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Contribution a P'étude des ultrasons
(sutte)
PAR

R. MERCIER

(Séance du 17 novembre 1948)

3. Ceefficients d’élusticité et de viscosité.

Dans une premiére note, l'auteur a esquissé¢ les grandes
lignes d'une théorie formelle simplifiée de la propagation des
ondes mécaniques longitudinales dans un solide isotrope, théo-
rie qui doit permettre de discriminer. parmi les différentes
causes de l'absorption de ces ondes, celles afférant a la vis-
cosité de celles correspondant a la plasticité. A ce sujet, de
nombreux auteurs ont établi des théories basées sur des modéles
ou sunplement sur la thermodynamlque du solide, qui toutes
cherchent & ramener l'absorption a un phénoméne plus ou
moins compliqué de viscosité. La diversité de ces théories
démontre bien qu’aucune n'est satisfaisante et que les nom-
breuses mesures de l'absorption de 1'énergie mécanique faites
dans des circonstances trés variées ne cadrent pas avec ces
théories.

L’idée directrice que nous nous proposons d’exploiter ici
consiste & mettre en évidence le role joué par les déformations
e striction (deformat;om angulaires) dans la propagation des
ondes mécaniques dites longitudinales: on sait en effet que le
module d"Young E intervenant dans les lois de la déformation
des longueurs peut étre exprimé au moyen du module de glis-
sement G qui s’introduit dans les lois de la déformation an-
gulaire, tout au moins en premiére approximation. On a en
effet

= 2G (1+m)

ou m est le module de Poisson ou de contraction latérale, dans
le cas d’élasticité pure. Cette relation permet d’écrire la loi
fondamentale de 1’élasticité sous la forme tensorielle
2 .
¥ = (1/x ---;;G)Il.r(b - 2G @ 3.1
64-273 13



170 R. MERCIER

ou  est le tenseur des tensions et @ est le tenseur de la dé-
formation pure, une fois déduits les déplacements de transla-
tion et de rotation du milieu!. Cette notation est équivalente
a la suivante, obtenue en faisant emplol dun systeme de
coordonnées cartésien, de directions quelconques

1 2 " |
Oy = (“ —13 (e11 + €35 + €33) -+ 2 G ey, T, =2Gey,

%
1 2 3
Ogg = (‘K o 3G)(311 + e53) + 2 G ey Ty = 2 G ey 3.2
| 22 ‘ \
msz(;c— “G)( 111 €+ ess) + 2Gey T =26 ey )

ou les o sont les tensions normales. T les tensions tangentielles,
¢;i les allongements spemﬁques dans le sens des axes el les
¢;j représentent la moitié des déformations angulaires du pa-
rallelipipéde élémentaire. Comme finalement la irace de ¥
et celle de @ sont proportionnelles. leur rapport étant le triple
de l'inverse du coefficient de compressibilité (la trace de W
représente le triple de la tension « moyenne »). la loi de 1'élas-
ticité pure peut encore se mettre sous la forme trés symétrique

(W21 r¥) =26 (@ — 3 Tir o) 5.3

Or l'étude des milieux isotropes fluides visqueux fail in-
tervenir les vitesses de déformation, en particulier des défor-
mations angulaires. Ces vitesses de déformation constituent un
nouveau tenseur dont les éléments sont les dérivées par rapporl
au temps du tenseur des déformations ®. On peut donc le

noter ®. Si maintenant, on considére comme premiére approxi-
mation (d’ailleurs suffisante dans tous les cas d’application)
une lo1 de proportionnalité entre les vitesses de déformation
angulaire et les tensions tangentielles, on obtient, sous
forme tensorielle. I'expression '

(‘1’»;21tr‘l’)=211((i3ﬁ—§ltr(i3) 3.4
qui est équivalente aux expressions cartésiennes
cll—a;:?n(énﬁ—%) T =20 ey
022*'52211(‘:’22‘*;) 123=2né23 3.5
03:-;—_=2Tl(;333_é) T31:2"1‘;31

' A. Mercier : Lecons et problémes sur la théorie des corps déformables,
Rouge, Lausanne, 1943.
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l.a comparaison des deux lois fondamentales de 1'élasti-
cité pure et de la viscosité pure fait entrevoir la forme générale
de la loi régissant le comportement d'un milieu continu élas-
tique avec rigidité et viscosité. On peut imaginer en effet que
lors de son mouvement. des tensions (normales et tangentielles)
seront nécessaires pour entretenir la déformation actuelle, re-
présentée par le tenseur ® et que, de plus. des tensions supplé-
mentaires devront exister pour entretenir les vitesses de défor-
mation. En vertu de la linéarité des lois ci-dessus, on voit
que les relations générales exprimeront une simple superposi-
tion des tensions. On admettra donc, en premiére approximation,
la loi

1

(W —:1tr¥) = 2G(F1’~%lh‘®) +2n ((i)—%ltr(i)) 3.6

ol

pour le solide visqueux. Toutefois une relation supplémentaire
doit étre adjoin'e qui liera les traces des tenseurs entre elles.
Clest 1a que se pose un probleme assez ancien mais qui n’a pas
encore recu de solution satisfaisante.

Dans le cas de I'élasticité pure, nous avons vu que la
dilatation spécifique, mesurée par la trace de @ était propor-
tionnelle a la tension moyenne, mesurée par le tiers de la trace
de w. Lorsqu'un frottement interne existe dans le milieu, il
se manifeste généraloment par des tensions tangentielles
supplémentaires et ca  frotiement esl caractérisé par le
ceefficient de viscosité n. Mais si le milieu est animé d'un mou-
vement d’expansion, sans déformation angulaire, la tension
moyenne 6 est-elle entierement déterminée par la dilatation
spécifique actuelle ou, au contraire. faut-il un supplément de
tension pour entretenir le mouvement d’expansion ? Pour étre
général, il faudrait admetire cette derniére éventualité, quitte
a la supprimer si l'expérience (qui n'a pas encore répondu a
cette question) 2n démontre 'inexistance !. Nous pourrons alors,
toujours en premicére approximation, admettre une loi linéaire
de viscosité d’expansion el écrire

3 : .
lrw s—}zfrfb 3N tr@ 3.7
Le cceefficient N\’ ainsi introduit dans la théorie du solide
élasto-visqueux sera le ceetficient de viscosité d’expansion. Sto-

kes, dans sa théorie, admet qu’il est nul.

1 Voir page 177.
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4. Cas du milieu plastique.

En suivant la ligne de développement donnée a la théorie
du milieu élastique et visqueux. il semble logique de I'éten-
dre au cas du solide plastique relaxatif de Maxwell; mais il
faut alors généraliser I'expression 3 donnée dans la premiére
note ! concernant la liaison linéaire entre déformation angu-
laire et tension tangentielle.

L’hypothése nouvelle consiste donc a admettre en premiére
approximation la relation générale suivante :

(I »—éltr‘i’) }ﬁf(‘If—%Itr‘If):2G ((i)—iltrfb)
L2n (B — o Tird) 11

i condition d’adjoindre & cette équation celle qui exprime
comment varie la dilatation spécifique, tr ®. Par raison d’ana-
logie et de symétrie, et toujours en premiére approximation, il
semble naturel d’admettre la relation linéaire

. ;j . LR
tr‘-If—.ff’tr‘lf:=7—Ctr<l)~4—3)\'trcb 4.2

qui contient, outre les ceefficients de compressibilité et de
viscosité d’expansion, un troisieme ceefficient f' que I'on pourra
appeler module de plasiicité d’expansion®. 1”existence de celui-ci
est suggérée par les variations définitives et mesurables de la
densité de coprs isotropes traités mécaniquement (compres-
sion, laminage, étampage, etc.).

Sous forme cartésienne, les relations générales ci-dessus,
s’écrivent :

(611 ’__C—‘) “':“f(511_E)=2G(é11_;3>+9'1 (én_'é)
(o 22“‘5)7"]‘(522—‘5)—2G(¢22—8)+2 (;3-22—‘;)
(633 — 0) 'r‘f(ﬁsa—“d) 2G(~‘333“‘e)+2n(633“e)
%12—f—f'T12:2G612—|—2T1812 \ 4.3
:'723“!‘f'1: :'2(};3234"2"1.9'25
31+ft :2G331+2n931
- g
57‘](6 e +3\e

1 R. MEwcier @ Bull. SVSN, 64, No 272, 1945,
? Les solides polycristallins présentent souvent un état de plasticité évi-

dente lorsque les tensions internes dépassent une certaine limite. Nous écar-
tons ici ce cas qui ne présente pas la ¢linéarité» postulée.
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en rappelant que
86 = Gy, - Ggy -+ Oy
3e=e; + ey + €33

Il est évident que ce systéme n’est pas complel au sens des
mathématiciens et qu’il ne saurail, seul, résoudre tous les pro-
blémes. Toutefois ces équations permettent, entre autres, de dé-
terminer les tensions lorsqu’on connait le mouvement ou réci-
proquement, de déterminer le mouvement de déformation si
]es tensions sont supposées connues. Dans nos applications, il
s'agira en général de rechercher les solutions périodiques dans
le temps.

Cas des ondes planes.

Pour se rendre compte de l'effet de la viscosité et de la
plasticité lors de la propagation d’ondes dans le milieu étudié,
nous allons tout d’abord admettre que le mouvement ne sc
fait que parallelement a un axe (celui des x) et que chaque plan
normal & cet axe est simplement animé d'une translation. Le
probléme est alors ramené a sa forme la plus simple; on dira
quon a un probleme unidimensionnel. L’expression mathéma-
tique de ces hypotheses est

€99 = €33 = €19 = Cyy —

el fes équations tensions-déformations deviennent

(“11—8)“.+' (011‘_‘8) 3(’(311“3)+2ﬂ(311—3)r2ﬁ0

(‘.522 - “") _Jf (O — E) =—2 Ge — 2 ne Tyy =0
(545 — ) f (653 —8) — —2G e — 2ne -
250 . 3 . ..
ct+fo==-et+3\Ne

On a de plus

~ o

é=gey =3 (611 | Ogs 1~ Ogg) 5.2

Admettons maintenant la dépendance périodique du temps,

en utilisant les quantités complexes, et en postulant une propa-

gation d’'ondes planes, dans la direction de l'axe des z, cela
fournit pour I'allongement spécifique e, 1'expression

ey = E ei(m—k;r)



171 R. MERCIER

De facon analogue, les tensions normales s’écrivent

iy = Sl el (mt— ky) By = 52 el (mt — ky) Gy = Sg el (mt — kx)

ou les S; sont leur amplitude. Nous désignerons encore par S
I'amplitude de la tension moyenne.

Substituant alors dans les équations 5.1 et 5,2, on obtient
toutes les tensions. réelles et movennes, en fonction de 'am-
plitude E, et chacune contient lexponentlelle imaginaire en
facteur. Les relations entre amplitudes (complexes) sont :

= i % N o2 .,
B o= ' E
f o

S (lo/x —XN o2 4 LCJ(I — nw?

S, =) e +3 FE— 5.3
/% — N o2 0 10)(1 — Nw .
g, ytem—=Not ol et g
- 4 f’ +ilo 3 f i ) ! Sy /

La premiére fail apparaitre un cefficient de compressibilité
dynamique %, qui peut s’écrire

/v (N
1/ng = —"—r— H.4
d 1 —if/o

Il est complexe pour toute fréquence el devienl imaginaire
pour de trés basses fréquences: il devient meéme infini, ce qui
équivaudrait a admettre que la matiére prend un volume éva-
nouissant lors d'une compression. Ce fait étant physiquement
absurde, on voit que le ceefficient [ de plasticité de volume
ne peut étre que nul '

ff=0

Alors le ceefficient de compressibilité dynamique devient
1/xg=1/x+i\No

el dans l’hyputhése d’une indépendance entre les ceefficients
caractéristiques, x, X\ n, f, dune part et la fréquence o
d’autre part, la valeur absolue de la oompresmblht(- doit dimi-
nuer lorsque la frbqu«enue augmente, mais aussi présenter un
déphasage sur la presblou moyenne, ce qui implique une dissi-
pation d’énergie croissant avec la fréquence.

1 On peut aussi admettre que la plasticité ne suit pas une loi de propor-
tionnalité ; nous renvoyons ce cas, souvent rencontré en pratique, a une étude
ultérieure.
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Avec la derniére simplification (f” = 0), les tensions pren-
nent les valeurs :

S= —E
Kd

(1 . 4 (oG — nm?
:‘ 7:5_ L \ @ ____mw_l /o
el L o R var o 1 ¢ 99
’ 1 ) 2 — 12
S; = }= 1t Nw o M LlisV -
- ?% 3 f+Lm \ 5

Il est alors intéressant de prévoir comment doit varier, dans
ces conditions, la célérité de phase de l'onde el le coefficient
d’amortissement. ceci en fonction de la fréquence. Une compa-
raison avec les valeurs trouvées expérimentalement permettra
de déterminer jusqu’a quel point les hypotheses formulées sont
adéquates et éventuellement, de déduire des valeurs mesurées.
les grandeurs numériques des ceefficients introduits dans cette
théorie. A cet effel, nous remarquons que les derniéres expres-
sions contienneni. dans leur parentheése, le rapporl constant
existant entre la valeur maximum S; de la tension normale et la
valeur maximum de 1'allongement spécifique ¢;. Ces parentheéses
ne représentent donc pas encor: l'impédance d’onde Z, mais
vont permettre de la calculer. =

Si € représente le déplacement. au temps £, des points maté-
riels dont l'abcisse (a l'état de repos) vaut r, I'allongement
spécifique e, selon Ox est

o%
€y = %
X

el sa valeur en x et a I'époque ¢ esl

..... ei (0t — kx)

Il en résulte. si nous excluons une translation quelconque
du milieu,

¢ . Cu
g L k

de sorte que la vitesse v vaul
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I'impédance d’onde Z, définie par le rapport complexe de la
lension o, a la vitesse de déplacement v sera

S e S el' (ot — kx) ].. .
Z = e 1 L - = + = 1 — 1IN o 7.;_

oG — nw?, _
x hd . 5.0
v — (o/k) ey w!x

f+Hio )

On voit ainsi que 7 est liée au nombr: d'ond= £ qui sera
complexe en méme temps que I'impédance d’onde.

D’autre part, la loi de Newton appliquée a une portion de
matiére d’extension infinitésimale, impose que

ol e

Dv 2
o o — 01 5.7
Dt ox
; , 5 7 i Do
ou p représente la densité actuelle de la maliére et Dy la

dérivée matérielle;: nous admettons que © est fort peu différente
de sa valeur « au repos». Or

Dv & = v 102
Di & T v Y # (1-1-ey,) ey

el pour de petits mouvements, cette dérivée matérielle se réduil

a la valeur
v {2

S e e
ot ko

D’autre part la tension o,, est aussi fonction harmonique u
temps et du lieu, ce qui donne :

o 1
aé"—;l — kS, R i o

4 (oG — o)
3 f e VOO

Introduisons ces valeurs dans l'équation de Newton: on
obtient

02
o e — k(e
ou bien
k' p —olk[ 1
G)=tf7  amr

Substituant alors cette valeur dans Z, on obtient finalement

1 4 i_an — o2n ]112 5 8

V‘ ( L] —— ljg —_ | 1 r - ——
[(C)) e l:x—t—lam)\'—r—g f+lm
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Ainsi la recherche expérimentale de la loi de dispersion de
I'impédance d’onde devrait permetire de controler la validité
des hypothéses postulées. On voit en particulier que :

a) pour un fluide élastique parfait, I'impédance d'onde sera
réelle et indépendante de la fréquence:

Z=\/E G—N—f—n=0

b) sil s’agit d'un solide élastique parfait, il en sera de méme

¢) si le solide ne présente pas de plasticité, Z sera complexe
el il y aura extinction des ondes, produite par les deux viscosités

/ﬁf\/p/% w()\’—ﬁgn): f=1

.en particulier, la partie uudgmalre de I'impédance contiendra
un terme linéaire en o qui proviendra de la viscosité de dilata-
{1on, représentée 1C1 par \'.

Au sujet de ce dernier phénomene, dont I'existence h)‘pothé—
hque a déja été formulée par Stoxkrs?) puis écartée apres discus-
S10n sominaire, quelques rares auteurs ont essaye de repenser
la questlon Rappelons qu’il s’agit de savoir si la vitesse de
compression (ou de dllata’uon) pouvait étre limitée et sil fallait
pour produire cette compression exercer une prebsmn hydro-
statique en supplément de celle qui est nécessaire a 1’équilibre ;
dans D'affirmative, I'écart est-il proportionnel a la vitesse de la
variation de volume ? A la connaissance de l'auteur, le premier
travail fournissant un argument qui semble établir 1'existence
de la viscosité de dilatation est celui de L.-N. LIERBERMANN 2).
Il est basé sur la mesure de l'absorption des ultrasons dans
I'eau pure.

En général on mesurera le nombre d’onde /i correspondant
a une pulsation donnée. Ce nombre d’onde sera complexe et sa
partie 1maginaire correspondra au facteur d’extinction de I'onde.

G) We=fe=ne=

Ooi-b

(.

i 4

ool |

1 Stokes : Mathemalical and Physical Papers, Vol. I, p. 55

% N.-L. Liersermany @ The Origin of Sound Absorption in Water and Sea-
Water. Journ. of Acous!t. Soc. America, tome 20, p. 868, 1948.



178 R. MERCIER

En effel, en substituant la valeur 5,8 a 7Z dans l'équation
5.6, on obtient
— 1y

£l . s —,_410)(1—-032112 59

el en séparant les parties réelles et imaginaires, c’esl-a-dire en

en posant
lt' — Il‘l = i . kz

I'équation de 'onde de vitesse devient
v (xy t) =V, ek it —kiv)

Enfin lintensité J ou puissance spécifique moyenne de 1'on-
de se calcule, comme d’habitude, au moyen de

J=1/4 (Z v.v* - Z*v*.v)

ou lastérisque indique qu’il faut prendre le complexe conjugud
de la grandeur en cause.

6. Controle.

A titre de conlrole on peul rechercher ce que donne cetle
théorie générale dans le cas de la propagation d’ondes dans un
milieu fluide et visqueux. Dans ce cas, il n’y a ni rigidité
(G = o0), m plasticité (f = 0). De plus nous admettons que les
viscosités sont faibles.

lle ceefficient d’affaiblissement de la vilesse (comme de la
tension, d’ailleurs) est fourm par la partie imaginaire du nom-
bre d’onde complexe, c’est-a-dire par k.. Or [ devient ici

T —1g
k= opl2 )= L jo ()\’“—411); 2 6.1

/

que I'on peut mettre sous la forme

. /,1\ —1' \ o . 4 N oy—12
= wpl2 (;) ¢ 1+ tox ()\’ T3 Fl)(

Les viscosités sont supposées assez faibles pour que la partie
imaginaire du nombre complexe entre crochets soit petite en
regard de 1. Dans ces conditions, le nombre d’onde devient trés
sensiblement égal a |

N PR VR SR
]L*—*(')\szl_l 2 (A 7ﬁ311)>
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el sa partie imaginaire
wx , \
1'2:——— (n\ py; 2 (J\ - ll),
tandis que sa partie réelle esl
k= \px

Cette derniére permet de calculer la célérité de phase de
I'onde

el la longueur X correspondante. En éliminant alors dans Fk, le
ceefficient de compressibilité x, on obtient finalement pour le
facteur d’extinction k, la valeur

2 w? w2 \’

S R S 6.2
3pu " 2pud

-

]!72 i v

L.e premier terme est celui donné par Stokes lui-meme,
landis que le second est attaché a l'existence de la viscosité de
dilatation. C’est ce supplément d’extinction qui semble avoir
¢té observé par N.-L. LiEBERMANN L.

Ainsi la théorie de la propagation dondes mécaniques
planes se propageant dans des milieux rigides, élastiques, vis-
(queux et plastiques retrouve, comme cas particulier, un résultat
classique.

1 loe. cil.
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