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BULGETIN DE bA SOCIETE VAUDOISE DES SCIENCES NATURELLES

Vol. 62 1943 Neo 259

La loi forte des grands nombres et la loi
du logarithme itéré

PAR

Dmitry MIRIMANOFF

(Séance du 2 décembre 1942.)

Je vais chercher a expliquer comment on arrive & montrer
que, dans le cas d’épreuves répétées vérifiant certaines con-
ditions, nous pouvons nous attendre a ce que la fréquence
d'un événement fortuit tende vers une limite, égale précisé-
ment a la probabilité de I'événement. Cest en cela que consiste
la loi forte des grands nombres qu'on a souvent confondue
avec la loi ordinaire, celle de Bernoulli, de Poisson et de
Tchébycheff. Nous verrons qu'on ne doit pas la considérer
comme un corollaire des théorémes classiques, mais comme
un théoréme nouveau. J'essaierai de vous montrer en quoi
la loi nouvelle différe de la loi classique et pourquoi on les
a si souvent confondues. Je chercherai aussi a mettre en évi-
dence les principes sur lesquels on s’appuie pour établir la
loi forte, principes qui ont permis d’aller plus loin dans cette
voie et de découvrir la loi du logarithme itéré.

1. Permettez-moi de vous rappeler d’abord ce qu'on en-
tend par loi des grands nombres, qui sous sa forme la plus
simple a été établie pour la premere fois par Jacques Ber-
noulli.

J. Bernoulli suppose qu'on effectue une suite d’épreuves
comportant 2 événements contradictoires A et B de probabi-

Travail présenté au Cercle mathématique de Lausanne le 24 mai 1935. A
la demande de quelques collegues, M. le professeur Mirimanoff a bien voulu
consentir & cette publication, qui rendra d’éminents services a tous ceux qui
désirent se mettre au courant de travaux destinés a devenir classiques,
en y apportant de nombreuses simplifications et une grande clarté.

(Note de la rédaction.)
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170 DMITRY MIRIMANOFF

lités constantes p et g . Supposez par exemple qu’on ait une
suite indéfinie d'urnes

U, U,....U,.

contenant des boules blanches et des boules noires dans une
certaine proportion, la méme dans chacune des urnes. On
effectue n épreuves, ici n tirages, on extrait une boule de U, ,
une boule de U,, une de U,. Supposons qu'au cours de ces
n épreuves l'événement attendu (extraction d’une boule blan-
che) se soit réalisé m fois. Vous savez qu’'on entend par écart
relatif la différence

m o8 i ;s

, — P que jécrirai f(n) — p ., en désignant par f(n) la

i ,om
fréquence observée o

Voici alors comment s'énonce le théoreme de J. Bernoull::
e ¢tant un nombre positif aussi petit qu'on veut, la proba-
bilité pour que cet écart soit en valeur absolue inférieur a ¢,
tend vers 1, lorsque le nombre des épreuves augmente in-
définiment.

lim P(|f(n) —p|<Ze) =

n—y»or

Il devient donc de plus en plus probable de tomber sur un
écart aussi petit qu’on veut.

Comme je l'ai dit tout a I'heure, quelques mathématiciens.
a commencer, si je ne me trompe, par J. Bernoulli lui-
méme, en ont conclu qu’on a le droit de s’attendre a ce que
f(n) —p tende vers O, ou bien, ce qui revient au méme, qu’il
est trés probable que la fréquence f(n) tende vers p, lorsque
le nombre des épreuves augmente indéfiniment.

Je ne précise pas le sens des mots que Je viens d’employer:
«1l est trés probable », «on a le droit de s’attendre », etc.... La
difficulté n’est pas la. Je tiens pour le moment a vous faire
remarquer qu’en raisonnant ainsi on raisonne mal. Je vais
expliquer pourquoi'

Dire qu’il est trés probablv que les écarts f(n)rap tendent
vers O revient a dire qu’il est trés probable qu’a partir d'une
certaine valeur de n ils vérifient des inégalités de la forme

|f(n) —pl<lea, [f(n+ 1) — p|<Tentr - - -
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€n, £np1 Ctant une suite décroissante ou, plutot, non croissante
de nombres tendant vers 0. Or le théoréme de Bernoulli nous
apprend qu’il est trés probable, lorsque les €, sont convenable-
ment choisis, que chacune de ces 1negahtes soit vérifiée iso-
[ément, mais il n'en résulte pas qu’il est probable qu’elles
soient vérifiées toutes a la fois. Il s’agit ici non pas des
probabilités

P(If(n) — pl<cen) - Pf(n+1) = p|<ensa) 1 - - -

mais bien de la probabilité composée

P(|f(n) — p|<Teq et [f(n+1) —p| et ...) Zonss

et nous savons quune probabilité composée P(E, et K, et...)
peut trés bien étre petite lors méme que les probabilités sim-
ples P(E,), P(E;) sont grandes. Le raisonnement est donc
inexact. En raisonnant ainsi, on attribue une propriété de
chacun des termes de la suite E,, E,,... a la suite E, et E,, . ..
On confond P(E,) et P(E;) ... avec P(E, et E, et ...). Cette
confusion est permise lorsque les événements sont certains.
Car, si E,, E,.... doivent se réaliser, il en est de méme de
la suite E, et E, et ... . Mais la logique des choses fortuiles
n'est pas toujours celle des choses certaines.

La certitude reste entiére quel que soit le nombre des évé-
nements certains, mais I'incertitude augmente et de petite peut
devenir grande.

En voici un exemple banal.

Supposons qu’on ait une suite d’urnes

U, Uy, .. Uy

contenant respectivement 101 boules dont 100 blanches, 102
boules dont 101 blanches, ..., 100 -+ n boules dont 100 +n—1
blanches. Les probabilités de tirer une boule blanche de U,

U,,... sont respectivement égales a
100 101
101 102777

Je suis donc & peu prés sar de tirer une boule blanche de
la premiére urne; je suis encore plus siur d’en tirer une de
la seconde, etc. ....., les probabilités vont méme en augmen-
tant. Mais suis-je aussi sur de tirer une suite de boules blan-
ches? Supposons par exemple qu'on effectue 9900 tirages. La
probabilité pour que toutes les 9900 boules extraites soient
blanches est égale a
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100 101 102 9999 _ 1
101 102 103~ 10.000 ~ 100

It la probabilité de tomber indéfiniment sur des boules blan-
ches est égale a 0.

l.e raisonnement est donc inexact. Pourtant le théoréme,
que quelques mathématiciens ont considéré a tort comme un
corollaire de celur de Bernoulli, est exact.

On peut montrer, en effet, qu’il est toujours possible de
choisir une suite décroissante de nombres ¢, tendant vers O et
telle que

P([f(n) — pl<<en et [f(n+1) — pl<eppa et ...) >1—5b,

> étant un nombre positif aussi petit qu'on veut, pourvu
que n soit suffisamment grand. Cette probabilité tend vers 1,
lorsque n augmente indéfiniment.

Tel est 'énoncé précis de la loi forte des grands nombres,
dans le cas particulier ou les épreuves vérifient les conditions
de Bernoulli.

Démonstration de la lot forte des grands nombres.

Sur quels principes allons-nous nous appuyer pour dé-
montrer ce théoréme? Comment allons-nous évaluer la pro-
babilité qui figure au premier membre de notre mcgdhtvr

Dans lexemple banal que nous venons d’ envmlger ce cal-
cul était facile a faire, la probabilité composée étant égale
au produit des probabilités simples. Mais il n’en est plus de
méme ici, les événements simples n’étant pas indépendants.
En effet, il est plus probable par exemple de tomber sur un
petit écart (petit en valeur absolue) lorsque I'écart qui preé-
cede est petit aussi, que dans le cas contraire. La probabililé
de [f(n—+1)—p[<epp depend de celle de |f(n) — p|<le,. Et
quant a la régle classique qui permet de calculer la I)I‘Obdbllﬂ(‘
composée dans le cas d’événements dépendants, elle serait ici
d'une application difficile.

[1 est possible heureusement d’aborder le probleme par
un coté différent. Partons du théoreme classique des pro-
babilités totales

P(E, ou Ey) = P(E)) + P(E;) — P(E, et E,).

Comme le premier membre ne dépasse pas 1. on peut écrire

P(E, et E,)=P(E,) ~P(E)— L.
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De méme
P(E, et E, et E;) >P(E,) - P(E,) +-P(E;) — 2,
et d’'une maniére générale !
PE,etE,... et E\) >P(E,) +P(E)+...+P(E,)—(v—1).

Si maintenant on désigne par ¢q; la probabilité¢ pour que
E; ne se réalise pas, comme

qi=1—P(E;),
notre inégalité devient
"
P(E;etE;et...etEv)>1—ZXgq;.
i=1
Supposons que le nombre v des événements augmente in-
définiment. La probabilité composée étant une fonction dé-
croissante ou p’lut(‘)’[ non croissante de v, elle va tendre vers

une limite déterminée qui est par définition la probabilité de
la suite E, et K, et... . Nous pourrons donc écrire

PE, et Ejet...)~1—%q,.
i=1

- . . s T N .
| !tn appllquant cette megahte au prohlenm qui nous occupe,
1l vient

P(|f(n) — p| <ew et | f(n+1) — p|<emps et ...)>1—Eq,,

i=n
Ry o ) W
4= PJ(D) —p|> ).
Pour établir la loi forte, il suffit donc de montrer que
> o] o)
la série T q; converge; car si elle converge, la somme X g,
{=1 i=n

peut étre rendue aussi pelite qu’on veut, par exemple <5,
en prenant n suffisamment grand et alors

P(|f(n) — pl<en et |f(n+-1)—p|<leppr et ...) >1—5%.

Cette probabilité tend vers 1, lorsque n augmente indé-
finiment.

Il nous reste donc a montrer qu'en choisissant convena-
blement les ¢;, la série £ q; converge.

! Inégalité de BooLk. (An investigation of the laws of thought, London,
Macmillan and C°, 1854. ch. XIX, p. 307).
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Nous nous appuierons pour cela sur une inégalité impor-
tante de Bienaymé-Tchébycheff généralisée que je tiens a vous
rappeler.

Inégalité de Bienaymé-Tchébycheff (généralisée). Soit x une
variable aléatoire, ¢(x) une fonction paire de x, non négative
et croissante ou plutot non décroissante pour x - 0.

Si alors @ est un nombre positif, on a

ou E( (x)) désigne I'espérance mathématique (valeur moyenne)
de ¢(x). La démonstration est immédiate. En effet E(¢(r))

— X oq(x)p(x), étendue i toutes les valeurs possibles de
mais cette somme est

= ¢(a) E\P( ) = ¢ (0)P(|2|>q)

|xI=a
3 A}
d’ou

P(lz|=a) <

Posons ¢(x)=a% , ou k est un nombre entier positif. En
faisant =1, on déduit immédiatement de l'inégalité cor-
respondante les théorémes classiques de Bernoulli, de Pois-
son et de Tchébycheff, c’est-a-dire la loi ordinaire des grands
nombres.

Mais on ne saurait en déduire la loi forte, 'inégalité étant
(rop grossiére.

Mais faisons k = 2

L'inégalité de Tchébycheff s’écrit

—P(lf())—plze) <=L P

Or, il est facile de calculer l'espérance mathématique de
la 4¢ puissance de l'écart et l'on établit sans peine que

B(f() ~ p)'<



LA LOI FORTE DES GRANDS NOMBRES 175

d’ou
{

4 2
Sl'L

qi <<

Choisissons maintenant la suite ;.

|

4 N o . . y \
Posons ¢f — 7z > O ¢ esl un nombre positif inférieur a 1,
0<la<1.

lia suite ¢ ainsi choisie est une suite décroissante tendant
vers (0, lorsque i augmente indéfiniment et l'on a alors

2 1 1
§Qi <<

S e et

comme 2—a > 1, la série converge et la loi forte est établie.

—

3. La loi du logarithme itéré.

La démonstration que je viens d’esquisser ne différe pas
essentiellement de celle de CanteLLi!, a qui l'on attribue la
découverte de la loi forte.

Je tiens pourtant a faire remarquer que dans certains cas
particuliers et par des méthodes trés différentes, la loi forte
avait déja été établie avant lui par Borel (1909), Hausdortf
(1913), Hardy et Littlewood (1914):2.

Cela ne diminue pas le mérite de CanTeELLI, qui du reste
ne s'est pas borné au cas des épreuves répétées vérifiant les
conditions de Bernoulli. Ses hypothéses sont beaucoup plus
larges.

Je crois utile cependant de vous donner une idée des
principes sur lesquels se sont appuyés les mathématiciens que
je viens de nommer, principes qui ont permis a Hausdorff
et a Hardy et Littlewood de préciser la loi forte et d’ouvrir
la voie aux recherches récentes de Khintchine et de Kolmo-
goroff.

Voici par exemple comment Hausdorff, a l'aide d'une mé-
thode due a M. Borel, établit la loi forte dans le cas parti-

1 P. CantELLL : Sulla probab. come limite della frequenza, Rend. d. R. Acc.
dei Lincei (5), t. 26, 1917.

? BoreL, Rend. Palermo, t. 27 (1909), p. 247. — Hauspor¥r, Grundziige der
Mengenlehre (1913) p. 419-422. — Harpy axp LitrLEwoob, Acta mathem., t. 37,
p. 155-190.
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culiérement simple ot la probabilité p de I'événement attendu
est égale 4 15 (jeu de pile ou face). Supposons qu'on mar-
que 1 lorsqu’on améne pile, 0 dans le cas contraire. On ob-
tient de cette maniére une suite d'unités et de zéros. Ecrivons
cette suite a la droite de la virgule, par exemple

0,1010001.1 .. .,

A chaque suite possible correspond une fraction qui, dans
le systtme de numération de base 2, définit un point et un
seul du segment (0,1)

0 1

L’ensemble de ces suites ou plutot de ces points a pour
mesure 'unité.
; ; , ‘ m
Or, envisageons les suites le long desquelles la fréquence .
(m étant le nombre des unités figurant parmi les n premie-
res décimales) tend vers la probabilité p=1,.

On peut montrer que la mesure de I'ensemble des points
correspondants est encore égale a l'unité. Donc la probabilité
de tomber sur une suite de cette sorte est égale a 1, tandis
que la probabilité de tomber sur une suite contraire est nulle.

5 m ,
Nous devons donc nous altendre & ce que — tende vers 1)
-

et la loi forte est établie.

Cest a l'aide de considérations analogues que Hausdorff
en 1913 et Hardy et Littlewood en 1914 ont réussi a préciser
la loi forte. Permettez-moi de vous dire quelques mots de
ces recherches!. Je vous rappelle que dans la loi classique
des grands nombres, aussi bien que dans la loi forte, on en-
visage l'écart relatif f(n) ——p—-ﬁf—p Cet écart s’obtient en

divisant I'écart absolu m —np par n,

n — n/)

f)—p="7

1 On trouvera une analyse remarquable de quelques-unes de ces recherches
dans I'excellent ouvrage de M. M. FriicHET « Recherches theorlques modernes
sur la théorie des probablhtesn (Traité du Calcul des Probabilités et de ses
Applications par E. BoreL, tome 1, fascicule III, 1937).
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Nous pouvons donc dire, en désignant par ¥(n) une fonc-
tion de n, que le rapport
m-—np

Cb(n)

tend vers 0 ou que la loi forte est vérifiée lorsque ¥(n)==n.
Elle T'est a fortiori pour les ¥(n) dont l'ordre de grandeur
est supérieur a celui de n, par exemple pour b(n)=n2 nlgn,
i oo OEG,
Mais cette condition est-elle nécessaire ? ,
Qu’arrive-t-il lorsque l'ordre de grandeur de ¥(n) est in-
férieur & celui de n, par exemple pour ¥(n)= n'ls, \/'nTgn,...?

m—n ;
P peut-elle encore étre nulle ? Peut-on abais-

b(n
ser l'ordre de grandeur de (n) au-dessous de celui de n.
sans que la lo1 forte cesse d’étre vérifiée, et dans quelle mesure?
C'est I'étude de ce probléme délicat et difficile qui a con-
duit a la découverte de la loi du logarithme itéré.
Le premier pas dans cette voie a été fait, si je ne me
trompe, par Hausdorff. En 1913, Hausdorff a réussi & mon-

e . m-—mnp , .
trer que la probabilité de lim T/:O est encore égale a

La limite de

I'unité, si k=14-t¢, € étant un nombre positif aussi petil
qu'on veut, et cela non seulement dans le cas de p=1; (jeu
de pile ou face), mais dans un cas plus général.

Je ferai remarquer a ce propos que le théoréme de Haus-
dorff a été retrouvé en 1921 par M. Pdélya', qui a cette épo-
(ue ne connaissait pas encore les travaux que jai cités tout
a I'heure. Du reste, d’aprées M. Polya, la loi forte avait- été
découverte d’autre part, dans un cas particulier il est vrai,
par M. Pierre Cérésole.

Mais ne pourrait-on pas aller plus loin dans cette voie
en abaissant encore davantage l'ordre de grandeur de ¥(n)?

Un résultat extrémement important a été obtenu a cet
égard par Hardy et Littlewood en 1914. A Taide de con-
sidérations analogues a celles que je viens d’exposer, ces ma-
thématiciens ont réussi a montrer qu'en posant {(n) :\/W.

m-—n m — np )
le rﬂpport*f¥fp e — est borné,

b(n) 7 \/' nlgn

1 PéLya « Eine Erginzung zu dem Bernoullischen Satz der Wahrschein-
lichkeitsr. » (Nachr. v. der k. Ges. der Wiss. zu Gdiltingen, Math-Phys. Klasse,
1921 ).
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ce qu'on peut écrire
m —np = O(y/nlgn)

ou plutét que la probabilité pour quil le soit est égale &
I'unité. La loi forte est donc vraie pour toute fonction ¥(n)
dont l'ordre de grandeur est supérieur a celui de y nlgn.

Mais est-elle vraie pour \/nlgn ?

i m-—n

La limite de —#

\/ nlgn

Est-il permis de remplacer O par o dans la relation de
Hardy et Littlewood ou, ce qui revient au méme, la

lim l__:[’l est-elle égale a 0? (probab. correspondante = 1)

\ nlgn
La réponse est affirmative.
Dans un mémoire publié en 1923, Khintchine! a monlré,

en effet, que le rapport

est-elle nulle ?

\ nlglqn

est encore borné ou plutot que la probabilité correspondante
est ¢égale a I'unité.

La fonction y/ nlglgn croissant moins rapidement que y/ nlgn ,
il en résulte que la lim. sup. de Hardy et Littlewood est nulle
et que dans leur relation il est permis de remplacer O par o.

Mais alors la méme question se pose encore ici:
jm—np|
v nlqlgn

Cette fois-ci la réponse est négative.

En 1924, Khintchine? a non seulement réussi a montrer
que cette limite est supérieure a O, il en a encore trouvé la
valeur exacte.

Il a montré que

La lim de — est-elle aussi égale a 0?

lim Iin iilpl =y, 2_])(; . (probabilité correspondante — 1)

v nlglgn
ce qu'on peut écrire aussi
fm ol _
v Zpgnlglgn

! KHiNtTcHINE, Math. Zeitschr., t. 18 (1923), p. 109.
* KHINTCHINE, Fund. math., t. 6 (1924), p. 9-20.
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Il en résulte que la loi forte n'est pas vraie poury/ nlglgn .
mais qu'elle est vérifiée pour les v(n) dont l'ordre de gran-
deur est supérieur a celui de y/nlglgn.

Vous voyez donc qu’avant Khintchine on n’avait réussi a
formuler que des conditions suffisantes pour que la loi forte
soit veérifice.

Le théoréme de Khintchine fournit la condition nécessaire
et suffisante. Vraie pour les fonctions ¥(n) dont I'ordre  de
grandeur dépasse celui de v nlglgn, la loi forte n’est pas
vérifiée pour \/ nlglgn et a fortiori pour les fonctions dont
lordre de grandeur est inférieur a celui de \/'nlglgn .

Pour que la loi forte soit vérifiée, il faut donc et il
suffit que l'or I'ordre de grandeur de ®(n) soit supérieur a ce-
lui de \, nlglgn1

On voit en méme temps, et c’est la un résultat extréme-
ment curieux, que l'ordre de grandeur de m —np est com-

parable a celui de y/ nlglgn .

C’est en cela que consiste la loi du logarithme itéré.

Deux ans aprés (en 1926), M. Khintchine montrait que
son théoréeme était encore vrai dans le cas de Poisson. Mais
c'est Kolmogoroff qui réussit a I'étendre au cas général de
Tchébycheff.

Ici le passage des cas de Bernoulli et de Poisson au cas
de Tchébycheff est analogue a celui qu'on fait en établissant
la loi classique des grands nombres.

On associe, avec Tchébycheff, a chacune des épreuves une
variable aléatoire, x;, a la premiére épreuve, x, a la seconde, etc.

Le role du nombre m de réalisations est joué alors par
la somme

Sp =% T T2 ...+ Ty

qui se réduit a m, lorsqu'on suppose que chacune des varia-
bles ne prend que deux valeurs 1 et O: 1 lorsque I'événement
attendu se produit, 0 dans le cas contraire.

Ici I'écart absolu est

8= E{8)
et I’écart relatif
Sp— E(S,,)
Rl

! Ce résultat a été retrouvé par M. P. LEvy en 1931 (Giorn. del istituto ital.
degli attuari, 11, 1931, p. 3.)
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On arrive alors a démontrer la loi forte et la loi du loga-
rithme itéré en faisant certaines hypothéses sur les variables
aléatoires x; . .

Le plus simple est de supposer que l'ensemble des z est
borné, en d’autres termes qu’il existe un nombre p tel que

|;|<p, quel que soit i.

On peut alors, par un changement de variables, ramener
I'étude du cas général a celui ou E(z;) = 0 pour tout i, donc
E(s,) =0, et ou les espérances mathématiques des carrés des
variables sont toutes égales a 1 ;

E(x%) =1

Alors la loi du logarithme itéré s’énonce de la maniére
sutvante : La probabilité de la relation

est ¢égale a T'unité.
Cet énoncé peut encore étre précisé, mais je crois inutile
d’insister davantage sur ce point.
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