
Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 61 (1940-1941)

Heft: 256

Artikel: Mouvement radial dans le champ de Schwarzschild

Autor: Javet, Pierre

DOI: https://doi.org/10.5169/seals-272994

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 17.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-272994
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


BULL. SOC. VAUD. SC. NAT. VOL. 61, N° 256, 1941 379
(LAUSANNE, SUISSE)

Mouvement radial dans le champ
de Schwarzschild

PAR

Pierre JAVET

(Séance du 3 décembre 1941.)

§ 1. — Les mouvements d'une masse infiniment petite,
sous l'action d'une masse sphérique isolée, sont définis par
les géodésiques du ds- de Schwarzschild:

ds2=(c* ^
J dtß -^ /-2(t/0ä f cos-'Odcps)

~~Ctr

Les quatre variables t, r, 6 et <p qui y figurent ont des

significations bien connues. Les deux constantes c et |i
représentent, la première la vitesse de la lumière et la deuxième
le coefficient de Kepler figurant dans l'expression de l'attrac-

tion newtonienne -g. Ce coefficient p. est égal au produit /M
de la constante de l'attraction universelle par la masse M
du corps attirant.

Dans ce travail, nous étudions les mouvements d'une
particule infiniment petite se déplaçant le long d'une droite issue
du centre attirant. Ces mouvements sont définis par l'équation 1:

d?r
Cl, —[ ' dfl

dans laquelle on a posé: a

r c2(r — a)_

2ti

1 Voir Jean Chazv : La théorie de la relativité et la mécanique céleste,
t. I, p. 102.
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La constante a a les dimensions d'une longueur. Dans les

applications courantes, la masse attirante est le Soleil. La
longueur a vaut alors: 2,95 km. Elle est négligeable vis-à-vis
des dimensions du Soleil.

Dans la présente étude — purement mathématique — nous
supposons que la masse attirante se réduit à un point matériel.
La singularité du ds2 de Schwarzschild au point r a ne peut
donc pas être négligée.

§ 2. — Dans le but de simplifier l'équation (1), faisons
le changement de variable suivant, analogue à celui employé
par Sundman dans sa résolution du problème des trois corps:

(2) dt (v^f<n
L'équation différentielle du mouvement devient:

(3)
dV r1

dT* (r -a)*
Faisons encore le changement de fonction

(4) R r- a

(2) et (3) deviennent :

(5) *- (\+ '*)irfT

(6)
f/2R

dlft
r1

(6) est l'équation du mouvement d'un point attiré par un
centre fixe suivant une force inversement proportionnelle au
carré de la distance. Le mouvement décrit par les variables R
et T est donc connu. En effet (6) donne immédiatement
l'intégrale des forces vives:

<7> Uf)=K +

où la constante des forces vives h est déterminée par:

(8) h mii-^
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dR
Nous avons posé: #1- - - ,„,

(7) peut alors s'écrire:
2p.-±VÏ+*

avec | ou suivant le sens dans lequel marche le mobile.
On sail que les circonstances du mouvement (décrit par les

variables R et T) sont les suivantes:

/er cas. — Le mobile étant lancé vers le centre attractif,
R diminue et tend vers 0 en même temps que ^v augmente
en valeur absolue et tend vers — <*>

2me cas. — Le mobile étant lancé à l'extérieur, il faut
distinguer, suivant que:

1°) h r> 0 Alors le mobile s'éloigne indéfiniment et sa

vitesse tend à devenir uniforme et égale à y 'Ti

2°) h 0 Le mobile s'éloigne encore indéfiniment, mais
sa vitesse tend vers 0.

3°) h <T 0 Le mobile s'éloigne d'abord, jusqu'au point
2w_

" h
le 1er cas.

2w
R4 — —r- où il est immobile. Il revient ensuite comme dans

§ 3. Interprétons ces résultats dans le système de
variables r et t.

/-ii i • dr „ dR _Calculons la vitesse v -r- en fonction de .o -™. Un a:dt * dl
dr ,m dT
dl dT dt " * \ r

ce qui peut s'écrire, en utilisant (5) et (7):

(8) y- ± V72H-ft(r-«)(>¦-")
r\J~r

1 On peut vérifier que cette valeur de v — satisfait identiquement

l'équation (1).
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La discussion qui suit doit être divisée en deux parties,
suivant que le point mobile part d'une position initiale r0
Ielle que r0 est plus grand ou plus petit que a

/re partie. r0 > a

Supposons tout d'abord que le mobile soit lancé du côté
tlu centre attractif. Sa vitesse v est alors négative et r qui
diminue, tend vers a En même temps v tend vers zéro. De

plus le temps

r\ '/• dr
V/2u.-f-/i(r— a) (r—a)

Le mobile n'atteint donc jamais le point r a
Lançons maintenant le mobile vers l'extérieur. Les

circonstances du mouvement sont analogues à celles rappelées au
g 2, 2me cas.

Si h est positif, r croit indéfiniment et tend vers l'infini.
r— «^La vitesse v „c I y tend vers \ h

Si h est nul, r tend vers l'infini et la vitesse tend vers zéro.
Si h est négatif, r croît jusqu'à une valeur r, telle que

2p. -|- n(rx — a) 0 c'est-à-dire:
2u

r1 a-T
Pour cette valeur, o est nul. Le mobile, qui commence par

s'éloigner du centre attirant, arrive jusqu'à la distance rt où
il est immobile, puis retombe du côté du centre, comme dans
le cas précédent.

§ 4. Ces considérations sont encore valables pour la
lumière. Considérons un rayon lumineux venant de l'infini.
On a alors Jh c (c vitesse de la lumière à l'infini). El
la vitesse de la lumière à la distance r est donnée par

-\ 2\x ^r c2(r — a) (r — a) r

r\r
en tenant compte du fait que ac2 2p..
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Cette vitesse tend vers zéro quand r tend vers a et le
temps mis par la lumière pour atteindre le point r a est
infini. En effet:

fdt -f rdr
J c(r — a)
ro

La lumière, comme les points matériels, n'atteint donc
pas la distance r a1.

Ilnv partie. r0 < a

§ 5. — Supposons que le mobile soit lancé vers l'extérieur.

Sa vitesse, positive, vaut:

t._. -V 2n —ft(r—a) (r-«-)
r\ r

r augmente et tend vers a en même temps que v diminue
et tend vers zéro. Mais le mobile n'atteint pas la distance r a

car / dt est encore infinie.

Avant d'étudier les circonstances du mouvement quand le

point est lancé du côté du centre, calculons la constante des
forces vives, h en fonction des constantes r0 et v0

De la relation
dr dr dt
dT=dt dT

el en tenant compte de (4) (5) et (8), on obtient:

(q, ._ 2fi __
r*/-» - 2n(r„ - a)3

1 Ce résultat peut du reste être établi directement à partir du du' de
Schwarzschild. Pour la lumière : ds2 0.

Posons dB dep 0. Il reste :

dr8 dr r —«c2dt2 rr—-j d ou : -— c ¦

C'est la valeur trouvée plus haut.



384 PIERRE JAVET

Supposons maintenant que le mobile soit lancé du côté
du centre attirant. Son mouvement paraît dépendre du signe
de h

Si h <C 0 alors h(r — tx)_> 0 et r, qui diminue, tend vers
zéro en même temps que la vitesse tend vers — »

Si h 0 r tend vers zéro et la vitesse tenti vers — *=

connue dans le cas précédent.
Si h >¦ 0 r diminue jusqu'à une valeur ry telle que

- h(i\ — a) 2fx d'où l'on lire:

2u

En ce point r1 la vitssse s'annulerait, et le mobile n'atteindrait

pas le centre attirant. Mais cela suppose que rt ]> 0,
c'est-à-dire

a j- ^> 0 et comme a -4-
n c2

cette condition devient h _> c2.

Montrons que cette dernière inégalité ne peut être satisfaite.
En utilisant (9) la condition h ^ c2 devient:

v\r% -2fi(r0 —o)^ ^ ^(r0 - «)3

(r0-a)3(l + a)
(10) ^<c

Or, r0 — a étant négatif, le deuxième membre de (10) l'est
aussi. La condition en question est donc impossible, et par
conséquent le mobile atteint le centre attirant, avec une
vitesse infinie, comme dans les cas où h < 0

Ces conclusions sont étonnantes, la considération —
purement mathématique, il est vrai — de vitesses tendanl vers
l'infini étant totalement étrangère aux idées relativistes. Il est
curieux que cette notion de vitesse infinie soit incluse dans
le ds2 de Schwarzschild.
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§ 6. — Les considérations précédentes montrent que
l'intérieur de la sphère de rayon r a est un domaine entièrement

séparé de l'extérieur, aucun signal ne pouvant franchir
la « barrière » r a soit en venant de l'extérieur, soit en
venant de l'intérieur.

Or a=2-l=2M
c2 c2

Considérons alors un corps attirant sphérique de rayon U
et de masse spécifique o

4
On a alors * M - TtU3p d'où:

8tt/U3Pa= 3c^
a est proportionnel à U3. Par conséquent si U croît, il

arrivera un moment où a U. Cela arrivera pour une valeur
de U donnée par

«7l/lJ3P
3c2

f'V'3

d'où l'on tire

V 8*/p

Une masse sphérique de densité uniforme p et d'un rayon

égal à —V forme donc un domaine entièrement isolé,

sans communication possible avec 1 extérieur; un tel domaine
constitue, pour ses habitants, un univers. Et nous aboutissons

cainsi à la conception d'un univers fini, de rayon U —=
V/3

v Mp
Or on sait que c est à la même conclusion que conduit

la théorie fie la relativité généralisés, appliquée du point de

vue ultra-macroscopique. Cette théorie établit en effet la
formule bien connue:

R —'— où R courbure totale de l'univers.
c2

1 Ceci suppose que la géométrie valable ici est la géométrie euclidienne
à 3 dimensions. D'autres hypothèses (espace à 4 dimensions, euclidien ou
non) conduisent à des résultats presque identiques à ceux que nous donnons
dans ce paragraphe.

61-256 27
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Mais la courbure totale, dans un espace sphérique par
exemple, vaut

R - 6

U étant le rayon de l'Univers. Par conséquent

6 8*/o
yv- —5— d ou 1 on tire :
U2 c'

U
/ocy à

V 4it/p

C'est, au facteur y 2 près, la valeur du rayon de l'Univers
trouvée plus haut.

Jean Chazy, dans une remarque sur le signe des coefficients

du ds2 de Schwarzschild1, ne partage pas notre façon
de voir dans ce dernier paragraphe. Mais nous croyons que
ses objections ne sont pas entièrement fondées quand les
considérations précédentes sont appliquées — comme nous le
faisons ici — à l'Univers entier. D'autres phénomènes peuvent
en effet entrer en considération, tel par exemple l'instabilité
de la gravitation, dont Jeans a montré l'importance.

De toute manière, il nous a paru intéressant de signaler
que le ds2 de Schwarzschild pouvait conduire à la notion d'un
univers fini, le rayon de cet univers calculé à partir du ds2

étant en accord avec les valeurs fournies par des méthodes
bien différentes.

1 Jean Chazy : ouvrage cité, t. Il, p. 122.
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