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(LAUSANNE, SUISSE)

Lois de Kirchhoff et fonctions discrètes
harmoniques

PAR

B. ECKMANN

(Séance du 21 janvier 1915)

Il s'agit dans ce qui suit de deux problèmes simples et
élémentaires : le premier est le problème classique de la répartition

du courant électrique continu dans un réseau de conducteurs,

répartition qui obéit aux deux lois de Kirchhoff ; le
second est un problème aux limites pour des fonctions discrètes
harmoniques dans un réseau.

Ces deux problèmes sont indépendants, mais seront traités
par la même méthode appartenant à la topologie combinatoire
des réseaux (ou polyèdres à une dimension) et se basant en
première ligne sur une projection orthogonale dans certains
espaces vectoriels.

Cette application du formalisme de la topologie combinatoire

moderne dans le cas le plus simple, celui des polyèdres à

une dimension, peut être généralisée aux polyèdres à un nombre

quelconque de dimensions ; on constate alors que les mêmes
raisonnements et leurs généralisations naturelles conduisent à

des relations qui sont fondamentales pour toute la topologie.
Nous resterons toujours ici dans le cas d'une dimension ; les

généralisations sont traitées ailleurs l.
Dans la première partie nous résumons les élément? de la

théorie des réseaux et du formalisme nécessaire pour la suite,
en nous bornant toujours à des réseaux finis. La seconde partie
est consacrée au problème de Kirchhoff, la troisième au
problème relatif à des fonctions harmoniques dans un réseau.

1 B. Eckmann : Harmonische Funktionen und Randwertaufgaben in einem
Komplex. Commentarli mathematici helvetici 17 (1945), sous presse.
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Les réseaux.
1. Nous considérons un réseau 1 (ou « complexe à une

dimension » ou « graphe »), formé par ß sommets yu y2, y a

et a arêtes xu x2, ¦ ¦ ¦ xa joignant certains couples de sommets

; nous supposons ces arêtes orientées d'une façon
arbitraire mais fixe — cela veut dire que pour toute arête .r, l'un
des deux sommets qu'elle joint est considéré comme origine,
l'autre comme extrémité de x,-. Nous désignons par r\ik le

coefficient d'incidence du sommet yk et de l'arête x,- ; il est

égal à —f- 1, — 1 ou 0 suivant que yk est l'extrémité de xit l'origine

de Xj ou n'est pas du tout situé sur Xt. Ces coefficients
d'incidence contiennent tout oe qui nous intéresse dans le réseau.

2. Chaînes. Une chaîne B à 0 dimensions (ou « 0-chaîne >,)

dans le réseau est une forme linéaire
ß

B 2 hy*
k=\

à coefficients réels en yu y2, ya, considérés ici comme des

indéterminées; on peut aussi dire que c'est une fonction g faisant
correspondre à tout sommet yk un nombre réel bk g(yk).

Une chaîne A à une dimension (ou « 1-chaîne ») est une
forme linéaire

a

A 2aiyi »

1=1

ou bien une fonction g des arêtes orientées qui fait correspondre
à xi le nombre réel a,- — g (.r,).

On peut aussi considérer les 0-chaînes B comme vecteurs
à ß composantes bu b2, ,ba, et les 1-chaînes A comme
vecteurs à a composantes a,,a2, arj ; si on opère avec les

chaînes comme on le fait avec des formes linéaires ou des
vecteurs, les 0-chaînes forment un espace vectoriel réel V° de

rang ß, les 1-chaînes un espace vectoriel V1 de rang a. Nous
formerons dans ces espaces des produits scalaires définis comme
d'habitude ; le produit scalaire de deux 1-chaînes A Xrt,-.r,-
et A' — YràiXi est donné par

a

A.A' 2fl'0'- ^1)

1 Pour les définitions et les propriétés élémentaires des réseaux non
explicitement mentionnées dans notre texte, voir le chap. 1 du livre de D. König,
Theorie der endlichen und unendlichen Graphen (Leipzig 1936). Cet ouvrage
sera désigné ici par König.
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Nous dirons aussi que ce produit représente la valeur de A
considérée comme fonction des arêtes orientées, sur la chaîne A'
considérée comme figure géométrique (domaine d'intégration).
Dans l'espace V° on a les définitions analogues.

La valeur ainsi définie d'une 1-chaîne A £tf,-.r,- sur l'arête
orientée x,- est «,-, sur -x( elle esl -a, ; on convient d'entendre
par -x, l'autre orientation de xit et on peut dire que les
valeurs d'une 1-chaîne changent de signe, si on change l'orientation

des arêtes.
Deux chaînes de produit scalaire 0 sont dites orthogonales.

3. Projection orthogonale. Soit U1 un sous-espace linéaire
— nous dirons tout court un plan — de rang y de l'espace
vectoriel V1. D'après les éléments de la géométrie analytique
des espaces Vectoriels il correspond à toute chaîne A de V1

une et une seule chaîne A' de U1 telle que A—A' soit orthogonale
au plan U1, c. à. d. à toutes les chaînes de U1 ; A' est la

projection orthogonale de A sur le plan U1.
Si. dans une base vectorielle orthogonale et normée de V1

les composantes de A sont au a2, av, celles de A' a[, a\

ax, on peut exprimer les a,- en fonction des ai par des formes
linéaires

a

a'i ^ uijüj i 1, 2, a

avec des coefficients réels Uy qui forment une matrice
symétrique : Uij iiji. En effet, c'est le cas pour une base telle

que UL y soit le plan déterminé par les y premiers vecteurs de

base, car on a alors

a'i ai pour i 1, 2, y,
a'i — 0 pour i y -f- 1, a ;

or celte propriété de symétrie n'est pas modifiée, si on passe
d'une base orthogonale et normée à une autre.

4. Frontière et faisceau.
Définitions. La frontière fx d'une arête x d'origine yl et

d'extrémité y2 est la 0-chaîne y2—yt ; à l'aide des coefficients
d'incidence r\ik (voir N° 1) on peut écrire de façon générale

ß

fXi ^ r\ikyk pour i 1, 2, o
fc=i
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Le faisceau cpy d'un sommet y est la 1-chaîne formée par
toutes les arêtes i x,- dont y est l'extrémité, c. à. d.

«?yk 2 nik'f'i, pour k 1, 2, ß

i=i
La frontière d'une 1-chaîne A Z a,x,- et le faisceau d'une

0-chaîne B £ bkyk sont définis par

a ß a

/A S a'' /*'= S 5j n* fl/) ^Ä '

ß a y
ß

cpB 2 *ft<p> 2 (S 1*&*)*< •

fc=i i=i v*=i

Les frontières de toutes les 1-chaînes forment un sous-espace
linéaire (un plan) F° dans Vû, les faisceaux de toutes les
0-chaînes un plan F1 dans V1.

Une 1-chaîne A dont la frontière est nulle est appelée un
cycle, une 0-chaîne B dont le faisceau est nul un cocycle. Les
cycles forment un plan C1 dans V1, les cocycles un plan C°
dans V°.

5. Pour une arête xt et un sommet yk quelconques on a

<P7* • •*/ 2 mW ¦ n m
et

donc

J=l

ß

yk. fx-i Yj iMjYj. yk n*.
J=l

rr,yk xi yk fxi
et pour toute 1-chaîne A et 0-chaîne B

cpB A B /A (2)

De cette formule importante on tire facilement les conclusions

suivantes : Pour qu'une 1-chaîne A soit un cycle, il faut
et il suffit qu'elle soit orthogonale à tous les faisceaux, et pour
qu'une 0-chaîne B soit un cocycle, il faut et il suffit qu'elle
soit orthogonale à toutes les frontières. En effet : Si /A 0,

tp B. A 0 pour toute chaîne B ; et si cp B. A 0 pour toute
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chaîne B, alors B /A 0 pour toute chaîne B, donc /A 0.
La seconde partie de la proposition se démontre de la même
façon.

En d'autres termes : C1 est l'ensemble des chaînes de V1

orthogonales à F1. Mais une telle relation est toujours
symétrique ; F1 est donc l'ensemble des chaînes de V1 orthogonales
à C1. Nous dirons que C1 et Fx sont deux plans orthogonaux et
complémentaires dans V1. — C° et F° sont de la même façon
deux plans orthogonaux et complémentaires dans V°.

6. Bemarques sur les cycles et les cocycles.
Considérons un polygone fermé simple dans le réseau,

parcouru une fois dans un sens déterminé ; nous lui associons la
chaîne

a

P V^v,
f=i

où pi 0 pour les arêtes n'appartenant pas au polygone et

Pi -f- 1 ou — 1 pour les arêtes du polygone suivant que le
sens de parcours du polygone coïncide ou non avec l'orientation
de x,-. Alors on voit facilement que P est un cycle, et on sait1
que tout cycle est une combinaison linéaire à coefficients réels
de chaînes P de ce type associées à des polygones.

Un cocycle B ~Lbkyk est caractérisé par la propriété
que sa valeur est 0 sur toute frontière /x, yk[ — yki du
réseau, donc que bk bki ; il a la même valeur en deux sommets

voisins (c. à. d. joints par une arête), et il a donc également
la même valeur en deux sommets qui peuvent être joints par
un chemin 2 (un polygone ouvert ou une « suite d'arêtes » dans
le réseau). Si dans un réseau tout couple de sommets peut être

joint par un chemin, on dit que le réseau est connexe 2
; alors

la valeur d'un cocycle est la même en tous les sommets du
réseau (B est une « constante »,). Si le réseau n'est pas connexe,
il peut être décomposé en un nombre fini de composants2
connexes ; les cocycles sont les 0-chaînes de valeur constante
dans chaque composant du réseau.

Pour qu'une 0-chaîne B soit une frontière B /A, il faut
et il suffit qu'elle soit orthogonale à tous les cocycles. Soit B0

un cocycle de valeur 1 en tout sommet d'un certain composant
du réseau, 0 dans les autres ; B. B0 est la somme des coefficients

de B dans ce composant, et elle doit être nulle. Si réci-

1 Voir König, p. 123, Uiéoième 1.
2 Voir König, chap. I.
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proquement la somme des coefficients d'une 0-chaîne B est
nulle dans chaque composant du réseau, B est orthogonale
au plan C° des cocycles, donc une frontière. Pour qu'une
0-chaîne B soit une frontière, il faut et il suffit que la somme

de ses coefficients soit nulle dans chaque composant du
réseau.

7. Chaîne de frontière donnée.

Soit B une 0-chaine vérifiant la condition que nous venons
d'énoncer, et soit E une 1-chaîne arbitraire. Alors il existe,

toujours une et une seule chaîne S de frontière B et telle que
E—S soit orthogonale à tous les cycles.

Démonstration. Soit A une chaîne de frontière B, et soient
A' et E' les projections orthogonales de A et E dans le plan C1

des cycles. Alors
S E' + A - A'

a les propriétés exigées. En effet

/S /E' + /A - /A' /A B

et E - S (E - E') - (A - A')

est orthogonale à C1. Soit Sx une seconde solution vérifiant
les deux conditions ; alors

et S-S1 (E-S1)-(E-S),
c. à. d. S — S], est un cycle orthogonal au plan CL de tous les

cycles, donc S — Sx 0 : la solution S est unique.

Répartition du courant électrique tlans un réseau
de conducteurs.

8. Lois de Kirchhoff, he courant électrique en régime
permanent dans un réseau de conducteurs obéit aux deux lois
suivantes : 1° En tout point de ramification du réseau la somme
des courants qui affluent vers ce point est nulle. 2° he long de

tout circuit fermé dans le réseau la somme des forces
électromotrices est égale à la somme des chutes ohmiques du potentiel.

Si les forces électromotrices et les résistances des conducteurs

sont données, il existe toujours une et une seule répartition
du courant dans le réseau vérifiant ces deux lois ; en d'au-
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très termes : ces conditions sont toujours compatibles et suffisent

pour déterminer les intensités du courant.
Ce théorème important, énoncé déjà par Kirchhoff sans

démonstration complète, a été démontré pour la première fois
en 1923 par H. Weyl1. Les remarques que nous venons de
taire sur les réseaux nous permettent de donner une démonstration

très simple de ce théorème, pas très différente d'ailleurs
de celle donnée par Weyl, et d'y ajouter quelques propriétés
de la répartition du courant.

9. Soit B un réseau (abstrait) représentant le réseau de
conducteurs ; les arêtes x, de B correspondent aux conducteurs

(p. ex. à des fils métalliques), les sommets yk aux points
de ramification 2. Soit r,- ]> 0 la résistance ohmique de x,-, et e,-

la force électromotrice introduite sur x^ mesurée dans le sens
de Xi, et soit s, l'intensité du odiixant sur x,, prise avec le
signe -f- si la direction du courant est celle de x,-, avec le signe —
dans l'autre cas. A la répartition du courant nous faisons
correspondre la chaîne

a

S ^ SiXi
1=1

aux forces électromotrices la chaîne

a

E J <kxi
r'=l

avec e't=s— (se présentant mieux aux calculs que £e,-.r,).
l'i

Alors la première loi de Kirchhoff exprime que la valeur
de S est nulle sur tout faisceau yyk du réseau, c. à. d. que
S est un cycle. Pour formuler la seconde, considérons une chaîne
P £/;,-.r,- associée à un polygone fermé simple (n° 6) ;

^PiSit'i est la somme des chutes ohmiques du potentiel, E/?,e,
la somme des forces électromotrices sur le polygone, les deux
mesurées dans le sens de parcours du polygone, et il faut
qu'on ait

1 H. Wevl : Repartition de corriente en una red conductora, Revista
matemàtica Hispano-Americana ó (1923), p. 133-164.

2 Naturellement il n'est pas exclu qu'en un sommet il n'y ait que deux
arêtes ; les sommets du réseau peuvent être des points auxiliaires qui subdivisent

un conducteur en plusieurs arêtes.
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yjPiei=YjPiS'''i
;=1 /=1

OU

i'=l
%nPl(ei-st) 0. (3)

Il est indiqué de modifier ici légèrement la définition (1)
du produit scalaire et de poser pour A Z «,-.r,- A' Z a'tXt

a

A A' 2 'W'' •' (4)
i=i

pour oe produit scalaire toutes les propriétés relatives à la
projection orthogonale (n° 3) subsistent, parce que les r,- sont
positifs et en conséquence la forme quadratique A „ A est définie

positive 1. Avec cette convention (3) peut s'écrire

P (E - S) 0 ;

la seconde loi de Kirchhoff exige donc que E — S soit orthogonale1

à tout polygone P et, puisque tout cycle est une combinaison

linéaire de polygones P, à tout cycle du réseau.
Le problème qui consiste à déterminer le courant S par

les deux lois de Kirchhoff s'énonce donc ainsi :

Etant donnée la chaîne E des forces électromotrices, on
cherche un cycle S tel que E — S soit orthogonal au plan
C1 des cycles.

Ce problème possède toujours une et une seule solution :

S est la projection orthogonale de E sur le plan C des cycles.
he théorème de Kirchhoff est ainsi démontré.

10. Choisissons une base xu „r2, ¦ ¦ ¦ xrj de l'espace vecto-
tiel V1, orthogonale et normée par rapport au produit
scalaire (4), en posant

'Y'.

Xi —,= i 1.2, a

et soient s, et e, les composantes de S et de E dans cette base :

1 Aux nos 9-11 «orthogonal» signifie toujours orthogonal par rapport au
produit scalaire » défini par (4).
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Si sjri si

<,=v/„ <,=-=.
Alors les s, s'expriment en fonction des e,- par des formes

a

Si =2 uiIeJ> i 1, 2, a
7=1

d'où
a

sji'i st 2 U'J -h
y=i V'"/

.sv y -7=== ey Y vUeJ ' i 1, 2, a

y=i VT'i'J ;=l

où les u,y forment une matrice symétrique.
Dans la solution explicite s,- Zw ,y e/ c/u problème de Kirchhoff

les coefficients u,y forment une matrice symétrique. Cela
signifie : Si la force électromotrice est 1 en Xy et 0 ailleurs, on
a en x,- la même intensité de courant qu'on aurait en Xy, si la
force électromotrioe était 1 en x,- et 0 ailleurs.

11. Une généralisation. Supposons qu'on ait introduit aux
points de ramification yk du réseau B, par des conducteurs
n'appartenant pas à B, des courants d'intensités données bk, et qu'on
cherche toujours la répartition du courant dans B vérifiant
les lois de Kirchhoff. Alors la condition énoncée par la seconde
loi n'est pas modifiée ; mais la condition imposée par la
première au courant S dans le réseau B prend la forme suivante :

En tout sommet yk, la valeur x de S sur le faisceau (pyk
augmentée de bk doit être nulle :

S 9yk 4- bk 0 pour h =-- 1, 2, ß

D'après la formule (2), cela signifie que

/S yk ~ —bk pour k — 1, 2. ß

' Ici il s'agit du produit scalaire ordinaire défini par (1) et désigné par
A. A/.
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ou /S -B
si on désigne par B la 0-chaîne Z bk yk donnée.

E et B étant données, on cherche donc ici une chaîne S de

frontière donnée — B telle que E — S soit orthogonale à

tous les cycles du réseau.
Cela n'est possible (n° 6) que lorsque la somme des coefficients

de B est nulle dans chaque composant du réseau, c. à. d.

que le courant total introduit dans chaque composant est nul.
Mais si c'est le cas, il existe, d'après le résultat du n° 7,
toujours une et une seule solution S, et le théorème de Kirchhoff

reste valable.

Fonctions harmoniques.

12. Nous considérons une 0-chaîne B E bk yk dans un
réseau B comme fonction g des sommets faisant correspondre
au sommet yk le nombre réel giyk) bk Une telle fonction
sera dite harmonique en un sommet yk, si sa valeur en yk est

égale à la moyenne arithmétique des valeurs aux sommets voisins

de yk ; par sommet voisin de yk on entend tout sommet
qui est joint à yk par une arête du réseau. (Evidemment il
s'agit dans cette définition d'une analogie avec une propriété
bien connue des fonctions harmoniques continues.)

Pour les fonctions harmoniques dans le réseau B nous
posons le problème aux limites suivant :

P) On donne les valeurs d'une fonction g en certains sommets

du réseau — désignons l'ensemble de ces sommets par L
— ; on cherche à déterminer les valeurs de g aux autres sommets

de R — soit M leur ensemble — de telle façon qu'en
tout sommet de M la fonction g soit harmonique.

Exemple : Soit B une parlie finie du réseau quadratique du
plan ; on donne les valeurs d'une fonction sur le bord et on
les cherche à l'intérieur de telle façon que la fonction y soit
harmonique.

Nous démontrerons que le problème général P) admet
toujours une solution, et que cette solution est unique lorsque
l'ensemble L où on donne les valeurs de la fonction contient
au moins un point de chaque composant du réseau, et seulement

en ce cas.
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13. Soient dans le réseau y2, y3, y; les voisins du sommet

yl ; la fonction g ou la chaîne B Z bk yk est harmonique
en yu lorsque

b2 + bt + + bi
01 ~ 1=1 '

ou bien
62-61 + fe3_61 + +bi-h, 0.

Remarquons que la frontière du faisceau de y± est

fayi y* - ri -i- y« — yi+ - + y» - ji
et que B. fc?y1 62 — òt + 63 — 6, -f -f b, — 6t.

Dire qu'une chaîne B est harmonique en un point revient
donc à dire que sa valeur sur la frontière du faisceau de ce

point est nulle.
On peut donc formuler le problème P) de la façon

suivante : Les valeurs d'une chaîne B sont données aux sommets
de L et cherchées aux sommets de M de telle façon que pour
tout sommet yk de M

B. /cpy, 0.

D'après la formule (2) cela équivaut à

cpB. <spyk 0.

Décomposons encore B en une somme

B BL -t-Bm

d'une chaîne BL de L et d'une chaîne Bm de M (cela veut
dire que dans Bt, les coefficients des sommets de M sont tous
0 et dans Bm ceux de L). Bi, est donnée, Bm est cherchée.

14. Démontrons d'abord, que P) possède toujours une solution

B (ou Bm). On cherche BM telle que

cp (Bl+Bm) <pyk 0 (5)

pour tout sommet yk de M. Considérons dans l'espace vectoriel

V1 le plan F1 formé par tous les faisceaux ; il contieni
le plan F\, de tous les faisceaux des chaînes de M. (5) exprime
que cpBL -ft <pBM doit être orthogonal à F^, : cpBL étant donné,
on cherche une chaîne <?Bm de F^, telle que cpBL -f- cpBM soit
orthogonale à FJj : 9BM est la projection orthogonale de

— cpBi, sur le plan F1 projection qui existe toujours et qui est
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bien déterminée. Puisque cette projection appartient à FM, elle
est effectivement le faisceau d'une chaîne BM, qui est une solution

du problème.

15. Comme nous venons de voir, BM n'est en général pas
déterminée d'une façon univoque par P). mais seulement cpBM.
Pour que BM aussi soit bien déterminée, il faut et il suffit que

cpBM cpBM

entraine BM Bm,

c. à. d.. si on pose BM — Bm Dm, que cpDM 0 entraîne
Dm 0.

Pour que le problème P) n'ait qu'une seule solution B, il
faut donc et il suffit que la seule chaîne Dm de M qui est un
cocycle du réseau soit DM 0. En d'autres termes qu'une
0-chaîne D répondant aux deux conditions suivantes a) et b)
soit nécessairement nulle :

a) les coefficients de D sont 0 pour les sommets de L ;

b) la valeur de D est constante dans chaque composant
du réseau (d'après n° 6).

Or cela signifie tout simplement que L contient au moins
un sommet de chaque composant du réseau, et l'affirmation
énoncée au n° 12 sur le problème aux limites P) est démontrée.
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