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BULL, SOC. VAUD. SC. NAT. VOL. 59, No 243, 1937
(LAUSANNE, SUISSE)

Géométrie du quadrilatére complet
PAR
Jules MARCHAND

I. Introduction.

1. Les propriétés connues du quadrilatére et du quadrangle
complets sont fort nombreuses. Il ne saurait y avoir un grand
intérét a en découvrir de nouvelles, mais il peut étre utile, et
il est certainement intéressant, de donner un moyen permettant
de les grouper, de les lier entre elles, de les établir par des
procédés trés généraux. C’est le but de cet article.

Les points et droites remarquables d'un quadrilatére com-
plet qui apparaissent le plus immédiatement sont en relation
étroite avec la parabole inscrite ou avec le faisceau tangentiel
des coniques inscrites. C’est ainsi que le point de Miquel du
quadrilatére, c’est-a-dire le point commun aux cercles circons-
crits aux quatre triangles que l'on peut former a l'aide des
cOtés pris trois a trois, est le foyer de la parabole inscrite; que
la droite de Simson du quadrilatére, qui contient les pieds des
perpendiculaires abaissées du point de Miquel sur les cotés,
est la tangente au sommet de cette parabole; que la droite or-
thocentrique du quadrilatére, qui passe par les orthocentres des
quatre triangles du quadrilatére, est la directrice de cette pa-
rabole.

La considération de la parabole inscrite permet donc d’éta-
blir les théorémes relatifs au point de Miquel, a la droite de
Simson et a la droite orthocentrique.

De méme, la considération du faisceau des coniques ins-
crites conduit aisément au théoréme de Pappus, sur la division
harmonique d’une diagonale par les deux autres, et au théo-
réme de Gauss qui met en évidence la droite de Newton du
quadrilatére, c’est-a-dire le lieu des centres des coniques ins-
crites.

Ce méme faisceau des coniques inscrites fait intervenir deux
faisceaux conjugués de cercles: celui des cercles orthoptiques
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des coniques inscrites, qui contient les cercles décrits sur les
trois diagonales prises comme diameétres, et celui des cercles
harmoniquement circonscrits aux coniques inscrites, qui con-
tient les cercles conjugués aux quatre triangles. Les cercles du
premier faisceau ont leurs centres sur la droite de Newton,
ceux du second, sur la droite orthocentrique.

Ainsi les propriétés de la parabole et celles des faisceaux
tangentlels de comques nous mettent rapidement en possession
des premiéres propriéiés du quadrilatére complet.

2. Pour aller plus avant dans la théorie de cette figure, il
doit sembler naturel de lui attacher des courbes de degré su-
périeur au second, par exemple des cubiques.

Dans la suite, on prouvera précisément qu’en considérant,
dans le plan du quadrilatére complet, une certaine cubique, en
relation spéciale avec la paire ombilicale, on peut établir et lier
entre elles de nombreuses propriétés métriques du quadrilatére
complet. Sans chercher a énoncer autant de théorémes que
possible, il suffira de mettre en évidence ceux qui apparaissent
le plus immédiatement pour justifier la méthode employée.
D’ailleurs, on verra facilement, et sans qu’il soit nécessaire
d’en donner des exemples, que d’autres cubiques, introduites
d’'une maniére analogue, conduiraient a d’autres propriétés,
projectives ou meétriques.

Enfin, et en suivant le procédé corrélatif, des courbes
de 3¢ classe, en liaison spéciale avec les éléments d’'un quadran-
gle complet, permettent d’élaborer une théorie du quadrangle
complet; on s’en rendra compte tout aussi aisément.

Quelques propriétés des cubiques
en général et des stelloides cubiques en particulier.

3. Rappelons rapidement quelques propriétés des cubiques
dont nous ferons usage par la suite, ceci pour fixer le sens
des termes que nous emploierons.

La géométrie des cubiques considére deux réseaux de coni-
- ques adjoints & une cubique

Le premier est un réseau ponctuel formé des coniques po-
laires des points du plan par rapport a la cubique. Clest le
réseau des coniques polaires de la cubique.

Le second est un réseau tangentiel formé des courbes de
seconde classe harmomquement inscrites aux coniques polaires,
donc apolaires & la cubique. C’est le réseau des coniques apolai-
res de la cubique.
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Une cubique étant donnée, tout point du plan posséde.
par rapport a cette cubique, une conique polaire bien déter-
minée. Pour une infinité de points, cette conique polaire est
formée d'une paire de droites. Si la conique polaire d'un
point A est formée de deux droites, d et d,, issues d’un point A’,
réciproquement, la conique polaire du point A’ est formée de
deux droites, d’ et d,’, issues du point A. Les paires de points
tels que AA’ sont conjugués a toutes les coniques du réseau
des coniques polaires; ils constituent des coniques apolaires
dégénérées en deux points; leurs droites polaires mixtes par
rapport & la cubique sont indéterminées.

Sur toute droite, telle que d ou d,, faisant partie d’une
conique polaire dégénérée, se trouve une de ces paires de
points. Et tous ces points sont situés sur la hessienne de la
cubique donnée. Les deux points d'une paire sont des points
correspondants de la hessienne (points correspondants au sens
de Mac Laurin).

Enfin, ces points jouissent encore de la propriété suivante:
de chacun d’eux, A’ par exemple, les paires de tangentes me-
nées aux coniques du réseau des coniques apolaires forment une
involution. Les droites doubles de cette involution sont, en A’
par exemple, les droites d et d, qui constituent la conique
polaire du point correspondant A.

Corrélativement, les paires de droites, telles que 4 et d,
qui forment des coniques polaires dégénérées, enveloppent une
courbe de 3¢ classe, la cayleyenne de la cubique. Ces paires de
droites sont des tangentes correspondantes de la cayleyenne.
Toute tangente a la cayleyenne est, a la fois, la droite de jonc-
tion de deux points correspondants de la hessienne et une des
droites d’une conique polaire dégénérée en deux droites.

Toute tangente de la cayleyenne coupe les coniques du ré-
seau des coniques polaires suivant des paires de points en in-
volution. Les points doubles de cette involution sont deux points
correspondants de la hessienne situés sur la tangente con-
sidérée.

Enfin, lorsque la conique polaire d’'un point A dégénére
en deux droites d et d;, les tangentes & la cubique donnée aux
points situés sur d et d, sont concourantes et passent par le

point A.

4. La cubique qui doit jouer le role important dans cette
étude est une stelloide cubique. Elle est caractérisée par le fait
que le réseau de ses coniques apolaires contient une conique
dégénérée qui est l'absolue du plan euclidien. Ce réseau sera
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donc déterminé par deux comques quelconques I, et T, (uon
confocales) et par une troisitme conique formée de la paire
des points cycliques. Il est donc constitué par les confocales
des coniques du faisceau qui contient I'; et I',. Les coniques
apolaires dégénérées sont les paires de foyers associés des
coniques du faisceau (T, T;). Et la hessienne de cette stel-
loide cubique est le lieu de ces foyers.

Le réseau des coniques polaires de la stelloide cubique
considérée est formé des coniques harmonieusement circons-
crites 3 Ty, a I’y et & la paire des points cycliques. Il est donc
constitué par les hyperboles équilatéres harmoniquement cir-
conscrites & Ty et 4 T'y. Les coniques polalres degenerees sont
les palres de droites rectangulaires conjuguées a la fois a
I'y et 4 T;. Une de ces coniques dégénérées est formée de la
droite de l'infini du plan et de la droite lieu des centres des
coniques du faisceau (I'; T';). Elle est la conique polaire d’'un
point O ou vont concourir les asymptotes de la stelloide. De
ce fait, nous nommons O, le pseudo-centre de la stelloide cu-
bique.

Notons encore que la cayleyenne de la stelloide cubique
est l’enveloppe des droites joignant les foyers associés des
coniques du faisceau (I;T;). C’est donc l'enveloppe des axes
des coniques de ce faisceau. C’est naturellement aussi l'enve-
loppe des paires de droites rectangulaires conjuguées a I'; et
a I';; mais les deux axes d'une méme conique du faisceau
(I'; T's) ne forment pas une de ces paires (ils ne sont pas
conjugués a toutes les coniques du faisceau).

II1. Stelloide conjuguée d’un quadrilatére complet.

5. Considérons un quadrilatére complet, d’ailleurs quel-
conque; A, B, G, A’, B’ et ( sont ses sommets et AA-,
BB’ et CCr ses diagonales 1.

Les confocales des coniques inscrites dans ce quadrilatére
forment un réseau tangentiel. D’autre part, il résulte d’un
théoréme dit & Hermite, qu'une cubique est complétement déter-
minée par le réseau de ses coniques polaires. Elle est donc
aussi complétement déterminée par le réseau de ses coniques
apolaires. Les confocales des coniques inscrites dans le qua-
drilatére considéré forment donc le réseau des coniques apo-
laires d'une cubique bien déterminée. Cette cubique est une

1 On est prié de faire les figures qui, toutes, sont trés simples.
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stelloide, puisqu'une de ses coniques polaires est 1'absolue,
nous la nommerons la stelloide conjuguée du quadrilatére
complet.

Une conique inscrite et la paire des points cycliques sont
deux coniques apolaires qui déterminent un faisceau entiére-
ment formé de coniques apolaires. Ce faisceau est le faisceau
des confocales de la conique inscrite considérée. Les deux
paires de foyers associés de cette conique sont deux coniques
dégénérées du faisceau, par conséquent deux coniques apolalres
dégénérées.

Une paire de sommets opposés du quadrilatére complet,
A A’ par exemple, constitue aussi une conique apolaire dégé-
nérée.

6. Le réseau des coniques polaires de la stelloide conjuguée
est formé des hyperboles équilatéres qui admettent le quadri-
latére donné pour quadrilatére polalre (quadrllatere polaire au
sens de Steiner). Ce qui revient a dire que ce réseau est formé
des hyperboles équilatéres qui coupent chacun des cotés du
triangle diagonal suivant une paire de points conjugués har-
moniques l'un de l'autre par rapport aux sommets du qua-
drilatére situés sur ce coté. Les coniques polaires dégénérées
sont des paires de droites rectangulaires jouissant de cette pro-
priété. Nous allons en déterminer quelques-unes :

La conique polaire d'un sommet est formée de la paire
de droites rectangulaires issues du sommet opposé et conju-
guées harmoniques l'une de l'autre par rapport aux deux
cOtés passant par ce sommet opposé. C'est la paire des bis-
sectrices du quadrilatére en ce dernier sommet.

Une diagonale et la hauteur correspondante du triangle
diagonal sont aussi deux droites satisfaisant aux conditions in-
diquées et qui constituent donc une conique polaire dégénérée.
Enfin, une de ces coniques polaires dégénérées est formée de
la droite de l'infini, qui est la droite de jonction des points
cycliques, et d’une seconde droite du plan, conjuguée de la
droite de l'infini par rapport aux coniques inscrites. Cette
deuxiéme droite passe donc par le centre de chacune des co-
niques inscrites et en particulier par le point milieu de cha-
cune des trois diagonales. C’est la droite de Newton du qua-
drilatére complet.

7. La droite de l'infini et la droite de Newton du quadri-
latére constituent la conique polaire du pseudo-centre de la
stelloide conjuguée. Le point qui, sur la hessienne de la stel-
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loide, est le point correspondant du pseudo-centre, est le
point & l'infini de la droite de Newton puisqu’il est le point
double de sa conique polaire dégénérée. Mais ces deux points,
le pseudo-centre et le point a I'infini1 de la droite de Newton,
sont les foyers d'une conique inscrite et cette conique est la
parabole inscrite puisqu'un de ses foyers est a l'infini.

Le pseudo-centre de la stelloide conjuguée est donc le
foyer de la parabole inscrite, c’est le point de Miquel du qua-
drilatére complet.

8. Nous avons vu précédemment qu’il existe une seule
stelloide conjuguée d’'un quadrilatére complet donné. En re-
vanche, une stelloide cubique donnée est la stelloide conjuguée
d'une infinité de quadrilatéres complets.

En effet, deux coniques apolaires quelconques de la stel-
loide donnée ont quatre tangentes communes qui forment un
quadrilatére dont la stelloide donnée est la stelloide conjuguée.
Et ceci parce que le faisceau tangentiel déterminé par ces
deux coniques est formé entiérement de coniques apolaires de
la stelloide. Le réseau de ces coniques apolaires est donc celui
des confocales des coniques de ce faisceau.

Une stelloide donnée est donc la stelloide conjuguée d’une
double infinité de quadrilatéres complets. Une droite quelcon-
que du plan en détermine un et un seul puisque les coniques
d’un réseau tangentiel qui touchent une droite donnée forment
un faisceau tangentiel.

Tous ces quadrilatéres complets ont méme point de Mi-
quel et méme droite de Newton. Nous pourrons voir qu’ils ont
encore d’autres éléments communs.

IV. Hessienne et cayleyenne de la stelloide conjuguée.

9. Des remarques précédentes, il résulte que la hessienne
de la stelloide conjuguée du quadrilatére complet est le lieu
des foyers des coniques inscrites et nous pouvons montrer,
bien que ce fait soit connu, qu’elle est une cubique circulaire
passant par son foyer singulier. Les points de cette hessienne
situés a l'infini sont en effet les points cycliques et le point a
I'infini de la droite de Newton. Les points cycliques sont deux
points correspondants, et le point a l'infini de la droite de
Newton correspond au point de Miquel. Les tangentes aux points
cycliques se coupent donc sur la courbe, au point correspon-
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dant du troisiéme point a linfini, c'est-a-dire au point de
Miquel qui est ainsi le foyer singulier.

Nous avons vu en outre que cette hessienne passe par les
six sommets du quadrilatére et par les pieds des hauteurs du
triangle diagonal. Mais on sait que la hessienne d’une cubique
est le lieu des points d'ou les tangentes menées aux coniques
apolaires sont des paires de droites en involution. Les droites
doubles de cette involution étant, en chaque point de la hes-
sienne, la paire de droites formant la conique polaire du point
correspondant. Dans notre cas, celte paire est rectangulaire.

Il en résulte le théoréme de Serret :

Le lieu des foyers des coniques inscrites dans un quadri-
latére est aussi le lieu des points d’ou les tangentes menées aux
coniques inscrites sont les paires de droites correspondantes
d’une involution symétrique.

En particulier,

Ce lieu des foyers est aussi le lieu des points d’ou les
paires de sommets opposés du quadrilatére complet sont vus
sutvant des paires de droites également inclinées sur deux
droites rectangulaires.

10. Maintenant, nous pourrions évidemment énoncer de
nombreuses propriétés meétriques de la hessienne de la stelloide
conjuguée. Sans en vouloir faire une longue énumeération, nous
noterons seulement celles qui proviennent du fait que deux
points correspondants de cette hessienne, autrement dit deux
foyers associés d’une conique inscrite, sont conjugués harmo-
niques l'un de l'autre par rapport a la paire des bissectrices
issues d'un méme' sommet du quadrilatére.

Deux points correspondants de celte hessienne sonl inver-
ses isogonaux par rapport aux quatre triangles que l'on peut
former a laide de trois des cétés du quadrilatére.

Ces points correspondants sont seuls a jouir de cette pro-
priété.

Ils sont d’ailleurs inverses isogonaux par rapport a une
infinité de trzangles du plan. Tous ces triangles sont ceux qui
appartiennent a tous les quadrilatéres dont la stelloide conju-
guée du quadrilatére donné est aussi la stelloide conjugudée.
Une droite quelconque du plan appartient a trois de ces trian-
gles.

Enfin, si deux points sont inverses isogonaux par rapport
a deux des triangles du quadrilatére complet, ils sont aussi
inverses isogonaux par rapport aux deux aqutres. Dans ce cas,
ces deux points sont en effet conjugués aux hyperboles équi-
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latéres conjuguées elles-mémes a ces deux triangles. Ils sont
donc conjugués a toutes les hyperboles équilatéres du réseau
des coniques polaires de la stelloide.

Le point de Miquel et le point a l'infini de la droite de
Newton sont deux de ces points inverses de telle sorte que
si U'on joint un des sommets du quadrilatére au point de Mi-
quel, on obtient une droite dont l'isogonale, par rapport aux
deux cétés passant par ce sommet, est paralléle a la droite
de Newton.

11. Voyons maintenant quelques propriétés du quadrilatére
complet qui sont les conséquences de celles de la cayleyenne
de la stelloide conjuguée.

Cette cayleyenne est une courbe de troisieme classe que
'on peut définir comme enveloppe des droites joignant les
paires de points correspondants de la hessienne, ou comme
U'enveloppe des paires de droites rectangulaires qui sont des
coniques dégénérées du réseau des coniques polaires.

De ces deux définitions, el en vertu de ce que nous avons
vu précédemment, il résulte que cette cayleyenne touche :

les douze bissectrices des angles du quadrilatére complet,
les cotés et les hauteurs du triangle diagonal,

la droite de Newton du quadrilatére complet et

la droite de Uinfini du plan.

D’ailleurs, deux points correspondants de la hessienne sont
deux foyers associés d'une conique inscrite et la droite joignant
ces deux points est un des axes de la conique inscrite. Donc,

la cayleyenne de la stelloide conjuguée du quadrilatére
complet est aussi Uenveloppe des axes des coniques inscrites.

En outre, nous avons remarqué que la stelloide conjuguée
du quadrilatére est encore stelloide conjuguée d’une infinité
d’autres quadrilatéres complets. De telle sorte que :

la cayleyenne peut, d’une infinité de fagons, étre consi-
dérée comme l'enveloppe des axes des coniques d’un faisceau
tangentiel.

12. Mais on sait que chacune des tangentes de la cayleyenne
d’'une cubique coupe les coniques polaires de la cubique sui-
vant des paires de points en involution. Ainsi,

un axe d’'une conique inscrite dans le quadrilatére coupe
les hyperboles équilatéres admettant ce quadrilatére pour qua-
drilatére polaire suivant des paires de points en involution.
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Une de ces hyperboles équilatéres est formée de la droite
de l'infini et de la droite de Newton du quadrilatére. Le
centre de l'une quelconque des involutions précédentes est
donc sur la droite de Newton, c’est-a-dire au centre de la
conique dont on considére un axe. Et les points doubles de
cette involution sont les foyers de la conique inscrite situés
sur I'axe considéré. On est donc conduit au théoréme suivant :

Un arxe d'une conique inscrite dans un quadrilatére com-
plet coupe les hyperboles équilatéres dont ce quadrilatére est
un quadrilatére polaire en des paires de points dont le produit
des distances au centre de la conique inscrite considérée est
constant et égal au carré de la demi-distance focale de celte
conique.

Ce théoréme a de nombreux cas particuliers dont quel-
ques-uns ont déja été cités. Il serait fastidieux de les énumé-
rer pour montrer seulement qu’ils sont tous compris dans la
proposition précédente. Qu’il nous soit permis de remarquer
pourtanl que les paires de bissectrices du quadrilatére sont
des hyperboles équilatéres admettant le quadrilatére donné pour
quadrilatére polaire; de méme d’ailleurs que les trois paires
de droites formées d'un coté et de la hauteur correspondante
du triangle diagonal.

En outre, ces bissectrices du quadrilatére, les cotés et les
hauteurs du triangle diagonal sont aussi des axes de coniques
inscrites. Les involutions dont parle le théoréme précédent sont
donc connues, sur chacune de ces droites, par de nombreuses
paires de points correspondants.

Une des tangentes de la cayleyenne meérite d’étre considé-
rée en particulier. C'est 'axe de la parabole inscrite. Issue du
point de Miquel, elle est paralléle a la droite de Newton du
quadrilatére. Les points correspondants de la hessienne situés
sur cet axe, c’est-a-dire les points doubles de l'involution que
nous voulons déterminer, sont le point de Mlquel et le point
a l'infini. Cette involution est donc formée de -paires de points
symétriquement placés par rapport au point de Miquel. Donc,

L’axe de la parabole inscrite au quadrilatére coupe les
hyperboles équilatéres dont ce quadrilatére est un quadrilatére
polaire, en particulier les paires de bissectrices issues d’un
méme sommet, en des poinls symétriquement placés par rap-
port au point de Miquel.
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V. Cercles et droites passant par le point de Miguel.

13. Nous avons rencontré déja quelques propriétés métriques
du quadrilatére complet. Nous allons maintenant nous occu-
per des cercles et des droiles remarquables qui passent par
le point de Miquel.

Nous avons dit que ce point est le foyer de la parabole
inscrite. Et comme un cercle, circonscrit 4 un triangle, cir-
conscrit lui-méme a une parabole, passe par le foyer de cette
parabole, le point de Miquel est commun aux quatre cercles
circonscrits aux quatre triangles que l'on peut former a l'aide
de trois des cotés du quadrilatére. Mais on peut déterminer
d’autres cercles et aussi des droites passant par ce poinl.

Dans un article intitulé: Note sur le quadrilatére et paru
en 1901 dans les « Comptes rendus de 1’Association francaise
pour l’avancement des sciences », Léon Ripert note que le
point de Miquel se trouve sur douze cercles et neuf droites
remarquables. Mais, lorsqu'on a trouvé ainsi des cercles et des
droites soumis a certaines conditions et passant par un méme
point, il est assez probable qu’il existe une propriété com-
mune & tous les cercles ou a toutes les droites passant par ce
point. C’est ce que nous allons établir.

Le point de Miquel est pour nous le pseudo-centre de la
stelloide conjuguée du quadrilatére; c’est le point dont la
conique polaire est dégénérée en deux droites, I'une d’elles
étant la droite de l'infini. Les coniques polaires des points
de la droite de l'infini, par rapport a la stelloide conjuguée,
forment donc un faisceau d’hyperboles équilatéres ayant toutes
le point de Miquel pour centre.

Considérons une droite quelconque du plan. Les coniques
polaires des points de cette droite, par rapport i la stelloide
conjuguée, forment un faisceau d’hyperboles équilatéres et le
lieu des centres des hyperboles équilatéres de ce faisceau est
un cercle.

Mais le point a l'infini de cette droite a une conique po-
laire dont le centre est le point de Miquel. Le cercle dont nous
venons de parler passe donc par le point de Miquel.

Et 'on peut construire autant de ces cercles que de droites
dans le plan; c'est-d-dire une double infinité. Le théoréme
général qui introduirait tous les cercles passant par le point
de Miquel est le suivant :

Deux hyperboles équilatéres, dont le quadrilatére donné
est un quadrilatére polaire, se coupent en quatre points qui



GEOMETRIE DU QUADRILATERE COMPLET 261

sont les sommets et Uorthocentre d’un triangle. Le cercle des
neuf points de ce triangle passe par le point de Miquel.

Et l'on aurait en part1cuher les neuf cercles dont parle
Ripert et qui satisfont a la condition fixée par le théoréme
précédent. Ce sont :

les quatre cercles circonscrits aux quatre triangles du qua-
drilatére,

le cercle des neuf points du triangle diagonal,

trois cercles dont chacun est le lieu des centres des hy-
perboles équilatéres d'un faisceau déterminé par deux
coniques dégénérées et formées des paires de bissec-
trices issues de deux sommets opposés,

enfin, un cercle passant par les cenires des quatre cercles
circonscrits aux quatre triangles du quadrilatére.

1/4. Ce dernier cercle est connu sous le nom de cercle de
Miquel. Ripert note qu’il passe par 25 points remarquables.
En réalité, on peut ici encore donner une propriété de chacun
des points de ce cercle: Tout point du cercle de Miquel est
le centre de la conique polaire d'un point de la droite ortho-
centrique par rapport a la stelloide conjuguée. Et les vingt-
cinqg points de Ripert pourraient étre caractérisés comme cas
particuliers des points satisfaisant a cette condition. Nous
établirons dans le paragraphe suivant la correspondance que
je viens de citer entre les points de la droite orthocentrique et
ceux du cercle de Miquel.

15. Examinons maintenant dans quels cas les cercles passant
par le point de Miquel dégénérent. Nous obtiendrons encore des
théorémes généraux caractérisant les droites passant par le
point de Miquel.

La conique polaire du point de Miquel lui-méme est for-
mée de la droite de l'infini et de la droite de Newton. Les
coniques polaires des points d'une droite passant par le point
de Miquel forment un faisceau auquel appartient la conique
dégénérée précédente. Elles ont donc en commun deux points
a l'infini et deux points situés sur la droite de Newton. Le
lieu de leurs centres est une droite. C'est le coté du triangle
dlagonal du quadrangle complet des quatre points communs
a ces conlques qui est opposé au point diagonal de ce quadran-
gle situé a l'infini. Cette droite passe par le point de Mi-
quel et par le point milieu du segment déterminé par une de
ces coniques polaires sur la droite de Newton. Donc,
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la droite obtenue en joignant le centre d’une hyperbole
équilatére, dont le quadrilatére donné est un quadrilatére po-
laire, au point milieu du segment qu’elle détermine sur la
droite de Newton passe par le point de Miquel.

En particulier,

les deux bissectrices issues d’'un méme sommet du qua-
drilatére et la droite de Newton forment un triangle rectangle.
La médiane issue du sommet de langle droit de ce triangle
rectangle passe par le pomt de Miquel.

Il en est encore de méme de la médiane issue du sommet
de 1'angle droit d’'un triangle rectangle formé par la droite
de Newton, une diagonale et la hauteur correspondante du
triangle diagonal.

VI. Une transformation du second ordre.

16. Nous nous sommes efforcés jusqu'ici de tirer parti
de la stelloide et des réseaux de ses coniques polaires et apo-
laires. On a pu remarquer que l'on atteint par ces procédés
spécialement les propriétés du quadrilatére qui ressortent de
la considération de ses bissectrices.

Nous allons introduire maintenant une certaine transfor-
mation du second ordre intimement liée a la stelloide et au
quadrilatére et qui va nous conduire a de nouvelles proprletes
meétriques.

A cet effet, considérons les coniques polaires des points
a l'infini par rapport a la stelloide. Elles forment, nous I’avons
déja vu, un faisceau d’hyperboles équilatéres concentriques,
leur centre commun étant le point de Miquel. Ce faisceau
est déterminé par les coniques polaires de chacun des points
cycliques I et J: la conique polaire de 1 étant formée de
deux droites issues du point J, et celle de J de deux droites
issues de I et imaginaires conjuguées des précédentes. Ces deux
paires de droites se coupent en deux points réels R et S et
deux points 1maginaires conjugués R’ et §; O, le point
milieu du segment RS, ou du segment R’ S, est le pseudo-
centre de la stelloide et le point de Miquel du quadrilatére.
Et les deux droites réelles rectangulaires RS et R’ S’ consti-
tuent la troisiéme conique polaire dégénérée du faisceau.

Le faisceau que nous envisageons de ces hyperboles équi-
latéres détermine une transformation du second ordre, ou sont
définis comme correspondants deux points conjugués par rap-
port & toutes les hyperboles équilatéres du faisceau. Les points
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R, S, R’ et S sont donc les points doubles de cette transfor-
mation. Par rapport a la stelloide, toute paire de points cor-
respondants est telle que sa droite polaire mixte est la droite
de l'infini. Le point correspondant d’un point donné est ainsi
le centre de la conique polaire de ce dernier par rapport d
la stelloide. Cette relation est évidemment réciproque.

Les points doubles de la transformation sont les quatre
poles de la droite de l'infini par rapport a la stelloide. Nous
nommerons les points R et S, qui sont réels, les points dou-
bles du quadrilatére complet.

17. La transformation du second ordre définie par un fais-
ceau d’hyperboles équilatéres concentriques est bien connue.
Elle équivaut 4 une inversion suivie d’une symétrie. Le cer-
cle d’inversion est le cercle décrit sur RS comme diamétre
et I'axe de symétrie est la droite R S.

Deux points correspondants sont donc placés de telle fa-
con que le produit de leurs distances au point O soit cons-
tant, et que les droites les joignant au point O soient symé-
triques l'une de l'autre par rapport a la droite R S.

Mais deux points correspondants sont aussi tels que cha-
cun d’eux est le centre de la conique polaire de l'autre, et
ce fait permet de déterminer un grand nombre de paires de
points correspondants. En particulier, toute conique apolaire
dégénérée est formée de deux points correspondants de notre
transformation. Deux foyers associés d'une conique inscrite
forment donc une de ces paires, de méme que deux sommels
opposés du quadrilatére. Donc,

le produit des distances du point de Miquel a deux fovers
associés d’une conique inscrite, ou plus particuliérement a
deux sommets opposés du quadrilatére, est constant et égal au
carré de la demi-distance des points doubles du quadrilatére.

18. La transformation du second ordre dont nous nous
occupons transforme une droite quelconque du plan en un
cercle passant par le point de Miquel et une droite passant
par ce point en une autre droite passant aussi par ce point.
Voyons quels sont les cercles transformés de quelques droi-
tes remarquables.

Un c6té du quadrilatére se transforme dans le cercle cir-
conscrit au triangle formé par les trois autres cotés, puisque
chaque sommet se transforme dans son opposé. Le pied de
la perpendiculaire abaissée du point de Miquel sur un coté a
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alors pour correspondant le point du cercle transformé qui
est diamétralement opposé au point de Miquel. Donc,

le carré de la demi-distance des points doubles du quadri-
latére est aussi égal au produit de la distance du point de
Miquel a un cété, par le diamétre du cercle circonscrit au
triangle des trois autres célés.

Mais les pieds des quatre perpendiculaires abaissées du
point de Miquel sur les cotés sont situés sur la droite de Sim-
son. Les points diamétralement opposés au point de Miquel,
sur chacun des quatre cercles circonscrits aux triangles du qua-
drilatére, sont sur un cercle, transformé de la droite de Sim-
son. Donc,

“les cercles circonscrits aux quatre triangles du quadrilatére
sont coupés diamétralement par un méme cercle et les quatre
diamétres sont issus du point de Miquel.

Nous avons affirmé, au n° 14, que le lieu des centres des
coniques polaires des points de la droite orthocentrique est le
cercle de Miquel du quadrilatére. A ce moment-la, il parais-
sait assez difficile de le prouver; maintenant, le démonstration
est 1mmédiate. :

Donnons, en effet, a la droite de Simson, une homothétie,
en prenant le point de Miquel pour centre et 15 pour rapport
d’homothétie. Nous obtiendrons la droite orthocentrique. On
pourra donc passer du cercle transformé de la droite de Simson
au cercle transformé de la droite orthocentrique par une nou-
velle homothétie ayant, comme la précédente, son centre au
point de Miquel, mais un rapport inverse de celui de la pré-
cédente.

Cette nouvelle homothétie, dont le rapport est 2, fait cor-
respondre au point diamétralement opposé au point de Miquel
le centre de chacun des cercles circonscrits aux quatre trian-
gles du quadrilatére. Ces quatre centres sont donc sur un cer-
cle (le cercle de Miquel), transformé de la droite orthocentri-
que dans la transformation du second ordre.

19. Nous pourrions encore chercher les cercles transformés
de nombreuses autres droiles remarquables dans le plan du
quadrilatére, puis établir les liaisons entre eux. Sans vouloir
épuiser complétement cette question, remarquons pourtant que
les cercles transformés de deux droites se coupent sous un
angle égal a celui de ces deux droites, puisque la transfor-
mation considérée se compose.d’une inversion et d'une sy-
métrie qui, l'une et l'autre conservent les angles.
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Deux cotés du quadrilatére, se coupant en un sommet A , par
exemple, sont ainsi transformés en deux cercles circonscrits a
deux triangles du quadrilatére; ces deux triangles ont en commun
le sommet A’ et les deux coOtés passant par ce sommet. Il résulte
alors de ce qui précéde que Uangle des cotés en A est égal a
U'angle des cercles en A’. Ce qui est un théoréme connu.

20. Dans la transformation envisagée, le triangle fondamen-
tal, c’est-a-dire le triangle polaire commun aux coniques du
faisceau qui détermine la transformation, a pour sommet le
point de Miquel O et les points cycliques du plan I et J. Et
I'on peut démontrer aisément que, dans toute transformation du
second ordre, une conique passant par deux des sommets du
triangle fondamental et par deux des points doubles se trans-
forme en elle-méme.

Dans notre cas, nous aurons, se transformant en elles-me-
mes, les coniques passant par les points cycliques et par les
points doubles R et S et celles qui passent par les points cy-
cliques et par les points doubles R’ et &' .

Ce sont donc deux faisceaux de cercles réels. Chacun d’eux
contient les cercles orthogonaux aux cercles de l'autre fais-
ceau. L’'un de ces faisceaux a les points doubles du quadrila-
tere, R et S, pour points fondamentaux, I'autre a ces points
pour points limites.

Et si un point se trouve sur un cercle se transformant en
lui-méme, son correspondant dans la transformation y est
aussi. Donc,

les deux points de toute paire de points correspondants
de la transformation se trouvent, a la fois, sur un cercle du
premier et sur un cercle du second faisceau.

Il en est, en particulier, ainsi de deux foyers associés d’une
conique inscrite et des paires de sommets opposés du qua-
drilatére complet.

De plus, une transformation du second ordre conserve les
rapports anharmoniques sur deux coniques qui se transfor-
ment 'une dans l'autre. Et, par conséquent, sur une conique
qui se transforme en elle-méme, deux points correspondants
sont conjugués harmoniques l'un de l'autre par rapport aux
points doubles situés sur cette conique. Nous pouvons donc
énoncer le théoréme général,

deux foyers associés d'une conique inscrite (en par!l('u—
lier, deux sommets opposés du quadrilatére) et la paire des
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points doubles sont sur un cercle. Et, sur ce cercle, les points
doubles sont conjugués harmoniques de la paire de foyers
associés considérés.

21. Les deux faisceaux de cercles dont nous venons de
nous occuper, ou plutét certains cercles de ces faisceaux ont
déja été rencontrés par Steiner.

En 1827, dans les Annales de Gergonne, Steiner a énoncé
une dizaine de théorémes relatifs au quadrilatére complet,
sans en donner d’ailleurs la démonstration. A ce moment, les
seules propositions connues sur ce sujet étaient le théoréme
de Desargues, le théoréme de Pappus sur la division harmo-
nique d'une diagonale par les deux autres et le théoréme de
Gauss sur la droite qui joint les points milieux des trois dia-
gonales.

En particulier, Steiner a énoncé les propositions suivantes:

« Pour chacun des quatre triangles du quadrilatére com-
plet il y a un cercle inscrit et trois cercles exinscrits, ce qui
fait en tout seize cercles dont les centres sont quatre i quatre
sur une circonférence, de maniére a donner naissance a huit
nouveaux cercles.

Ces huit nouveaux cercles se partagent en deux groupes,
tels que chacun des quatre cercles de l'un de ces groupes
coupe orthogonalement tous les cercles de l’autre groupe; on
en conclut que les centres des cercles des deux groupes sont
sur deux droites perpendiculaires 1'une a l’autre.

Enfin, ces deux derniéres droites se coupent au point 0
mentionné précédemment. » !

Ces deux faisceaux de cercles de Steiner sont précisé-
ment les deux faisceaux de cercles qui se transforment en
eux-mémes dans la transformation du second ordre dont il
vient d’étre question.

En outre, cette transformation permet de caractériser géo-
métriquement tout cercle de chacun des deux faisceaux. Clest
ce que nous allons faire, entre autres choses, dans le para-
graphe suivant.

Nous ne démontrerons pas ici les théorémes de Steiner
que nous venons de citer. Les démonstrations que l'on a don-
nées autrefois ne faisaient intervenir que des propositions de
la géométrie élémentaire, ce qui les rendait fort longues et
confuses.

! Le point 0 est le point commun aux quatre cercles circonscrits aux
quatre triangles du quadrilatére.



GEOMETRIE DU QUADRILATERE COMPLET 267

Dans un article paru en décembre 1927 dans les Nouvelles
Annales de Mathématiques, nous avons montré que ces théo-
rémes de Steiner pouvaient aussi se déduire, assez facilement,
de la considération de la stelloide et de certaines autres cu-
biques apparentées.

22. Avant de clore ce paragraphe, nous allons encore dé-
montrer une propriété des points doubles du quadrilatére.
Nous savons que ces points R et S sont déterminés de. telle
facon que les deux drmtes IR et IS forment la conique po-
laire de J, par rapport a la stelloide, et les deux droites J R
et J S celle du point I.

Les deux droites IR et IS, de méme que les droites
JR et JS sont donc conjuguées a chacune des coniques apo-
laires, c’est-a-dire a4 toute conique inscrite dans le quadrila-
téere. Menons de I les tangentes I F et 1 F’ et de J les tan-
gentes J F et J F a une de ces coniques inscrites (F, F’, G et
G’ sont les quatre foyers de cette conique). Les droites I F
et I F’ sont conjuguées harmoniques 1'une de l’autre par rap-
port aux droites IR et I S, de méme J F et J F’ sont conjuguées
harmoniques 1'une de I'autre par rapport aux droites J R et J 8.

Il en résulte que toutes les coniques passant par les quatre
points F, F’, G et G’ sont harmoniquement circonscrites aux co-
niques tangentes aux quatre droites IR,IS,J RetJ S. En par-
ticulier, la paire de droites F F’, G G’, qui est la paire d’axes
de la conique incrite considérée, est conjuguée a la paire de
points R S. Donc,

les axes d’une conique inscrite sont conjugués harmoni-
ques U'un de Uautre par rapport a la paire des points doubles
du quadrilatére.

(Ce théoréme n’est pas un cas particulier de ceux que nous
avons rencontrés précédemment; les points doubles ne sont
pas situés sur la hessienne et les axes d'une conique inscrite
ne sont pas tangentes correspondantes de la cayleyenne.)

VII. Les autopoloconiques
de la stelloide et les cercles de Steiner.

23. Nous avons annoncé, au ne 21, que les cercles de Stei-
ner, en particulier, et plus généralement tous les cercles de
leurs deux faisceaux seraient caractérisés par une propriété
géométrique simple. Nous y parviendrons en introduisant la
notion d’autopoloconique de la stelloide.
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On définit, par rapport a une courbe du troisiéme ordre,
la poloconique d'une conique quelconque (c¢) de la maniére
suivante :

On considére celles des coniques polaires qui sont harmo-
niquement inscrites 4 (¢) (ou qui, en d’autres termes, con-
sidérées comme courbes de deuxiéme classe sont apolaires a
la courbe de deuxiéme ordre (c)) : les péles de ces coniques
polalres sont sur une nouvelle courbe du second ordre (¢)
qu’on nomme la poloconique de (c) . La relation ainsi défi-
nie est réciproque.

Lorsque (c) et (¢’) sont confondues, on a une conique uni-
que dite autopoloconique de la cubique.

Voici une propriété qui résulte immédiatement de la dé-
finition précédente.

Soit P un point d’intersection de la conique donnée (c)
et de la hessienne de la cubique. P est le point double de la
conique polaire d'un autre point P’ de la hessienne. Cette po-
laire, considérée comme courbe de seconde classe, est ré-
duite & un point double situé en P. Comme courbe de se-
conde classe elle est donc apolaire a la conique (¢) et son
pole P’ se trouve sur la conique (c’), poloconique de (¢). Or
P et P’ sont deux points correspondants de la hessienne.

Donc, les correspondants sur la hessienne des six points
d’intersection de la hessienne et d'une conique (c¢) sont sur
la poloconique (c¢’) de cette derniére.

Il est maintenant aisé de voir que les cercles de Steiner,
ainsi que tous les cercles de leurs deux faisceaux, sont des
autopoloconiques de la stelloide. Ils satisfont tout aussi évi-
demment a la définition méme des autopoloconiques qu’a la
propriété que nous venons d’énoncer.

En effet, soit (¢) un de ces cercles. Nous avons vu que
le centre de I'hyperbole équilatére, conique polaire d’un point
quelconque de ce cercle, est aussi sur le cercle. Cette hyper-
bole équilatére est donc harmoniquement inscrite au cercle (¢).

D’autre part, nous avons aussi montré que lorsque le cer-
cle (c) contient I'un des points d'une conique apolaire dégé-
nérée, il contient aussi l'autre. Le cercle (¢) ne peut donc
couper la hessienne de la stelloide qu’en trois paires de points
correspondants, il coincide donc avec sa poloconique. Il pos-
sede, en effet, la propriété des autopoloconiques que nous
avons énoncée.

24. Les cercles de ces deux faisceaux ne sont pas les seules
autopoloconiques de la stelloide. On sait qu’une cubique pos-
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séde deux réseaux d’autopoloconiques, que chacun de ces ré-
seaux, considéré comme réseau de coniques polaires déter-
mine une nouvelle cubique, et que ces trois cubiques posse—
dent la méme cayleyenne.

Pour déterminer les autopoloconiques de la stelloide que
nous ne possédons pas encore il suffirait de remplacer la paire
absolue I J par une autre conique apolaire dégénérée; c’est-a-
dire de remplacer le faisceau des coniques polaires de la droite
de l'infini, qui nous a conduit & notre transformation du se-
cond ordre, par celui des coniques polaires d’'une autre tan-
gente, d’ailleurs quelconque, de la cayleyenne.

Remarquons en outre que les trois cubiques qui ont la
méme cayleyenne sont entre elles en relations parfaitement
symétriques. Si donc on remplacait la stelloide par l'une des
deux autres cubiques, toutes les considérations que nous avons
faites précédemment pourraient étre répétées, mutatis mutandis.

Toutes les propriétés auxquelles nous arriverions ne se-
raient pas également intéressantes parce que la paire IJ des
points cycliques n’y jouerait pas un rdle aussi essentiel. Mais
il en est quelques-unes qui mériteraient de retenir notre at-
tention et qu’on peut désigner d’emblée.

En effet, les bissectrices du quadrilatére, en leur qualité
de tangentes a la cayleyenne, appartiendraient a des coniques
polaires dégénérées. Il est vrai que ce ne serait plus deux bissec-
trices issues d'un méme sommet qui formeraient une conique
polaire, mais deux bissectrices issues de deux sommets oppo-
sés. Ainsi donc, par exemple, les nouvelles paires de bissectrices
que l'on formerait seraient encore coupées par une tangente
quelconque de la cayleyenne suivant des paires de points en
involution, etc., etc.

VIII.

La fin du paragraphe précédent fait voir que la stelloide
Conjuguée n'est pas la seule cubique qui permette d’établir des
propriétés métriques du quadrllatere complet.

Mais, plus généralement, s1 nous disons qu'une cubique
est conjuguée au quadrilatére complet lorsque le réseau de
ses coniques apolaires contient le faisceau des coniques ins-
crites, une cubique conjuguée est déterminée par une nouvelle
conique apolaire arbitrairement choisie. Et, en faisant judi-
cieusement ce dernier choix, on sera conduit a4 de nouvelles
propriétés projectives ou méiriques.

99-243 19
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Par exemple, les cubiques conjuguées et apolaires a une
paire de points situés a l'infini dans des directions rectan-
gulaires fourniront de nouvelles propriétés métriques du qua-
drilatére complet.

Enfin, la géométrie du quadrangle complet pourra étre
édifiée par la méthode corrélative. On dira qu’une courbe de
troisiéme classe est conjuguée au quadrangle complet si elle
est apolaire a toutes les coniques circonscrites au quadrangle.
Une courbe de troisiéme classe conjuguée est alors déterminée
par une nouvelle conique apolaire arbitrairement choisie.

Si, pour citer un exemple, cette nouvelle conique dpolalre
est dégénérée et contient la droite de l'infini, ou méme si
elle est formée d'une droite double a l'infini, on sera conduit
a de nombreuses propriétés meétriques.
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