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DULIE! DE \A SOCIETE MISE DES SCIENCES NATURELLES

Vol. 59 1937 N» 243

Maxima, minima, indicatrice
PAR

Gustave DUMAS

Le contenu de la présente Note constituait un travail
d'approche relatif à la théorie des points singuliers des surfaces
algébriques; communication en fut faite à Zürich en 1934 *.

La Note elle-même n'a pas été publiée depuis lors; il eût fallu,
pour son intelligence, la faire précéder de considérations un
peu complètes sur le polyèdre analytique. Or, le « polyèdre »

ayant, depuis, acquis droit de cité, grâce aux travaux de
M. Emile Cotton 2, rien n'empêche maintenant d'attirer l'attention

sur les avantages qu'il présente pour la discussion de la
structure d'une surface analytique au voisinage d'un point
régulier, c'est-à-dire d'un point doté d'un plan tangent unique 3.

1. La surface à considérer (S)

(1) ¥(x,y,z) o,

le sera à l'origine O, de coordonnées

x y z o

1 Actes de la Soc. helv. des Se. nat., Zurich 1934, p. 267.
2 Emile Cotton. Sur l'étude des fonctions holomorphes et des fondions

algébroïdes de plusieurs variables. (Extension d'une méthode de Puiseux).
Annales scientifiques de l'Ecole normale supérieure, 3" Série, t. 51.

8 La littérature du sujet est abondante ; voir, par exempte :

D. Hilbert und S. Cohn-Vossen. Anschauliche Geometrie, Chap. IV, S 28,
p. 161 et svtes.

St^ckel. a) Ueber das Modell.... Zeitschrift für Math. u. Physik t. 51,
1904. bj Die Bedeutung des Weierstrass'schen Vorbereitungssatzes... Stizungs-
ber. d. Heidelberger Akad. d. Wiss., 1916, 1. Abhandlung.

Ludwig Scheeffer. Theorie der Maxima und Minima einer Function von
zwei Variabein. Math. Annalen, t. XXXV, 1890.

Francesco Severi. Sugli estremanti delle Funzioni di due variabile.
Memorie della reale Accademia d'Italia, Classe di scienze fisiche, matematiche e
naturali. Voi. I, Rome 1930.

A noter aussi que Felix Klein, à la page 444 de son « Anwendung der
Differential und Integralrechnung auf Geometrie», Leipzig 1907, s'oecupant des
questions dont il s'agit dans ce travail, fait allusion aux «beaux exemples»
que l'on rencontre, d'intersections de surfaces par leurs plans tangents.

59-243 17



238 GUSTAVE DUMAS

Elle sera réelle et analytique en 0 et ce point O sera régulier
pour elle. Son plan tangent en O, sera le plan des x, y.

2. Classification. Considérons, pour un instant, la
surface (S) sur tout son parcours. Prenons, dans une position
générale, un point régulier M de celle-ci.

En ce point, les dérivées partielles, premières et secondes de

z, relativement à x et y, p, q, r, s, t existent.
Trois cas peuvent se présenter, en ce point M
Ou bien :

a) rt — s2=%=o,

le point M est alors elliptique ou hyperbolique. C'est le cas
général. Les points réguliers d'une surface sont, en général,
elliptiques ou hyperboliques. Ils sont en double infinité.

Ou bien :

b) rt — s2 o,

sans que les trois quantités r, s, t soient nulles à la fois. On
a alors un point parabolique. Ce cas est général aussi. Dans
l'ensemble, ces points constituent les lignes paraboliques de
la surface.

Ou bien :

c) r s t.

Les points qui satisfont à ces dernières conditions ne peuvent
exister qu'exceptionnellement sur la surface. Ils ont leur importance.

On verra, chez Hilbert, loe. cit., tout l'intérêt qu'ils
peuvent présenter, en Géométrie.

Et, pour l'examen de ces différents points, on s'appuiera
sur cette proposition qui va presque de soi.

La structure d'une surface au voisinage d'un point régulier
est connue dès que l'on connaît celle de son intersection par
le plan tangent.

Le but de l'exposé est d'ailleurs moins de reprendre de

rigoureuses recherches faites déjà par d'autres, que d'introduire
d'une manière simple, une généralisation utile, et nouvelle
croyons-nous, de la notion d'indicatrice au sens de Dupin.

3. Partons d'un exemple et prenons, pour cela, un point
de la troisième catégorie, un Affensattel selon Hilbert, loe.
cit., une selle à trois pans, dirons-nous.
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La selle à trois pans en 0, dans le cas le plus simple,
correspond à une équation de la forme

z (ax + by) (axx -f 6^) (a2x + b2y) D^Ds,
dont le second membre est le produit de trois facteurs linéaires

et homogènes distincts.
Cette surface, au voisinage de 0, est caractérisée par l'allure

générale du système topographique donné, fig. 1.

D

D.

//y
D

\

fA

/y/,
//

Fi9. i.
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Dans le livre de Hilbert, loc.cit., on trouvera, p. 169,
fig. 198, représentée en perspective, la même surface au
voisinage de O.

On aura de même des « selles à n pans » 4.

D'une manière générale, il y a toujours grand avantage à

tenir compte, dans les problèmes d'extrema dépendant de deux
variables indépendantes, de certaines intersections planes de
la surface.

Après avoir coupé, par exemple, la surface

(2) z xsy2(a — x — y) (a 4= o)

par le plan z o, on obtient, intuitivement pour ainsi dire,
la position de l'unique maximum5.

L'intersection d'une surface en un point O, par son plan
tangent en O, peut, au voisinage de O, présenter bien des
caractères.

Elle peut se réduire à n'être qu'un point isolé, ou compter
des branches d'ordre pair ou d'ordre impair de multiplicité.

Si l'ordre est pair, il y a contact le long de la ligne; s'il
est impair, il y a intersection proprement dite.

Et, dans bien des cas, il arrive qu'immédiatement ou presque

immédiatement, on ait des conditions suffisantes fixant
ces particularités.

h. Le polyèdre analytique.
Ce polyèdre conduit, de suite pour ainsi dire, à de pareilles
conditions. On le construit d'une manière facile à

caractériser.

Le terme général, à coefficient numérique différent de
zéro, A ag7, de F(x,y,z) étant

L«/3/ rr-yhl

on prendra un trièdre de référence Qa Qß Qy et, rapporté
à ce trièdre, le point de coordonnées a, ß, y.

4 H. Schilt a introduit « les selles à n pans » dans des recherches
relatives aux surfaces isométriques non déformablcs l'une sur l'autre par
continuité. Actes de la Soc. helv. des se. nat., Soleure 1937, p. 244. ou aussi
L'Enseignement mathématique, t. XXXVI, p. 109.

4 Exercices de Freuet, n° 204.



MAXIMA, MINIMA, INDICATRICE 241

Ce point à cotes entières, ce nœud, dirons-nous, que, le
cas échéant, on représentera également par la lettre Aaj9y, sera
le point ou nœud représentatif du terme considéré.

On construit de la sorte, ou, tout au moins, on suppose,
construits de la sorte, tous les nœuds représentatifs des termes
effectifs de F(x,y,z) et, procédant d'une façon analogue à celle
dont on procède lorsqu'il s'agit d'aboutir à un polygone de
Newton, on obtient finalement une surface polyèdrale ouverte.
Cette surface polyèdrale à faces planes, constitue pour 0 le
polyèdre analytique de la surface (S) analytique en O
correspondant à (1).

Prenons, pour fixer les idées, un exemple particulier et,
pour cela, considérons tout d'abord l'expression

avec

(3)

u z -\- <p(x,y),

<£ (x y) Bx26 -f- ax21y2 -f Dx16y4

_j_ 6a;13y7 -f cx10yia f- dx^y13 -j- Hxiyle,

où les coefficients B D, H sont, chacun, différents de zéro,
les coefficients a, b, c, d, en revanche, nuls éventuellement.

Au terme z, correspondra dans le polyèdre, le nœud
dédésigné par A.

B(*to.o)

A {;».*)

D('*.*o)

Fi3. X

H (v it. o)
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Cela étant, le polyèdre i^ de u sera celui que donne fig. 2,
chaque terme de u donnant lieu à un nœud représentatif qui
appartient en fait à 3*

Supposons, ensuite, un ensemble de termes

dont tous les nœuds représentatifs soient situés à l'intérieur
de J^ou sur son contour, sans toutefois se confondre avec aucun
nœud représentatif d'un terme quelconque de u. L'intérieur
de «i^est défini par opposition à l'origine Q, laquelle, par
définition, est à l'extérieur de S1.

$*, dans ces conditions, sera encore le polyèdre analytique
de

4) F(x,y,z) u + 2M^tf^fev

A remarquer que, dans F, l'on est toujours en droit de

supposer le coefficient numérique du terme en z seul, égal
à 4- 1, car ce coefficient, lorsque le point O est régulier,
est toujours différent de zéro, alors que l'équation F o est
seule en cause.

Appelons, en outre, partie principale du polyèdre, la partie
que constituent les deux faces ABD et ADH. Cette partie
principale est bien déterminée dans chaque cas particulier, ici,
par les sommets A, B, D, H, effectifs puisque dans u A,
B, D, H représentent respectivement des quantités, toutes,
différentes de zéro.

Dans le cas que nous étudions, la construction du polyèdre
sera toujours rapide. Celui-ci, en effet, est déterminé dès que
l'on connaît sa trace sur le plan des Qa, Qß c'est-à-dire le
polygone de Newton en O de l'expression F(x,y,o), sans que
dans celui-ci les côtés extrêmes soient confondus nécessairement
avec les axes Qo et Qß

5. Indicatrice.
Etant donnée la surface (S), d'équation

(1) F(x,y,z) o, (S)

et son polyèdre S* en O, son indicatrice en O sera, par
définition, la surface (J) d'équation
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(5) z + q>(x,y) o. (J)

Le premier membre de cette dernière équation que nous utilisons

aussi pour définir d'une manière générale O est formé
par l'ensemble des termes de F dont les nœuds représentatifs
appartiennent à la partie principale de S"

Comme plus haut, l'on admet, supposition sans importance
et faite seulement pour la facilité de l'exposé, que le coefficient
du terme en z, dans F, est égal à un.

La surface (J) est en O, n° 6, osculatrice, du second
ordre au moins, à (S) Elle correspond au paraboloide que l'on
fait d'habitude intervenir, lorsque le point 0 étant elliptique
ou hyperbolique, on veut être renseigné sur la structure de

(S) en O.
Mais, la surface (J) qui, le cas échéant, peut se confondre

avec le paraboloide, donne souvent, d'une manière plus
complète, la structure de (S)

Soit, par exemple, l'équation

(6) z xy — x3 —y3,

le polyèdre en O correspondant s'obtient immédiatement. Sa

partie principale a deux faces.
Les termes se rattachant à ces deux faces, conduisent

respectivement aux deux équations

z x(y — x2) et z y(x — y2).

Par ces dernières, on est beaucoup mieux renseigné, qu'après
avoir constaté, par l'examen pur et simple de (6), que 0 est

un point hyperbolique et la surface remplaçable, au voisinage
de 0, par le paraboloide z xy

Ces questions dépassent les limites de ce travail; on verra
plus loin cependant, au n° 10, avec plus de précision, l'avantage

que présente l'introduction de la surface (J) quand le

point est parabolique.

6. Par application du théorème préliminaire de Weierstrass,
détachons maintenant de F(x, y, z) le facteur qui, égalé à zéro,
représente (S) au voisinage de O

On a, comme on le sait,

(7) F(x,y,z) [z-i-g(x,y)}E(x,y,z),

g(x, y) étant série entière en x, y, nulle pour x y o et
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F(x,y,z) série entière en x,y,z, différente de zéro pour
x y z o.

La décomposition en facteurs (7) n'est possible que d'une
seule façon.

D'autre part, on a :

(8) E(o,o,o) l,
le coefficient de z dans F, étant égal à 1.

Si, donc, on construit le polyèdre en O, de la surface

(9) z-rg(x,y) o,

la partie principale de celui-ci sera identique à la partie
principale du polyèdre de (S) en O. Ceci, à cause de (7)
et (8) et de la façon dont se constitue le polyèdre résultant
du produit de deux facteurs, les polyèdres de chacun de ces
deux facteurs étant connus.

On a donc par là, d'une manière nette, la vérification
de la propriété d'osculation de (J) et de (S), en O, signalée
au n° 5, puisque (9) est en fait- l'équation de (S) au voisinage

de O.

D'un autre côté, l'équation

(10) g(x,y)=o,

équivalente, en général pour le voisinage de O seulement,
à l'équation

(H) F(x,y,o) o,

représente, pour le voisinage de O, l'intersection de (S) avec
son plan tangent.

Chacune de ces équations (10) et (11) possédera donc
en O et d'après ce qui précède, même polygone de Newton,
polygone correspondant d'ailleurs aux différents termes de cl>.

C'est donc par la discussion de <& qu'en certains cas, l'on
pourra reconnaître, si, en O, il y a ou non extremumpour (S).

Ce dernier résultat aurait pu s'obtenir, d'ailleurs, sans
intervention du polyèdre. La chose est manifeste; la considération

seule des polygones aurait suffi. Le polyèdre, toutefois,
fait mieux ressortir ce qu'est l'indicatrice généralisée.
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7. Maxima et minima.

Soit
®(x,y) xPy«W(x,y) p^o,q^o;

à cause de la signification même de O relativement au
polygone, F(x, y, o) se trouvera divisible par xp et y', de sorte
que les droites

x o y o

confondues, chacune p et q fois, appartiennent à l'intersection
en 0 de (S) avec son plan tangent.

Si, donc, les exposants p et q sont tous deux pairs, ou
tous deux nuls, ou l'un nul et l'autre pair, les facteurs petq
resteront sans influence sur l'existence éventuelle d'un ex-
tremum.

Si, au contraire, un seulement de ces deux exposants p
ou q est impair, (S) étant, pour le moins, coupée en O par
une droite de multiplicité impaire, il ne pourra y avoir d'ex-
tremum en O.

Ce cas écarté, la discussion portera sur ^(x, y) ou, plus
exactement, sur les polynômes qui se déduisent de lF,
relativement aux côtés du polygone auquel lP appartient.

Ces polynômes se décomposent finalement, à un facteur
numérique près, en un produit d'expressions de la forme

(12) (y« -f ax*)1 r1,

dans lesquelles a représente une quantité réelle ou complexe,
p et q deux entiers sans diviseur commun, positifs et pouvant

se réduire tous deux à l'unité.
Ces quantités p et q sont en relation avec les inclinaisons

respectives des divers côtés du polygone; X est un entier
positif, égal ou supérieur à un, déterminé également par ces
côtés.

Comme *P est réel, ceux des facteurs qui seront complexes
seront toujours deux à deux conjugués.

Rien n'exclut que l'intersection de (S) en O par le plan
tangent ait des parties indépendantes et multiples; cela ne
modifie en rien ce qui va suivre.

Cela étant, des paraboles généralisées

(13) r yi+-axp=^o,
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qui, parfois, sont de simples droites, on peut, dans certains
cas, tirer des conséquences relatives à l'allure générale de la
courbe d'intersection.

C'est ainsi que le point O est isolé, si toutes les paraboles

(13) sont imaginaires, que la courbe d'intersection
comporte certainement une branche réelle si, la parabole r=o
étant réelle, l'exposant X correspondant est impair, qu'en
revanche, l'on ne peut se prononcer si, la parabole r=o étant
réelle, l'exposant correspondant X est pair.

Tout ceci, comme conséquence de la façon dont, par le
calcul, on passe des paraboles (13) aux diverses branches que
la courbe d'intersection peut présenter en O.

On en déduit aussitôt la conclusion suivante :

1° si toutes les paraboles, sans exception, sont imaginaires,

il y a extremum ;

2° si, une seule d'entre elles étant réelle, est multiple d'ordre

impair, il ne peut y avoir extremum;

3° si, toutes celles de ces paraboles qui sont réelles, le
sont avec un ordre pair de multiplicité, il y a doute.

On remarquera l'analogie complète de ce dernier énoncé
avec l'énoncé parallèle relatif à l'indicatrice de Dupin,
l'énoncé relatif à l'indicatrice de Dupin, se rattachant lui-même
à une circonstance très particulière du cas qui se présente ici.

Reste encore, en présence d'un extremum, à distinguer
si, maximum ou minimum, il y a. Cette discrimination
facile se fera, d'une manière ou d'une autre, par une section
appropriée de la surface, si l'on veut.

8. Exemples.

a) z f- x26 -j- x16y4 -f- xiyie

-j- hzb f- kxyz f- /x5y16 o

où h, k, l sont des coefficients numériques quelconques, mais
réels.

Le polyèdre en O est donné, fig. 2 ; on a

$ x26 -f x16y4 -j- x*yiß x4 (y16 + x12y4 -f- x22),
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de sorte que

avec

Le facteur xi entrant dans o est sans influence sur la
discussion.

En correspondance avec les côtés internes du polygone,
on a, d'autre part,

yi -f x10 o et y12 -f x12 o

Ces deux lignes sont imaginaires, chacune.
On est donc certain, sans qu'il soit nécessaire d'utiliser

les expressions introduites sous (13) dans lesquelles p et q
sont sans diviseur commun, qu'en O il y a extremum.

Il s'agit d'un maximum, puisque la section par le plan
y o, par exemple, donne la courbe

z -f- x26 -f hzb o,

dont l'allure en O est celle de la parabole

z -|- X26 0

b) z x3y2(a-x— y), a=%=o.

Voir (2), n°3.
<j> a:3y2

Pas d'extremum en O, à cause de la présence du facteur x3.

c) z=(y — x2)2-\-yi — x8

<!> (y —x2)2.

Cas douteux. Il n'y a pas, comme Scheeffer 6 auquel l'exemple

est emprunté, le faisait remarquer, d'extremum en O, puisque,
le long de la parabole, y x2, z, au voisinage de O, devient
négatif.

9. Soit l'équation

(14) z $ (x, y) + ^M^r«^
6 Scheeffer, loe. cil., p. 575.
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avec

« y2—(p+9) yx2+P?374.

et où les termes compris sous le signe de sommation 2 »

relativement au polyèdre en O que caractérise <ï> sont de même
nature que ceux de l'ensemble analogue considéré sous (4).

Comme on a
<s> (y—p%2)(y—<f2)

et que les deux paraboles que représente ainsi l'équation
q> o, sont réelles, la surface (14) n'a pas d'extremum en O,
lorsque les quantités réelles p et q sont distinctes.

Si p q, il y a doute.
Si l'on a plus spécialement p et q positifs avec p =f= q on

a, en O, avec (14), l'exemple du type de singularité considérée

par Peano ', exemple qui a fait époque.
Chaque section plane par Oz, présente un minimum en O,

alors que la surface elle-même n'en présente pas.
On a maintenant de nombreux exemples de faits analogues.

La surface de Hedrick 8, non analytique en O, vaut, à ce

propos, la peine d'être signalée.

10. Nous ferons ici, par le moyen de la surface indicatrice

(J), telle qu'elle a été définie au n°5, l'étude d'une
surface au voisinage de O, O étant parabolique.

Considérons, pour cela, la surface (S) qui répond à l'équation

(15) 8a2Rz (2ax -f y2)2 + ^M^x^z/ a > o R > o

dans le second membre de laquelle les termes sous 2 satisfont

encore aux mêmes conditions que précédemment.
La surface indicatrice (J) de (S) en O, a par suite, pour

équation

(16) 8rt2Rz=(2ax + y2)2.

Le point O est ainsi parabolique pour (S) et pour (J), le

rayon de courbure principal non infini étant égal à R.

7 Genocchi-Peano. Calcolo differenziale, Torino, Bocca, 1884, p. XXIX.
8 A peculiar example in minima of surfaces. Annals of mathematics, Second

Series, Vol. 8, 1906-07.
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C'est le rayon de la section par le plan y o, section
qui, dans ce plan des xz a, d'après (16), sensiblement au
voisinage de O, pour équation

(17) 2Rz x2.

L'intersection de (S) en O, par le plan tangent r=o, sera
d'autre part et toujours d'après (16), sensiblement au voisinage
de O, la parabole comptée deux fois :

(18) (2ax + y2)2 o.

La forme de (S) en O, est ainsi caractérisée, pour autant
que cela se peut, par les deux sections (17) et (18) de (J), sans

que toutefois l'on puisse dire, le premier membre de (18)
étant un carré parfait, si (S) en O, traverse ou non son plan
tangent.

A vrai dire, l'équation (15), suivant ce que seront les

termes sous /,, sera celle d'un tore, d'un tore dont l'axe de

symétrie, parallèle à Oz, sera situé à la distance a du centre
du cercle générateur, lequel sera de rayon R

Le point O sera un point du parallèle inférieur, l'axe Ox,
tangent au méridien et dirigé vers l'extérieur, l'axe Oy,
tangent au parallèle.

Dans ces conditions, en O, le méridien répondra à l'équation

x2 -f z2 — 2Rz o

le parallèle à l'équation

x2 -)- y2 -)- 2ax o

Par comparaison de ces deux dernières équations avec (17)
et (18), on voit que l'approximation obtenue par le moyen
de la surface indicatrice (J) est meilleure que celle dont
généralement, on se contente en pareil cas.

11. Nombreux sont les travaux échelonnés depuis Peano
jusqu'à aujourd'hui, concernant l'imi^ense variété de points
réguliers qui viennent d'être considérés. La liste du début,
incomplète d'ailleurs, en fait foi.

Staeckel, loe. cit., a), a fait construire un modèle relatif
à l'un d'eux. En géométrie, les surfaces minima ont fait ap-
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paraître ces sortes de points réguliers. Pas plus que des points
d'inflexion sur une courbe plane, on ne peut en faire
abstraction.

Par le polyèdre et la surface indicatrice qui s'y rattache,
on domine, en une certaine mesure, tous les points réguliers.
Le polyèdre fournit, de leurs voisinages, l'approximation
première la plus naturelle.

Son usage, à cause de cela, s'étend bien au delà des
applications qui viennent d'en être faites.

Salmon, en 1848 déjà, rapprochait l'un de l'autre, le point
parabolique d'une surface et le point d'inflexion d'une courbe
plane, en montrant que le plan tangent au premier devait
être compté pour double. Pareilles évaluations, dans les innombrables

cas particuliers qui se rencontrent, peuvent être
nécessaires. L'introduction du polyèdre, souvent, les facilitera.

D'une manière générale, le polyèdre aplanit l'étude des
transformés de n'importe quel point régulier ou singulier. Mais,
ceci suppose la connaissance, maintenant rigoureusement
établie, de ces derniers, par le moyen du polyèdre.

On peut se demander également si, par son moyen, il ne
serait pas possible de constituer, pour les extrema des fonctions

de trois ou d'un plus grand nombre de variables
indépendantes, des critères de quelque portée.

En un mot, il semble que, par le concours du polyèdre, on
soit à même de parvenir à d'intéressants résultats.

Lausanne, le 18 janvier 1937.
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