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BULL. SOC VAUD. SC NAT. VOL. 59, N° 243, 1937
(LAUSANNE, SUISSE)

Géométrie du quadrilatère complet
PAR

Jules MARCHAND

I. Introduction.

1. Les propriétés connues du quadrilatère et du quadrangle
complets sont fort nombreuses. II ne saurait y avoir un grand
intérêt à en découvrir de nouvelles, mais il peut être utile, et
il est certainement intéressant, de donner un moyen permettant
de les grouper, de les lier entre elles, de les établir par des

procédés très généraux. C'est le but de cet article.
Les points et droites remarquables d'un quadrilatère complet

qui apparaissent le plus immédiatement sont en relation
étroite avec la parabole inscrite ou avec le faisceau tangentiel
des coniques inscrites. C'est ainsi que le point de Miquel du
quadrilatère, c'est-à-dire le point commun aux cercles circonscrits

aux quatre triangles que l'on peut former à l'aide des
côtés pris trois à trois, est le foyer de la parabole inscrite; que
la droite de Simson du quadrilatère, qui contient les pieds des

perpendiculaires abaissées du point de Miquel sur les côtés,
est la tangente au sommet de cette parabole; que la droite or-
thocentrique du quadrilatère, qui passe par les orthocentres des

quatre triangles du quadrilatère, est la directrice de cette
parabole.

La considération de la parabole inscrite permet donc d'établir

les théorèmes relatifs au point de Miquel, à la droite de
Simson et à la droite orthocentrique.

De même, la considération du faisceau des coniques
inscrites conduit aisément au théorème de Pappus, sur la division
harmonique d'une diagonale par les deux autres, et au théorème

de Gauss qui met en évidence la droite de Newton du
quadrilatère, c'est-à-dire le lieu des centres des coniques
inscrites.

Ce même faisceau des coniques inscrites fait intervenir deux
faisceaux conjugués de cercles: celui des cercles orthoptiques
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des coniques inscrites, qui contient les cercles décrits sur les
trois diagonales prises comme diamètres, et celui des cercles
harmoniquement circonscrits aux coniques inscrites, qui
contient les cercles conjugués aux quatre triangles. Les cercles du
premier faisceau ont leurs centres sur la droite de Newton,
ceux du second, sur la droite orthocentrique.

Ainsi les propriétés de la parabole et celles des faisceaux
tangentiels de coniques nous mettent rapidement en possession
des premières propriétés du quadrilatère complet.

2. Poui aller plus avant dans la théorie de cette figure, il
doit sembler naturel de lui attacher des courbes de degré
supérieur au second, par exemple des cubiques.

Dans la suite, on prouvera précisément qu'en considérant,
dans le plan du quadrilatère complet, une certaine cubique, en
relation spéciale avec la paire ombilicale, on peut établir et lier
entre elles de nombreuses propriétés métriques du quadrilatère
complet. Sans chercher à énoncer autant de théorèmes que
possible, il suffira de mettre en évidence ceux qui apparaissent,
le plus immédiatement pour justifier la méthode employée.
D'ailleurs, on verra facilement, et sans qu'il soit nécessaire
d'en donner des exemples, que d'autres cubiques, introduites
d'une manière analogue, conduiraient à d'autres propriétés,
projectives ou métriques.

Enfin, et en suivant le procédé corrélatif, des courbes
de 3e classe, en liaison spéciale avec les éléments d'un quadrangle

complet, permettent d'élaborer une théorie du quadrangle
complet; on s'en rendra compte tout aussi aisément.

IL Quelques propriétés des cubiques
en général et des slelloïdes cubiques en particulier.

3. Rappelons rapidement quelques propriétés des cubiques
dont nous ferons usage par la suite, ceci pour fixer le sens
des termes que nous emploierons.

La géométrie des cubiques considère deux réseaux de coniques

adjoints à une cubique.
Le premier est un réseau ponctuel formé des coniques

polaires des points du plan par rapport à la cubique. C'est le
réseau des coniques polaires de la cubique.

Le second est un réseau tangentiel formé des courbes de
seconde classe harmoniquement inscrites aux coniques polaires,
donc apolaires à la cubique. C'est le réseau des coniques apolai-
res de la cubique.
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Une cubique étant donnée, tout point du plan possède,

par rapport à cette cubique, une conique polaire bien
déterminée. Pour une infinité de points, cette conique polaire est
formée d'une paire de droites. Si la conique polaire d'un
point A est formée de deux droites, d et dt, issues d'un point A',
réciproquement, la conique polaire du point A' est formée de
deux droites, d' et d,', issues du point A. Les paires de points
tels que AA' sont conjugués à toutes les coniques du réseau
des coniques polaires; ils constituent des coniques apolaires
dégénérées en deux points; leurs droites polaires mixtes par
rapport à la cubique sont indéterminées.

Sur toute droite, telle que d ou d,, faisant partie d'une
conique polaire dégénérée, se trouve une de ces paires de

points. Et tous ces points sont situés sur la hessienne de la
cubique donnée. Les deux points d'une paire sont des points
correspondants de la hessienne (points correspondants au sens
de Mac Laurin).

Enfin, ces points jouissent encore de la propriété suivante:
de chacun d'eux, A' par exemple, les paires de tangentes
menées aux coniques du réseau des coniques apolaires forment une
involution. Les droites doubles de cette involution sont, en A'
par exemple, les droites d el d, qui constituent la conique
polaire du point correspondant A.

Corrélativement, les paires de droites, telles que d et dlt
qui forment des coniques polaires dégénérées, enveloppent une
courbe de 3e classe, la cayleyenne de la cubique. Ces paires de
droites sont des tangentes correspondantes de la cayleyenne.
Toute tangente à la cayleyenne est, à la fois, la droite de jonction

de deux points correspondants de la hessienne et une des
droites d'une conique polaire dégénérée en deux droites.

Toute tangente de la cayleyenne coupe les coniques du
réseau des coniques polaires suivant des paires de points en
involution. Les points doubles de cette involution sont deux points
correspondants de la hessienne situés sur la tangente
considérée.

Enfin, lorsque la conique polaire d'un point A dégénère
en deux droites d et du les tangentes à la cubique donnée aux
points situés sur d et d1 sont concourantes et passent par le
point A.

h. La cubique qui doit jouer le rôle important dans cette
étude est une stelloïde cubique. Elle est caractérisée par le fait
que le réseau de ses coniques apolaires contient une conique
dégénérée qui est l'absolue du plan euclidien. Ce réseau sera
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donc déterminé par deux coniques quelconques I^ et T2 (non
confocales) et par une troisième conique formée de la paire
des points cycliques. Il est donc constitué par les confocales
des coniques du faisceau qui contient I\ et T2. Les coniques
apolaires dégénérées sont les paires de foyers associés des

coniques du faisceau (rtr2). Et la hessienne de cette
stelloïde cubique est le lieu de ces foyers.

Le réseau des coniques polaires de la stelloïde cubique
considérée est formé des coniques harmonieusement circonscrites

à I\ à r2 et à la paire des points cycliques. Il est doue
constitué par les hyperboles équilatères harmoniquement
circonscrites à Ti et à Tj. Les coniques polaires dégénérées sont
les paires de droites rectangulaires conjuguées à la fois à

rx et à r2 Une de ces coniques dégénérées est formée de la
droite de l'infini du plan et de la droite lieu des centres des

coniques du faisceau (l\ T2). Elle est la conique polaire d'un
point O où vont concourir les asymptotes de la stelloïde. De
ce fait, nous nommons O le pseudo-centre de la stelloïde
cubique.

Notons encore que la cayleyenne de la stelloïde cubique
est l'enveloppe des droites joignant les foyers associés des

coniques du faisceau (l'i Tg). C'est donc l'enveloppe des axes
des coniques de ce faisceau. C'est naturellement aussi l'enveloppe

des paires de droites rectangulaires conjuguées à I\ et
à r2 ; mais les deux axes d'une même conique du faisceau

(rt r2) ne forment pas une de ces paires (ils ne sont pas
conjugués à toutes les coniques du faisceau).

III. Stelloïde conjuguée d'un quadrilatère complet.

5. Considérons un quadrilatère complet, d'ailleurs
quelconque; A, B, C, A', B' et C' sont ses sommets et AA',
BB' et CC' ses diagonales 1.

Les confocales des coniques inscrites dans ce quadrilatère
forment un réseau tangentiel. D'autre part, il résulte d'un
théorème dû à Hermite, qu'une cubique est complètement
déterminée par le réseau de ses coniques polaires. Elle est donc
aussi complètement déterminée par le réseau de ses coniques
apolaires. Les confocales des coniques inscrites dans le
quadrilatère considéré forment donc le réseau des coniques
apolaires d'une cubique bien déterminée. Cette cubique est une

1 On est prié de faire les figures qui, toutes, sont très simples.
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stelloïde, puisqu'une de ses coniques polaires est l'absolue,
nous la nommerons la stelloïde conjuguée du quadrilatère
complet.

Une conique inscrite et la paire des points cycliques sont
deux coniques apolaires qui déterminent un faisceau entièrement

formé de coniques apolaires. Ce faisceau est le faisceau
des confocales de la conique inscrite considérée. Les deux
paires de foyers associés de cette conique sont deux coniques
dégénérées du faisceau, par conséquent deux coniques apolaires
dégénérées.

Une paire de sommets opposés du quadrilatère complet,
A A' par exemple, constitue aussi une conique apolaire
dégénérée.

6. Le réseau des coniques polaires de la stelloïde conjuguée
est formé des hyperboles équilatères qui admettent le quadrilatère

donné pour quadrilatère polaire (quadrilatère polaire au
sens de Steiner). Ce qui revient à dire que ce réseau est formé
des hyperboles équilatères qui coupent chacun des côtés du
triangle diagonal suivant une paire de points conjugués
harmoniques l'un de l'autre par rapport aux sommets du
quadrilatère situés sur ce côté. Les coniques polaires dégénérées
sont des paires de droites rectangulaires jouissant de cette
propriété. Nous allons en déterminer quelques-unes :

La conique polaire d'un sommet est formée de la paire
de droites rectangulaires issues du sommet opposé et conjuguées

harmoniques l'une de l'autre par rapport aux deux
côtés passant par ce sommet opposé. C'est la paire des
bissectrices du quadrilatère en ce dernier sommet.

Une diagonale et la hauteur correspondante du triangle
diagonal sont aussi deux droites satisfaisant aux conditions
indiquées et qui constituent donc une conique polaire dégénérée.
Enfin, une de ces coniques polaires dégénérées est formée de
la droite de l'infini, qui est la droite de jonction des points
cycliques, et d'une seconde droite du plan, conjuguée de la
droite de l'infini par rapport aux coniques inscrites. Cette
deuxième droite passe donc par le centre de chacune des

coniques inscrites et en particulier par le point milieu de
chacune des trois diagonales. C'est la droite de Newton du
quadrilatère complet.

7. La droite de l'infini et la droite de Newton du quadrilatère

constituent la conique polaire du pseudo-centre de la
stelloïde conjuguée. Le point qui, sur la hessienne de la stel-
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Ioide, est le point correspondant du pseudo-centre, est le

point à l'infini de la droite de Newton puisqu'il est le point
double de sa conique polaire dégénérée. Mais ces deux points,
le pseudo-centre et le point à l'infini de la droite de Newton,
sont les foyers d'une conique inscrite et cette conique est la

parabole inscrite puisqu'un de ses foyers est à l'infini.
Le pseudo-centre de la stelloïde conjuguée est donc le

foyer de la parabole inscrite, c'est le point de Miquel du
quadrilatère complet.

8. Nous avons vu précédemment qu'il existe une seule
stelloïde conjuguée d'un quadrilatère complet donné. En
revanche, une stelloïde cubique donnée est la stelloïde conjuguée
d'une infinité de quadrilatères complets.

En effet, deux coniques apolaires quelconques de la
stelloïde donnée ont quatre tangentes communes qui forment un
quadrilatère dont la stelloïde donnée est la stelloïde conjuguée.
Et ceci parce que le faisceau tangentiel déterminé par ces
deux coniques est formé entièrement de coniques apolaires de
la stelloïde. Le réseau de ces coniques apolaires est donc celui
des confocales des coniques de ce faisceau.

Une stelloïde donnée est donc la stelloïde conjuguée d'une
double infinité de quadrilatères complets. Une droite quelconque

du plan en détermine un et un seul puisque les coniques
d'un réseau tangentiel qui touchent une droite donnée forment
un faisceau tangentiel.

Tous ces quadrilatères complets ont même point de Mi-
quel et même droite de Newton. Nous pourrons voir qu'ils ont
encore d'autres éléments communs.

IV. Hessienne et cayleyenne de la stelloïde conjuguée.

9. Des remarques précédentes, il résulte que la hessienne
de la stelloïde conjuguée du quadrilatère complet est le lieu
des foyers des coniques inscrites et nous pouvons montrer,
bien que ce fait soit connu, qu'elle est une cubique circulaire
passant par son foyer singulier. Les points de cette hessienne
situés à l'infini sont en effet les points cycliques et le point à

l'infini de la droite de Newton. Les points cycliques sont deux
points correspondants, et le point à l'infini de la droite de
Newton correspond au point de Miquel. Les tangentes aux points
cycliques se coupent donc sur la courbe, au point correspon-
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dant du troisième point à l'infini, c'est-à-dire au point de

Miquel qui est ainsi le foyer singulier.
Nous avons vu en outre que cette hessienne passe par les

six sommets du quadrilatère et par les pieds des hauteurs du
triangle diagonal. Mais on sait que la hessienne d'une cubique
est le lieu des points d'où les tangentes menées aux coniques
apolaires sont des paires de droites en involution. Les droites
doubles de cette involution étant, en chaque point de la
hessienne, la paire de droites formant la conique polaire du point
correspondant. Dans notre cas, cette paire est rectangulaire.

Il en résulte le théorème de Serret :

Le lieu des foyers des coniques inscrites dans un quadrilatère

est aussi le lieu des points d'où les tangentes menées aux
coniques inscrites sont les paires de droites correspondantes
d'une involution symétrique.

En particulier,
Ce lieu des foyers est aussi le lieu des points d'où les

paires de sommets opposés du quadrilatère complet sont vus
suivant des paires de droites également inclinées sur deux
droites rectangulaires.

10. Maintenant, nous pourrions évidemment énoncer de
nombreuses propriétés métriques de la hessienne de la stelloïde
conjuguée. Sans en vouloir faire une longue enumeration, nous
noterons seulement celles qui proviennent du fait que deux
points correspondants de cette hessienne, autrement dit deux
foyers associés d'une conique inscrite, sont conjugués harmoniques

l'un de l'autre par rapport à la paire des bissectrices
issues d'un même sommet du quadrilatère.

Deux points correspondants de celte hessienne sont inverses

isogonaux par rapport aux quatre triangles que l'on peut
former à l'aide de trois des côtés du quadrilatère.

Ces points correspondants sont seuls à jouir de cette
propriété.

Ils sont d'ailleurs inverses isogonaux par rapport à une
infinité de triangles du plan. Tous ces triangles sont ceux qui
appartiennent à tous les quadrilatères dont la stelloïde conjuguée

du quadrilatère donné est aussi la stelloïde conjuguée.
Une droite quelconque du plan appartient à trois de ces triangles.

Enfin, si deux points sont inverses isogonaux par rapport
à deux des triangles du quadrilatère complet, ils sont aussi
inverses isogonaux par rapport aux deux autres. Dans ce cas,
ces deux points sont en effet conjugués aux hyperboles èqui-
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latères conjuguées elles-mêmes à ces deux triangles. Ils sont
donc conjugués à toutes les hyperboles équilatères du réseau
des coniques polaires de la stelloïde.

Le point de Miquel et le point à l'infini de la droite de

Newton sont deux de ces points inverses de telle sorte que
si l'on joint un des sommets du quadrilatère au point de Mi-
quel, on obtient une droite dont l'isogonale, par rapport aux
deux côtés passant par ce sommet, est parallèle à la droite
de Newton.

11. Voyons maintenant quelques propriétés du quadrilatère
complet qui sont les conséquences de celles de la cayleyenne
de la stelloïde conjuguée.

Cette cayleyenne est une courbe de troisième classe que
l'on peut définir comme enveloppe des droites joignant les

paires de points correspondants de la hessienne, ou comme
l'enveloppe des paires de droites rectangulaires qui sont des

coniques dégénérées du réseau des coniques polaires.
De ces deux définitions, el en vertu de ce que nous avons

vu précédemment, il résulte que cette cayleyenne touche :

les douze bissectrices des angles du quadrilatère complet,
les côtés et les hauteurs du triangle diagonal,
la droite de Newton du quadrilatère complet et
la droite de l'infini du plan.

D'ailleurs, deux points correspondants de la hessienne sont
deux foyers associés d'une conique inscrite et la droite joignant
ces deux points est un des axes de la conique inscrite. Donc,

la cayleyenne de la stelloïde conjuguée du quadrilatère
complet est aussi l'enveloppe des axes des coniques inscrites.

En outre, nous avons remarqué que la stelloïde conjuguée
du quadrilatère est encore stelloïde conjuguée d'une infinité
d'autres quadrilatères complets. De telle sorte que :

la cayleyenne peut, d'une infinité de façons, être considérée

comme l'enveloppe des axes des coniques d'un faisceau
tangentiel.

12. Mais on sait que chacune des tangentes de la cayleyenne
d'une cubique coupe les coniques polaires de la cubique
suivant des paires de points en involution. Ainsi,

un axe d'une conique inscrite dans le quadrilatère coupe
les hyperboles équilatères admettant ce quadrilatère pour
quadrilatère polaire suivant des paires de points en involution.
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Une de ces hyperboles équilatères est formée de la droite
de l'infini et de la droite de Newton du quadrilatère. Le
centre de l'une quelconque des involutions précédentes est
donc sur la droite de Newton, c'est-à-dire au centre de la
conique dont on considère un axe. Et les points doubles de
cette involution sont les foyers de la conique inscrite situés
sur l'axe considéré. On est donc conduit au théorème suivant :

Un axe d'une conique inscrite dans un quadrilatère complet

coupe les hyperboles équilatères dont ce quadrilatère est

un quadrilatère polaire en des paires de points dont le produit
des distances au centre de la conique inscrite considérée est
constant et égal au carré de la demi-distance focale de cette
conique.

Ce théorème a de nombreux cas particuliers dont
quelques-uns ont déjà été cités. Il serait fastidieux de les énumé-
rer pour montrer seulement qu'ils sont tous compris dans la
proposition précédente. Qu'il nous soit permis de remarquer
pourtant que les paires de bissectrices du quadrilatère sont
des hyperboles équilatères admettant le quadrilatère donné pour
quadrilatère polaire; de même d'ailleurs que les trois paires
de droites formées d'un côté et de la hauteur correspondante
du triangle diagonal.

En outre, ces bissectrices du quadrilatère, les côtés et les
hauteurs du triangle diagonal sont aussi des axes de coniques
inscrites. Les involutions dont parle le théorème précédent sont
donc connues, sur chacune de ces droites, par de nombreuses
paires de points correspondants.

Une des tangentes de la cayleyenne mérite d'être considérée

en particulier. C'est l'axe de la parabole inscrite. Tssue du
point de Miquel, elle est parallèle à la droite de Newton du
quadrilatère. Les points correspondants de la hessienne situés
sur cet axe, c'est-à-dire les points doubles de l'involution que
nous voulons déterminer, sont le point de Miquel et le point
à l'infini. Cette involution est donc formée de paires de points
symétriquement placés par rapport au point de Miquel. Donc,

L'axe de la parabole inscrite au quadrilatère coupe, les

hyperboles équilatères dont ce quadrilatère est un quadrilatère
polaire, en particulier les paires de bissectrices issues d'un
même sommet, en des points symétriquement placés par
rapport au point de Miquel.
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V. Cercles et droites passant par le point de Miquel.

13. Nous avons rencontré déjà quelques propriétés métriques
du quadrilatère complet. Nous allons maintenant nous occuper

des cercles et des droites remarquables qui passent par
le point de Miquel.

Nous avons dit que ce point est le foyer de la parabole
inscrite. Et comme un cercle, circonscrit à un triangle,
circonscrit lui-même à une parabole, passe par le foyer de cette
parabole, le point de Miquel est commun aux quatre cercles
circonscrits aux quatre triangles que l'on peut former à l'aide
de trois des côtés du quadrilatère. Mais on peut déterminer
d'autres cercles et aussi des droites passant par ce point.

Dans un article intitulé: Note sur le quadrilatère et paru
en 1901 dans les « Comptes rendus de l'Association française
pour l'avancement des sciences », Léon Ripert note que le
point de Miquel se trouve sur douze cercles et neuf droites
remarquables. Mais, lorsqu'on a trouvé ainsi des cercles et des
droites soumis à certaines conditions et passant par un même
point, il est assez probable qu'il existe une propriété
commune à tous les cercles ou à toutes les droites passant par ce
point. C'est ce que nous allons établir.

Le point de Miquel est pour nous le pseudo-centre de la
stelloïde conjuguée du quadrilatère; c'est le point dont la

conique polaire est dégénérée en deux droites, l'une d'elles
étant la droite de l'infini. Les coniques polaires des points
de la droite de l'infini, par rapport à la stelloïde conjuguée,
forment donc un faisceau d'hyperboles équilatères ayant toutes
le point de Miquel pour centre.

Considérons une droite quelconque du plan. Les coniques
polaires des points de cette droite, par rapport à la stelloïde
conjuguée, forment un faisceau d'hyperboles équilatères et le
lieu des centres des hyperboles équilatères de ce faisceau est
un cercle.

Mais le point à l'infini de cette droite a une conique
polaire dont le centre est le point de Miquel. Le cercle dont nous
venons de parler passe donc par le point de Miquel.

Et l'on peut construire autant de ces cercles que de droites
dans le plan; c'est-à-dire une double infinité. Le théorème
général qui introduirait tous les cercles passant par le point
de Miquel est le suivant :

Deux hyperboles équilatères, dont le quadrilatère donné
est un quadrilatère polaire, se coupent en quatre points qui
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sont les sommets et Vorthocentre d'un triangle. Le cercle des

neuf points de ce triangle passe par le point de Miquel.
Et l'on aurait en particulier les neuf cercles dont parle

Ripert et qui satisfont à la condition fixée par le théorème
précédent. Ce sont :

les quatre cercles circonscrits aux quatre triangles du qua¬
drilatère,

le cercle des neuf points du triangle diagonal,
trois cercles dont chacun est le lieu des centres des hy¬

perboles équilatères d'un faisceau déterminé par deux
coniques dégénérées et formées des paires de bissectrices

issues de deux sommets opposés,
enfin, un cercle passant par les centres des quatre cercles

circonscrits aux quatre triangles du quadrilatère.

là. Ce dernier cercle est connu sous le nom de cercle de

Miquel. Ripert note qu'il passe par 25 points remarquables.
En réalité, on peut ici encore donner une propriété de chacun
des points de ce cercle: Tout point du cercle de Miquel est
le centre de la conique polaire d'un point de la droite ortho-
centrique par rapport à la stelloïde conjuguée. Et les vingt-
cinq points de Ripert pourraient être caractérisés comme cas

particuliers des points satisfaisant à cette condition. Nous
établirons dans le paragraphe suivant la correspondance que
je viens de citer entre les points de la droite orthocentrique et
ceux du cercle de Miquel.

15. Examinons maintenant dans quels cas les cercles passant
par le point de Miquel dégénèrent. Nous obtiendrons encore des
théorèmes généraux caractérisant les droites passant par le

point de Miquel.
La conique polaire du point de Miquel lui-même est

formée de la droite de l'infini et de la droite de Newton. Les
coniques polaires des points d'une droite passant par le point
de Miquel forment un faisceau auquel appartient la conique
dégénérée précédente. Elles ont donc en commun deux points
à l'infini et deux points situés sur la droite de Newton. Le
lieu de leurs centres est une droite. C'est le côté du triangle
diagonal du quadrangle complet des quatre points communs
à ces coniques qui est opposé au point diagonal de ce quadrangle

situé à l'infini. Cette droite passe par le point de Mi-
quel et par le point milieu du segment déterminé par une de
ces coniques polaires sur la droite de Newton. Donc,
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la droite obtenue en joignant le centre d'une hyperbole
equilatere, dont le quadrilatère donné est un quadrilatère
polaire, au point milieu du segment qu'elle détermine sur la
droite de Newton passe par le point de Miquel.

En particulier,
les deux bissectrices issues d'un même sommet du

quadrilatère et la droite de Newton forment un triangle rectangle.
La médiane issue du sommet de l'angle droit de ce triangle
rectangle passe par le point de Miquel.

Il en est encore de même de la médiane issue du sommet
de l'angle droit d'un triangle rectangle formé par la droite
de Newton, une diagonale et la hauteur correspondante du
triangle diagonal.

VI. Une transformation du second ordre.

16. Nous nous sommes efforcés jusqu'ici de tirer parti
de la stelloïde et des réseaux de ses coniques polaires et
apolaires. On a pu remarquer que l'on atteint par ces procédés
spécialement les propriétés du quadrilatère qui ressortent de
la considération de ses bissectrices.

Nous allons introduire maintenant une certaine transformation

du second ordre intimement liée à la stelloïde et au
quadrilatère et qui va nous conduire à de nouvelles propriétés
métriques.

A cet effet, considérons les coniques polaires des points
à l'infini par rapport à la stelloïde. Elles forment, nous l'avons
déjà vu, un faisceau d'hyperboles équilatères concentriques,
leur centre commun étant le point de Miquel. Ce faisceau
est déterminé par les coniques polaires de chacun des points
cycliques I et J : la conique polaire de I étant formée de
deux droites issues du point J et celle de J de deux droites
issues de I et imaginaires conjuguées des précédentes. Ces deux
paires de droites se coupent en deux points réels R et S et
deux points imaginaires conjugués R' et S' ; O le point
milieu du segment R S ou du segment R' S', est le pseudo-
centre de la stelloïde et le point de Miquel du quadrilatère.
Et les deux droites réelles rectangulaires R S et R' S' constituent

la troisième conique polaire dégénérée du faisceau.
Le faisceau que nous envisageons de ces hyperboles

équilatères détermine une transformation du second ordre, où sont
définis comme correspondants deux points conjugués par rapport

à toutes les hyperboles équilatères du faisceau. Les points
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R S R' et S' sont donc les points doubles de cette transformation.

Par rapport à la stelloïde, toute paire de points
correspondants est telle que sa droite polaire mixte est la droite
de l'infini. Le point correspondant d'un point donné est ainsi
le centre de la conique polaire de ce dernier par rapport à

la stelloïde. Cette relation est évidemment réciproque.
Les points doubles de la transformation sont les quatre

pôles de la droite de l'infini par rapport à la stelloïde. Nous
nommerons les points R et S qui sont réels, les points doubles

du quadrilatère complet.

17. La transformation du second ordre définie par un faisceau

d'hyperboles équilatères concentriques est bien connue.
Elle équivaut à une inversion suivie d'une symétrie. Le cercle

d'inversion est le cercle décrit sur R S comme diamètre
et l'axe de symétrie est la droite R S

Deux points correspondants sont donc placés de telle
façon que le produit de leurs distances au point O soit constant,

et que les droites les joignant au point O soient
symétriques l'une de l'autre par rapport à la droite R S

Mais deux points correspondants sont aussi tels que chacun

d'eux est le centre de la conique polaire de l'autre, et
ce fait permet de déterminer un grand nombre de paires de

points correspondants. En particulier, toute conique apolaire
dégénérée est formée de deux points correspondants de notre
transformation. Deux foyers associés d'une conique inscrite
forment donc une de ces paires, de même que deux sommets
opposés du quadrilatère. Donc,

le produit des distances du point de Miquel à deux foyers
associés d'une conique inscrite, ou plus particulièrement à

deux sommets opposés du quadrilatère, est constant et égal au
carré de la demi-distance des points doubles du quadrilatère.

18. La transformation du second ordre dont nous nous
occupons transforme une droite quelconque du plan en un
cercle passant par le point de Miquel et une droite passant
par ce point en une autre droite passant aussi par ce point.
Voyons quels sont les cercles transformés de quelques droites

remarquables.
Un côté du quadrilatère se transforme dans le cercle

circonscrit au triangle formé par les trois autres côtés, puisque
chaque sommet se transforme dans son opposé. Le pied de
la perpendiculaire abaissée du point de Miquel sur un côté a
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alors pour correspondant le point du cercle transformé qui
est diamétralement opposé au point de Miquel. Donc,

le carré de la demi-dislance des points doubles du quadrilatère

est aussi égal au produit de la distance du point de
Miquel à un côté, par le diamètre du cercle circonscrit au
triangle des trois autres côtés.

Mais les pieds des quatre perpendiculaires abaissées du
point de Miquel sur les côtés sont situés sur la droite de Simson.

Les points diamétralement opposés au point de Miquel,
sur chacun des quatre cercles circonscrits aux triangles du
quadrilatère, sont sur un cercle, transformé de la droite de Simson.

Donc,
v les cercles circonscrits aux quatre triangles du quadrilatère

sont coupés diamétralement par un même cercle et les quatre
diamètres sont issus du point de Miquel.

Nous avons affirmé, au n° 1U, que le lieu des centres des

coniques polaires des points de la droite orthocentrique est le
cercle de Miquel du quadrilatère. A ce moment-là, il paraissait

assez difficile de le prouver; maintenant, le démonstration
est immédiate.

Donnons, en effet, à la droite de Simson, une homothétie,
en prenant le point de Miquel pour centre et 1/2 pour rapport
d'homothétie. Nous obtiendrons la droite orthocentrique. On

pourra donc passer du cercle transformé de la droite de Simson
au cercle transformé de la droite orthocentrique par une nouvelle

homothétie ayant, comme la précédente, son centre au
point de Miquel, mais un rapport inverse de celui de la
précédente.

Cette nouvelle homothétie, dont le rapport est 2, fait
correspondre au point diamétralement opposé au point de Miquel
le centre de chacun des cercles circonscrits aux quatre triangles

du quadrilatère. Ces quatre centres sont donc sur un cercle

(le cercle de Miquel), transformé de la droite orthocentrique
dans la transformation du second ordre.

19. Nous pourrions encore chercher les cercles transformés
de nombreuses autres droites remarquables dans le plan du

quadrilatère, puis établir les liaisons entre eux. Sans vouloir
épuiser complètement cette question, remarquons pourtant que
les cercles transformés de deux droites se coupent sous un
angle égal à celui de ces deux droites, puisque la transformation

considérée se compose. d'une inversion et d'une
symétrie qui, l'une et l'autre conservent les angles.
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Deux côtés du quadrilatère, se coupant en un sommet A par
exemple, sont ainsi transformés en deux cercles circonscrits à

deux triangles du quadrilatère ; ces deux triangles ont en commun
le sommet A' et les deux côtés passant par ce sommet. Il résulte
alors de ce qui précède que l'angle des côtés en A est égal à

l'angle des cercles en A' Ce qui est un théorème connu.

20. Dans la transformation envisagée, le triangle fondamental,
c'est-à-dire le triangle polaire commun aux coniques du

faisceau qui détermine la transformation, a pour sommet le
point de Miquel O et les points cycliques du plan I et J Et
l'on peut démontrer aisément que, dans toute transformation du
second ordre, une conique passant par deux des sommets du
triangle fondamental et par deux des points doubles se
transforme en elle-même.

Dans notre cas, nous aurons, se transformant en elles-mêmes,

les coniques passant par les points cycliques et par les

points doubles R et S et celles qui passent par les points
cycliques et par les points doubles R' et S'

Ce sont donc deux faisceaux de cercles réels. Chacun d'eux
contient les cercles orthogonaux aux cercles de l'autre
faisceau. L'un de ces faisceaux a les points doubles du quadrilatère,

R et S pour points fondamentaux, l'autre a ces points
pour points limites.

Et si un point se trouve sur un cercle se transformant en
lui-même, son correspondant dans la transformation y est
aussi. Donc,

les deux points de toute paire de points correspondants
de la transformation se trouvent, à la fois, sur un cercle du
premier et sur un cercle du second faisceau.

Il en est, en particulier, ainsi de deux foyers associés d'une
conique inscrite et des paires de sommets opposés du
quadrilatère complet.

De plus, une transformation du second ordre conserve les

rapports anharmoniques sur deux coniques qui se transforment

l'une dans l'autre. Et, par conséquent, sur une conique
qui se transforme en elle-même, deux points correspondants
sont conjugués harmoniques l'un de l'autre par rapport aux
points doubles situés sur cette conique. Nous pouvons donc
énoncer le théorème général,

deux foyers associés d'une conique inscrite (en particulier,
deux sommets opposés du quadrilatère) et la paire des
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points doubles sont sur un cercle. Et, sur ce cercle, les points
doubles sont conjugués harmoniques de la paire de foyers
associés considérés.

21. Les deux faisceaux de cercles dont nous venons de

nous occuper, ou plutôt certains cercles de ces faisceaux ont
déjà été rencontrés par Steiner.

En 1827, dans les Annales de Gergonne, Steiner a énoncé
une dizaine de théorèmes relatifs au quadrilatère complet,
sans en donner d'ailleurs la démonstration. A ce moment, les
seules propositions connues sur ce sujet étaient le théorème
de Desargues, le théorème de Pappus sur la division harmonique

d'une diagonale par les deux autres et le théorème de
Gauss sur la droite qui joint les points milieux des trois
diagonales.

En particulier, Steiner a énoncé les propositions suivantes:
« Pour chacun des quatre triangles du quadrilatère complet

il y a un cercle inscrit et trois cercles exinscrits, ce qui
fait en tout seize cercles dont les centres sont quatre à quatre
sur une circonférence, de manière à donner naissance à huit
nouveaux cercles.

Ces huit nouveaux cercles se partagent en deux groupes,
tels que chacun des quatre cercles de l'un de ces groupes
coupe orthogonalement tous les cercles de l'autre groupe; on
en conclut que les centres des cercles des deux groupes sont
sur deux droites perpendiculaires l'une à l'autre.

Enfin, ces deux dernières droites se coupent au point 0
mentionné précédemment. » l

Ces deux faisceaux de cercles de Steiner sont précisément

les deux faisceaux de cercles qui se transforment en
eux-mêmes dans la transformation du second ordre dont il
vient d'être question.

En outre, cette transformation permet de caractériser
géométriquement tout cercle de chacun des deux faisceaux. C'est
ce que nous allons faire, entre autres choses, dans le
paragraphe suivant.

Nous ne démontrerons pas ici les théorèmes de Steiner
que nous venons de citer. Les démonstrations que l'on a données

autrefois ne faisaient intervenir que des propositions de
la géométrie élémentaire, ce qui les rendait fort longues et
confuses.

1 Le point 0 est le point commun aux quatre cercles circonscrits aux
quatre triangles du quadrilatère.
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Dans un article paru en décembre 1927 dans les Nouvelles
Annales de Mathématiques, nous avons montré que ces
théorèmes de Steiner pouvaient aussi se déduire, assez facilement,
de la considération de la stelloïde et de certaines autres
cubiques apparentées.

22. Avant de clore ce paragraphe, nous allons encore
démontrer une propriété des points doubles du quadrilatère.
Nous savons que ces points R et S sont déterminés de telle
façon que les deux droites IR et I S forment la conique
polaire de J, par rapport à la stelloïde, et les deux droites J R
et J S celle du point I.

Les deux droites IR et I S, de même que les droites
J R et J S sont donc conjuguées à chacune des coniques
apolaires, c'est-à-dire à toute conique inscrite dans le quadrilatère.

Menons de I les tangentes I F et I F' et de J les

tangentes J F et J F' à une de ces coniques inscrites (F, F', G et
G' sont les quatre foyers de cette conique). Les droites I F
et I F' sont conjuguées harmoniques l'une de l'autre par rapport

aux droites I R et I S, de même J F et J F' sont conjuguées
harmoniques l'une de l'autre par rapport aux droites J R et J S.

Il en résulte que toutes les coniques passant par les quatre
points F, F', G et G' sont harmoniquement circonscrites aux
coniques tangentes aux quatre droites I R, I S, J R et J S. En
particulier, la paire de droites F F', G G', qui est la paire d'axes
de la conique inerite considérée, est conjuguée à la paire de

points R S Donc,
les axes d'une conique inscrite sont conjugués harmoniques

l'un de l'autre par rapport à la paire des points doubles
du quadrilatère.

(Ce théorème n'est pas un cas particulier de ceux que nous
avons rencontrés précédemment; les points doubles ne sont
pas situés sur la hessienne et les axes d'une conique inscrite
ne sont pas tangentes correspondantes de la cayleyenne.)

VII. Les autopoloconiques
de la stelloïde et les cercles de Steiner.

23. Nous avons annoncé, au n°2^, que les cercles de Steiner,

en particulier, et plus généralement tous les cercles de
leurs deux faisceaux seraient caractérisés par une propriété
géométrique simple. Nous y parviendrons en introduisant la
notion d'autopoloconique de la stelloïde.
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On définit, par rapport à une courbe du troisième ordre,
la poloconique d'une conique quelconque (c) de la manière
suivante :

On considère celles des coniques polaires qui sont
harmoniquement inscrites à (c) (ou qui, en d'autres termes,
considérées comme courbes de deuxième classe sont apolaires à

la courbe de deuxième ordre (c)) : les pôles de ces coniques
polaires sont sur une nouvelle courbe du second ordre (c')
qu'on nomme la poloconique de (c) La relation ainsi définie

est réciproque.
Lorsque (c) et (c') sont confondues, on a une conique unique

dite autopoloconique de la cubique.
Voici une propriété qui résulte immédiatement de la

définition précédente.
Soit P un point d'intersection de la conique donnée (c)

et de la hessienne de la cubique. P est le point double de la
conique polaire d'un autre point P' de la hessienne. Cette
polaire, considérée comme courbe de seconde classe, est
réduite à un point double situé en P. Comme courbe de
seconde classe elle est donc apolaire à la conique (c) et son
pôle P' se trouve sur la conique (c'), poloconique de (c). Or
P et P' sont deux points correspondants de la hessienne.

Donc, les correspondants sur la hessienne des six points
d'intersection de la hessienne et d'une conique (c) sont sur
la poloconique (c') de cette dernière.

Il est maintenant aisé de voir que les cercles de Steiner,
ainsi que tous les cercles de leurs deux faisceaux, sont des

autopoloconiques de la stelloïde. Ils satisfont tout aussi
évidemment à la définition même des autopoloconiques qu'à la
propriété que nous venons d'énoncer.

En effet, soit (c) un de ces cercles. Nous avons vu que
le centre de l'hyperbole equilatere, conique polaire d'un point
quelconque de ce cercle, est aussi sur le cercle. Cette hyperbole

equilatere est donc harmoniquement inscrite au cercle (c).
D'autre part, nous avons aussi montré que lorsque le cercle

(c) contient l'un des points d'une conique apolaire
dégénérée, il contient aussi l'autre. Le cercle (c) ne peut donc
couper la hessienne de la stelloïde qu'en trois paires de points
correspondants, il coïncide donc avec sa poloconique. Il
possède, en effet, la propriété des autopoloconiques que nous
avons énoncée.

2U. Les cercles de ces deux faisceaux ne sont pas les seules
autopoloconiques de la stelloïde. On sait qu'une cubique pos-
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sède deux réseaux d'autopoloconiques, que chacun de ces

réseaux, considéré comme réseau de coniques polaires détermine

une nouvelle cubique, et que ces trois cubiques possèdent

la même cayleyenne.
Pour déterminer les autopoloconiques de la stelloïde que

nous ne possédons pas encore il suffirait de remplacer la paire
absolue IJ par une autre conique apolaire dégénérée; c'est-à-
dire de remplacer le faisceau des coniques polaires de la droite
de l'infini, qui nous a conduit à notre transformation du
second ordre, par celui des coniques polaires d'une autre
tangente, d'ailleurs quelconque, de la cayleyenne.

Remarquons en outre que les trois cubiques qui ont la
même cayleyenne sont entre elles en relations parfaitement
symétriques. Si donc on remplaçait la stelloïde par l'une des
deux autres cubiques, toutes les considérations que nous avons
faites précédemment pourraient être répétées, mutatis mutandis.

Toutes les propriétés auxquelles nous arriverions ne
seraient pas également intéressantes parce que la paire I J des

points cycliques n'y jouerait pas un rôle aussi essentiel. Mais
il en est quelques-unes qui mériteraient de retenir notre
attention et qu'on peut désigner d'emblée.

En effet, les bissectrices du quadrilatère, en leur qualité
de tangentes à la cayleyenne, appartiendraient à des coniques
polaires dégénérées. Il est vrai que ce ne serait plus deux bissectrices

issues d'un même sommet qui formeraient une conique
polaire, mais deux bissectrices issues de deux sommets opposés.

Ainsi donc, par exemple, les nouvelles paires de bissectrices

que l'on formerait seraient encore coupées par une tangente
quelconque de la cayleyenne suivant des paires de points en
involution, etc., etc.

VIII.

La fin du paragraphe précédent fait voir que la stelloïde
conjuguée n'est pas la seule cubique qui permette d'établir des

propriétés métriques du quadrilatère complet.
Mais, plus généralement, si nous disons qu'une cubique

est conjuguée au quadrilatère complet lorsque le réseau de

ses coniques apolaires contient le faisceau des coniques
inscrites, une cubique conjuguée est déterminée par une nouvelle
conique apolaire arbitrairement choisie. Et, en faisant
judicieusement ce dernier choix, on sera conduit à de nouvelles
propriétés projectives ou métriques.
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Par exemple, les cubiques conjuguées et apolaires à une
paire de points situés à l'infini dans des directions
rectangulaires fourniront de nouvelles propriétés métriques du
quadrilatère complet.

Enfin, la géométrie du quadrangle complet pourra être
édifiée par la méthode corrélative. On dira qu'une courbe de

troisième classe est conjuguée au quadrangle complet si elle
est apolaire à toutes les coniques circonscrites au quadrangle.
Une courbe de troisième classe conjuguée est alors déterminée

par une nouvelle conique apolaire arbitrairement choisie.
Si, pour citer un exemple, cette nouvelle conique apolaire

est dégénérée et contient la droite de l'infini, ou même si
elle est formée d'une droite double à l'infini, on sera conduit
à de nombreuses propriétés métriques.
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