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(LAUSANNE, SUISSE)

Mouvement radial dans le champ
de Schwarzschild

PAR

Pierre JAVET

(Séance du 3 décembre 1941.)

§ 1. — Les mouvements d'une masse infiniment petite,
sous l'action d’une masse sphérique isolée, sont définis par

les géodésiques du ds? de Schwarzschild:

9 / 2 i 2 dr2 9 9 2 9
ot ={o1 =) it g @0 - cowode)

cir

Les quatre variables ¢, r, 0 et ¢ qui y figurent ont des
significations bien connues. Les deux constantes ¢ et p re-
présentent, la premiére la vitesse de la lumiére et la deuxiéme
le coefficient de Kepler figurant dans l'expression de l'attrac-

tion newtonienne ,% Ce coefficient p est égal au produit fM

de la constante de l'attraction universelle par la masse M
du corps attirant.

Dans ce travail, nous étudions les mouvements d'une par-
ticule infiniment petite se déplacant le long d'une droite issue
du centre attirant. Ces mouvements sont définis par I'équation *:

ar (4’
drr _ p 1@ "\ dt

P

de— 2 r e(r—a)

2
dans laquelle on a posé: o= 72

(1)

1 Voir Jean CHazY: La théorie de la relativité et la mécanique céleste,
t. I, p. 102.
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LLa constante « a les dimensions d'une longueur. Dans les
applications courantes, la masse attirante est le Soleil. La
longueur o« vaut alors: 2,95 km. Elle est négligeable vis-a-vis
des dimensions du Soleil.

Dans la présente étude — purement mathématique — nous
supposons que la masse attirante se réduit a un point matériel.
La singularité du ds? de Schwarzschild au point r = « ne peut
donc pas étre néglgée.

§ 2. — Dans le but de simplifier 'équation (1), faisons
le changement de variable suivant, analogue a celui employé
par Sundman dans sa résolution du probléme des trois corps:

ro\:,
(2) dt:(r_a>2df
I.’équation différentielle du mouvement devient:
dzr u
(3) dT: ~  r—a)
Faisons encore le changement de fonction:
(4) R=r—«a
(2) et (3) deviennent :
R4 a)\g
(5) dt — ( . )2 dT
AR
(6) 1T~ R

(6) est I'équation du mouvement d'un point attiré par un
centre fixe suivant une force inversément proportionnelle au
carré de la distance. Le mouvement décrit par les variables R
et T est donc connu. En effet (6) donne immeédiatement 1'in-
tégrale des forces vives:

, dRY\* 2
(7) (ﬁ): <N

/

ou la constante des forces vives h est déterminée par:

2
(8) h=u4— g
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Moo 4R
ous avons ,pOSE. Y — (ﬁ

(7) peut alors s’écrire:

=1 \/%‘ 4+ h

avec  ou —— suivanl le sens dans lequel marche le mobile.
On sait que les circonstances du mouvement (décrit par les
variables R et T) sont les suivantes:

Iev cas. — Le mobile étant lancé vers le centre attractif,
R diminue et tend vers O en méme lemps que ,o augmente
en valeur absolue et tend vers — = .

2me cas, — Le mobile étant lancé a Dextérieur, il faut dis-
tinguer, suivant que:

1o) h - 0. Alors le mobile s’éloigne indéfiniment et sa
vitesse tend a devenir uniforme et égale a \/l_’z

20) h = 0. Le mobile s’¢loigne encore indéfiniment, mais
sa vitesse tend vers 0.

30) h < 0. Le mobile s’éloigne d’abord, jusqu’au point
Blz—TIM ou il est immobile. Il revient ensuite comme dans
le 1er cas.

§ 3. — Interprétons ces résultats dans le systeme de va-
riables r et t.
. ) dr . ) dR
Calculons la vitesse v = —— en fonction de ,v = —=. On a:
it * dT
_dr dR dT = a)
dt dT  dt —* r

20169

P

ce qui peul s'écrire, en utilisant (5) et (7):

(8) po £V Rir—a)(r—a) ,

S8

i . dr wrr ;
1 On peut vérifier que cette valeur de v = a salisfail identiquement

I'équation (1).
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La discussion qui suit doit étre divisée en deux parties,
suivant que le point mobile part d’une position initiale r,
telle que r, est plus grand ou plus petit que «.

[re partie. ry > a.

Supposons tout d’abord que le mobile soit lancé du coteé
du centre attractif. Sa vitesse v est alors négative et r, qui
diminue, tend vers «. En méme temps v tend vers zéro. De
plus le temps

fdt “Ji rv"; dr .
. — V2 Fh{r—a) (r—a)

ry

Le mobile n’atteint donc jamais le point r =a .

Lancons maintenant le mobile vers l'extérieur. Les cir-
constances du mouvement sont analogues a celles rappelées au
§ 2, 2me cas,

Si h est positif, r croit indéfiniment et tend vers l'infini.

Y
. r—o\2 -
LLa vitesse ¢ =— ¢ *tend vers \//i.
* \

,
Si h est nul, r tend vers l'infini et la vitesse tend vers zéro.
Si h est négatif, r croit jusqu'a une valeur r, telle que
2u + h(ry — a) = 0, c’est-a-dire:
2u

r=o-— —
! h

Pour cette valeur, v est nul. Le mobile, qui commence par
s'¢loigner du centre attirant, arrive jusqu'a la distance r, . ou
il est immobile, puis retombe du coté du centre, comme dans
le cas précédent.

§ 4. — Ces considérations sont encore valables pour la
lumiére. Considérons un rayon lumineux venant de I'infini.
On a alors V"h:c (¢ = vitesse de la lumiére a l'infini). [kt
la vitesse de la lumiére a la distance r est donnée par

e e T B
/'V’/' r

en tenant compte du fait que ac?= 2u.
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Cette vitesse tend vers zéro quand r tend vers o et le
lemps mis par la lumiére pour atteindre le poinl r = a est
infini. En effet:

o o

[t [y =

Ty ro

La lumiére, comme les points matériels, n’atteint donc
pas la distance r = a1,
[Ime partie. ro < o.

§ 5. — Supposons que le mobile soit lancé vers l'exté-
rieur. Sa vitesse, positive, vaul:

_ = \"Zp +h(r—a) (r—a)
o

r augmente et tend vers « en méme temps que v diminue
et tend vers zéro. Mais le mobile n’atteint pas la distance r = «

74
»

car / dt est encore infinie.

.

v

r

Avant d’étudier les circonstances du mouvement quand le
point est lancé du coté du centre, calculons la constante des
forces vives, h, en fonction des constantes r, et v, .

De la relation

dr dr dt

AT~ dt dT
el en lenant compte de (4) (5) et (8), on obtient:

% _ vid— 2n(r,—a?
R, (ro— )3

1 Ce résultat peul du reste étre établi directement a partir du ds* de
Schwarzschild. Pour la lumiére : ds?2 = 0.
Posons df = dyp = 0. Il reste:

dr? dr r—«
FE— " Aol —r—p_ "
c2di2 = 1 50\ d’ou : T c P
cir

C’est la valeur trouvée plus haut.
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Supposons maintenant que le mobile soit lancé du coté
du centre attirant. Son mouvement parait dépendre du signe
de h.

Si h <0 alors h(r —«) >0 et r, qui diminue, tend vers
zéro en méme temps que la vitesse tend vers — > .

Si h=0 r tend vers zéro et la vitesse tend vers — = |
comme dans le cas précédent.

Si h>>0 r diminue jusqu'a une valeur r, telle que

— h(ry —a) = 2p d’ou l'on tire:

2p

h

l‘lr-’u—~~

En ce point ry la vitesse s’annulerait, et le mobile n’attein-
drait pas le centre attirant. Mais cela suppose que r, =~ 0,
¢’est-a-dire

AL 0 el comme o= ?ﬂ

o — —E— > P

cette condition devient h - ¢
Montrons que cette derniére inégalité ne peut étre satisfaite.
En utilisant (9) la condition h - ¢? devient:

i 20,

()

©

- C* ou:

(10) V3 < c?

Or, r, — « étant négatif, le deuxiéme membre de (10) l'est
aussi. La condition en question est donc impossible, et par
conséquent le mobile atteint le centre attirant, avec une vi-
tesse infinie, comme dans les cas ou h<0.

Ces conclusions sont élonnantes, la considération — pu-
rement mathématique, il est vrai — de vitesses tendant vers
I'infini étant totalement étrangére aux idées relativistes. Il est
curieux que cette notion de vitesse infinie soit incluse dans

le ds2 de Schwarzschild.
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§ 6. — Les considérations précédentes montrent que 1'in=
térieur de la sphére de rayon r=a est un domaine entiére-
ment séparé de l'extérieur, aucun signal ne pouvant franchir
la « barriére » r=a, soit en venant de l'extérieur, soit en
venant de l'intérieur.

Or = = - 2f

c? c?

Considérons alors un corps attirant sphérique de rayon U
et de masse spécifique o .

On a alors! M= i: xUsp d’otr:
8afUsp
= T3

@ est proportionnel a U3, Par conséquent si U croit, il
arrivera un moment ou « = U. Cela arrivera pour une valeur
de U donnée par

v 87{ USP LI ] .
= —Lq— d’ou l'on tire
3c?

('\:’g

V 87fp

Une masse sphérique de densité uniforme p et d'un rayon

]

. ; ey 3 . - SR Y
égal a V2 forme donc un domaine entiérement isolé,

v 87fp

sans communication possible avec 'extérieur: un tel domaine
constitue, pour ses habitants, un univers. It nous aboutissons

/3
V 87fp

Or on sait que c’est & la méme conclusion que conduit
la théorie de la relativité généralisée, appliquée du point de
vue ultra-macroscopicque. Cette théorie établit en effet la for-
mule bien connue:

ainst a la conception d'un univers fini, de rayon U =

R = §%{;E ou R = courbure totale de l'univers.

1 Ceci suppose que la géométrie valable ici est la géométrie euclidienne
a 3 dimensions. D’autres hypothéses (espace a 4 dimensions, euclidien ou
non) conduisent a des résultats presque identiques a ceux que nous donnons
dans ce paragraphe.

61-256 27
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Mais la courbure totale, dans un espace sphérique par
exemple, vaut

6
B = —.[Té
U étant le rayon de I'Univers. Par conséquent
—[—?—2 == iitl:g d’ou l'on tire:
_ V3
V 4xfp

C’est, au facteur y/2 pres, la valeur du rayon de 1'Univers
trouvée plus haut.

Jean Chazy, dans une remarque sur le signe des coeffi-
cients du ds? de Schwarzschild !, ne partage pas notre facon
de voir dans ce dernier paragraphe. Mais nous croyons que
ses objections ne sont pas entiérement fondées quand les con-
sidérations précédentes sont appliquées — comme nous le fai-
sons ici — a l'Univers entier. D’autres phénomeénes peuvent
en effet entrer en considération, tel par exemple l'instabilité
de la gravitation, dont Jeans a montré l'importance.

De toute maniére, il nous a paru intéressant de signaler
que le ds? de Schwarzschild pouvait conduire a la notion d'un
univers fini, le rayon de cet univers calculé a partir du ds?
¢tant en accord avec les valeurs fournies par des méthodes
bien différentes.

1 Jean CHazY : ouvrage cité, t. 1, p. 122.



	Mouvement radial dans le champ de Schwarzschild

