Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 66 (1954-1957)

Heft: 288

Artikel: Les éclipses de lune en 1953 et 1954 : agrandissement de l'ombre

terrestre

Autor: Flückiger, Maurice

DOI: https://doi.org/10.5169/seals-274715

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les éclipses de lune en 1953 et 1954 Agrandissement de l'ombre terrestre

PAR

Maurice FLUCKIGER

(Séance du 27 octobre 1954)

On sait que les basses couches de l'atmosphère terrestre éteignent complètement les rayons lumineux qui les traversent. Il en résulte que le cône d'ombre de la terre a une section légèrement supérieure à la section théorique calculée sans la présence de l'atmosphère. Pour tenir compte de ce phénomène lors du calcul des éléments d'une éclipse, on a l'habitude de multiplier par le facteur 1,02 le rayon de la section du cône d'ombre par un plan passant par le centre de la lune. La mesure de cet agrandissement, faite au début par Hartmann, puis par Kosik, qui a adapté la méthode de réduction aux éphémérides modernes, a montré que cet agrandissement n'est pas constant. Il est alors bon de le déterminer lors de chaque éclipse de lune, pour, plus tard, en tirer une éventuelle loi de variation.

Nous avons déterminé cet agrandissement lors des deux éclipses totales de lune des 29-30 janvier 1953 et 18-19 janvier 1954 dans des conditions d'observation particulièrement favorables tant au point de vue de la situation de la lune près du méridien qu'au point de vue météorologique. Nous avons, pour cela, chronométré, aussi exactement que possible, le moment du contact de l'ombre terrestre avec les différentes formations lunaires visibles sur le disque de la pleine lune. Notons d'emblée qu'il ne faut pas se faire trop d'illusions sur la précision d'une mesure individuelle eu égard au dégradé du bord de l'ombre. Nous avons ensuite appliqué la méthode de réduction de Kosik dont voici l'essentiel (7):

soit Oxyz un système d'axes rectangulaires attaché au centre de la terre et défini de la façon suivante : Oz est dirigé positivement vers l'antisoleil, Ox est dans le plan équatorial et Oy est dirigé vers le nord. Ce système sera désigné sous le nom de système de Kosik.

Les coordonnée x_L et y_L du centre de la lune dans le système de Kosik sont données par les relations (1):

(1)
$$\begin{cases} x_{L} = \frac{\cos \delta_{L} \cdot \sin (\alpha_{L} - \alpha_{1})}{\sin \pi_{L}} \\ y_{L} = \frac{\sin (\delta_{L} - \delta_{1})}{\sin \pi_{L}} + 0.008726 (\alpha_{L} - \alpha_{1}) \sin \delta_{1} \end{cases}$$

relations dans lesquelles

 α_L et δ_L sont les coordonnées équatoriales apparentes du centre de la lune,

 α_1 et δ_1 celles de l'antisoleil,

 π_L la parallaxe horizontale de la lune.

La quantité ($\alpha_L - \alpha_1$) de la deuxième relation est exprimée en degrés et fraction décimale de degré.

Les cosinus directeurs des axes du système de Kosik par rapport au système d'axes sélénographiques sont les suivants :

$$(2) \begin{cases} a_{x} = -\cos \lambda_{\odot} \cos P - \sin \lambda_{\odot} \sin P \sin \beta_{\odot} \\ b_{x} = \sin P \cos \beta_{\odot} \\ c_{x} = \sin \lambda_{\odot} \cos P - \cos \lambda_{\odot} \sin P \sin \beta_{\odot} \\ a_{y} = \cos \lambda_{\odot} \sin P - \sin \lambda_{\odot} \cos P \sin \beta_{\odot} \\ b_{y} = \cos P \cos \beta_{\odot} \\ c_{y} = -\sin \lambda_{\odot} \sin P - \cos \lambda_{\odot} \cos P \sin \beta_{\odot} \end{cases}$$

formules dans lesquelles

 λ_{\odot} et β_{\odot} sont les coordonnées sélénographiques du soleil, P l'angle de position de l'axe lunaire compté du nord.

Dans le système d'axes sélénographiques les coordonnées rectangulaires d'une formation lunaire sont :

(3)
$$\begin{cases} x_0 = r_L \cos \beta_c \sin \lambda_c \\ y_0 = r_L \sin \beta_c \\ z_0 = r_L \cos \beta_c \cos \lambda_c \end{cases}$$

où β_c et λ_c sont la latitude et la longitude sélénographiques du cratère C et r_L le rayon de la lune, celui de la terre étant pris pour unité.

Pour le calcul, nous avons employé les coordonnées rectangulaires publiées par J. Bouska, F. Hrebik et Z. Svetska (6).

Finalement les coordonnées du cratère C dans le système de Kosik sont :

(4)
$$\begin{cases} x = x_{L} + a_{x} x_{0} + b_{x} y_{0} + c_{x} z_{0} \\ y = y_{L} + a_{y} x_{0} + b_{y} y_{0} + c_{y} z_{0} \end{cases}$$

Dans le plan Oxy passons à un système de coordonnées polaires r, Ψ où Ψ est compté à partir de l'équateur. On a :

(5)
$$\begin{cases} r = \sqrt{x^2 + y^2} & \text{rayon de la section du cône d'ombre} \\ \text{tg } \Psi = \frac{y}{|x|} & \text{angle de position à partir de l'équateur} \end{cases}$$

Il reste ensuite à comparer le rayon mesuré au rayon théorique donné par l'expression:

(6)
$$r_c = 1 - \frac{\mathrm{tg} \ (\mathrm{R}_{\odot} - \pi_{\odot})}{\sin \ \pi_{\mathrm{L}}}$$
 terre assimilée à une sphère

(7)
$$r_c = 1 - \frac{\mathrm{tg} \; (\mathrm{R}_{\odot} - \pi_{\odot})}{\sin \; \pi_{\mathrm{L}}} - 3,376 \; . \; 10^{-3} \; \cos^2 \; \delta_1 \; . \; \sin^2 \Psi$$

en assimilant la terre à un ellipsoïde dont l'aplatissement est de 1/297.

Dans ces dernières relations, R_{\odot} est le demi-diamètre apparent du soleil, π_{\odot} est la parallaxe horizontale du soleil.

I. Eclipse totale de lune du 29-30 janvier 1953.

Cette éclipse a pu être observée dans d'excellentes conditions et les déterminations des contacts de l'ombre ont été faites par deux équipes, soit :

Equipe A: C. Borel et G. Chevallier qui utilisèrent le réfracteur de 13,5 cm avec un grossissement de 40 × environ.

Equipe B : K. Ramseier qui utilisa le réfracteur de 7 cm avec un grossissement de $30 \times$.

D'autre part, au hasard des lectures, nous avons trouvé des mesures brutes concernant la même éclipse de lune. Nous en avons déduit les agrandissements correspondants donnés dans le tableau II avec les indicatifs suivants:

- G. mesures de M. A. Giannuzzi à l'équatorial Steinheil de 39 cm (f=5,25 m) de l'observatoire de Rome (Monte Mario) (4),
- F. mesures de L. Fischer au réfracteur de 8 pouces (f = 2.5 m) grossissement $70 \times$ de l'observatoire de Vienne (5),
- J. mesures de P. Jackson au chercheur de comètes de 5 pouces, grossissement $20 \times$ de l'observatoire de Vienne (5).

Les tableaux qui suivent contiennent les indications suivantes: Tableau I. — Circonstances de l'éclipse et éléments fondamentaux pour le calcul par la méthode de Kosik (3).

Tableau II. — Résultats détaillés, soit pour chaque formation lunaire observée, les coordonnées rectangulaires dans le système de Kosik, le rayon du cône d'ombre et l'angle de position en valeur absolue.

Tableau III. — Les moyennes des valeurs observées.

Tableau IV. — Les observations des différentes phases de l'éclipse.

TABLEAU I

a) Conditions de l'éclipse:

janv.	29	20 h	40,1 mn	
	29	21	54,1	127° E
	29	23	04,6	
	29	23	47,3	
	30	00	29,9	
	30	01	40,4	84° W
	30	02	54,5	
	janv.	29 29 29 30 30	29 21 29 23 29 23 30 00 30 01	29 21 54,1 29 23 04,6 29 23 47,3 30 00 29,9 30 01 40,4

Grandeur de l'éclipse totale : 1,337.

b) Eléments fondamentaux de l'éclipse

T. U.	SOLEIL					_			- L U	ΝE				
	-	- α			-δ-		-	— α	L		$\delta_{\rm L}$ –			π_L
	\mathbf{h}	mn	s	. 0	ī	"	h	mn	s	0	1	**	1	**
20	20	48	20,20	-17	50	35,5	8	41	52,53	+18	41	00,7	54	19,1
21			30,48		49	52,9		43	51,24		30	35,5		18,6
22			40,75		49	12,2		45	49,67		20	06,0		18,0
23			51,03		48	31,5		47	47,82		09	32,1		17,4
0		49	01,30		47	50,8		49	45,69	+17	58	53,9		16,9
1			11,57		47	10,2		51	43,29		48	11,5		16,4
2			21,84		46	29,3		53	40,61		37	24,9		15,8
3	20	49	32,11	17	45	48,5	8	55	37,65	+17	26	43,2	54	15,3

T. U.		SOLEI	L —		LUNE
	λ_{\odot}	β_{\odot}	ŀ	R⊙	P
	0	0	•	11	0
20	+4,00	-0,06	16	14,2	13,45
21	3,49	0,06		14,2	61
22	2,99	0,06		14,2	75
23	2,48	0,06		14,2	89
0	1,97	0,06		14,2	14,03
1	1,46	0,06		14,2	19
2	0,96	0,06		14,2	35
3	+0,48	-0,06	16	14,1	14,50

$$\pi_{\odot} = 8.9''$$

TABLEAU II

N^{o}	Obs.	Cratère	T. U.	x	y	r	Ψ 0
1	J	Grimaldi	21,955	-0,5210	+0,4908	0,716	43,3
2	\mathbf{F}	id.	962	- 5177	+ 4895	713	43,4
3	В	id.	969	— 5145	+ 4883	709	43,5
4	G	Schickard	978	— 6426	+ 3478	731	10,5
5	A	Gassendi	22,001	— 5807	+ 5065	771	41,1
6	A	Encke	22,012	0,5669	+0,5440	0,787	43,7
7	G	Schiller	048	-6672	+3244	742	11,6
8	F	Campanus A	116	-6041		721	500 CO.
9	$^{\mathrm{F}}$	Kies A	139	-6802			33,1
10	J	Seleucus			+4013	727	33,5
10	J	Scieucus	148	— 4245	+ 5786	718	53,7
11	\mathbf{A}	Képler	22,171	-0,4884	+0,5320	0,721	47,6
12	G	id.	178	— 4831	+ 5307	718	47,7
13	G	Maginus	200	— 6733	+ 3216	746	11,8
14	\mathbf{A}	Mercator	204	5749	\div 3720	685	32,9
15	J	Tycho	222	- 6405	+ 3342	722	27,6
16	G	id.	22,226	0,6386	+0,3335	0,720	10,8
17	\mathbf{B}	id.	243	- 6306	- 3304	712	27,6
18	J	Aristarque	248	- 4181	+ 5833	718	54,4
19	G	id.	250	— 4171	+ 5829	717	54,5
20	В	id.	257	— 4138	+ 5817	714	54,6
21	F	id.	22,258	0,4134	+0,5815	0,714	54,6
22	A	id.	280	— 4030	+5776	704	55,1
23	J	Milichius	298	— 4539	+ 5249	694	49,1
$\overline{24}$	\mathbf{F}	Copernic	305	- 4915	+ 5322	724	47,3
25	J	id.	308	— 4901	+ 5316	723	47,3
26	A	id.	22,314	0,4873	+0,5305	0,720	47,4
27	G	id.	315	— 4867	+5303	720	47,5
28	В	id.	328	- 4808	+ 5280	714	47,7
29	J	Euler	353	-4276	+5767	718	53,5
30	A	Pytheas	361	-4566	+ 5712	731	51,4
31	G	Moesting A	22,375	0,5378	+0,4762	0,718	6,5
32	F	Pytheas	382	- 4468	+5674	722	51,8
33	Ĵ	id.	390	- 4431	+ 5660	719	51,9
34	A	id.	405	-4360		713	
					A a		52,3
35	G	Hipparque	424	_ 5649	+ 4651	732	6,9
36	G	Eratosthène	22,429	-0,4660	$-\!\!\!\!-0,\!5404$	0,714	49,3
37	J	Archimède	487	-4574	+6039	758	52,8
38	B	Cap Héraclides	497	— 3516	+ 6227	715	60,6
39	\mathbf{F}	Timocharis	499	— 4193	+ 5808	716	54,2
40	G	Archimède	519	— 4418	+ 5979	743	53,5

No	Obs.	Cratère	T. U.	\boldsymbol{x}	y	r	Ψ 0
41	A	Rhaeticus	22,566	-0,4929	+0,4687	0,680	43,6
42	G	Autolycus	581	-4345	+6080	747	54,5
43	G	Aristillus	584	-4296	+6075	744	
44	В	Cap Laplace	586	-4250 -3383			54,7
45	F	Dionysius	587		+6290	714	61,7
45	Г	Dionysius	307	- 5348	+ 4911	726	42,6
46	J	Manilius	22,590	-0,4814	+0,5339	0,719	47,4
47	В	id.	599	4772	+ 5323	715	48,1
48	G	Théophile	609	 5765	+4317	720	7,6
49	A	Archimède	616	3968	+ 5807	703	55,7
50	G	Fracastore	633	— 5789	+ 3756	690	8,7
51	J	Pline	22,635	-0,5224	+0,5455	0,755	46,2
52	J	Ménélaus	651	4815	+ 5387	723	48,2
53	\mathbf{F}	id.	660	477 3	+ 5370	719	48,3
54	В	id.	668	4735	+ 5356	715	48,5
55	G	Pline	711	- 4864	+ 5320	721	47,6
56	G	Platon	22,715	-0,3252	$\pm 0,6364$	0,715	62,8
57	A	Théophile	716	— 5273	$+$ $\overset{,}{4}122$	669	38,0
58	F	Platon	718	— 3248	+6360	714	62,9
59	G	Maskelyne	721	-5250	+4793	711	6 ,3
60	В	Platon	724	- 3219	+6349	712	63,1
0.4		: 4	99.747	0.2110	1.0.0000	0.709	00 =
61	A	id.	22,747	-0.3112	-0,6308	0,703	63,7
62	A	Taruntius	808	- 5415	+4927	732	42 ,3
63	G	Eudoxe	814	— 3624	+6158	708	59,5
64	A	id.	823	- 5495	+6142	824	48,2
65	G	Aristoteles	834	— 3486	+ 6307	721	61,1
66	В	Langrenus	22,867		+0,4224	0,659	39,9
67	F	Proclus	898	— 4845	+ 5230	713	47,2
68	J	id.	910	4788	+ 5208	708	47,4
69	A	Macrobe	920	-4595	+ 5371	707	49,5
70	J	id.	940	4501	+ 5336	698	49,8
71	J	Cleomedes	22,985	-0,4418	+0,5561	0,710	51, 5
72	A	Endymion	23,011	3317	+6341	716	62,4
73	A	Messala	038	3882	+5884	705	56, 6
74	F	Endymion	039	3185	+ 6289	704	63,1
75	J	id.	040	— 3181	+ 6288	705	63,2
76	J	Gauss	23,048	-0,4175	+0,5869	0,720	54,6
77	\mathbf{F}	Struve	064		- 6033	703	59,1
	15,411						
78	F	Seleucus	0,534	+0,6978	+0,1425	0,712	11,5
79	F	Riccioli	559	+ 7113	+ 0234	712	1,9
80	J	id.	563	+7132	+ 0227	714	1,8
55	•	2001	000		, , , , , ,		-,-

No	Obs.	Cratère	T. U.	x	y	r	[Ψ]0
81	J	Grimaldi	0,577	+0,7117	+0.0119	0,712	1,0
82	F	id.	594	+7197	0088	720	0,7
83	F	Aristarque	621	+6969	1498	713	12,1
84	J	id.	624	+6983	+ 1493	714	12,1
85	A	id.	643	7072	+ 1457	722	11,6
00			0.10	1	1 2107	,	11,0
86	F	Billy	0,718	+0,7173	-0,0426	0,719	3,6
87	J	Euler	760	+ 7023	+ 1360	715	11,0
88	J	Milichius	765	7034	+ 0747	707	6,1
89	\mathbf{A}	Képler	792	+ 7435	+ 0536	745	4,1
90	J	Gassendi	834	7484	_ 0102	749	0,8
							•
91	F	Platon	0,836	+0,6707	+0,2483	0,715	24,3
92	J	Pytheas	837	 7050	+ 1192	715	9,6
93	\mathbf{A}	Platon	842	+ 6735	-2476	717	20,2
94	\mathbf{F}	Pytheas	848	+ 7102	+ 1172	720	9,4
95	\mathbf{B}	Platon	853	+6787	+ 2452	722	19,9
96	J	Copernic	0,880	+0,7160	+0,0623	0,719	5,0
97	\mathbf{B}	Pytheas	888	+ 7290	+ 1099	737	8,6
98	J	Timocharis	897	7060	+ 1429	720	11,4
99	J	Gambart	922	+ 7064	+ 0198	707	1,6
100	B	Copernic	923	 7362	+ 0545	738	4,2
							10/10/11 100
101	J	Archimède	0,930	+0,6892	+0,1580	0,707	12,9
102	A	Copernic	938	+ 7432	+ 0518	745	4,0
103		Billy	976	+ 8383	- 0901	843	6,1
104	J	Aristillus	984	+6968	+ 1693	717	13,7
105	Α	Eratosthène	1,003	+ 7412	+ 0707	745	5,4
106	J	Tycho	1,047	+0,6839	-0,1807	0,707	14,8
107	A	id.	104	-7106	— 1911	740	15,1
108	В	id.	109	7129		738	15,1
109	J	Walter	115	+6877	— 1430	702	11,8
110	J	Manilius	142	+7154	+ 0682	719	5,4
110	J	Maiiiius	1.12	7.01	0002		٠,٠
111	В	id.	1,143	-0,7157	+0,0680	0,719	5,4
112	F	id.	163			72 8	5,1
113	Ĵ	Menelaus	193			715	6,0
114	J	Endymion	193	+6957	+ 2341	734	18,6
115	В	Menelaus	196	+ 7123	+ 0743	716	5,9
110		and display and		1	1	8 (5000)	,
116	A	Manilius	1,202	+0,7435	+0,0572	0,746	4,4
117	J	Atlas	248	7147	– 2009	742	15,7
118	J	Sosigenes	258	+ 7237	-0328	725	2,6
119	В	Maskelyne	26 8	+6698	- 0147	670	1,3
120	J	Pline	278	- 7176	-0633	720	5,0
- 40		1	1000 of	E	. s		,

N_{o}	Obs.	Cratère	T. U.	\boldsymbol{x}	y	r	$ \Psi ^0$
121	В	Pline	1,288	+0,7223	+0,0615	0,725	4,9
122	F	id.	289	+ 7228	0613	725	4,9
123	J	Struve	317	+6998	- 1907	725	15,3
124	\mathbf{A}	Macrobe	326	+6708	+ 0975	678	8,3
125	\mathbf{F}	Struve	327	7045	1889	729	15,0
126 127 128 129 130	F B F B	Censorinus Vitruvius Fracastore Censorinus Théophile	1,408 425 432 443 448	+0,7194 $ +7601 $ $ +7330 $ $ +7359 $ $ +7535$	-0.0217 + 0542 - 1347 - 0281 - 0862	0,720 762 745 736 758	1,7 4,1 10,5 2,2 6,5
131 132 133 134	B F F B	Goclénius Picard Langrenus id.	1,529 537 608 609	+0,7246 +7302 +7167 +7172	-0,0779 $+ 0381$ $- 0782$ $- 0783$	0,729 731 721 722	6,1 3,0 6,2 6,2

Liste des observateurs:

A: C. Borel et G. Chevallier, Lausanne

B: K. Ramseier, Lausanne

G: M.-A. Giannuzzi, Rome. — Obs. Monte-Mario

F: L. Fischer, Vienne J: P. Jackson, Vienne

TABLEAU III

Obs.		- Immersion			Emersion	
Obs.	r_0		r_c	r_0		r_c
A	$0,722 \pm$	0,010	0,701	0,733 ±	0,008	0,703
В	708	05		735	11 .	,
G	724	04			consisting	
F	717	02		0,722	03	
J	719	04		718	03	
	venne : 0,7 andissemen		= 2.5 %	0,725 0,031	= 3,1 %	

TABLEAU IV

9	h	mn	s	h	mn	8	h	mn	s
Entrée dans l'ombre	21	56	26	21	53	55		-	-
Début totalité	23	04	57	23	04	54	23	05	28
Fin totalité	00	30	22	00	30	57		-	-
Sortie de l'ombre	01	40	38	01	40	18	01	38	56
Observateur		A			В			F	

II. ECLIPSE TOTALE DE LUNE DU 18-19 JANVIER 1954.

De même que la précédente, cette éclipse a été observée dans de très bonnes conditions. La détermination du moment des contacts de l'ombre avec les différents cratères a été faite à Lausanne par les trois équipes suivantes :

Equipe A. — K. Ramseier; réfracteur 13,5 cm,

Equipe B. — R. Estoppey; réflecteur 20 cm,

Equipe C. — A. Zanoli; réflecteur 62 cm.

Les heures ont été enregistrées au moyen du chronographe de l'observatoire associé à un chronomètre Nardin.

Comme pour l'éclipse précédente, les conditions de l'éclipse et les résultats essentiels sont donnés dans les tableaux V à VIII.

TABLEAU V

a) Conditions de l'éclipse :

Entrée dans la pénombre	janv. 18	23 h	39,6 mn
Entrée dans l'ombre	19	00	50,0
Commencement éclipse totale	19	02	16,6
Milieu éclipse totale	19	02	31,8
Fin éclipse totale	19	02	46,9
Sortie de l'ombre	19	04	13,5
Sortie de la pénombre	19	05	24,1

Grandeur de l'éclipse totale : 1,037

b) Eléments fondamentaux de l'éclipse (2) :

T. U.		A	NTIS	OLE		-	§	SOLE	EIL —		
	-	α ₁	. —		- δ ₁		2		λ_{\odot})	eta_{\odot}
	h	$\mathbf{m}\mathbf{n}$	s	0	,	11			0		0
0	8	01	58,45	20	29	28,2			+6,	09	+0,16
1		02	09,09		28	57,3			5,	5 8	0,16
2		02	19,73		28	26,5			5,	08	0,16
3		02	30,36		27	55,6			4,	58	0,16
4	8	02	41,00	20	27	24,6			+- 4,	07	+0,16
T. U.						LUN	NE -				
		— α	L	_		$\delta_{\rm L}$ $-$				π_L	P
	h	$\mathbf{m}\mathbf{n}$	s		0	,	11			11	0
0	7	56	16,43	_	- 20	28	17,7		56	42,6	9,62
1		58	30,12	,		19	00,3			41,2	9,82
2	8	00	43,43			09	37,0			39,8	10,01
3		02	56,36			00	07,9			38,4	10,20
4	8	05	08,92	-	- 19	50	33,2		56	37,1	10,41
R	·o =	16′ 1	5,3"			π_{\odot}	= 8	3,9"			

TABLEAU VI

No	Obs.	Cratère	T. U.	x	\mathcal{Y}	r	$ \Psi ^0$
1	A	Aristarque	0,919	-0,7313	-0,0867	0,736	6,8
2	В	id.	923	7293	— 0873	735	6,8
3	\mathbf{A}	Grimaldi	939	-6805	— 2314	719	18,8
4	A	Képler	985	7237	— 1650	742	12,8
5	C	id.	1,015	-7085	— 1698	729	13,5
6	A	Cap Héraclide	1,019	-0,7367	-0,0221	0,737	1,7
7	В	Cap Laplace	074	-7387	-0.0107	739	0,8
8	C	Copernic	128	— 7188	— 1687	738	13,3
9	A	id.	132	— 7168		737	13,3
10	В	id.	138	— 7138	— 1703	734	13,4
11	С	Platon	1,178	-0,7362	0,0001	0,736	0,0
12	A	id.	189	— 7306	— '0018	731	0,1
13	В	id.	190	— 7301	0020	730	0,1
14	В	Aristote	353	7278	— 0174	728	1,4
15	A	Manilius	374	- 7208	- 2970	780	22,4
16	С	id.	1,444	-0,6854	-0,3081	0,752	24,2
17	\mathbf{A}	Ménélaus	448	— 7134	— ² 3114	778	23,6
18	В	Posidonius	492	7232	— 3843	819	28,0
19	C	id.	515	— 7116	- 3880	811	28,6
20	A	Tycho	640	-5583	-4692	729	40,0
21	В	id.	1,642	-0,5573	-0,4695	0,729	40,1
22	C	id.	643	-5568	— 4697	729	40,1
23	A	Langrenus	944	— 6530	— 3291	731	26,7
24	A	Reichenbach	2,047	-5564	— 4468	714	38,8
25	A	Stevinus	092	— 5468	— 4591	71 4	40,0
26	В	Tycho	3,097	+0,1767	-0,7004	0,722	75,8
$\frac{20}{27}$	C	id.	117	+ 1869	$-\frac{0,7001}{7036}$	728	75,1
28	A	id.	120	+ 1884	-7041	72 9	75,0
29	C	Grimaldi	156	- 4412		733	53 ,3
30	A	Riccioli	156	4478	— 5764	730	52,2
31	В	Képler	3,385	-0,4885	-0,5472	0,734	48,3
32	В	Aristarque	427	5369		725	42,2
33	C	id.	436	5414	— 4879	729	42,0
34	A	id.	437	+ 5419	- 4881	729	42,0
35	В	Copernic	518	- 4875	— 5487	734	48,3
36	A	id.	3,527	+0,4920	-0.5501	0,738	48,2
37	C	Cap Héraclide	640	-5892	— 4395	735	36,7
38	\mathbf{C}	La Condémine	766	-6163	— 4138	742	33,9
39	A	Manilius	791	+ 4990	-5468	740	47,6
40	C	Platon	817	+ 5988	— 4196	731	35,0

N^{o}	Obs.	Cratère	T. U.	\boldsymbol{x}	\boldsymbol{y}	r	$ \Psi _0$
41	В	Platon	3,818	+0,5993	-0,4197	0,732	35,0
42	A	id.	825	+6029	— 4208	735	34,9
43	\mathbf{A}	Ménélaus	849	+4985	— 5421	737	47,4
44	\mathbf{A}	Pline	910	+4956	-5421	735	47,5
45	В	Posidonius	4,026	+ 5577	— 4881	741	41,2
46	A	Proclus	4,058	+0,4820	-0,5531	0,734	48,9

TABLEAU VII

Obs.	Immersion -	22	Emersion		
Obs.	r_0	rc	r_0	r_c	
A	$0,737 \pm 0,006$	0,716	$0,734 \pm 0,001$	0,716	
В	745 13		731	3	
C	749 13		733	2	
Moye	onne: 0,744	4	0,733		
Agrai	ndissement: 0,039 =	= 3,9 %	0.021 = 2.1	0/0	

III. Eclipse partielle de lune du 15-16 juillet 1954.

Les mauvaises conditions météorologiques ne nous ont pas permis d'observer cette éclipse. Par contre, nous avons reçu de la doctoresse M. A. Giannuzzi de Rome, les déterminations qu'elle a pu effectuer (mesures non encore publiées). Nous en avons tiré les agrandissements de l'ombre que nous vous présentons dans les tableaux suivants :

TABLEAU VIII

a) Conditions de l'éclipse (2) :

Entrée dans la pénombre	0		47,7 mn	1000 F
Entrée dans l'ombre	15	23	09,4	126° E
Milieu de l'éclipse	16	00	20,3	
Sortie de l'ombre	16	01	31,5	2140 E
Sortie de la pénombre	16	02	52,9	

Grandeur de l'éclipse : 0,411

b) Eléments fondamentaux de l'éclipse (2) :

T. U.	— ANTISOLEIL —	— S O L E I L —
	$-\alpha_1$ $ \delta_1$ $-$	λ_{\odot} eta_{\odot}
23	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-4,24 $-0,19$
0	39 01,82 29 44,7	-4,75 $-0,19$
$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$	39 11,93 29 20,9 39 22,03 28 57,0	$ \begin{array}{ccc} -5,26 & -0,19 \\ -5,77 & -0,19 \end{array} $
T. U.	L U N E	
	δ _L	— π _L — P
	h mn s ° ' ''	' "
23	19 35 12,61 -20 57 25,6	56 52,6 -7,72
0	37 28,83 49 0 9,3	54,0 — $7,93$
1	39 44,92 40 45,9	55,5 — $8,14$
2	42 00,87 32 15,4	56,9 —8,35
R _©	$\pi_{\odot} = 15' 44.2''$ $\pi_{\odot} = 8.7''$	* ************************************

TABLEAU IX

N^{o}	Cratère	T. U.	\boldsymbol{x}	\boldsymbol{y}	r	$ \Psi' ^0$
1	Schickard	23,220	-0,6108	+0,4363	0,751	35,5
2	Schiller	246	- 6493	+ 4084	767	32,2
3	Gassendi	386	-5486	+ 6285	834	48,9
4	Mercator	414	— 5828	+ 5082	773	41,1
5	Campanus	426	— 5673	+ 5194	769	42,5
6	Tycho	23,440	-0,6230	+0,4527	0,770	36,0
7	Maginus	472	— 6188	+4338	756	35,0
8	Grimaldi	525	— 3781	+6575	759	60,1
9	Walter	657	-5595	+ 5186	76 3	42,8
10	Bullialdus	659	— 4689	+ 5810	747	51,1
11	Hevelius	23,660	0,3187	+0.7098	0,778	65,8
12	Fracastore	0,257	3692	+6252	72 6	59,4
13	Colombo	427	— 3487	+6758	761	62,7
14	Langrenus	528	— 3446	+ 7089	788	64,1
15	Grimaldi	0,365	+0,0557	+0,7760	0,778	85,9
16	Bullialdus	0,759	+0,0982	+0,7355	0,742	82,4
17	Campanus	872	+ 1786	+ 7226	744	76,1
18	Mercator	905	+ 1865	+ 7178	742	75,4
19	Walter	959	+ 1122	+ 7011	710	80,9
20	Schickard	960	+ 2886	+ 6815	740	67,0

N°	Cratère	T. U.	\boldsymbol{x}	\boldsymbol{y}	r	$[\Psi]^0$
21	Langrenus	1,060	-0,0696	+0,7831	0,786	84,9
22	Fracastore	084	- 0576	+7408	743	85,5
23	Schiller	127	+ 3230	+6732	747	64,4
24	Colombo	127	-0126	+7736	774	89,1
25	Tycho	147	+ 2584	+6924	739	69,5
26	Maginus	1,282	+0,3162	+0,6879	0,757	65,3

TABLEAU X

Immersion		Emersion		
r_0	rc	r_0	r_c	
$0,767 \pm 0,006$	0,725	$0,750 \pm 0,006$	0,723	
Agrandissement :	5,7 %	3,7 %		

Nous adressons nos remerciements aux observateurs qui ont contribué à ce travail et à M. R. Bettems qui nous a utilement secondé pour la réduction des observations.

BIBLIOGRAPHIE

- 1. Bulletin of the Astronomical Institutes of Czechoslovakia (BAC), vol. V, no 4 (1954).
- 2. BAC, vol. IV, no 6 (1953).
- 3. BAC, vol. III, no 5 (1952).
- 4. Memorie della Società Astronomica Italiana, vol. XXV, p. 255 (1954).
- 5. Mitteilungen der Universitäts-Sternwarte Wien, Bd. VI, Nr. 10 (1954).
- 6. Bulletin Obs. Ondrejov, no 25 (1953).
- 7. Publ. Obs. Taschkent, vol. II, no 3 (1940).

Observatoire universitaire de Lausanne, septembre 1954.