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Catastrophes : aspects mathématiques*
PAR

J. B. WAGONER 2

Cette conférence concerne une nouvelle branche des mathématiques
appelée « théorie des catastrophes » et inventée vers les années soixante
par le mathématicien francais RENE THOM [5]. Une de ses intentions
originales était de fournir un modele géométrique pour décrire les
formes successives d’un embryon en développement: pourquoi des
cellules de méme dotation génétique se développent-elles selon les cas en
tissu cardiaque, ou hépatique, ou oculaire ? Mais il y a beaucoup d’appli-
cations dans d’autres domaines dont la physique, la psychologie, la
physiologie, la sociologie, I’économie et la politique. Nous allons illustrer
la théorie de THOM par des exemples dus au mathématicien anglais
E. C. ZEEMAN.

D’abord qu’est-ce qu’une catastrophe au sens commun du terme,
dans la vie courante ? Examinons quelques exemples: Une nation change
soudainement de gouvernement par un coup d’Etat militaire, ou entre en
guerre contre un autre pays de fagon inattendue. La bourse tombe en
récession, ou pire fait complétement faillite, comme a New York en 1928.
Un barrage se rompt et inonde brusquement une vallée. Alors que vous
marchez tranquillement en montagne, vous entendez un craquement
formidable et une avalanche vous tombe dessus. Un tremblement de
terre dévastateur se produit par le soudain relaichement d’une tension qui
s’est lentement accumulée. Un pont s’écroule parce que les tensions dans
les poutres dépassent le point de rupture. Ces événements sont d’habitude
appelés « catastrophes » parce qu’ils sont soudains, imprévus, et entrai-
nent souvent des dommages matériels et des souffrances humaines. Le

1 Cette conférence a été présentée a 1’Université de Lausanne au printemps 1974,
alors que l’auteur avait le privilége d’occuper la Chaire d’honneur pour l’année
académique 1973/1974. C’est un plaisir de remercier 1’Université de Lausanne pour
I’hospitalité et les conditions de recherche offertes durant cette période. Je remercie
aussi S. Maumary et P. de la Harpe pour leur aide langagiére lors de la préparation
de ce texte.

2 University of California, Berkeley, California 94720.
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caracteére essentiel dans tous les cas est qu’un changement graduel et
relativement petit entraine sous certaines conditions un grand change-
ment, c’est-a-dire un changement catastrophique. Voici encore d’autres
exemples. Vous avez laissé monter du lait; il déborde de la casserole et se
répand sur le fourneau: une augmentation graduelle de la température
a causé une diminution considérable de la densité, le résultat final étant
du lait briilé. Des contraintes exercées sur 1’économie, suivies d’un
relichement des contrdles, peuvent entrainer un saut inflationniste des
prix. Un comité débat chaudement autour d’une motion et vote finale-
ment « non »; puis I’atmosphere se détend, 1’opposition décroit 1égére-
ment, le comité change d’avis, il adopte la motion. Combien de fois
n’avez-vous pas hésité sur un probléme personnel, pris une décision,
puis changé complétement d’avis cinq minutes plus tard ?

La théorie mathématique des catastrophes s’occupe des phénoménes
ou un changement graduel et relativement lent produit un saut soudain de
comportement ; de tels phénomeénes sont appelés catastrophes. Oublions
pour le moment le sens tragique associé au mot « catastrophe », et
essayons d’abstraire le caractére essentiel du comportement catastro-
phique au sens précédent.

LA MACHINE A CATASTROPHES

ZEEMAN a imaginé une machine simple et ingénieuse dont le comporte-
ment catastrophique est typique de plusieurs situations politiques et
¢conomiques [10], [2], [4], [7], [11]. Voici comment elle fonctionne et
comment il est facile de la construire. Prenez deux boucles élastiques de
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méme longueur, disons 15 cm, un disque de carton de 15 cm de dia-
metre également, trois petits clous, et une planche d’environ 30 cm sur
90 cm. Fixez un clou dans le disque prés du bord au point Z (voir le
schéma fig. 1), puis fixez le disque a la planche au point X de sorte
qu’il tourne librement autour de son centre. Passez maintenant les
élastiques autour de Z et fixez I’extrémité de 1’'un d’eux au point situé
30 cm juste au-dessous du point X. Le jouet est prét a fonctionner.

Déplacez lentement et continiiment I’extrémité C de 1’élastique libre
dans la région supérieure de la planche. Vous remarquerez que le disque
tourne la plupart du temps graduellement; mais parfois, lorsque C
passe par certaines positions, le disque change soudainement d’orienta-
tion; c’est un exemple de catastrophe. On appelle C la variable de « con-
tréole », parce que la position du disque dépend de la position de
C. Marquez un point a I’encre sur la planche chaque fois qu’il y a un chan-
gement soudain. En fin de compte, vous allez voir apparaitre une courbe
B en forme de losange, avec quatre fronces P, P’, Q, Q’ comme en (1).
On appelle B la courbe de bifurcation ou 'ensenible catastrophique.

Gardez maintenant fixe le point de contrdle C et forcez le disque a
prendre une autre orientation. Si vous le relachez, le disque retourne
rapidement a une position de repos. Avec un peu d’expérience, vous
verrez que, si C est en dehors de B, alors le disque revient toujours a sa
position initiale ; mais si C est a I’intérieur de B, alors il y a deux positions
de repos possibles.

Supposons maintenant que 1’on déplace C le long de la ligne poin-
tillée du schéma fig. 2. Lorsque C traverse 6 au point E en venant de
I’extérieur, le mouvement du disque est continu. Mais lorsque C traverse
B au point F, le disque saute soudainement a une nouvelle position.
En revenant le long de la méme ligne, le mouvement du

Fig. 2

disque est continu lorsque C passe par F, mais il y a saut lorsque C
ressort en E. Pour chaque valeur de C, on peut mesurer I’angle 6 = vxz
donnant la position du disque; on obtient dans un plan vertical au-dessus
de la ligne EF un graphique représentant le comportement décrit plus
haut:



22 J.-B. WAGONER
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Fig. 3

Lorsque C est a gauche de E ou a droite de F, il y a seulement un point
sur le graphique au-dessus de C parce que C est a I’extérieur de la fronce
de B. Lorsque C est entre E et F, il y a deux points au-dessus de C parce
que Cest a I'intérieur de 8. Lorsque C va de gauche a droite, 0 se déplace
continiiment le long de la courbe inférieure, jusqu’au moment ou C
traverse B en F, puis 0 saute sur la courbe supérieure. Si C revient alors en
arriere, 0 décrit continiment la courbe supérieure jusqu’a ce que C
traverse B en E, puis retombe a ce moment sur la courbe inférieure.

Lorsque C varie autour de P, les phénomeénes peuvent étre décrits
par un graphique a trois dimensions; le graphique ci-dessus n’était que
la section de ce graphique a trois dimensions par le plan vertical au-
dessus de EF. Ce nouveau graphique est une surface, représentée dans
la fig. 4.

B = ensemble
catastrophique
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Lorsque C se déplace le long de la ligne EF dans un sens ou dans
I’autre, 6 varie sur la surface au-dessus de EF et on observe des sauts.
Cependant, aprés un premier saut, on peut aussi ramener le disque
continliment a sa position initiale: il suffit de ramener C a sa position
initiale en restant toujours a I’extérieur de la courbe B.

Nous avons représenté un comportement discontinu par une surface
continue. En voici la raison. Si on mesure la position de C par une
coordonnée verticale a et une coordonnée horizontale b, on voit que le
comportement du disque (c’est-a-dire 0) dépend de deux facteurs; en
d’autres termes 0 est une fonction de deux variables: a et b. Supposons
pour simplifier que a et b sont nuls lorsque C est en P. Pour chaque
valeur du contréle C = (a, b), il y a une énergie potentielle qui est
fonction de la position du disque: V(0); les positions de repos du
disque sont celles qui minimalisent cette fonction énergie potentielle.
La loi physique de Hooke implique que la surface du graphique (fig. 4)
est donnée par I’équation

8VC—e3 04+b=0
70—— +a+ -

a un changement prés des coordonnées a et b. En d’autres termes, les
positions de repos 6 du disque sont obtenues en résolvant cette équation
pour chaque valeur de a et b. Les parties ombrées sur la surface, qui
n’ont pas ¢té mises en évidence par l’expérience, représentent des
positions instables du disque. Ce sont des positions dans lesquelles le
disque peut se trouver au repos, mais dont il s’éloignerait beaucoup a la
moindre perturbation. Au contraire, une position est stable si le disque
y revient aprés de petites perturbations. Lorque le point de contréle C se
déplace, le disque prend instantanément une position stable.

Pour résumer: Nous avons un certain comportement — ici la position
du disque — influencé par deux facteurs et déterminé par la surface du
graphique (fig. 4), dite surface de la catastrophe de la fronce; ce compor-
tement illustre de plus la régle dite de I’attente (voir plus bas). La raison
de cette appellation est que la courbe de bifurcation ¥, autrement dit
le lieu des points de catastrophe, a la forme d’une fronce prés de P.

COLOMBES ET FAUCONS

Parmi les diverses catastrophes, celle de la fronce est la plus simple,
mais elle a un large champ d’applications. Voici un exemple dii & ISNARD
et ZEEMAN [4]; il montre que cette catastrophe et la « régle d’attente »
fournissent un bon modéle pour decrire I’influence de I’opinion publique
sur une administration. Pour simplifier, ne considérons que l’influence
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de I’opinion publique sur la politique militaire; la méthode s’appli-
querait a bien d’autres situations analogues. Soit x un degré d’activisme
militaire susceptible d’étre proné par I’administration et soit P(x) le
nombre des gens en faveur de cette position x. A un instant donné,
on a une certaine distribution d’opinion publique, représentable par un
graphique (fig. 5).

N
P(Xl)
P
X ~
paisible moderée xb él agressive
(cessez-le-feu) (declaration de guerre)

Fig. 5. — x = politique, P = support public.

Le dessin illustre une situation dans laquelle la politique la plus populaire
est trés agressive. On admet I’hypothése que 1’administration réagit
immédiatement et automatiquement dans le sens du support public;
cela signifie qu’a chaque instant la politique effectivement suivie par
I’administration correspond au x pour lequel le support public P(x)
est maximum. Par exemple, si I’administration poursuit une politique
modérée x, a un certain moment ol elle s’apercoit que I’opinion publique

A
faucons
colombes
P

VR
+ + >

X # x
1 2
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est comme dans (5), elle va immédiatement changer cette politique
de x, a x;. Examinons cette hypothése plus avant. Supposons qu’on
soit en €tat de guerre x;. Supposons aussi que la guerre devienne plus
cofiteuse en ressources matérielles et en vies humaines. Alors une partie
du public va changer d’opinion et les sondages fourniront un nouveau
graphique (fig. 6).

Ce graphique montre que I’administration continue la guerre, et que
I’opinion publique est divisée entre faucons et colombes, avec une
majorit¢ de faucons. L’administration, évidemment, va changer la
politique de x, a X,. La guerre continue; elle renchérit encore et le
graphique devient (fig. 7)

colombes

faucons

I
v

Fig. 7

11 y a maintenant plus de colombes que de faucons. On a supposé que
I’administration réagit immédiatement et cherche le support public
maximum. Mais voila que se pose une question : faut-il choisir la politique
X3 (poursuite de la guerre), ou au contraire x, (cessez-le-feu)? Il y a deux
régles distinctes qui permettent de prendre une décision, a savoir:

Régle de Maxwell : choisir la politique qui a le support maximum
absolu.

Régle d’attente : choisir la politique qui accroit au mieux le
support local.

ISNARD et ZEEMAN suggérent dans [4] que les administrations suivent la
régle d’attente dans la situation du graphique (fig. 7). La politique va
donc changer de x, & x;, méme si x, (cessez-le-feu) devait recueillir davan-
tage de support.
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Voici des justifications pour cette hypothése: Une situation de guerre
peut étre riche en fluctuations de I’opinion, de sorte que la balance entre
faucons et colombes oscille sans cesse. Mais il serait embarrassant,
désastreux, et sans doute méme impossible de changer d’une politique
de retraite a une politique d’attaque et vice versa chaque fois que la
balance entre faucons et colombes penche d’un coté ou de I’autre.
De fait, vu la complexité et la quantité de I'information fournie par les
services de renseignements et par les sondages d’opinion, il peut étre
difficile de dire exactement qui I’emporte des colombes ou des faucons a
un moment donné. S’il s’agit de prendre rapidement des décisions, il est
plus facile d’estimer intuitivement les effets de petites variations de la
ligne politique que de comprendre globalement les effets d’un change-
ment majeur. Il est aussi plus facile et moins coliteux d’opérer un petit
changement qu’un grand.

La guerre continue donc. Bien que I’administration ressente le poids
d’un important contingent de colombes, elle poursuit la lutte. La guerre
peut pourtant devenir si coliteuse que l’opinion publique s’unifie en
demandant la paix, comme le représente le graphique suivant (fig. 8).

colombes

Fig. 8

Il se peut donc que I’administration arréte le combat; elle renverse sa
ligne politique en se retirant ou en proposant un cessez-le-feu. Les
diagrammes suivants récapitulent le processus qui méne a un change-
ment de politique.

Le premier graphique de la fig. 9 montre une politique de combat x;.
Cette politique se prolonge en x,, bien que le deuxiéme graphique
décrive un désir de paix supérieur au désir de guerre. Le troisieme
graphique (fig. 9 bis) montre que la politique des faucons x, et la poli-
tique modérée de popularit¢ minimale se rejoignent en une position
d’équilibre instable. A cet instant, I’administration change brusque-
ment de politique, rejoint celle des colombes x,, et annonce un cessez-
le-feu, une reddition ou une retraite. Mais 1’administration a repoussé le
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changement de politique au plus tard, alors qu’elle n’a plus le choix.
Cela illustre la régle d’attente, régle qu’exhibait également la machine a
catastrophes.

Pour voir plus en détail comment ces comportements s’accordent a la
catastrophe de la fronce, considérons quelques facteurs influengant
I’opinion publique. Retenons la menace et le colit. La menace est un
facteur unifiant. Le colit est au contraire un facteur de division : lorsque
le colit augmente sur fond de menace modérée, I’opinion se divise entre
colombes et faucons et le gouvernement doit choisir entre deux possi-
bilités d’action; voir le passage de la fig. 5 a la fig. 6. Représentons donc
le facteur menace par a et le facteur cofit par b. La distribution de 1’opi-
nion publique, représentée graphiquement par P(x), dépend de a et de b.
La politique effectivement suivie X (qui maximise P(x)) est donc fonction
de a et b. De fait, pour a et b donnés, on trouve les politiques possibles
en résolvant 1’équation

dP(x) B

ox 0

Si le coflit est assez élevé et fixe, le graphique indiquant x en fonction
de a est du type suivant:

A\
agressive
o2
&
A
pd I 42 >
declaration
: de guerre
cessez- |
le-feu I
I
v
paisible
>
faible & forte

Fig. 10. — a = menace, b = coiit, X = politique militaire suivie.

Notez que ce graphique est le méme que celui relatif a la machine
a catastrophes. Une menace croissante peut amener soudainement la
déclaration de guerre. Si la menace diminue, il peut en résulter un cessez-
le-feu en cas de coiit excessif. La régle d’attente traduit la tendance de
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I’administration a remettre le plus longtemps possible la déclaration
de guerre; en suite de quoi sa tendance est hélas aussi & remettre le plus
longtemps possible le cessez-le-feu.

Un théoréme de THoM sur la classification des singularités [1], [6],
dont nous reparlons plus bas, montre le fait suivant: il n’y a essentielle-
ment qu’une manieére de passer d’une opinion publique n’exhibant
qu'un maximum a une opinion a deux maxima, ceci en cas de deux
facteurs influengant I’opinion. La politique militaire x doit parcourir une
portion de la surface définie par la catastrophe de la fronce, surface
représentant x en fonction des facteurs a et b. Nous avons donc le
graphique fig. 11:

Fig. 11. — a = menace, b = colit, x = politique militaire.

L’ensemble catastrophique B, dans le plan (a, b), est une courbe
appelée fronce. Ce sont les combinaisons de a (= menace) et b (= cofit)
qui déterminent les changements de politique. On retrouve les particu-
larités de la machine a catastrophes: Si (a, b) se trouve a ’intérieur de la
courbe B, alors il y a deux politiques recueillant chacune un maximum
local de support public; si (a, b) est a I’extérieur de B, il n’y en a qu’une.
Les points ombrés sur la surface représentent des politiques rassemblant
le minimum d’appui; elles ne sont pas importantes si 1’administration
tend a maximiser le support. L’écartement des branches a partir de la
pointe de la courbe B illustre trés nettement qu’une augmentation des
colits entraine un allongement du délai nécessaire a un changement de
politique.

Ce qui fait I’efficacité de la démarche de ISNARD et ZEEMAN dans cet
exemple, c’est qu’ils sont partis de certaines hypothéses sociologiques,
qu’ils ont ensuite utilis¢é une théorie mathématique de classification de
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singularités pour opérer une synthése de la dynamique entre I’opinion

publique et la politique militaire, et que cette synthése se résume selon
le diagramme suivant (fig. 12):

menace

N7

‘A
cout

Fig. 12

On rencontre souvent dans les sciences sociales les phénoménes de
renversement et de divergence, en voici deux illustrations. Considérons
trois chemins dans le diagramme qui nous intéresse (fig. 13).

menace

@ @

WV

~
cout

Fig. 13

Chemin (1): Le colit augmente trés rapidement, la menace aussi.
Il n’y a pas encore de guerre. Supposons maintenant qu’un pays tiers
donne des armes au pays dont nous suivons la politique, ceci pour
obtenir une quelconque faveur. Le coiit diminue alors pendant une
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période de menace constante (la fleche verticale). Il y a soudainement
déclaration de guerre. Notez bien que, comme avec la machine a catas-
trophes, il n’y a de changement soudain que si les facteurs influents,
c’est-a-dire le « contrdle », quittent I’intérieur de B. Voila pour le « ren-
versement ».

Chemins (2) et (3): Deux pays, dans des positions comparables, sont
en train de négocier un conflit. Mais la politique des faucons domine
dans 1’un d’eux (celui qui suit le chemin (3)), qui adopte ainsi une attitude
agressive. L’autre pays (chemin (2)) céde quelque peu. Il en résulte
deux positions divergentes (éloignées sur la surface), alors que les posi-
tions initiales étaient voisines. Notez que les négociateurs du pays
«agressif » ne doivent pas exagérer leurs pressions, car cela pourrait
infléchir le chemin (2) en un chemin (2°), résultant en une déclaration de
guerre. Voila pour la « divergence ».

FLIRT, BOURSE ET LIQUEFACTION

Par les exemples de ZEEMAN, nous avons essay¢ d’illustrer comment on
peut suivre la dynamique de certains phénoménes en les représentant
par un chemin dans le plan ol nous avons dessiné la fronce et en gardant
en mémoire la surface associée. Examinons encore trois autres exemples.

Relations amoureuses. Dans le diagramme (fig. 14), le chemin qui
traverse la fronce décrit le scénario suivant: Le gargon s’intéresse a la
fille, mais elle ne s’intéresse pas beaucoup a lui au départ. Ils sortent
ensemble, il lui donne des cadeaux; son intérét a elle croit; mais elle
reste réservée. La situation est celle du point A. Apres de tels efforts et un
succes si médiocre, le gargon se décourage et I'intensité¢ de ses avances
diminue. Soudainement, lorsque le chemin sort de l’'intérieur de la
courbe, le couple annonce la date du mariage.

ra intéret de la fille
<

intéret du
garcgon
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Economie. Cet exemple, encore de ZEEMAN, a paru dans le petit
journal de mathématiques « Manifold » (n° 14), publié a 1’'université de
Warwick. Pour un exemple traitant la bourse en termes de la catas-
trophe de la fronce, voir [7]. On estime préférable pour 1’économie
d’exhiber une inflation faible et une croissance rapide. En superposant les
diagrammes ci-dessous, on obtient le diagramme (fig. 15):

austérité austérité
2 —>

N .
(0RY %\
< < ;
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Fig. 15

Pour jouir a la fois d’une croissance rapide et d’une inflation faible,
il faut étre dans la région hachurée. Le chemin (1) décrit d’énergiques
mesures d’austérité, suivies d’une dévaluation avec relachement des
premiéres mesures. Il en résulte une croissance lente avec peu d’infla-
tion (a). Si le relichement des mesures d’austérité se poursuit, le résultat
est une croissance lente avec inflation forte (b). Une réévaluation destinée
a renforcer I’économie produit une croissance rapide avec inflation
forte (c). Pour obtenir une croissance rapide avec inflation faible, il faut
suivre le chemin (2).
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Transition de phases : liquide-gaz. La dynamique peut encore étre
décrite avec la catastrophe de la fronce, mais en appliquant cette fois
la régle de Maxwell. Ceci parce qu’on utilise des méthodes de moyenne
pour calculer des variables telles que la densité. Ainsi la surface qui
décrit le comportement du fluide est la suivante (fig. 16):

>
s ensemble
< catastrophique

é@e

\'%

pression

Fig. 16

Cette surface illustre donc I’équation de van der Waals. Remarquons
toutefois que, lors de certains états sursaturés, on observe des phénomeénes
de délai: la régle d’attente joue aussi, parfois, un certain réle.

LES CATASTROPHES ELEMENTAIRES

Retournons a I’exemple de 'influence de ’opinion publique sur la
politique; mais tenons compte cette fois d’une possibilité de position de
compromis entre colombes et faucons. Les graphiques de sondage
changeraient donc comme suit (fig. 17):
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faucons

N compromis

colombes

Fig. 17

La classification des singularités de THOM implique qu’il faut tenir
compte d’au moins quatre facteurs influengant 1’opinion pour bien
suivre la dynamique de cette situation. Ces quatre facteurs sont la
menace et le colit, comme plus haut, plus I'invulnérabilité et le temps.
De méme que dans le cas de la catastrophe de la fronce, la clé pour une
compréhension de la dynamique est fournie par I’ensemble catastrophique
B et sa position dans le domaine des facteurs d’influence. C’est ici un
objet a trois dimensions dans un espace a quatre dimensions; il est donc
difficile de le représenter. Une section plane révele pourtant la forme
d’un papillon:

ensemble catastrophique

Fig. 18. — Vulnérabilité et temps constants, menace et colit variables.

On dit donc que la situation avec compromis est justiciable de la catas-
trophe du papillon [4].
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Quittons 1a 1’administration cherchant & maximiser le support
public. On pourrait aussi examiner le cas d’un gouvernement qui a ses
propres idées et qui veut les imposer au peuple. La catastrophe du papil-
lon fournit de nouveau un modele. On considere 1’opposition x du
peuple contre le gouvernement et quatre facteurs qui ’influencent; par
exemple: le malaise économique, les promesses de réformes, 1’échec
des réformes et la pression du gouvernement. Le papillon fournit encore
des modeéles pour décrire les négociations entre la direction et les travail-
leurs d’une usine, ou les manifestations d’étudiants dans certaines
universités [4].

Les exemples mentionnés jusqu’ici se référent a I’une des catastrophes
de la fronce ou du papillon. De fait, il existe une classification de certains
types de catastrophes. Tous les exemples précédents mettent en scéne un
systéme dont le comportement x est influencé par une variable de contrdle
C. Pour un C donné, le systtme tend & maximiser (ou minimiser) une
certaine « fonction-potentiel » P(x). Pour la machine a catastrophes,
P, est ’énergie potentielle des élastiques; dans 1’exemple de la défense
nationale, P est la distribution d’opinion publique. Dans d’autres cas,
la variable x peut étre pluri-dimensionnelle, de méme que C. Pour
comprendre le comportement du systéeme via Py(x), il faut connaitre
I’ensemble catastrophique associé a une telle famille de potentiels.

Soit € I’ensemble des contréles, c’est-a-dire 1’ensemble de toutes les
valeurs possibles des paramétres de contrdle. Soit X [I’ensemble des
états du systéme considéré. Dans le cas de la machine a catastrophes,
€ a deux dimensions et X une. On détermine en premier lieu la « surface »
catastrophique S: c’est I’ensemble des couples (C, x) dans € x X tels que

OP(x)
ox

La dimension de S est celle de £. On peut alors trouver /’ensemble
catastrophique, ou de bifurcation, noté B; c’est I’ensemble des points C
dans € ayant la propriété suivante: il existe x dans X avec (C, x) dans S
« au-dessus » de C et tel que la projection de S sur € ait une « singularité »
en (C, x); par exemple, le pli du graphique (4) est une telle singularité.

Il est donc naturel de chercher a classer qualitativement (c’est-a-dire
a un changement de coordonnées pres) les familles paramétrées par C
de potentiels P,(x), x et C étant pluri-dimensionnels. Plus précisément, il
s’agit de classer 2 un changement de coordonnées prés les projections
possibles de S sur € associées a des familles « génériques » de potentiels.
La solution de ce probléme de classification existe: elle est due a THOM [1]
et MATHER [1]; voir aussi ZEEMAN [13]. Si € est de dimension supérieure
ou égale a six, il y a un nombre infini de types distincts de catastrophes.
Mais si € est de dimension cinq au plus, il n’y a qu’un nombre fini de
types distincts:

= grad Py(x) = 0
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dimension de (, 1 l 2 ’ 3 ‘ Y ’ 5 I 6

types distincts l 2 I 5
de catastrophes

Fig. 19

L’un des résultats fondamentaux est que le nombre de types ne
dépend que de la dimension de £, et pas du tout de celle de X. Dans le
cas ou la dimension de T est inférieure ou égale a 5, la théorie montre
d’ailleurs le fait suivant: si un systéme peut étre décrit par un ensemble X
quelconque et par une famille de potentiels comme plus haut, alors ses
caractéristiques sont déja observables avec un systéme plus simple pour
lequel le X correspondant est de dimension 1 ou 2; ceci parce que la
dynamique du systéme est décrite par la « surface » catastrophique.

Considérons par exemple les concentrations x des cent protéines
d’intérét a différents endroits d’un embryon en développement : X est de
dimension cent. L’espace des controles € est |'« espace-temps », qui
est de dimension 4. 11 résulte donc de la théorie de THoM [5] et du tableau
(fig. 19) qu’il'n’y a que sept modifications fondamentales susceptibles
d’apparaitre au cours du processus de développement de I’embryon.
La géométrie de ces sept « catastrophes élémentaires » est extrémement
riche; voici la liste des familles de potentiels associées:

nom dim € dim % potentiel
pli i ¢ L % %%+ ax
fronce 2 1 % x* 4 % ax2 + bx
queue d'aronde 3 1 % x>+ % ax® + % bx’ + cx
papillon 4 1 % XB + % ax’* + % bx° + % ex” + dx
ombilic 3 3
hyperbolique 4 ¢ B e rExY by v ey
elgﬁgiiéie 3 2 x> - 3xy2 + ax + by + c(x2+y2)
e | A AR

Fig. 20. — Catastrophes élémentaires: les coordonnées sur € sont a, b, c, d;
les coordonnées sur X sont x, y.
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Les caustiques lumineuses fournissent un autre exemple de [’occur-
rence des catastrophes dans la nature. La figure 21 représente une
section plane de caustique qui est de nouveau une fronce: on ’observe a
la séparation des régions d’ombre et de lumiére derriére un verre de vin
rouge expos¢ aux rayons du soleil. On savait depuis la fin du dix-neuvieme
siecle qu’il y a cinq types fondamentaux de caustiques. Localement, ces
surfaces lumineuses sont précisément les ensembles catastrophiques des
cing « catastrophes élémentaires » en dimension trois.

soleil
table ’@"’
lumiére
ombre

Fig. 21

INFLUX NERVEUX

Notre dernier exemple a de nouveau trait a la catastrophe de la
fronce; nous suivrons ZEEMAN dans son étude de I'influx nerveux [9].
Dans le cerveau, les messages entre cellules sont transmis par les axones
(22); ce processus de transmission est fondamental a la compréhension du
fonctionnement du cerveau. Une des contributions majeures a 1’étude de
ces questions est celle de HonpGkIN et HUXLEY [3], qui date des années 50;
leurs expériences et leurs travaux théoriques leur ont valu le prix Nobel.

dendrites
- »z,

axone D\C

corps de la cellule synapses

Fig. 22

C’est en particulier eux qui ont mis en évidence I'importance des rela-
tions entre les trois grandeurs suivantes: la différence de potentiel entre
les faces interne et externe de la membrane superficielle de 1’axone, la
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perméabilité de cette membrane aux ions sodium d’une part, aux ions
potassium d’autre part. Lors de la transmission d’un message, de com-
plexes phénoménes électro-chimiques se manifestent par des variations
de ces trois grandeurs, variations a la fois dans le temps et le long de
’axone; on observe A chaque message une suite de « pics » qui se pro-
pagent d’une extrémité a I'autre.

Expérimentalement, on peut placer deux électrodes en un endroit de
I’axone, 'une a lintérieur et l'autre a I’extérieur de la membrane.
Lorsqu’un pic parcourt l’axone, la différence de potentiel entre ces
deux électrodes augmente trés rapidement, puis diminue plus lentement.
Entre-temps, la perméabilité aux ions sodium augmente soudainement,
puis revient a sa valeur d’équilibre; quant a la perméabilité aux ions potas-
sium, elle augmente lentement avant de diminuer tout aussi lentement. Ce
processus est complexe; on peut isoler trois propriétés dynamiques:
(a) un équilibre stable; — (b) le déclenchement rapide d’un certain
mécanisme 2 partir d’un certain seuil d’excitation; — (c) un retour lent
a I’équilibre. Prenant ces trois propriétés comme point de départ, ZEEMAN
construit le modéle mathématique « le plus simple » qui les exhibe. Ce
modele est un systéme de trois équations différentielles qui décrit com-
ment les trois grandeurs fondamentales évoluent. La catastrophe de la
fronce est I’un des ingrédients sous-jacents essentiels & ce systéme diffé-
rentiel; le fait qu’il soit « le plus simple » résulte de la classification des
catastrophes élémentaires.

A chaque instant, I’état d’une petite portion d’axone est donc défini
par un point dans I’espace  trois dimensions. Les trois coordonnées de
ce point sont la différence de potentiel et les deux perméabilités men-
tionnées plus haut; voir le diagramme (fig. 23). Le processus commence
a I’équilibre, c’est-a-dire au point A sur la surface. Lorsqu’un pic
traverse la portion d’axone qui nous intéresse, on observe d’abord une
brusque augmentation de la différence de potentiel: saut au point B.

i

v

Fig. 23. — v = potentiel; p.p. = perméabilité aux ions potassium;
p.s. = perméabilité aux ions sodium.
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La perméabilité aux ions sodium croit alors rapidement: le point repré-
sentatif tombe en C, sur la surface. Enfin, le retour a I’équilibre, en
d’autres termes au point A, se déroule sur la surface.

ZEEMAN obtient de plus des résultats quantitatifs. HODGKIN et
HuxLey avaient d’une part établi, a partir de leurs données expérimen-
tales, la courbe des variations dans le temps de la différence de potentiel
entre l'intérieur et ’extérieur d’une portion d’axone; ils avaient aussi
proposé un modele théorique consistant en un systéme de dix équations
différentielles, et I’avaient utilis¢ pour calculer une courbe théorique
décrivant ces mémes variations, proche de la courbe expérimentale. Le
fait remarquable dans le travail de ZEEMAN est que sa courbe théorique
est encore plus proche de la courbe expérimentale que la courbe théo-
rique de HODGKIN et HUXLEY.

L’idée de ZeeMAN est de partir de la dynamique des phénoménes
étudiés plutdt que de la biochimie. Son modéle a I’avantage de la simpli-
cité; il suggeére également de nouvelles expériences [9] pour tester cer-
taines hypothéses heuristiques de HODGKIN et HUXLEY. Son modeéle est
enfin indépendant du contexte dans la mesure ol sa construction est
celle d’un systéeme différentiel abstrait exhibant les trois propriétés
dynamiques de base énumérées plus haut; ZEEMAN suggére ainsi que son
modele pourrait étre utile a 1’étude de 1’épilepsie ou de la migraine.

APOLOGIE

Dans cette conférence introductive, nous avons discuté quelques
exemples de la théorie des catastrophes. Nous désirons illustrer comment
la théorie des singularités, qui s’est considérablement développée dans les
années soixante comme un chapitre de mathématiques pures, s’est révélée
étre un nouvel outil applicable a de multiples domaines. Présentement, de
nombreux chercheurs travaillent activement dans ce contexte. Le sujet se
développe, les méthodes s’affinent, la critique s’aiguise; les conséquences
en sont importantes et vont continuer & marquer profondément les
mathématiques, aussi bien pures qu’appliquées.
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