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(LAUSANNE, SUISSE)

Quelques remarques au sujet de Délasticité

PAR

R. MERCIER

(Séance du 17 novembre 1948)

La théorie de I'élasticilé est certainement 'une des mieux
assises et des plus anciennes de la physique. En effet, I'une de
ses lois fondamentales, que l'on doit a Robert Hooke, date
du 17¢ siécle et depuis lors elle constitue l'une des bases de
la théorie mathématique des solides parfaits, théorie bien con-
nue des mathématiciens. des physiciens et des ingénieurs. Tou-
tefois, malgré les formes élégantes et classiques que lui onl
données les Lamé (1852). les Thomson el Tait (1866), celte
doctrine peut encore donner des sujets de réflexion.

On sait que I'analyse du mouvement dans les environs d'un -
point quelconque dun continu conduit a y distinguer la super-
position d’une translation, d'une rotation (tourbillon) et d'une
déformation pure. Les deux premiers ¢léments se retrouvent
dans 1'étude du continu rigide (solide invariable ou rigide)
tandis que le dernier est propre au systéme déformable. La
description de cette déformation pure fait ressortir les roles
de l'allongement spécifique et des déformations angulau‘res
Cest le tenseur des déformations qui caractérise en premiére
dpprommdtlon la distribution des déplacements relatifs des
points voisins autour de 'un d’entre eux. Utilisant un triedre
cartésien de référence, ce tenseur est compo‘se

des 3 ;.jlllf)ng;ement's specifiques ey, e, et ey
des strictions spécifiques Ggs Bay BE By

Les strictions e,,, €, et ¢;; mesurenl aussi la moitié des défor-
mations angulaires d'un parallélipipéde élémentaire aux arétes
initialement paralléles aux axes cartésiens. On peut encore y
noter l'allongement moyen e el la dilatation spécifique 3e.

D’autre part, I'analyse des forces intérieures qul peuvent
s'exercer mutuellement entre éléments voisins séparés par des
surfaces élémentaires conduit a considérer un autre tenseur a
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6 compoaantcs Utilisant le méme systéme d’axes cartésiens el
des surfaces qui lut seront nm‘mnlos on mtroduit les tensions

normales Giys Oy B Ggs
et tangentielles 7,,, Ty et Ty,

Une notion, ([u1 s'introduil toul naturellement dans la théorie
des fluides, et qui peut également étre utilisée 1c1 est celle de la

tension moyenne o qui sera la pression moyenne multipliée par
moins 1.

Les hypothéses de bhase de la théorie de l'éla%ticité classi-
(que du solide isotrope consizstenl a admettre que

1. s1 toutes les déformations s'annulent, il en est de méme
des tensions:

2. si dans un systéme d’axes (dit prmmpd] de détormation)
les strictions sont nulles. il en sera de méme des tensions tan-
gentielles (et le référentiel est aussi principal pour les tensions).

En postulant encors que les déformations doivent étre des
fonctions linéaires des tensions, on est conduit au systeme de
relations suivantes, valables dans tout référentiel :

B E \ m , ) . ( o E
v 117711 j ol -2m (€11 - €2z + €355) \ 12 = ]_“7!*_7—". €12
S . N S
S| L m T By N L R8T TR ] “m 23
A
a3 = —_— By o iy~ B e33)£ Ty oo oA es,
h 1“.Lm h 1-2m aal. ’. : 1+-m

Ces relations contiennenl deux constantes indépendantes,
E et m. La premicre est le module d’Young. la seconde le
module de Poisson. Rappelons rapidement leur signification.
Lorsqu'en un point, le solide leshque n'est sollicité que par
des tensions normales, paralléles & une seule direction, I'allon-
gemenl spécifique dans cetle direction est proportionnel a cette
tension normale et 1/E est précisément le facteur de propor-
tionnalité. Simultanément, des allongements de signe contraire
existent pour les deux directions orthogonales et leur valeur spé-
cifique est proportionnelle a la premiére, m étant le facteur
de proportionnalité (ccefficient de contraction latérale).

o = Eeyy - €gp = — M€y, €33 == — Meyy
€13 = €g3 = €3 = ()
Or, dans le cas de sollicitation quelconque, il est facile
d’établir que I'allongement spécifique moyen e est proportionnel
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a la tension moyenne o el qu’il en est de méme alors de la
dilatation spécifique 3e- - 0.
1-2
3(1-2m)
E

6 = e [
3 (1-2m)

l.e coefficient » — est appelé coefficient de com-

pressibilité.

Si un solide est (lefornmbl{' mais incompressible, ce coeffi-
cient doit s’annuler, ce qui n'est possible que si le module de
Poisson m vaul Vs, Ainsi, pour un solide Plfmliqup [n condition
d’ mcompre@snbrflfa est que le module de Poisson soil eqal a lYs.

Or, 1l est possible d’étendre cette terminologie aux fluides.
Mais alors, a l'état permanent (e‘(al d’équilibre) les tensions
normales sonl égales (et négatives) et leur valeur commune est
la pression p au point considéré.

Pour ne pas avoir de difficultés mathématiques, écrivons
les relations tensions-déformations en substituant A E le coeffi-
cient de compressibilité :

“12

Coa
bl

- 3(1-2m) | L ‘ / ~ 3(1-2m)
- (*]’*T'_ ) €11 -1 129 m (€11 1 €35 |- €33) { Tie = %_“‘_( 14+-m)

3 (1-2m) oom ' / 3 (1-2m)
pETEr Lok Pl g

3 (1-2m) \ m _ / 5  (1-2m)

% (14 ‘m) 1% m (€41 €02 O33) \ = T -m) .

Considérons alors un fluide enfermé dans un  cylindre
fermé par un piston et utilisons un référentiel dont le pre-
mier axe est paralléle a celui du cylindre. Lors d’une. compres-
sion du fluide. supposé compressible, tous les déplacements sonl
paralléles & cel axe. Les formules générales de I'¢lasticité pren-
nent la forme suivante :

3 (1- 2m) 1-m

@y, =~ f % (1 %m) 1-2 Bll \,
o 3(1-2m) { m /
2‘_’"'. p= %(1_-”)) / 1 Zm a \
IS

8= T PpP= x (1--m) I 1- Zm {
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On voit immédiatement que ces équations ne sont compati-
bles que si m = 15. Ainsi pour les fluides. l1 condition de com-
pressibilité est que leur module de Poisson soit égal a 5. en
opposition avec le cas des solides.

De plus, cette condition étant satisfaite, les tensions tan-
gentielles seront identiquement nulles, méme sil n'y a pas
équilibre. On se rend compte facilement du fait que les fluides
parfaits sont caractérisés par un module d’Young qui est nul:
cest la raison pour laquelle il convient, dans leur cas. d’écrire
les relations tensions-déformations en introduisant x%.

Une seconde remarque intéressante au sujet du solide élas-
tique peut se faire en cherchant I'expression des excés des ten-

stons normales sur leur moyenne s. Nous le ferons en mettant
en évidence le module de glissement G, défini par

I mesure le quotient constant de la tension tangentielle par
la striction (déformation angulaire) correspondante. On obtient
alors :

— c ~ = )
Oy — i:: 2 G (6’11 — E) Tig = 2 Gei?
022 —= 0 = 2 (; ('622 ‘8\) T'.23 = 2 G 623
033 —_— ) == 2 (; (BRH — P) 131 = 2 G ‘631
auxquelles équations il convient d’adjoindre la relation
I
c=—-3e

®

On distingue alors immédiatement le role particulier de
chacun des ceefficients x et G. On peut dire que le ceefficient
de glissement (. qui mesure l'importance de la rigidité de
forme du solide, est responsable, non seulement de l'existence
des tensions tangentielles, mais encore des écarts que présentent
les tensions normales sur leur valeur moyenne. Cette remarque
justifie I'emploi systématique du module de glissement que fail
Pauteur * dans une autre élude relative a la propagation des
ultrasons dans les solides.

VR, Mercier, Bull. Soc. vaud. Se. nal., Vol. 64, N° 272, 1948,
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