressente le poids
d'un important contingent de colombes, elle poursuit la lutte. La guerre
peut pourtant devenir si coûteuse que l'opinion publique s'unifie en
demandant la paix, comme le représente le graphique suivant (fig. 8).

colombes

Fig. 8

Il se peut donc que l'administration arrête le combat; elle renverse sa

ligne politique en se retirant ou en proposant un cessez-le-feu. Les

diagrammes suivants récapitulent le processus qui mène à un changement

de politique.
Le premier graphique de la fig. 9 montre une politique de combat \v

Cette politique se prolonge en x2, bien que le deuxième graphique
décrive un désir de paix supérieur au désir de guerre. Le troisième
graphique (fig. 9 bis) montre que la politique des faucons x2 et la
politique modérée de popularité minimale se rejoignent en une position
d'équilibre instable. A cet instant, l'administration change brusquement

de politique, rejoint celle des colombes x4, et annonce un cessez-
le-feu, une reddition ou une retraite. Mais l'administration a repoussé le
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changement de politique au plus tard, alors qu'elle n'a plus le choix.
Cela illustre la règle d'attente, règle qu'exhibait également la machine à

catastrophes.
Pour voir plus en détail comment ces comportements s'accordent à la

catastrophe de la fronce, considérons quelques facteurs influençant
l'opinion publique. Retenons la menace et le coût. La menace est un
facteur unifiant. Le coût est au contraire un facteur de division : lorsque
le coût augmente sur fond de menace modérée, l'opinion se divise entre
colombes et faucons et le gouvernement doit choisir entre deux
possibilités d'action; voir le passage de la fig. 5 à la fig. 6. Représentons donc
le facteur menace par a et le facteur coût par b. La distribution de l'opinion

publique, représentée graphiquement par P(x), dépend de a et de b.

La politique effectivement suivie x (qui maximise P(x)) est donc fonction
de a et b. De fait, pour a et b donnés, on trouve les politiques possibles
en résolvant l'équation

0P(X)

dx
0

Si le coût est assez élevé et fixe, le graphique indiquant x en fonction
de a est du type suivant:

agressive

paisible

j '
cessez-
le-feu I

oloro»e

declaration
de guerre

faible forte
Fig. 10. — a menace, b coût, x politique militaire suivie.

Notez que ce graphique est le même que celui relatif à la machine
à catastrophes. Une menace croissante peut amener soudainement la
déclaration de guerre. Si la menace diminue, il peut en résulter un cessez-
le-feu en cas de coût excessif. La règle d'attente traduit la tendance de
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l'administration à remettre le plus longtemps possible la déclaration
de guerre; en suite de quoi sa tendance est hélas aussi à remettre le plus
longtemps possible le cessez-le-feu.

Un théorème de Thom sur la classification des singularités [1], [6],
dont nous reparlons plus bas, montre le fait suivant: il n'y a essentiellement

qu'une manière de passer d'une opinion publique n'exhibant
qu'un maximum à une opinion à deux maxima, ceci en cas de deux
facteurs influençant l'opinion. La politique militaire x doit parcourir une
portion de la surface définie par la catastrophe de la fronce, surface
représentant x en fonction des facteurs a et b. Nous avons donc le

graphique fig. 11 :

2\
"l ft7

f\

-> -ft

ft^ 1 T

V

\b

h> ftft

*\-^^^»
Fig. 11. — a menace, b coût, x politique militaire.

L'ensemble catastrophique 33, dans le plan (a, b), est une courbe
appelée fronce. Ce sont les combinaisons de a menace) et b coût)
qui déterminent les changements de politique. On retrouve les particularités

de la machine à catastrophes: Si (a, b) se trouve à l'intérieur de la
courbe 33, alors il y a deux politiques recueillant chacune un maximum
local de support public; si (a, b) est à l'extérieur de 33, il n'y en a qu'une.
Les points ombrés sur la surface représentent des politiques rassemblant
le minimum d'appui; elles ne sont pas importantes si l'administration
tend à maximiser le support. L'écartement des branches à partir de la
pointe de la courbe 33 illustre très nettement qu'une augmentation des

coûts entraîne un allongement du délai nécessaire à un changement de

politique.
Ce qui fait l'efficacité de la démarche de Isnard et Zeeman dans cet

exemple, c'est qu'ils sont partis de certaines hypothèses sociologiques,
qu'ils ont ensuite utilisé une théorie mathématique de classification de
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singularités pour opérer une synthèse de la dynamique entre l'opinion
publique et la politique militaire, et que cette synthèse se résume selon
le diagramme suivant (fig. 12):

¦>

vr..

s S

Fig. 12

On rencontre souvent dans les sciences sociales les phénomènes de

renversement et de divergence ; en voici deux illustrations. Considérons
trois chemins dans le diagramme qui nous intéresse (fig. 13).

">
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Fig. 13

Chemin (1): Le coût augmente très rapidement, la menace aussi.
Il n'y a pas encore de guerre. Supposons maintenant qu'un pays tiers
donne des armes au pays dont nous suivons la politique, ceci pour
obtenir une quelconque faveur. Le coût diminue alors pendant une
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période de menace constante (la flèche verticale). Il y a soudainement
déclaration de guerre. Notez bien que, comme avec la machine à

catastrophes, il n'y a de changement soudain que si les facteurs influents,
c'est-à-dire le « contrôle », quittent l'intérieur de 33. Voilà pour le «
renversement ».

Chemins (2) et (3): Deux pays, dans des positions comparables, sont
en train de négocier un conflit. Mais la politique des faucons domine
dans l'un d'eux (celui qui suit le chemin (3)), qui adopte ainsi une attitude
agressive. L'autre pays (chemin (2)) cède quelque peu. Il en résulte
deux positions divergentes (éloignées sur la surface), alors que les positions

initiales étaient voisines. Notez que les négociateurs du pays
«agressif» ne doivent pas exagérer leurs pressions, car cela pourrait
infléchir le chemin (2) en un chemin (2'), résultant en une déclaration de

guerre. Voilà pour la « divergence ».

Flirt, bourse et liquéfaction

Par les exemples de Zeeman, nous avons essayé d'illustrer comment on
peut suivre la dynamique de certains phénomènes en les représentant
par un chemin dans le plan où nous avons dessiné la fronce et en gardant
en mémoire la surface associée. Examinons encore trois autres exemples.

Relations amoureuses. Dans le diagramme (fig. 14), le chemin qui
traverse la fronce décrit le scénario suivant: Le garçon s'intéresse à la
fille, mais elle ne s'intéresse pas beaucoup à lui au départ. Ils sortent
ensemble, il lui donne des cadeaux; son intérêt à elle croît; mais elle
reste réservée. La situation est celle du point A. Après de tels efforts et un
succès si médiocre, le garçon se décourage et l'intensité de ses avances
diminue. Soudainement, lorsque le chemin sort de l'intérieur de la
courbe, le couple annonce la date du mariage.

intérêt de la fille

v/ A

intérêt du
garçon

Fig. 14
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Economie. Cet exemple, encore de Zeeman, a paru dans le petit
journal de mathématiques « Manifold » (n° 14), publié à l'université de

Warwick. Pour un exemple traitant la bourse en termes de la
catastrophe de la fronce, voir [7]. On estime préférable pour l'économie
d'exhiber une inflation faible et une croissance rapide. En superposant les

diagrammes ci-dessous, on obtient le diagramme (fig. 15):

austérité austérité

n>v

M
C
(U

r+
H-
O
3

faible

forte

croissance inflation

austérité

©

a)
Ce)

Fig. 15

Pour jouir à la fois d'une croissance rapide et d'une inflation faible,
il faut être dans la région hachurée. Le chemin (1) décrit d'énergiques
mesures d'austérité, suivies d'une dévaluation avec relâchement des

premières mesures. Il en résulte une croissance lente avec peu d'inflation

(a). Si le relâchement des mesures d'austérité se poursuit, le résultat
est une croissance lente avec inflation forte (b). Une réévaluation destinée
à renforcer l'économie produit une croissance rapide avec inflation
forte (c). Pour obtenir une croissance rapide avec inflation faible, il faut
suivre le chemin (2).
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Transition de phases : liquide-gaz. La dynamique peut encore être
décrite avec la catastrophe de la fronce, mais en appliquant cette fois
la règle de Maxwell. Ceci parce qu'on utilise des méthodes de moyenne
pour calculer des variables telles que la densité. Ainsi la surface qui
décrit le comportement du fluide est la suivante (fig. 16):

/\ is
•

\>

i.ft

'<£•/ ensembl
<fy catastroph

"N*
ae

>
pression

Fig. 16

Cette surface illustre donc l'équation de van der Waals. Remarquons
toutefois que, lors de certains états sursaturés, on observe des phénomènes
de délai: la règle d'attente joue aussi, parfois, un certain rôle.

Les catastrophes élémentaires

Retournons à l'exemple de l'influence de l'opinion publique sur la
politique; mais tenons compte cette fois d'une possibilité de position de

compromis entre colombes et faucons. Les graphiques de sondage
changeraient donc comme suit (fig. 17):
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faucons

/\ compromis

fauconscolombes

Fig. 17

La classification des singularités de Thom implique qu'il faut tenir
compte d'au moins quatre facteurs influençant l'opinion pour bien
suivre la dynamique de cette situation. Ces quatre facteurs sont la
menace et le coût, comme plus haut, plus l'invulnérabilité et le temps.
De même que dans le cas de la catastrophe de la fronce, la clé pour une
compréhension de la dynamique est fournie par l'ensemble catastrophique
33 et sa position dans le domaine des facteurs d'influence. C'est ici un
objet à trois dimensions dans un espace à quatre dimensions ; il est donc
difficile de le représenter. Une section plane révèle pourtant la forme
d'un papillon:

ensemble catastrophique

Fig. 18. — Vulnérabilité et temps constants, menace et coût variables.

On dit donc que la situation avec compromis est justiciable de la
catastrophe du papillon [4].
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Quittons là l'administration cherchant à maximiser le support
public. On pourrait aussi examiner le cas d'un gouvernement qui a ses

propres idées et qui veut les imposer au peuple. La catastrophe du papillon

fournit de nouveau un modèle. On considère l'opposition x du
peuple contre le gouvernement et quatre facteurs qui l'influencent; par
exemple: le malaise économique, les promesses de réformes, l'échec
des réformes et la pression du gouvernement. Le papillon fournit encore
des modèles pour décrire les négociations entre la direction et les travailleurs

d'une usine, ou les manifestations d'étudiants dans certaines
universités [4].

Les exemples mentionnés jusqu'ici se réfèrent à l'une des catastrophes
de la fronce ou du papillon. De fait, il existe une classification de certains

types de catastrophes. Tous les exemples précédents mettent en scène un
système dont le comportement x est influencé par une variable de contrôle
C. Pour un C donné, le système tend à maximiser (ou minimiser) une
certaine « fonction-potentiel » Pc(x). Pour la machine à catastrophes,
Pc est l'énergie potentielle des élastiques; dans l'exemple de la défense

nationale, Pc est la distribution d'opinion publique. Dans d'autres cas,
la variable x peut être pluri-dimensionnelle, de même que C. Pour
comprendre le comportement du système via Pc(x), il faut connaître
l'ensemble catastrophique associé à une telle famille de potentiels.

Soit C l'ensemble des contrôles, c'est-à-dire l'ensemble de toutes les

valeurs possibles des paramètres de contrôle. Soit 3£ l'ensemble des

états du système considéré. Dans le cas de la machine à catastrophes,
C a deux dimensions et 3£ une. On détermine en premier lieu la « surface »

catastrophique S : c'est l'ensemble des couples (C, x) dans G X ï tels que

-g-7 grad Pc(x) 0

La dimension de S est celle de C On peut alors trouver l'ensemble
catastrophique, ou de bifurcation, noté 33 ; c'est l'ensemble des points C
dans C ayant la propriété suivante : il existe x dans ï avec (C, x) dans S

« au-dessus » de C et tel que la projection de S sur Cait une « singularité »

en (C, x); par exemple, le pli du graphique (4) est une telle singularité.
Il est donc naturel de chercher à classer qualitativement (c'est-à-dire

à un changement de coordonnées près) les familles paramétrées par C
de potentiels Pc(x), x et C étant pluri-dimensionnels. Plus précisément, il
s'agit de classer à un changement de coordonnées près les projections
possibles de S sur G associées à des familles « génériques » de potentiels.
La solution de ce problème de classification existe : elle est due à Thom [1]
et Mather [1]; voir aussi Zeeman [13]. Si G est de dimension supérieure
ou égale à six, il y a un nombre infini de types distincts de catastrophes.
Mais si G est de dimension cinq au plus, il n'y a qu'un nombre fini de

types distincts:
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dimension de ^ 1 2 3 4 5 6

types distincts
de catastrophes

2 5 7 11 CO

Fig. 19

L'un des résultats fondamentaux est que le nombre de types ne

dépend que de la dimension de G, et pas du tout de celle de ï. Dans le

cas où la dimension de G est inférieure ou égale à 5, la théorie montre
d'ailleurs le fait suivant: si un système peut être décrit par un ensemble ,ï
quelconque et par une famille de potentiels comme plus haut, alors ses

caractéristiques sont déjà observables avec un système plus simple pour
lequel le ï correspondant est de dimension 1 ou 2; ceci parce que la

dynamique du système est décrite par la « surface » catastrophique.
Considérons par exemple les concentrations x des cent protéines

d'intérêt à différents endroits d'un embryon en développement : X est de

dimension cent. L'espace des contrôles G est 1'« espace-temps », qui
est de dimension 4. Il résulte donc de la théorie de Thom [5] et du tableau
(fig. 19) qu'iln'y a que sept modifications fondamentales susceptibles
d'apparaître au cours du processus de développement de l'embryon.
La géométrie de ces sept « catastrophes élémentaires » est extrêmement
riche; voici la liste des familles de potentiels associées:

dim C dim * potentiel

pli 1 1
1 3

3 X + ax

fronce 2 1
1 4
4X + j ax + bx

queue d'aronde 3 1 i xS
S

X xl 3.1.2.t •} ax + rr bx + cx

papillon 4 1
1 6

6 X
1 4 "1 3 "1

+ £ ax + j bx + j cy. + dx

ombilic
hyperbolique

3 2 x3 +
3

y + ax + by + cxy

ombilic
elliptique

3 2
3

x 3xy + ax + by + c(x +y

ombilic
parabolique

4 2
2

x y
4 2 2

r y + ax + by + cx + dy

Fig. 20. — Catastrophes élémentaires: les coordonnées sur C sont a, b, c, d;
les coordonnées sur 3: sont x, y.



catastrophes: ASPECTS MATHEMATIQUES 37

Les caustiques lumineuses fournissent un autre exemple de l'occurrence

des catastrophes dans la nature. La figure 21 représente une
section plane de caustique qui est de nouveau une fronce: on l'observe à

la séparation des régions d'ombre et de lumière derrière un verre de vin
rouge exposé aux rayons du soleil. On savait depuis la fin du dix-neuvième
siècle qu'il y a cinq types fondamentaux de caustiques. Localement, ces
surfaces lumineuses sont précisément les ensembles catastrophiques des

cinq « catastrophes élémentaires » en dimension trois.

soleil

table

lumiere
ombre

Fig. 21

Influx nerveux

Notre dernier exemple a de nouveau trait à la catastrophe de la
fronce; nous suivrons Zeeman dans son étude de l'influx nerveux [9].
Dans le cerveau, les messages entre cellules sont transmis par les axones
(22) ; ce processus de transmission est fondamental à la compréhension du
fonctionnement du cerveau. Une des contributions majeures à l'étude de

ces questions est celle de Hodgkin et Huxley [3], qui date des années 50;
leurs expériences et leurs travaux théoriques leur ont valu le prix Nobel.

dendrites

corps de la cellule synapses

Fig. 22

C'est en particulier eux qui ont mis en évidence l'importance des
relations entre les trois grandeurs suivantes : la différence de potentiel entre
les faces interne et externe de la membrane superficielle de l'axone, la
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perméabilité de cette membrane aux ions sodium d'une part, aux ions

potassium d'autre part. Lors de la transmission d'un message, de

complexes phénomènes électro-chimiques se manifestent par des variations

de ces trois grandeurs, variations à la fois dans le temps et le long de

l'axone; on observe à chaque message une suite de « pics » qui se

propagent d'une extrémité à l'autre.
Expérimentalement, on peut placer deux électrodes en un endroit de

l'axone, l'une à l'intérieur et l'autre à l'extérieur de la membrane.

Lorsqu'un pic parcourt l'axone, la différence de potentiel entre ces

deux électrodes augmente très rapidement, puis diminue plus lentement.

Entre-temps, la perméabilité aux ions sodium augmente soudainement,

puis revient à sa valeur d'équilibre; quant à la perméabilité aux ions potassium,

elle augmente lentement avant de diminuer tout aussi lentement. Ce

processus est complexe; on peut isoler trois propriétés dynamiques:

(a) un équilibre stable; — (b) le déclenchement rapide d'un certain

mécanisme à partir d'un certain seuil d'excitation; — (c) un retour lent

à l'équilibre. Prenant ces trois propriétés comme point de départ, Zeeman

construit le modèle mathématique « le plus simple » qui les exhibe. Ce

modèle est un système de trois équations différentielles qui décrit

comment les trois grandeurs fondamentales évoluent. La catastrophe de la

fronce est l'un des ingrédients sous-jacents essentiels à ce système

différentiel; le fait qu'il soit « le plus simple » résulte de la classification des

catastrophes élémentaires.

A chaque instant, l'état d'une petite portion d'axone est donc défini

par un point dans l'espace à trois dimensions. Les trois coordonnées de

ce point sont la différence de potentiel et les deux perméabilités

mentionnées plus haut; voir le diagramme (fig. 23). Le processus commence

à l'équilibre, c'est-à-dire au point A sur la surface. Lorsqu'un pic

traverse la portion d'axone qui nous intéresse, on observe d'abord une

brusque augmentation de la différence de potentiel: saut au point B.

p.s

&¦ ;

"»¦'•>!>

pigi 23. v potentiel; p.p. perméabilité aux ions potassium;

p.s. perméabilité aux ions sodium.
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La perméabilité aux ions sodium croît alors rapidement: le point
représentatif tombe en C, sur la surface. Enfin, le retour à l'équilibre, en
d'autres termes au point A, se déroule sur la surface.

Zeeman obtient de plus des résultats quantitatifs. Hodgkin et
Huxley avaient d'une part établi, à partir de leurs données expérimentales,

la courbe des variations dans le temps de la différence de potentiel
entre l'intérieur et l'extérieur d'une portion d'axone; ils avaient aussi

proposé un modèle théorique consistant en un système de dix équations
différentielles, et l'avaient utilisé pour calculer une courbe théorique
décrivant ces mêmes variations, proche de la courbe expérimentale. Le
fait remarquable dans le travail de Zeeman est que sa courbe théorique
est encore plus proche de la courbe expérimentale que la courbe théorique

de Hodgkin et Huxley.
L'idée de Zeeman est de partir de la dynamique des phénomènes

étudiés plutôt que de la biochimie. Son modèle a l'avantage de la simplicité;

il suggère également de nouvelles expériences [9] pour tester
certaines hypothèses heuristiques de Hodgkin et Huxley. Son modèle est
enfin indépendant du contexte dans la mesure où sa construction est
celle d'un système différentiel abstrait exhibant les trois propriétés
dynamiques de base énumérées plus haut; Zeeman suggère ainsi que son
modèle pourrait être utile à l'étude de l'épilepsie ou de la migraine.

Apologie

Dans cette conférence introductive, nous avons discuté quelques
exemples de la théorie des catastrophes. Nous désirons illustrer comment
la théorie des singularités, qui s'est considérablement développée dans les

années soixante comme un chapitre de mathématiques pures, s'est révélée
être un nouvel outil applicable à de multiples domaines. Présentement, de
nombreux chercheurs travaillent activement dans ce contexte. Le sujet se

développe, les méthodes s'affinent, la critique s'aiguise; les conséquences
en sont importantes et vont continuer à marquer profondément les

mathématiques, aussi bien pures qu'appliquées.
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