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(LAUSANNE, SUISSE)

Lois de Kirchhoff et fonctions discrétes
harmoniques

PAR
B. ECKMANN

(Séance du 21 janvier 1945)

Il s’agit dans ce qui suit de deux problémes simples et
élémentaires : le premier est le probleme classique de la répar-
tition du courant électrique continu dans un réseau de conduc-
teurs, répartition qui obéit aux deux lois de Kirchhoff ; le
second est un probléme aux limites pour des fonctions discrétes
harmoniques dans un réseau.

Ces deux problémes sont indépendants, mais seront traités
par la méme méthode appartenant a la topologie combinatoire
des réseauxr (ou polyédres a une dimension) et se basant en
premiére ligne sur une projection orthogonale dans certains
espaces vectoriels.

Cette application du formalisme de la topologie combina-
toire moderne dans le cas le plus simple, celui des polyédres a
une dimension, peut étre généralisée aux polyédres a un nom-
bre quelconque de dimensions ; on constate alors que les mémes
raisonnements et leurs généralisations naturelles conduisent a
des relations qui sont fondamentales pour toute la topologie.
Nous resterons toujours ici dans le cas d’'une dimension ; les
généralisations sont traitées ailleurs 1.

Dans la premiére partie nous résumons les éléments de la
théorie des réseaux et du formalisme nécessaire pour la suite,
en nous bornant toujours a des réseaux finis. La seconde partie
est consacrée au probléme de Kirchhoff, la troisieme au pro-
bleme relatif a des fonctions harmoniques dans un réseau.

1 B. EckmManN : Harmonische Funktionen und Randwertaufgaben in einem
Komplex. Commentarii mathematici helvetici 17 (1945), sous presse.
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Les réseaux.
1. Nous considérons un réseau' (ou «complexe a une
dimension » ou « graphe »), formé par 3 sommets y,. y,.. ... yg
et o arétes x,x,, ...,x, joignant certains couples de som-

mets ; nous supposons ces arétes orientées d'une facon arbi-
traire mais fixe — cela veut dire que pour toute aréte .r; I'un
des deux sommets qu’elle joint est considéré comme origine,
I'autre comme extrémité de x;. Nous désignons par ny le
coefficient d’incidence du sommet y;, et de l'aréte z; ; il est
égal a4 4- 1, — 1 ou O suivant que y, est I'extrémité de x;, 'ori-
gine de z; ou n’est pas du tout situé sur x;. Ces coefficients
d’incidence contiennent tout ce qui nous intéresse dans le réseau.

2. Chaines. Une chaine B a 0 dimensions (ou «0-chaine »)
dans le réseau est une forme linéaire
B

B = 2 bk?jk
k=1

a coefficients réels en-y,, v,, ..., Y5 considérés 1c1 comme des
indéterminées; on peut aussi dire que c’est une fonction ¢ faisant
correspondre a tout sommet y, un nombre réel by = g (yx).
Une chaine A a une dimension (ou « l-chaine ») est une
forme linéaire
(o2
A= E apiyi,
i=1
ou bien une fonction ¢ des arétes orientées qui fait correspondre
a x; le nombre réel a; = ¢ (y).
On peut aussi considérer les O-chaines B comme vecleus
a B composantes by, b2,...,bﬁ, et les 1-chaines A comme
vecteurs a o composantes a;,d,, ...a, ; sl on opere avec les

o
chaines comme on le fait avec des formes linéaires ou des vec-
teurs, les O-chaines forment un espace vectoriel réel Vo de
rang B3, les 1-chaines un espace vectoriel V! de rang «. Nous
formerons dans ces espaces des produits scalaires définis comme
d’habitude ; le produit scalaire de deux 1-chaines A = X a;x;

et A’= Xajr; est donné par

o
A.A’zEa,-a’. (1)

i=1
' Pour les définitions et les propriétés élémentaires des réseaux non ex-
plicitement mentionnées dans notre texte, voir le chap. I du livre de D. Konig,

Theorie der endlichen und unendlichen Graphen (Leipzig 1936). Cet ouvrage
sera désigné ici par Konia.
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Nous dirons aussi que ce produit représente la valeur de A
considérée comme fonction des arétes orientées, sur la chaine A’
considérée comme figure géométrique (domaine d’'intégration).
Dans l'espace VO on a les définitions analogues.

La valeur ainsi définie d’'une 1-chaine A = £ g;x; sur aréte
orientée x; est a;, sur -z; elle est -¢; ; on convient d’entendre
par -x; l'autre orientation de x;, et on peut dire que les
valeurs d'une 1-chaine changent de signe, si on change l'orien-
tation des arétes.

Deux chaines de produit scalaire 0 sont dites orthogonales.

3. Projection orthogonale. Soit U! un sous-espace linéaire
— nous dirons tout court un plan — de rang Y de l'espace
vectoriel Vi. D’apres les éléments de la géométrie analytique
des espaces vectoriels il correspond a toute chaine A de V!
une et une seule chaine A’ de U! telle que A—A’ soit orthogonale
au plan U, c.a.d. a toutes les chaines de U'; A’ est la
projection orthogonale de A sur le plan Ut

Si. dans une base vectorielle orthogonale et normée de V!

les composantes de A sont ay, as, . . ., a,, cellesde A’ ay, a;,...,
a,, on peul exprimer les a; en fonction des a; par des formes
linéaires
(¢
a;‘-:zutjaj, i:‘:]_,?,,,_,,ﬂ.,
j=1

avec des coefficients réels u; qui forment une matrice symé-
trique : wu;=u;. En effet, c’est le cas pour une base telle
que Ut y soit le plan déterminé par les y premiers vecteurs de
base, car on a alors

5_1,-25,- pour i=1,2,...,7,

!

ap=( pouri=Yy-+1,...,0;

or celte propriété de symétrie n’est pas modifiée, si on passe
d’une base orthogonale et normée a une autre.

4. Frontiére et faisceau.

Définitions. La frontiére fx d’une aréte x d'origine y, et
d’extrémité y, est la O-chaine y,—vy, ; a l'aide des coefficients
d’incidence 1y (voir No 1) on peut écrire de facon générale

B
f;Tz:kayk, pour i=1,2,...,u.
k=1
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Le faisceau ¢y d’'un sommet y est la 1-chaine formée par
toutes les arétes 1= x; dont y est U'extrémité, c. a. d.

o

(pyk:Enik,%’i, pour k:1,2,...,|3.
i=1
La frontiére d'une 1-chaine A = X a;a; et le faisceau d’une
O-chaine B = X byy, sont définis par

% (i Nik Cli) Yk »

k=1 ‘i=1

fA= ;la,-fa:,-z

§ a B
¢B = Z br oy = E (E Tlikbk) Xy .
k=1 1 “k=1

i=

Les frontiéres de toutes les 1-chaines forment un sous-espace
linéaire (un plan) Fe dans Vo, les faisceaux de toutes les
O-chaines un plan F! dans V.

Une 1-chaine A dont la frontiére est nulle est appelée un
cycle, une O-chaine B dont le faisceau est nul un cocycle. Les
cycles forment un plan C! dans V', les cocycles un plan Co
dans Ve,

5. Pour une aréte x; et un sommet y, quelconques on a

[

\ .
PYk - Xi = L NjkXj - Xt = Nik »

=1
et
B
Yk - fSCi‘——lelijj < Yk = Nik »
jj
donc

©Yk - Ti = Yk .fx,—

et pour toute 1-chaine A et O-chaine B
eB.A=DB.fA. (2)

De cette formule importante on tire facilement les conclu-
sions suivantes : Pour qu'une 1-chaine A soit un cycle, il faut
et il suffil qu’elle soit orthogonale a tous les faisceaux, et pour
qu'une O-chaine B soit un cocycle, il faut et il suffit qu'elle
soit orthogonale d toutes les frontiéres. En effet: Si fA =0,
¢ B. A = 0 pour toute chaine B ; et si ¢ B. A =0 pour toute
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chaine B, alors B . fA = 0 pour toute chaine B, donc fA = 0.
La seconde partie de la proposition se démontre de la méme
facon.

En d’autres termes : C! est 'ensemble des chaines de V!
orthogonales & F!. Mais une telle relation est toujours symé-
trique ; I est donc l'ensemble des chaines de V! orthogonales
a Gl Nous dirons que C! et I sont deux plans orthogonaux et
complémentaires dans Vi. — Co et Fo sont de la méme fagon
deux plans orthogonaux et complémentaires dans Vo.

6. Remarques sur les cycles et les cocycles.

Considérons un polygone fermé simple dans le réseau, par-
couru une fois dans un sens déterminé ; nous lui associons la
chaine

(¢
P E PiXi,

=1

ou p; = 0 pour les arétes n’appartenant pas au polygone et
pi =+ 1 ou — 1 pour les arétes du polygone suivant que le
sens de parcours du polygone coincide ou non avec l'orientation
de x;. Alors on voit facilement que P est un cycle, et on sait!
que tout cycle est une combinaison linéaire a coefficients réels
de chaines P de ce type associées a des polygones.

Un cocycle B = xb.y, est caractérisé par la propriété
que sa valeur est O sur toute frontiere fr; =y, — ¥y, du
réseau, donc que b, = by, ; il a la méme valeur en deux som-
mets voisins (c. a. d. joints par une aréte), et il a donc également
la méme valeur en deux sommets qui peuvent étre joints par
un chemin 2 (un polygone ouvert ou une « suite d’arétes » dans
le réseau). Si dans un réseau tout couple de sommets peut étre
joint par un chemin, on dit que le réseau est connexe ® ; alors
la valeur d'un cocycle est la méme en tous les sommets du
réseau (B est une « constante »). Si le réseau n’est pas connexe,
il peut étre décomposé en un nombre fini de composants?
connexes ; les cocycles sont les O-chaines de valeur constanle
dans chaque composant du réseau.

Pour qu'une O-chaine B soit une frontiere B = fA, il faut
et il suffit qu'elle soit orthogonale a tous les cocycles. Soit B,
un cocycle de valeur 1 en tout sommet d'un certain composant
du réseau, 0 dans les autres ; B. B, est la somme des coeffi-
cients de B dans ce composant, et elle doit étre nulle. Si réci-

1 Voir Konig, p. 123, théoréme 1.
2 Voir Konia, chap. I.
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proquement la somme des coefficients d’'une O-chaine B est
nulle dans chaque composant du réseau, B est orthogonale
au plan Ce des cocycles, donc une frontiére. Pour qu'une
O-chaine B soit une frontiére, il faut et il suffit que la som-
me de ses coefficients soit nulle dans chaque composant du
réseau.

7. Chaine de frontiére donnée.

Soit B une O-chaine vérifiant la condition que nous venons
d’énoncer, et soit E une 1-chaine arbitraire. Alors il existe
toujours une et une seule chaine S de frontiére B et telle que
E—S soit orthogonale a tous les cycles.

Démonstration. Soit A une chaine de frontiere B, et solent
A’ et E’ les projections orthogonales de A et E dans le plan C

des cycles. Alors
S=E+A—-A

a les propriétés exigées. En effet
fS=fE+fA—fA'=fA=B
et E—S=(E—-FE)—(A—A)

est orthogonale a C!. Soit S, une seconde solution vérifiant
les deux conditions ; alors

f(S—8)=18—15=0
et S—8 =(E-8) (E—8),

c.a.d. S— S, est un cycle orthogonal au plan Ct de tous les
cycles, donc S — S, = 0: la solution S est unique.

Répartition du courant électrique dans un réseau
de conducteurs.

8. Lois de Kirchhoff. Le courant électrique en régime per-
manent dans un réseau de conducteurs obéit aux deux lois
suivanies : 1° En tout point de ramification du réseau la somme
des courants qui affluent vers ce point est nulle. 20 Le long de
tout circuit fermé dans le réseau la somme des forces électro-
motrices est égale a la somme des chutes ohmiques du potentiel.

Si les forces électromotrices et les résistances des conduc-
teurs sont données, il existe toujours une et une seule réparti-
tion du courant dans le réseau vérifiant ces deux lois ; en d’au-
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tres termes : ces conditions sont toujours compatibles et suffi-
sent pour déterminer les intensités du courant.

Ce théoréme important, énoncé déja par Kirchhoff sans
démonstration compléte, a été démontré pour la premiére fois
en 1923 par H. Weyl 1. Les remarques que nous venons de
faire sur les réseaux nous permettent de donner une démonstra-
tion trés simple de ce théoréme, pas trés différente d’ailleurs
de celle donnée par Weyl, et d’y ajouter quelques propriétés
de la répartition du courant.

9. Soit R un réseau (abstrait) représentant le réseau de
conducteurs ; les arétes x; de R correspondent aux conduc-
teurs (p. ex. a des fils métalliques), les sommets y, aux points
de ramification 2. Soit r; > 0 la résistance ohmique de x;, et e;
la force électromotrice introduite sur x; mesurée dans le sens
de x; et soit s; l'intensité du courant sur z;, prise avec le
signe - s1 la direction du courant est celle de x;, avec le signe —
dans l'autre cas. A la répartition du courant nous faisons cor-
respondre la chaine

o
SIES;.‘I&',

i—=1

aux forces électromotrices la chaine

a
E = Z e;"TTf

=
' (& ’ .
avec € = (se présentant mieux aux calculs que Teur;).
i

Alors la premiére loi de Kirchhoff exprime que la valeur
de S est nulle sur tout faisceau ¢y, du réseau, c.a.d. que
S estun cycle. Pour formuler la seconde, considérons une chaine
P =73 p;x; associée & un polygone fermé simple (n° 6) ;
¥ pisir;  est la somme des chutes ohmiques du potentiel, Z p;e;
la somme des forces électromotrices sur le polygone, les deux
mesurées dans le sens de parcours du polygone, et il faut
qu’on ait

! H. WEYL : Repartilién de corriente en una red conductora, Revista mate-
matica Hispano-Americana & (1923), p. 153-164.

2 Naturellement il n’est pas exclu qu'en un sommet il n’y ait que deux
arétes; les sommets du réseau peuvent étre des points auxiliaires qui subdi-
visent un conducteur en plusieurs arétes.
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(¢4 [0
N pier =Y pisiri
i=1 =1

(¢

ou Z ripi(ei—s)=0. (3)

=1

Il est indiqué de modifier ici légérement la définition (1)
du produit scalaire et de poser pour A =X a;r;, A= X ajx;

o
AA =D rnaa;: (4)

=1

pour ce produit scalaire toutes les propriétés relatives a la pro-
jection orthogonale (n° 3) subsistent, parce que les r; sont
positifs et en conséquence la forme quadratique A, A est défi-
nie positive . Avec cette convention (3) peut s’écrire

P(E—S)=0;

la seconde loi de Kirchhoff exige donc que E — S soit orthogo-
nale' a tout polygone P et, puisque tout cycle est une combi-
naison linéaire de polygones P, a tout cycle du réseau.

Le probléeme qui consiste a déterminer le courant S par
les deux lois de Kirchhoff s’énonce donc ainsi :

Etant donnée la chaine I des forces électromotrices, on
cherche un cycle S tel que E —S soit orthogonal au plan
(! des cycles.

Ce probléme posséde toujours une et une seule solution :
S est la projection orthogonale de E sur le plan C des cycles.
Le théoréeme de Kirchhoff est ainsi démontré.

10. Choisissons une base x,,x,, ..., x, de l'espace vecto-

tiel Vi, orthogonale et normée par rapport au produil sca-
laire (4), en posant

— i=12,...,a,

-’1‘12\/’—' ,

et soient s; et ¢; les composantes de S et de E dans cette base :

I Aux n° 9-11 «orthogonal» signifie toujours orthogonal par rapport au
produit scalaire . défini par (4).
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~1
31

T \,/I‘,' Si

e,-—\/t e,-—\/’!

Alors les s; s’expriment en fonction des e; par des formes

(04
_ e
s > uiey (=1,2,...,a.
j=1
avec u; = uj; ; dou
o
"1 ul :
i—-— LGJ—E‘U”L}', l:1,2,...,a-
j= 1\/’ iy

ou les v; forment une matrice symétrique.

Dans la solution explicite s; = X v e; du probléme de Kirch-
hoff les coefficients v; forment une matrtce symétrique. Cela
signifie : Si la force électromotrice est 1 en x; et O ailleurs, on
a en x; la méme intensité de courant qu'on aurait en xz;, si la
force électromotrice était 1 en x; et O ailleurs.

11. Une généralisation. Supposons qu’on ait introduit aux
points de ramification y; du réseau R, par des conducteurs n’ap-
partenant pas a R, des courants d’intensités données by, et qu'on
cherche toujours la répartition du courant dans R vérifiant
les lois de Kirchhoff. Alors la condition énoncée par la seconde
loi n’est pas modifiée ; mais la condition imposée par la pre-
miére au courant S dans le réseau R prend la forme suivante :
En tout sommet y,, la valeur * de S sur le faisceau ¢y, aug-
mentée de b, doit étre nulle :

S. Py +br=0 pour k=1,2,...,8.
D’apres la formule (2), cela signifie que
fS . yx = —by pour k=18 ...;8,;

! Ici il s’agit du produit scalaire ordinaire défini par (1) et désigné par
A . AL,



76 B. ECKMANN
ou S =

si on désigne par B la O-chaine X by, donnée.

E et B étant données, on cherche donc ici une chaine S de
frontiére donnée — B telle que E — S soit orthogonale a
tous les cycles du, réseau.

Cela n’est possible (ne 6) que lorsque la somme des coefti-
cients de B est nulle dans chaque composant du réseau, c. a. d.
que le courant total introduit dans chaque composant est nul.
Mais si c’est le cas, il existe, d’aprés le résultat du ne 7, tou-
jours une et une seule solution S, et le théoréme de Kirch-
hoff reste valable.

Fonctions harmoniques.

12. Nous considérons une O-chaine B — £ b, y, dans un
réseau R comme fonction g des sommets faisant correspondre
au sommel y, le nombre réel g(y;) = b;. Une telle fonction
sera dite harmonique en un sommet y,, st sa valeur en y, est
égale d la moyenne arithmélique des valeurs aux sommels voi-
sins de Ye 5 par sommet voisin de y, on entend tout sommet
qui est joint a y, par une aréte du réseau. (Evidemment il
s'agit dans cette définition d'une analogie avec une propriété
bien connue des fonctions harmoniques continues.)

Pour les fonctions harmoniques dans le réseau R nous
posons le probléme aux limites suivant :

P) On donne les valeurs d’une fonction g en certains som-
mets du réseau — désignons Uensemble de ces sommets par L
— ; on cherche a déterminer les valeurs de g aux autres som-
mets de R — soit M leur ensemble — de telle fagcon qu'en
tout sommet de M la fonction ¢ soit harmonique.

Exemple : Soit R une partie finie du réseau quadratique du
plan ; on donne les valeurs d'une fonction sur le bord et on
les cherche a l'intérieur de telle facon que la fonction y soit
harmonique.

Nous démontrerons que le probléme général P) admet tou-
jours une solution, et que cette solution est unique lorsque
I’ensemble L. o on donne les valeurs de la fonction contient
au moins un point de chaque composant du réseau, et seule-
ment en ce cas.
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13. Soient dans le réseau vy, y;, ..., y,; les voisins du som-
met y, ; la fonction ¢ ou la chaine B = X b y, est harmouique
en y,, lorsque

b by +bs+...4 b
! l—1 ’

ou bien

bg_blb‘;*b:;%bl_%_..-‘—;*bl'_}}]_x 0.
Remarquons que la frontiére du faisceau de y, est

foti=Ye— - — %t - + % — %
et qu:e B ,chy‘,l:b2_bl+b3_bl+"‘+b1_bl'

Dire qu'une chaine B est harmonique en un point revient
donc a dire que sa valeur sur la frontiére du faisceau de ce
point est nulle.

On peut donc formuler le probléme P) de la facon sui-
vante : Les valeurs d’une chaine B sont données aux sommets
de L et cherchées aux sommets de M de telle facon que pour
tout sommet y, de M

D'apres la formule (2) cela équivaut a
| ¢B. yi = O.
Décomposons encore B en une somme
B =B, + By

d’une chaine B, de L et d'une chaine By de M (cela veul
dire que dans B, les coelficients des sommets de M sont tous
0 et dans By ceux de L). B, est donnée, By est cherchée.

14. Démontrons d’abord, que P) posséde toujours une solu-
tion B (ou By). On cherche By telle que

¢ (BL+Bw) . 2y =0 (5)

pour tout sommet y, de M. Considérons dans l'espace veclo-
riel Vi le plan ' formé par tous les faisceaux ; il contient
le plan F, de tous les faisceaux des chaines de M. (5) exprime
que @B, - By doit étre orthogonal a Fj : B, étant donné,
on cherche une chaine 9By de F% telle que ¢B; + ¢By soit
orthogonale a Fy : 9By est la projection orthogonale de

— @By, sur le plan T}, projection qui existe toujours et qui est
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bien déterminée. Puisque cette projection appartient a Fj, elle
est effectivement le faisceau d'une chaine By, qui est une solu-
tion du probléme.

15. Comme nous venons de voir, By n’est en général pas
déterminée d'une facon univoque par P). mais seulement ¢By.
Pour que By aussi soit bien déterminée, il faut et il suffit que

(PBM == (PB-/“
entraine By = By,
c.a.d.. si on pose By—B,=Dux, que ¢Dy = 0 entraine

D\] = 0

Pour que le probléme P) n’ait qu'une seule solution B, il
faut donc et il suffit que la seule chaine Dy de M qui est un
cocycle du réseau soit Dy = 0. En d’autres termes qu’une
O-chaine D répondant aux deux conditions suivantes a) et b)
soit nécessairement nulle :

a) les coefficients de D sont O pour les sommels de L ;

b) la valeur de D est constante dans chaque composant
du réseau (d’aprés no 6).

Or cela signifie tout simplement que L contient au moins

un sommet de chaque composant du réseau, et l'affirmation
énoncée au n° 12 sur le probléme aux limites P) est démontrée.
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