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BULLETIN DE LA SOCIETE UAUDOISE DES SCIENCES NATURELLES

Vol. 62 1943 No 259

La loi forte des grands nombres et la loi
du logarithme itéré

PAR

Dmitry MIRIMANOFF

(Séance du 2 décembre 1942.)

Je vais chercher à expliquer comment on arrive à montrer
que, dans le cas d'épreuves répétées vérifiant certaines
conditions, nous pouvons nous attendre à ce que la fréquence
d'un événement fortuit tende vers une limite, égale précisémenl

à la probabilité de l'événement. C'est en cela que consiste
la loi forte des grands nombres qu'on a souvent confondue
avec la loi ordinaire, celle de Bernoulli, de Poisson et de

Tchébycheff. Nous verrons qu'on ne doit pas la considérer
comme un corollaire des théorèmes classiques, mais comme
un théorème nouveau. J'essaierai de vous montrer en quoi
la loi nouvelle diffère de la loi classique et pourquoi on les
a si souvent confondues. Je chercherai aussi à mettre en
évidence les principes sur lesquels on s'appuie pour établir la
loi forte, principes qui ont permis d'aller plus loin dans cette
voie et de découvrir la loi du logarithme itéré.

1. Permettez-moi de vous rappeler d'abord ce qu'on
entend par loi des grands nombres, qui sous sa forme la plus
simple a été établie pour la première fois par Jacques
Bernoulli.

J. Bernoulli suppose qu'on effectue une suite d'épreuves
comportant 2 événements contradictoires À et B de probabi-

Travail présenlé au Cercle mathématique dc Lausanne le 24 mai 1935. A
la demande de quelques collègues, M. le professeur Mirimanoff a bien voulu
consentir à cette publication, qui rendra d'éminents services à tous ceux qui
désirent se mettre au courant de travaux destinés à devenir classiques,
en y apportant de nombreuses simplifications et une grande clarté.

(Note de la redaction.)
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170 DMITRY MIRIMANOFF

lités constantes p et q Supposez par exemple qu'on ait une
suite indéfinie d'urnes

Ü! U, U„

contenant ties boules blanches et des boules noires dans une
certaine proportion, la même dans chacune des urnes. On
effectue n épreuves, ici n tirages, on extrait une boule de U^
une boule de U2 une de U„ Supposons qu'au cours de ces
n épreuves l'événement attendu (extraction d'une boule blanche)

se soit réalisé m fois. Vous savez qu'on entend par écart
relatif la différence

m
— — p, que j'écrirai fin) — p, en désignant par fin) la

fréquence observée -
Voici alors comment s'énonce le théorème de J. Bernoulli:

e étant un nombre positif aussi petit qu'on veut, la probabilité

pour que cet écart soit en valeur absolue inférieur à k

tend vers t lorsque le nombre des épreuves augmente
indéfiniment.

limP(|/(n)-p|<e) l
n—>-oc

Il devient donc de plus en plus probable de tomber sur un
écart aussi petit qu'on veut.

Comme je l'ai dit tout à l'heure, quelques mathématiciens,
à commencer, si je ne me trompe, par J. Bernoulli lui-
même, en ont conclu qu'on a le droit de s'attendre à ce que
f(n) — p tende vers 0, ou bien, ce qui revient au même, qu'il
est très probable que la fréquence f(n) tende vers p lorsque
le nombre des épreuves augmente indéfiniment.

Je ne précise pas le sens des mots que je viens d'employer:
il est très probable », « on a le droit de s'attendre », etc.... La

difficulté n'est pas là. Je tiens pour le moment à vous faire
remarquer qu'en raisonnant ainsi on raisonne mal. Je vais
expliquer pourquoi:

Dire qu'il est très probable que les écarts fin) — p tendent
vers 0 revient à dire qu'il est très probable qu'à partir d'une
certaine valeur de n ils vérifient des inégalités de la forme

|/(n) - p |<6„ |/(n + 1) - p |<e„+1
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e„, sn+i étant une suite décroissante ou, plutôt, non croissante
de nombres tendant vers 0. Or le théorème de Bernoulli nous
apprend qu'il est très probable, lorsque les s„ sont convenablement

choisis, que chacune de ces inégalités soit vérifiée
isolément, mais il n'en résulte pas qu'il est probable qu'elles!
soient vérifiées toutes à la fois. Il s'agit ici non pas des

probabilités

V(\f(n)-P\<en) ,P(|/(« + 1)-p|<b„+1),...,
mais bien de la probabilité composée

P(l/(") -Pl<en et |/(" + 1) -PI et". <en+l

et nous savons qu'une probabilité composée P(Et et E2 el.
peut très bien être petite lors même que les probabilités simples

P(Et) P(E2) sont grandes. Le raisonnement est donc
inexact. En raisonnant ainsi, on attribue une propriété de
chacun des termes de la suite EL, E2,. à la suite EL et E2,. -

On confond P(E,) et P(E2) avec P(Et et E, et Cette
confusion est permise lorsque les événements sont certains.
Car, si Et, E2,. doivent se réaliser, il en est de même de
la suite EL et E2 et Mais la logique des choses fortuites
n'est pas toujours celle des choses certaines,

La certitude reste entière quel que soit le nombre des
événements certains, mais l'incertitude augmente et de petite peut
devenir grande.

En voici un exemple banal.
Supposons qu'on ait une suite d'urnes

u„u„... u„,...
contenant respectivement 101 boules dont 100 blanches, 102
boules dont 101 blanches 100^- n boules dont 100 + n— 1

blanches. Les probabilités de tirer une boule blanche de L^,
U2,. sont respectivement égales à

100 101

101 ' 102'""

Je suis donc à peu près sur de tirer une boule blanche da
la première urne; je suis encore plus sur d'en tirer une de
la seconde, etc les probabilités vont même en augmentant.

Mais suis-je aussi sûr de tirer une suite de boules
blanches? Supposons par exemple qu'on effectue 9900 tirages. La
probabilité pour que toutes les 9900 boules extraites soient
blanches est égale à
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100 101 102 9999 1

101 102 103 10.000 100

El la probabilité de tomber indéfiniment sur des boules blanches

est égale à 0.
Le raisonnement est donc inexact. Pourtant le théorème,

que quelques mathématiciens ont considéré à tort comme un
corollaire de celui de Bernoulli, est exact.

On peut montrer, en effet, qu'il est toujours possible de

choisir une suite décroissante de nombres e„ tendant vers 0 et
telle que

P(l/(»)^ p|<e« et |/(n+l)-p|<e„+i et > 1 - b

o étant un nombre positif aussi petit qu'on veut, pourvu
que n soit suffisamment grand. Cette probabilité tend vers 1

lorsque n augmente indéfiniment.
Tel est l'énoncé précis de la loi forte des grands nombres,

tlans le cas particulier où les épreuves vérifient les conditions
tie Bernoulli.

2. Démonstration de la loi forte des grands nombres.

Sur quels principes allons-nous nous appuyer pour
démontrer ce théorème? Comment allons-nous évaluer la
probabilité qui figure au premier membre de notre inégalité?

Dans l'exemple banal que nous venons d'envisager, ce calcul

était facile à faire, la probabilité composée étant égale
au produit des probabilités simples. Mais il n'en est plus de
même ici, les événements simples n'étant pas indépendants.
En effet, il est plus probable par exemple de tomber sur un
petit écart (petit en valeur absolue) lorsque l'écart qui
précède est petit aussi, que dans le cas contraire. La probabilité
de |/(» r 1)—plft^En+i dépend tie celle de \f(n) —p\<Cen. El
quant à la règle classique qui permet de calculer la probabilité
composée dans le cas d'événements dépendants, elle serait ici
d'une application difficile.

Il est possible heureusement d'aborder le problème par
un côté différent. Partons du théorème classique des
probabilités totales

P(E, ou E,) P(E0 f P(E,).- P(EX et E,)

Comme le premier membre ne dépasse pas 1 on peut écrire,

P(Eiet E2)^P(E,)-rP(E2)- 1.
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De même

P(Et et E2 et ES)>P(E,)-- P(E2) -f.P(E3) - 2,

et d'une manière générale'

P(E, et E2.. et Ev) > P(Et) -f P(E2) -f ¦ |- P(EV) - (v - 1)

Si maintenant on désigne par q( la probabilité pour que
E,- ne se réalise pas, comme

ç,= l-P(E,),
notre inégalité devient

v
P(EX et E2 et et Ev > 1 — E qt.

Supposons que le nombre v des événements augmente
indéfiniment. La probabilité composée etani une fonction
décroissante ou plutôt non croissante fie v, elle va tendre vers
une limite déterminée qui est par définition la probabilité de
la suite Et et E2 et. Nous pourrons donc écrire

P(E, et E2 et .)> 1 — Zg,

En appliquant cette inégalité au problème qui nous occupe,
il vient

P(l/(")-p|<e« et \f\n+i) — p\<en+i et ...)>1-Zg,,
où Ot 'P(\f(i)-p\>et).

Pour établir la loi forte, il suffit donc de montrer que.
OC 30

la série £ g,- converge; car si elle converge, la somme £ cy,
1=1 i=n

peut être rendue aussi petite qu'on veut, par exemple <To

en prenant ;? suffisamment grand et alors

P(l/(") -p\<*« ei |/(n+l)-p|<e„+1 et ...)>l-b.
Cette probabilité lenti vers 1 lorsque n augmente

indéfiniment.

Il nous reste donc à montrer qu'en choisissant convenablement

les e(-, la série St/, converge.

1 Inégalité de Boole. (An investigation of the laws of thought, London,
Macmillan and C°, 1854. ch. XIX, p. 307).
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Nous nous appuierons pour cela sur une inégalité importante

de Bienaymé-Tchébycheff généralisée que je tiens à vous
rappeler.

Inégalité de Bienaymé-Tchébycheff (généralisée). Soit x une
variable aléatoire, <p(x) une fonction paire de x, non négative
et croissante ou plutôt non décroissante pour x >0.

Si alors a est un nombre positif, on a

Vl <p(ö)

où E(cp(x)) désigne l'espérance mathématique (valeur moyenne)
fie <p(x) La démonstration est immédiate. En effet E(cp(.x))

Lyix)p(x) étendue à toutes les valeurs possibles fie x,
mais cette somme est

>9(a)2p(x) =cp(a)P(|jc|>a)
d'où

E(9(*))?i\x\>a)<: ?(«)

Posons cpix) xïk où /t'est un nombre entier positif. En
faisant k 1 on déduit immédiatement de l'inégalité
correspondante les théorèmes classiques de Bernoulli, tie Poisson

et de Tchébycheff, c'est-à-dire la loi ordinaire des grands
nombres.

Mais on ne saurait en déduire la loi forte, l'inégalité étant

trop grossière.
Mais faisons k 2

L'inégalité de Tchébycheff s'écrit

et, en l'appliquant à la probabilité g,

p(l/(,>-Pi>e,)<Eft(ft-'Ä

Or, il est facile de calculer l'espérance mathématique de

la 4'' puissance de l'écart el l'on établit sans peine que

Eifii)-Py< ~



LA LOI FORTE TIES GRANDS NOMBRES 175

d'où
1

9t < TT ¦a

Choisissons maintenant la suite g,-.

Posons Rf — —j où u est un nombre positif inférieur à 1

0<a<l.
La suite e,- ainsi choisie est une suite décroissante tendant

vers 0, lorsque i augmente indéfiniment et l'on a alors

» 1 L

comme 2 — c^> 1 la série converge et la loi forte est établie.

3. La loi du logarithme itéré.

La démonstration que je viens d'esquisser ne diffère pas
essentiellement de celle de Cantelli1, à qui l'on attribue la
découverte de la loi forte.

Je tiens pourtant à faire remarquer que dans certains cas

particuliers et par des méthodes très différentes, la loi forte
avait déjà été établie avant lui par Borei (1909), Hausdorff
(1913), Hardy et Littlewood (1914)2.

Cela ne diminue pas le mérite de Cantelli, qui du reste
ne s'est pas borné au cas des épreuves répétées vérifiant les
conditions de Bernoulli. Ses hypothèses sont beaucoup plus
larges.

Je crois utile cependant de vous donner une idée des

principes sur lesquels se sont appuyés les mathématiciens que
je viens de nommer, principes qui ont permis à Hausdorff
et à Hardy et Littlewood de préciser la loi forte et d'ouvrir
la voie aux recherches récentes de Khintchine et de Kolmo-
goroff.

Voici par exemple comment Hausdorff, à l'aide d'une
méthode due à M. Borei, établit la loi forte dans le cas parti-

1 P. Cantelli : Sulla probab. come limite della frequenza, Rend. d. R. Ace.
dei Lincei (5), t. 26, 1917.

2 Borel, Rend. Palermo, t. 27 (19091, p. 247. — Hausdorff, Grundzüge der
Mengenlehre (1913) p. 419-422. — Hardi and Littlewood, Acta mathein., t. 37,
p. 155-190.
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culièrement simple où la probabilité p de l'événement attendu
est égale à 1/2 (jeu de pile ou face). Supposons qu'on marque

1 lorsqu'on amène pile, 0 dans le cas contraire. On
obtient de cette manière une suite d'unités et de zéros. Ecrivons-
cette suite à la droite de la virgule, par exemple

0,10100011

A chaque suite possible correspond une fraction qui, dans
le système de numération de base 2, définit un point et un
seul du segment (0,1)

0 1

L'ensemble de ces suites ou plutôt de ces points a pour
mesure l'unité.

m
Or, envisageons les suites le long desquelles la fréquence —

(m étant le nombre des unités figurant parmi les n premières

décimales) tend vers la probabilité p 1/2 •

On peut montrer que la mesure de l'ensemble des points
correspondants est encore égale à l'unité. Donc la probabilité
de tomber sur une suite de cette sorte est égale à 1, tandis
que la probabilité de tomber sur une suite contraire est nulle.

Nous devons donc nous attendre à ce que — tende vers Va
n

el la loi forte est établie.

C'est à l'aide de considérations analogues que Hausdorff
en 1913 et Hardy et Littlewood en 1914 ont réussi à préciser
la loi forte. Permettez-moi de vous dire quelques mots de

ces recherches1. Je vous rappelle que dans la loi classique
fies grands nombres, aussi bien que dans la loi forte, on en-

m
visage l'écart relatif fin)—p=——p. Cet écart s'obtient en

divisant l'écart absolu m — np par n,

m — np/(n) - p

1 On trouvera une analyse remarquable de quelques-unes de ces recherches
dans l'excellent ouvrage de M. M. Fréchet « Recherches théoriques modernes
sur la théorie des probabilités» (Traité du Calcul des Probabilités et de ses

Applications par E. Borei., tome I, fascicule III, 1937),
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Nous pouvons donc dire, en désignant par $(n) une fonction

de n que le rapport
m — np

tend vers 0 ou que la loi forte est vérifiée lorsque ^>(n) — n.
Elle l'est à fortiori pour les i)>(n) dont l'ardre de grandeur
est supérieur à celui de n par exemple pour ^>(n) n2, nlgn

etc.
Mais cette condition est-elle nécessaire
Qu'arrive-t-il lorsque l'ordre de grandeur de *}>(«) est

inférieur à celui de n, par exemple pour i)j(n) n3'4, y nlgn,...?
m — npLa limite de —rj~x~ peut-elle encore être nulle Peut-on abais-

ip(n)
ser l'ordre de grandeur de ib(n) au-dessous de celui de n.
sans que la loi forte cesse d'être vérifiée, et dans quelle mesure?

C'est l'étude de ce problème délicat et difficile qui a conduit

à la découverte de la loi du logarithme itéré.
Le premier pas dans cette voie a été fait, si je ne me

trompe, par Hausdorff. En 1913, Hausdorff a réussi à mon-
i i i -i- i i- m — nP /-> ' 1 -trer que la probabilité de lim t. 0 est encore egale a

l'unité, si A-=1/2 + e> e étant un nombre positif aussi petil
qu'on veut, et cela non seulement dans le cas de p 1/2 (jeu
de pile ou face), mais dans un cas plus général.

Je ferai remarquer à ce propos que le théorème de Hausdorff

a été retrouvé en 1921 par M. Polya1, qui à cette époque

ne connaissait pas encore les travaux que j'ai cités tout
à l'heure. Du reste, d'après M. Pôlya, la loi forte avait été
découverte d'autre part, dans un cas particulier il est vrai,
par M. Pierre Cérésole.

Mais ne pourrait-on pas aller plus loin dans cette voie
en abaissant encore davantage l'ordre de grandeur de 4>(n)

Un résultat extrêmement important a été obtenu à cet
égard par Hardy et Littlewood en 1914. A l'aide de
considérations analogues à celles que je viens d'exposer, ces
mathématiciens ont réussi à montrer qu'en posant i}>(n) y nlgn

m — np m — nple rapport—r-r-^- -—===- est borne,
4>(n) y nlgn

1 Pôlya «Eine Ergänzung zu dem Bernoullischen Satz der Wahrschein-
lichkeitsr. » (Nachr. v. der k. Ges. der Wiss. zu Göttingen, Math-Phys. Klasse,
1921).
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ce qu'on peut écrire
m — np 0(y nlgn)

ou plutôt que la probabilité pour qu'il le soit est égale à

l'unité. La loi forte est donc vraie pour toute fonction ^>(n)

dont l'ordre de grandeur est supérieur à celui de y nlgn
Mais est-elle vraie pour y/ nlgn

La limite de —, -¦ est-elle nulle
ynlgn

Est-il permis de remplacer 0 par o tlans la relation de

Hardy et Littlewood ou, ce qui revient au même, la
I jYi — uri I

lini -—=-i est-elle égale à 0? (probab. correspondante 1)
Y nlgn

La réponse est affirmative.
Dans un mémoire publié en 1923, Khintchine1 a montré,

en effet, que le rapport
m — np

y nlglgn

est encore borné ou plutôt que la probabilité correspondante
est égale à l'unité.

La fonction \ nlglgn croissant moins rapidement que y nlgn,
il en résulte que la lim. sup. de Hardy et Littlewood est nulle
et que dans leur relation il est permis de remplacer O par o

Mais alors la même question se pose encore ici :

I jYi — un
La lim de - est-elle aussi égale à 0

\ nlglgn
Cette fois-ci la réponse est négative.
En 1924, Khintchine2 a non seulement réussi à montrer

que cette limite est supérieure à 0, il en a encore trouvé la
valeur exacte.

Il a montré que

| m — np
'

lim — \ 2po, (probabilité correspondante 1)
y nlglgn

ce qu'on peut écrire aussi

iim- f"1-"? -1.
y 2pqnlglgn

1 Khintchine, Math. Zeitschr., t. 48 (1923), p. 109.
3 Khintchine, Fund, math., t. 6 (1924), p. 9-20.
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Il en résulte que la loi forte n'est pas vraie pour y nlglgn
mais qu'elle est vérifiée pour les $(n) dont l'ordre de grandeur

est supérieur à celui de y nlglgn
Vous voyez donc qu'avant Khintchine on n'avait réussi à

formuler que des conditions suffisantes pour que la loi forte
soit vérifiée.

Le théorème de Khintchine fournit la condition nécessaire
et suffisante. Vraie pour les fonctions i}>(n) dont l'ordre de

grandeur dépasse celui de \ nlglgn, la loi forte n'est pas
vérifiée pour y nlglgn et à fortiori pour les fonctions dont
l'ordre de grandeur est inférieur à celui de y nlglgn.

Pour que la loi forte soit vérifiée, il faut donc el il
suffit que l'ordre de grandeur de ^(n) soit supérieur à celui

de \ nlglgn 1.

On voit en même temps, et c'est là un résultat extrêmement

curieux, que l'ordre de grandeur de m—np est

comparable à celui de y nlglgn

C'est en cela que consiste la loi du logarithme itéré.
Deux ans après (en 1926), M. Khintchine montrait que

son théorème était encore vrai dans le cas de Poisson. Mais
c'est Kolmogoroff qui réussit à l'étendre au cas général de

Tchébycheff.
Ici le passage des cas de Bernoulli et de Poisson au cas

de Tchébycheff est analogue à celui qu'on fait en établissant
la loi classique des grands nombres.

On associe, avec Tchébycheff, à chacune des épreuves une
variable aléatoire, x1 à la première épreuve, x2 à la seconde, etc.

Le rôle du nombre m de réalisations est joué alors par
la somme

sn xi + x2 + ¦ • • + xn

qui se réduit à m, lorsqu'on suppose que chacune des variables

ne prend que deux valeurs 1 et 0: 1 lorsque l'événement
attendu se produit, 0 dans le cas contraire.

Ici l'écart absolu est

sn — E(s„)
et l'écart relatif

sn — E(s„)
n

1 Ce résultat a été retrouvé par M. P. Levy en 1931 (Giorn. del istituto ital.
degli attuari, li, 1931, p. 3.)
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On arrive alors à démontrer la loi forte et la loi du
logarithme itéré en faisant certaines hypothèses sur les variables
aléatoires ,r,

Le plus simple est de supposer que l'ensemble des x est
borné, en d'autres termes qu'il existe un nombre u tel que

| x 11 <^ u,, quel que soit i.

On peut alors, par un changement de variables, ramener
l'étude du cas général à celui où E(x,) 0 pour tout i, donc
E(s„) 0, et où les espérances mathématiques des carrés des
variables sont toutes égales à 1 ;

E(*J) 1

Alors la loi du logarithme itéré s'énonce de la manière
suivante : La probabilité de la relation

lim 1

y 2nlglgn

esl égale à l'unité.
Cet énoncé peut encore être précisé, mais je crois inutile

d'insister davantage sur ce point.
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