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Bulletin de la Société vaudoise des Sciences naturelles
Vol. 64 1949 N° 273

Contribution à l'étude des ultrasons
(suite)

PAR

R. MERCIER

f Séance du 17 novembre 1948)

3. Coefficients d'élasticité et de viscosité.

Dans une première note, l'auteur a esquissé les grandes
lignes d'une théorie formelle simplifiée de la propagation des
ondes mécaniques longitudinales dans un solide isotrope, théorie

qui doit permettre de discriminer, parmi les différentes
causes de l'absorption de ces ondes, celles afférant à la
viscosité de celles correspondant à la plasticité. A oe sujet, de
nombreux auteurs ont établi des theories basées sur des modèles
ou simplement sur la thermodynamique du solide, qui toutes
cherchent à ramener l'absorption à un phénomène plus ou
moins compliqué de viscosité. La diversité de ces théories
démontre bien qu'aucune n'est satisfaisante et que les
nombreuses mesures de l'absorption de l'énergie mécanique faites
dans des circonstances très variées ne cadrent pas avec ces
théories.

L'idée directrice que nous nous proposons d'exploiter ici
consiste à mettre en évidence le rôle joué par les déformations
de striction (déformations angulaires) dans la propagation des
ondes mécaniques dites longitudinales: on sait en effet que le
module d'Young E inten enant dans les lois de la déformation
des longueurs peut être exprimé au moyen du module de
glissement G qui s'introduit dans les lois de la déformation
angulaire, tout au moins en première approximation. On a en
effet

E 2G(l-m)
où m est le module de Poisson ou de contraction latérale, dans
le cas d'élasticité pure. Cette relation permet d'écrire la loi
fondamentale de l'élasticité sous la forme tensorielle

¥=(l/x — gG)Ifr<B + 2G* 3.1
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170 R. MERCIER

où «i* est le tenseur des tensions et $ est le tenseur de la
déformation [iure, une fois déduits les déplacements de translation

el de rotation du milieu L Cette notation esl équivalente
à la suivante, obtenue en faisant emploi d'un système de

coordonnées cartésien, de directions quelconques :

— ô G )(«ii + e22 + eS3) ft 2 G eu

rt2s — ^ G Veu -\ «22 4- ^33) + 20 e,2 t.,. 2 G e2:1 j> 3.2

«ss (- — g G )(en -j e22 + e33) + 2 G ei3 tsi 2 G e31

où les a sont les tensions normales, t les tensions tangeiitielles.
c,-; les allongements spécifiques dans le sens des axes et les

cij représentent la moitié des déformations angulair?s du pa-
rallèlipipède élémentaire. Comme finalement la trace de *ï'

et celle de <& sont proportionnelles, leur rapporl étant le triple
de l'inverse du coefficient de compressibilité (la tracs de 'I'
représente le triple de la tension < moyenne »), la loi de l'élasticité

pure peut encore se mettre sous la forme très symétrique

(W — |l*rW) 2G(<ï> — ~ïtr^) 3.3

Or l'étude des milieux isotropes fluides visqueux fail
intervenir les vitesses de déformation, en particulier des
déformations angulaires. Ces vitesses de déformation constituent un
nouveau tenseur dont les éléments sont les dérivées par rapporl
au temps du tenseur des déformations <I>. On peul donc le

noter O. Si maintenant, on considère comme première approximation

(d'ailleurs suffisante dans tous les cas d'application)
une loi de proportionnalité enlre les vitesses de déformation
angulaire et les tensions tangentielles, on obtient, sous
forme tensorielle. l'expression

1 1
(W — -ItrW) 2tv($ — ni tr®) 3.4

qui est équivalente aux expressions cartésiennes

au-« 2ti(«u-e) x18 2n.e12
—• • — ¦

Ss — a 2n (e22 — e) T28 2n«23 3.5

öss — <* 2 i\ (e3i — e) x31 2 n. eu
1 L Merciek : Leçons et problèmes sur la théorie des corps déforma blés.

Rouge, Lausanne, 1943.
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La comparaison des deux lois fondamentales de l'élasticité

pure et de la viscosité pure fait entrevoir la forme générale
de la loi régissant le comportement d'un milieu continu
élastique avec rigidité et viscosité. On peut imaginer en effet que
lors de son mouvement, des tensions (normales et tangentiales)
seront nécessaires pour entretenir la déformation actuelle,
représentée par le tenseur $ et que. de plus, des tensions
supplémentaires devront exister pour entretenir les vitesses de
déformation. En vertu de la linéarité des lois ci-dessus, on voit
que les relations générales exprimeront une simple superposition

des tensions. Ou admettra donc, en première approximation,
la loi

(V - - 11 tr V) 2 G (<î> — -\ I tr O) - - 2 n (* — i I tr è) 3.6

pour le solide visqueux. Toutefois une relation supplémentaire
doit être adjoins qui liera las traces des teneurs entre elles.
C'est là que se pose un problème assez ancien mais qui n'a pas
encore reçu de solution satisfaisante.

Dans le cas dc l'élasticité pure, nous avons vu que la
dilatation spécifique, mesurée par la trace de <& était
proportionnelle à la tension moyenne, mesurée par le tiers de la traci1
de *P. Lorsqu'un frottement interne existe dans le milieu, il
se manifeste généralement par des tensions tangentielles
supplémentaires et oe frottement esl caractérisé par le
coefficient de viscosité r\. Mais si le milieu est animé d'un
mouvement d'expansion, sans déformation angulaire, la tension

moyenne a est-elle entièrement déterminée par la dilatation
spécifique actuelle ou. au contraire, faut-il un supplément de

tension pour entretenir le mouvement d'expansion Pour être
général, il faudrait admettre cette dernière éventualité, quitte
cà la supprimer si l'expérience (qui na pas encore répondu à

cette question) an démontre l'inexistance L Nous pourrons alors,
toujours en première approximation, admettre une loi linéaire
de viscosité d'expansion el écrire

o

(rî'=-(r$ I- 3 x' tr <È> 3.7
x

Le coefficient X' ainsi introduit dans la théorie du solide
élasto-visqueux sera le coefficient de viscosité d'expansion. Stokes,

dans sa théorie, admet qu'il est nul.

i \ oil- pa^e 177.



172 R. MERCIER

4. Cas du milieu plastique.
En suivant la ligne de développement donnée à la théorie

du milieu élastique et visqueux, il semble logique de l'étendre

au cas du solide plastique relaxatif de Maxwell; mais il
faut alors généraliser l'expression 3 donnée dans la première
note1 concernant la liaison linéaire entre déformation angulaire

et tension tangentielle.
L'hypothèse nouvelle consiste donc à admettre en première

approximation la relation générale suivante :

(4» — ^Ifrf) + / OF — 11 tr W) 2 G (ô — 11 tr è)

+ 2n(* — l\ltr'è) 4.1

à condition d'adjoindre à cette équation celle qui exprime
comment varie la dilatation spécifique, tr <3>. Par raison d'analogie

et de symétrie, et toujours en première approximation, il
semble naturel d'admettre la relation linéaire

trW f'trV -=-frô+ 3 X'ir * 4.2

qui contient, outre les coefficients de compressibilité et dc

viscosité d'expansion, un troisième coefficient f que l'on pourra
appeler module de plasticité d'expansion2. L'existence de celui-ci
est suggérée par les variations définitives et mesurables de la
densité de coprs isotropes traités mécaniquement (compression,

laminage, étampage, etc.).
Sous forme cartésienne, les relations générales ci-dessus,

s'écrivent :

Ki - o) -f- / («u - «) 2 G (ên - «) + 2 n («u - e)

(°22 — o) -f / («m — es) 2 G (e22 — e) -f- 2 n. (e22 — e)
_i _ jl

Ks — ö) ft / (öS3 — ö) 2 G (e33 — e) + 2 n. (e33 — e)
• ¦ • •

Ti2 -r /'Ti2 2 G e12 -\-2r\ el2
• • •»
T23 + /' T23 2 G e23 + 2 n, e28

'r.i + /'T3i 2 G eìt -f- 2 n ë81

1 II. Mekcikr : /Ju«. SVSN, 64, \o 272, 194S.
a Les solides polycristallins présentent sou\enl un élat dc plasticité

évidente lorsque les tensions internes dépassent une certaine limite. "Vous écartons

ici ce cas qui ne présente pas la «linéarité» postulée.



CONTRIBUTION A E'ÉTUDE DES ULTRASONS 173

en rappelant que

3 ö °ii + Ö22 + Ö33

o e eu -|- e22 -f* e3s

Il esl évident que ce système n'est pas compiei au sens des
mathématiciens el qu'il ne saurait, seul, résoudre tous les
problèmes. Toutefois ces équations permettent, entre autres, de
déterminer les tensions lorsqu'on connaît le mouvement ou
réciproquement, de déterminer le mouvement de déformation si
les tensions sont supposées connues. Dans nos applications, il
s'agira en général de rechercher les solutions périodiques dans
le temps.

5. Cas des ondes planes.

Pour se rendre compte de l'effet de la viscosité et de la
plasticité lors de la propagation d'ondes dans le milieu étudié,
nous allons tout d'abord admettre que le mouvement ne se

l'ait que parallèlement à un axe (celui des x) et que chaque plan
normal à cet axe est simplement animé d'une translation. Le

problème est alors ramené à sa forme la plus simple; on dira
qu'on a un problème unidimensionnel. L'expression mathématique

de oes hypothèses est

e22 — e33 ~ ei2 — e2S e31 0

el les équations tensions-déformations deviennent

e) + 2 n (en -- e) Ti2 - 0

2r\e *23^0
2 tie T31=0

(°u — ö)+/(öu —<*)=¦ 2G(en-
(°22 - - °) t / (°22 — a) — 2 G e

(itt_o)+/(o,8_ô) —2Gë

d-f /'ë= L ë+3x'ê' Y.
'

On a de plus
1 I

e 3«u ö= g («11^022 + ö33) 5-2

Admettons maintenant la dépendance périodique du temps,
en utilisant les quantités complexes, et en postulant une propagation

d'ondes planes, dans la direction de l'axe des x, cela
fournit pour l'allongement spécifique en l'expression

elt E e*(*><-*«)

>ö.l
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De façon analogue, les tensions normales s'écrivent

öii Sie1'*"" **) ö22=S2e""" **) ö38 S8C'<'"'-fcï>

où les S,- sont leur amplitude. Nous désignerons encore par S

l'amplitude de la tension moyenne.
Substituant alors dans les équations 5.1 et 5,2, on obtient

toutes les tensions, réelles et moyennes, en fonction de
l'amplitude E, et chacune contient l'exponentielle imaginaire en
facteur. Les relations entre amplitudes (complexes) sont :

~ _
i co/x — X' w2

F \

5" f+iœ -*1

c £ i m, x — X' ra2 4 icoG — lira2 „ '
„ „

t / œ 3 / t- ko i

^
c i ça/r. — X' co2 2 icoG — t\oo2 „ „ 1

&2=Ì /' + jra 3" /-rico \h ï*> /

La première fail apparaître un coefficient de compressibilité
dynamique xrf qui peut s'écrire

1/x -f t'X'co
1 — J f /co

Il esl complexe pour toute fréquence el devient imaginaire
pour de très basses fréquences: il devient même infini, ce qui
équivaudrait a admettre que la matière prend un volume
évanouissant lors d'une compression. Ce fait étant physiquement
absurde, on voit que le coefficient f de plasticité de volume
ne peut être que nul 1.

/' 0

Alors le coefficient de compressibilité dynamique devient

1/Xrf 1/x-j- i\'m

et dans l'hypothèse d'une indépendance entre les coefficients
caractéristiques, x, X' i\. f, d'une part et la fréquence co

d'autre part, la valeur absolue de la compressibilité doit diminuer

lorsque la fréquence augmente, mais aussi présenter un
déphasage sur la pression moyenne, ce qui implique une
dissipation d'énergie croissant avec la fréquence.

1 On peut aussi admettre que la plasticité ne suit pas une loi de
proportionnalité ; nous renvoyons ce cas, souvent rencontré en pratique, à une étude
ultérieure.
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Avec la dernière simplification (/' o), les tensions prennent

les valeurs :

S i E \

Xrf J

Cl., 4 /coG — non2 f
r- ybi - : i X'co - t. —7 ft— E } 5.5

x 3 / — tra

c S
'

¦ 2 /coG — ura2 s

S, - r- J X'CO — sr -. ft E S-;
(x 3 /-fico

Il est alors intéressant de prévoir comment doit varier, dans
ces conditions, la célérité de phase de l'onde et le coefficient
d'amortissement, ceci en fonction de la fréquence. Une comparaison

avec les valeurs trouvées expérimentalement permettra
de déterminer jusqu'à quel point les hypothèses formulées sont
adéquates et éventuellement, de déduire des valeurs mesurées,
les grandeurs numériques des coefficients introduits dans cette
théorie. A cel effet, nous remarquons que les dernières expressions

contiennent, dans leur parenthèse, le rapport constant
existant entre la valeur maximum S; de la tension normale et la
valeur maximum de l'allongement spécifique e,. Ces parenthèses
ne représentent donc pas encor:1 l'impédance d'onde Z, mais
vont permettre de la calculer.

Si Ç représente le déplacement, au temps t. des points matériels

dont l'abcisse (à l'état de reposi vaut x, l'allongement
spécifique e, selon Ox est

<u ~dx

el sa valeur en x et à l'époque t est

en E ë <»>*-**)

Il en résulte, si nous excluons une translation quelconque
du milieu,

de sorte que la vitesse v vaut

i k

ra

»-Ç--J-««:
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l'impédance d'onde Z, définie par le rapport complexe de la
tension fu à la vitesse de déplacement v sera

rj — du _Sj«l<*>'--**> Ar C1 4 iraG — rira2; _ „Z- -*—-y-r -f -lX'œ+5 j ; 5.6
u — (w/K) en m' % ¦ > / -f ira i

On voit ainsi que Z est liée au nombre d'onde k qui sera
complexe en même temps que l'impédance d'onde.

D'autre part, la loi de Newton appliquée à une portion de

matière d'extension infinitésimale, impose que

p
D« _ Son

5 n9v>t~ dx b-'

.Droù p représente la densité actuelle de la matière et la

dérivée matérielle; nous admettons que p est fort peu différente
de sa valeur « au repos ». Or

Du dv dv im2

Dt^dt fvto= ¦

k (1 >~ **)<-*

et pour de petits mouvements, cette dérivée matérielle se réduit
à la valeur

dv im2

ft T e'n

D'autre part la tension ou est aussi fonction harmonique d\i
temps et du lieu, oe qui donne :

|îi - - »S» e^> -M - ik ji + iraX' f J '«G -^ j
dx f x 3 / -f ira

Introduisons ces valeurs dans l'équation de Newton: on
obtient

ira2
r

ou bien
/Z-\* r, L-

-l'i

im2
- ik \.

k\*_ p

°>/ [¦ ¦••]
- p%

m

Substituant alors cette valeur dans Z, on obtient finalement

ri L

Z (co) p1!* - -f iraX' -f j
4 iraG — m2r\

3 / -f im

ila
5.8
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Ainsi la recherche expérimentale de la loi de dispersion de

l'impédance d'onde devrait permettre de contrôler la validité
des hypothèses postulées. On voit en particulier que :

a) pour un fluide élastique parfait, l'impédance d'onde sera
réelle et indépendante de la fréquence:

i-sjl G=v=/=n=o

b) s'il s'agit d'un solide élastique parfait, il en sera de même

~WP(* + H X' / n o

c) si le solide ne présente pas de plasticité, Z sera complexe
el il y aura extinction des ondes, produite par les deux viscosités

et, en particulier, la partie imaginaire de l'impédance contiendra
un terme linéaire en w qui proviendra de la viscosité de dilata-
lion, représentée ici par X'.

Au sujet de ce dernier phénomène, dont 1 existence hypothétique

a déjà été formulée par Stores ') puis écartée après discussion

sommaire, quelques rares auteurs ont essayé de repenser
la question. Rappelons qu'il s'agit de savoir si la vitesse de

compression (ou de dilatation) pouvait être limitée et s il fallait
pour produire cette compression exercer une pression
hydrostatique en supplément de celle qui esl nécessaire à l'équilibre;
dans l'affirmative, l'écart est-il proportionnel à la vitesse de la
variation de volume A la connaissance de l'auteur, le premier
travail fournissant un argument qui semble établir l'existence
de la viscosité de dilatation est celui de L.-N. Lierbermann 2).
Il est basé sur la mesure de l'absorption des ultrasons dans
l'eau pure.

En général on mesurera le nombre d'onde k correspondant.
à une pulsation donnée. Ce nombre d'onde sera complexe et sa

partie imaginaire correspondra au facteur d'extinction de l'onde,

i Stokes: Mathematical and Physical Papers, Vol. Ill, p. .")•).

2 N.-L. Lierbermann : The Origin of Sound Absorption in Waterand Sea-
Water. Journ. of Acousl. .Soc. America, tome 20, p. 868, 1948.
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En effet, en .substituant la valeur 5,8 à Z dans 1 équation
5,6, on obtient

fc-ttp'^+iaiX'+ì^r/'V* 5.9
x '3 j -f ira 3

el en séparant les parties réelles et imaginaires, c'est-à-dire en
en posant

lì /Cj l K2

l'équation de l'onde de vitesse devient

v (xt 1) =V0e-M e**1»'-*'*)

Enfin I intensité J ou puissance spécifique moyenne de l'ondo

se calcule, comme d'habitude, au moyen de

J 1 4 (Z u.u*-f Z*u*.u)

où l'astérisque indique qu'il faut prendre le complexe conjugué
de la grandeur en cause.

6. Contrôle.

A titre de contrôle ou peut rechercher ce que donne cette
ihéorie générale dans le cas de la propagation d'ondes dans un
milieu fluide et visqueux. Dans ce cas. il n'y a ni rigidité
(G o), ni plasticité (/=o). De plus nous admettons que les
viscosités sont faibles.

Le coefficient d'affaiblissement de la vitesse (comme de la

tension, d'ailleurs) est fourni par la partie imaginaire du nombre

d'onde complexe, c'est-à-dire par k... Or k devient ici

6.1
1 / 4 \ )~i;2

fc«œp*J- + to (x'-fgn);
que l'on peut mettre sous la forme

/l\-rs / 4 \ rv*
l'-°^'2{^) <] H00* vx'+8nj!

Les viscosités sont supposées assez faibles pour que la partie
imaginaire du nombre complexe entre crochets soit petite en
regard de 1. Dans oes conditions, le nombre d'onde devient très
sensiblement égal à

k--=m vpx jl — i 2
[ X'+^ny,
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et sa partie imaginaire
OJX / \

k2 — ra\ px 2
I x' r n

tandis que sa partie réelle est

\ o \ px

Cette dernière permet de calculer la célérité de phase de
l'onde

1
u ,- -7=«i \ P*

el la longueur X correspondante. En éliminant alors dans k2 le
coefficient de compressibilité x, on obtient finalement pour le

facteur d'extinction k,, la valeur

2ra2 ro2X'
/e*= -äpür^— 27^ b'2

Le premier terme est celui donné par Stokes lui-même,
tandis que le second est attaché à l'existence de la viscosité de
dilatation. C'est ce supplément d'extinction qui semble avoir
été observé par N.-L. Liebermann 1.

Ainsi la théorie de la propagation d'ondes mécaniques
planes se propageant dans des milieux rigides, élastiques,
visqueux et plastiques retrouve, comme cas particulier, un résultat
classique.

1 lor. cil.
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