Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 67 (1958-1961)

Heft: 300

Artikel: Anomalies du tenseur de résistivité électrique dans les éléments

ferromagnétiques

Autor: Rivier, Dominique

DOI: https://doi.org/10.5169/seals-275090

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 23.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Anomalies du tenseur de résistivité électrique dans les éléments ferromagnétiques

PAR

DOMINIQUE RIVIER

- 1. Le but de cette note est de présenter de manière synthétique et systématique les anomalies de la variation, en présence d'un champ magnétique, du tenseur de résistivité électrique des éléments ferromagnétiques. Ces anomalies sont déterminées relativement aux propriétés du tenseur de résistivité d'un métal pur non ferromagnétique et normal comme le cuivre. Les propriétés considérées particulièrement ici sont, avec la valeur de la résistivité ρ^0 du métal en structure microcristalline isotrope, les valeurs des magnétorésistivités transversale et longitudinale ainsi que celles de la résistivité de Hall.
- 2. Rappelons les propriétés du tenseur ρ_{ik} (B) pour un métal pur non ferromagnétique comme le cuivre. Lorsque celui-là se présente en polycristal, la conductivité électrique est isotrope et nous avons la relation

$$\vec{E} = \rho^0 \vec{j} \tag{1}$$

entre les vecteurs champ électrique \vec{E} et densité de courant électrique \vec{j} .

Plongé dans un champ d'induction magnétique extérieur $\vec{B} = (0,0,B)$ une plaque initialement isotrope suffisamment mince prend l'anisotropie du champ \vec{B} . De ce fait, pour autant que la plaque soit tout entière à la même température, les composantes de \vec{E} et de \vec{j} satisfont à la relation :

$$E_i = \sum_{1}^{8} \rho_{ik}^{(B)} j_k \tag{2}$$

où ρ_{ik} (B) est le tenseur de résistivité. On a ρ_{ik} (0) = $\rho^0 \delta_{ik}$. En (2), le tenseur ρ_{ik} a la forme

$$\rho_{ik} = \begin{pmatrix} \rho_{11} & \rho_{12} & 0 \\ \rho_{21} & \rho_{22} & 0 \\ 0 & 0 & \rho_{33} \end{pmatrix}$$
(3)

où $\rho_{11}=\rho_{22}=\rho_{\perp}$ est la résistivité transversale $\rho_{33}=\rho_{\#}$ » longitudinale $\rho_{12}=-\rho_{21}=\rho_{H}$ » de Hall

3. Des relations de symétrie d'Onsager [1] il suit que les quantités $\Delta \rho_{\parallel} = \rho_{\parallel} - \rho^0$ et $\Delta \rho_{\perp} = \rho_{\perp} - \rho^0$ sont des fonctions paires de B, et que $\Delta \rho_{12} = \rho_{\rm H}$ est une fonction impaire de B. De l'argument d'homogénéité dû à Peierls [2] et Kohler [3], portant sur la solution de l'équation de Boltzmann dominant le problème de transport de charge électrique, il résulte que $\frac{\Delta \rho_{\perp}}{\rho^0}$ et $\frac{\Delta \rho_{\parallel}}{\rho^0}$ ne dépendent de B, de la température et de la pureté que par la combinaison $\frac{B}{\rho^0} = ne \frac{\lambda}{R}$ où λ est le libre parcours moyen, R est le rayon de courbure cyclotronique du porteur de charge due à l'action de \overline{B} et n le nombre de porteurs de charge e par unité de volume.

Dans ces conditions, la variation relative du tenseur résistivité due à la présence d'un champ B doit s'écrire

$$\eta_{ik} = \frac{\rho_{ik} (B) - \rho_{ik} (0)}{\rho^0} = \begin{bmatrix} \alpha_{\perp} \left(\frac{B}{\rho^0}\right)^2 & R\left(\frac{B}{\rho}\right) & 0 \\ -R\left(\frac{B}{\rho^0}\right) & \alpha_{\perp} \left(\frac{B}{\rho^0}\right)^2 & 0 \\ 0 & 0 & \alpha_{\parallel} \left(\frac{B}{\rho^0}\right)^2 \end{bmatrix}$$
(4)

les constantes α_{\perp} , α_{\parallel} et R étant indépendantes de B, de T et de la pureté, pour autant qu'on se limite aux champs B faibles.

L'expérience [4 et 5] confirme dans les grandes lignes ces prévisions théoriques et donne dans le cas du cuivre les ordres de grandeurs suivants:

$$lpha_{//}$$
 et $lpha_{\perp} \approx 10^{-18} \left(\frac{A s}{m^3}\right)^{-2}$; $\frac{lpha_{\perp} - lpha_{//}}{lpha_{\perp}} \approx + 1/2$
$$R = 10^{-10} \left(\frac{A s}{m^3}\right)^{-1}$$

Telle est l'allure « normale » de la variation relative η_{ik} du tenseur résistivité sous l'effet d'un champ \overrightarrow{B} extérieur.

L'explication de cette variation relative doit être cherchée dans la force de Lorentz exercée par le champ \vec{B} sur les particules chargées en mouvement.

4. Passons maintenant aux éléments ferromagnétiques. Dans l'état ferromagnétique, et en l'absence de champ extérieur B, l'échantillon polycristallin est caractérisé par sa structure en domaine de Weiss. Chaque domaine est affecté d'une aimantation spontanée J

qui varie d'un domaine à l'autre de manière aléatoire si bien que, dans son ensemble, l'échantillon n'a pas d'aimantation apparente.

Toutefois, du point de vue de la conductibilité électrique, chaque domaine de Weiss constitue un petit échantillon polycristallin au sein duquel règne un champ d'induction magnétique $\vec{B} = \vec{J}^s$ (toujours en l'absence d'un champ extérieur). Dans ces conditions, on devrait s'attendre, déjà en l'absence de tout champ extérieur, à une variation « spontanée » du tenseur de résistivité due uniquement à l'existence de l'aimantation spontanée \vec{J}^s . Naturellement, pour évaluer cette variation, il faut considérer « l'état non-ferromagnétique » [7] de l'échantillon caractérisé par la résistivité ρ_0^0 . On aura pour chaque domaine de Weiss

$$\eta_{ik}^{s} = \frac{\rho_{ik} (J^{s}) - \rho_{0}^{0} \delta_{ik}}{\rho_{0}^{0}} = \begin{bmatrix} \alpha_{\perp}^{s} \left(\frac{J^{s}}{\rho_{0}^{0}}\right)^{2} & R^{s} \left(\frac{J}{\rho_{0}^{0}}\right) & 0 \\ -R^{s} \left(\frac{J}{\rho_{0}^{0}}\right) & \alpha_{\perp}^{s} \left(\frac{J^{s}}{\rho_{0}^{0}}\right)^{2} & 0 \\ 0 & 0 & \alpha_{\parallel}^{s} \left(\frac{J^{s}}{\rho_{0}^{0}}\right)^{2} \end{bmatrix}$$
(5)

conformément à (4), les indices $\underline{}$ et π se rapportant à des directions de $\overline{}$ normales ou parallèles à $\overline{}$.

5. Considérons l'échantillon entier, en l'absence du champ extérieur. Sa résistivité (isotrope) est une moyenne entre les résistivités de chaque domaine, c'est-à-dire une moyenne sur la résistivité d'un domaine prise selon toutes les directions possibles par rapport à J^s. On peut donc écrire, en admettant une orientation aléatoire de l'aimantation dans les domaines

$$\rho_0^{\rm F} = \rho_0^0 + 1/3 \, \Delta \, \rho_{\parallel}^s + 2/3 \, \Delta \, \rho_{\perp}^s \tag{6}$$

avec $\Delta \rho_{\#,\perp}^s = \alpha_{\#,\perp}^s \left(\frac{\mathbf{J}^s}{\rho_0^0}\right)^2$ conformément à (5). Nous appelons

$$\Delta \rho^{F} = \rho^{0F} - \rho_{0}^{0} = 1/3 \Delta \rho_{\parallel}^{s} + 2/3 \Delta \rho_{\perp}^{s}$$
 (7)

l'anomalie de résistivité ferromagnétique. C'est la différence de résistivité (isotrope) entre l'état ferromagnétique et l'état non-ferromagnétique de l'échantillon.

Il est clair que par raison de symétrie aucun effet Hall n'est observable sur l'échantillon entier.

6. Appliquons maintenant un champ \vec{B} extérieur jusqu'à saturation : l'échantillon dans son ensemble présente alors une aimantation \vec{J}_s . Au sein de l'échantillon, on a

$$\vec{B}^{int} = \mu_0 \vec{H} + \vec{J}^s$$
 avec $\vec{B}^{int} = \vec{B}^{ext} - (N-1) \vec{J}^s$

où N est facteur démagnétisant.

Le tenseur résistivité subit une double variation : la première variation a pour cause le champ \overrightarrow{B}^{int} , la seconde l'aimantation \overrightarrow{J}^s . La première peut s'isoler expérimentatement par des mesures au delà à de la saturation [4]. Cette première variation du tenseur de résistivité est semblable à celle qui existe dans un non-ferromagnétique. Nous ne parlerons plus de cet effet appelé ordinaire ou effet « champ ».

La seconde, appelée variation spontanée du tenseur de résistivité, se traduit par l'existence de résistivités transversale et longitudinale observables sur l'ensemble de l'échantillon.

$$\rho_{\perp}^{\mathbf{F}} = \rho_{0}^{\mathbf{0}} + \Delta \rho_{\perp}^{\mathbf{s}}$$

$$\rho_{\parallel}^{\mathbf{F}} = \rho_{0}^{\mathbf{0}} + \Delta \rho_{\parallel}^{\mathbf{s}}$$
(8)

correspondant à des magnétorésistances apparentes,

$$\delta \rho_{\perp}^{\mathbf{F}} = \rho_{0}^{\mathbf{F}} = \rho_{0}^{\mathbf{F}} = -1/3 \left(\Delta \rho_{\parallel}^{\mathbf{s}} - \Delta \rho_{\perp}^{\mathbf{s}} \right)$$

$$\delta_{\parallel}^{\mathbf{F}} = \rho_{\parallel}^{\mathbf{F}} - \rho_{0}^{\mathbf{F}} = +2/3 \left(\Delta \rho_{\parallel}^{\mathbf{s}} - \Delta \rho_{\perp}^{\mathbf{s}} \right)$$

$$\frac{\delta \rho_{\parallel}^{\mathbf{F}}}{\delta \rho_{\perp}^{\mathbf{F}}} = -2$$
(9)

On appelle anisotropie ferromagnétique [6] la quantité facilement mesurable

$$\delta \rho^{\mathbf{F}} = \delta \rho_{\parallel}^{\mathbf{F}} - \delta \rho_{\perp}^{\mathbf{F}} = \Delta \rho_{\parallel}^{\mathbf{s}} - \Delta \rho_{\perp}^{\mathbf{s}}$$
 (10)

Des relations (7) et (10), on tire les expressions

$$\begin{cases}
\Delta \rho_{\parallel}^{s} = \Delta \rho^{F} + 2/3 \delta \rho^{F} \\
\Delta \rho_{\perp}^{s} = \Delta \rho^{F} - 1/3 \delta \rho^{F}
\end{cases} (11)$$

permettant de calculer $\Delta \, \rho_{\, \#}^{\, s}$ et $\Delta \, \rho_{\, \perp}^{\, s}$ à partir des grandeurs mesurables.

Quant à l'effet Hall spontané, il peut aussi être séparé de l'effet ordinaire par des mesures au delà de la saturation.

7. Ainsi, par des mesures sur l'échantillon à saturation et par extrapolation de la résistivité dans l'état non ferromagnétique [7], il est possible de déterminer complètement la variation η_{ik}^s . L'expérience [4 et 6] donne les ordres de grandeurs suivant (pour T 1/2 T_c et dans le cas d'un ferromagnétique pur) (T_c = température de Currie)

$$\alpha_{\perp}^{s} \text{ et } \alpha_{\parallel}^{s} \approx -10^{-15} \left(\frac{As}{m^{3}}\right)^{-2} \frac{\left|\alpha_{\perp}^{s}\right| - \left|\alpha_{\parallel}^{s}\right|}{\left|\alpha_{\perp}\right|} \approx -1/100$$

$$R^{s} = 10^{-9} \left(\frac{As}{m^{3}}\right)^{-1} \qquad \delta \rho^{F} > 0 \; ; \; \Delta \rho_{R} < 0 \; .$$

De plus, les grandeurs α_{\perp}^s , α_{\parallel}^s et R^s ne sont plus des constantes indépendantes de T, B et de la pureté. L'expérience montre au contraire que α_{\perp}^s et α_{\parallel}^s et R^s sont tous proportionnels à $(\rho^F)^n$ où n est un exposant compris entre 1 et 2, la valeur 2 semblant réservée aux échantillons très purs.

Les anomalies du tenseur η_{ik}^s (par rapport au tenseur η_{ik}) apparaissent maintenant bien : elles sont au nombre de trois :

- 1. Les ordres de grandeurs sont 10 (pour R) et 10^3 (pour α_{\perp} et a ,) fois plus grand.
 - 2. Le signe de α_{\perp}^s et α_{\parallel}^s est négatif au lieu d'être positif.
- 3. Les constantes α_{\perp}^s , α_{\parallel}^s et R^s sont des fonctions de la résistivité pF.

On admet aujourd'hui que l'explication de ces anomalies semble se trouver principalement dans l'existence du couplage de spin orbite pour les électrons [6]. Mais aucune théorie ne donne satisfaction à ce jour. Aussi, vu les difficultés rencontrées pour donner une explication quantitative des anomalies citées (4, 6), il a semblé important de grouper d'une manière aussi simple que possible.

BIBLIOGRAPHIE

- 1. CASIMIR H.-B.-G. Revs. Mod. Phys. 17, 343 (1945).
- 2. Peierls R. Ann. Physik. 10, 97 (1931).
- 3. Kohler M. Ann. Physik 32, 211 (1938). 4. Jan J.-P. Galvanomagnetic and Thermomagnetic Effects in Metals, dans Solid State Physics, volume 5, Academic Press. inc. New York, 1957.
 5. Kohler M. — Ann. Physik. 6, 18 (1949).
- 6. Smit J. Thesis Leyden 1956 (voir aussi Jan J.-P. 4).
- 7. Мотт N.-F. Proc. Roy. Soc. A, 153, 699 (1936).

Manuscrit reçu le 1er juillet 1959.

ERATĂ

Pag.	Rindul	În loc de:	Se va citi:	Din vina:
Soumaire pag. 3	18	dimenthylique	dimèthylique	Autorului
"	23	chamote	chamotte	"
77	33	sistèm	système	,,
65	9 de jos	potentional	potențial	"
89	11 de jos	au ajutorul	cu ajutorul	**
94	22 de jos	exprmiare	exprimare	77
97	9 de sus	amic	mic	**
110	5 de sus	o _{10—30} kgf/mm	⁵ 10—30 kgf/mm ²	
110	A do ion		Desire.	,,
110	4 de jos	^σ 5—10	σ_{5-30}	
111	1 de sus (T	ab. 4) kgf/mm ²	^σ 5—30	
			kgf/mm ²	,
112	2 de sus (Ta	ab. 5) kgf/mm ²	₀ kgf/mm²	77
137	9	caractéristique	caractéristiques	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
169	9 de jos	continuu	continu	"
197	2 de jos	$s_{\delta} =$	$S_{\delta} =$	n
199	12 de jos	синтезирования	симметризации	**
233	2 de jos	сомоставления	сопоставления	"
248	13	fleèche	flèche	,,
341	14 de sus	acetaldehică	acetaldehidă	•
368	9	ajontant	ajoutant	,,
392	19 de sus	A. Scleicher	A. Schleicher	,,
394	9	à èlectrodes	aux électrodes	**
394	8 d	le électrogravimétrie	d'électrogravimétrie	"
394	7 de jos	Gelosco	Geloso	Tipografiei
399	2	sistème	système	Autorului
"	6	sistème	système	,,
n	7	des bons	de bons	,,
"	7	rezultats	résultats	"
"	9	compozition	composition	"

În Tom 4 (18) 1959, articolul tov. prof. O. E. Gheorghiu: Asupra unor sisteme de ecuații funcționale matriciale, p. 13 rîndul 11 de sus în loc de "un singur argument" se va citi "un singur argument real și pozitiv".

Buletinul ştiinţific şi tehnic Tom 5 (19) - 1960.