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BUBGETIN DE GA SOCIETE UAWDOISE DES SCIENCES NATURELGES

Vol. 59 1937 No 243

Maxima, minima, indicatrice
PAB
Gustave DUMAS

Le contenu de la présente Note constituait un travail d’ap-
proche relatif a la théorie des points singuliers des surfaces
algébriques; communication en fut faite a Ziirich en 19341,
La Note elle-méme n’a pas été publiée depuis lors; il eit fallu,
pour son intelligence, la faire précéder de considérations un
peu complétes sur le polyédre analytique. Or, le « polyeédre »
ayant, depuis, acquis droit de cité, grice aux travaux de
M. Emile Cotton 2, rien n’empéche maintenant d’attirer 1’atten-
tion sur les avantages quil présente pour la discussion de la
structure d'une surface analytique au voisinage d'un point
régulier, c’est-a-dire d'un point doté d'un plan tangent unique 3.

1. La surface a considérer (S),
(1) F(x,y,2) =0,
le sera-a l'origine O, de coordonnées
f==Fe=g=90.

t Actes de la Soc. helv. des Sc. nat., Zurich 1934, p. 267.

2 EmiLe Cotron. Sur I'étude des fonctions holomorphes et des fonctions
algébroides de plusieurs variables. (Extension d’'une méthode de Puiseux).
Annales scientifiques de U'Ecole normale supérieure, 3° Série, t. 51.

3 La littérature du sujet est abondante ; voir, par exemple :

D. HiLBerT und S. Coun-Vossen. Anschauliche Geometrie, Chap. IV, § 28,
p. 161 et svtes.

StxckiL. a) Ueber das Modell.... Zeitschrift fiir Math. u. Physik , t. 51,
1904. b) Die Bedeutung des Weierstrass’schen Vorbereitungssatzes... Stizungs-
ber. d. Heidelberger Akad. d. Wiss., 1916, 1. Abhandlung.

Lubwie ScHEEFFER. Theorie der Maxima und Minima einer Function von
zwei Variabeln. Math. Annalen, t. XXXV, 1890.

Francesco SeEveri. Sugli estremanti delle Funzioni di due variabile. Me-
morie della reale Accademia d’Italia, Classe di scienze fisiche, matematiche e na-
turali. Vol. I, Rome 1930.

A noter aussi que FeLix KLEIn, a la page 444 de son ¢« Anwendung der Diffe-
rential und Integralrechnung auf Geometrie», Leipzig 1907, s’occupant des
questions dont il s’agit dans ce travail, fait allusion aux « beaux exemples»
que l'on rencontre, d’intersections de surfaces par leurs plans tangents.

99-243 17



238 GUSTAVE DUMAS

Elle sera réelle et analytique en O et ce point O sera régqulier
pour elle. Son plan tangent en O, sera le plan des z, y.

2. Classification. Considérons, pour un instant, la sur-
face (S) sur tout son parcours. Prenons, dans une position
générale, un point régulier M de celle-ci.

En ce point, les dérivées partielles, premiéres et secondes de
z, relativement a x et y, p, q, r, s, t existent,

Trois cas peuvent se présenter, en ce point M.

Ou bien :

a) rt—st==o0,

le point M est alors elliptique ou hyperbolique. Cest le cas

général. Les points réguliers d'une surface sont, en général,

elliptiques ou hyperboliques. Ils -sont en double infinité.
Ou bien :

b) rt—s2=o,

sans. que les trois quantités r, s, ¢ soient nulles a la fois. On
a alors un point parabolique. Ce cas est général aussi. Dans
I’ensemble, ces points constituent les lignes paraboliques de
la surface.

Ou bien :

c) r=s=t.

Les points qui satisfont a ces derniéres conditions ne peuvent
exister qu’exceptionnellement sur la surface. Ils ont leur impor-
tance. On verra, chez HivLserT, loc. cit., tout l'intérét qu'ils
peuvent présenter, en (Géomeétrie.

Et, pour I'examen de ces différents points, on s’appuiera
sur cette proposition qui va presque de soi.

La structure d’une surface au voisinage d’un point régqulier
est connue dés que l'on connait celle de son intersection par
le plan tangent.

Le but de l'exposé est d’ailleurs moins de reprendre de
rigoureuses recherches faites déja par d’autres, que d’introduire
d’'une maniére simple, une généralisation utile, et nouvelle
croyons-nous, de la notion d’indicatrice au sens de Dupin.

3. Partons d'un exemple et prenons, pour cela, un point
de la troisiéme catégorie, un Affensattel selon HiLert, loc.
cit., une selle a trois pans, dirons-nous.
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La selle a trois pans en O, dans le cas le plus simple, cor-
respond a une équation de la forme

z = (ax 4 by) (a,x + byy) (asx + byy) = D,D;Dy,

dont le second membre est le produit de trois facteurs linéai-
res et homogénes distincts.

Cette surface, au voisinage de O, est caractérisée par l'al-
lure générale du systéme topographique donné, fig. 1.
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Dans le livre de HiLserT, loc.cit.,, on trouvera, p. 169,
fig. 198, représentée en perspective, la méme surface au voi-
sinage de O

On aura de méme des «selles a n pans» ¢.

D’une maniére générale, il y a toujours grand avantage a
tenir compte, dans les problémes d’extrema dépendant de deux
variables indépendantes, de certaines intersections planes de
la surface.

Aprés avoir coupé, par exemple, la surface

(2) r=a3y(a—z—Y), (a4 0),

par le plan z=o0, on obtient, intuitivement pour ainsi dire,
la position de l'unique maximum 5.

L'intersection d’une surface en un point O, par son plan
tangent en O, peut, au voisinage de O, présenter bien des
caracteres.

Elle peut se réduire i n'étre qu'un pomt isolé, ou compter
des branches d’ordre pair ou d’ordre impair de multiplicité.

S1 l'ordre est pair, il v a contact le long de la ligne; s’il
est impair, il y a intersection proprement dite.

Et, dans bien des cas, il arrive qu'immédiatement ou pres-
que immédiatement, on ait des conditions suffisantes fixant
ces particularités.

4. Le polyédre analytique.

Ce polyédre conduit, de suite pour ainsi dire, a de pareil-
les conditions. On le construit d'une maniére facile a carac-
tériser.

Le terme général, a coefficient numérique différent de
Zéro, A“.BV’ de F(z,y,z), étant

A“ﬁ?x“yﬁz'r

on prendra un triedre de référence Qa, QB, Qy et, rapporté
a ce triédre, le point de coordonnées «, B, Y.

¢ H. ScauLt a introduit « les selles a n pans » dans des recherches rela-
tives aux surfaces isométriques non déformables I'une sur l'autre par conti-
nuité. Actes de la Soc. helv. des sc. nat., Soleure 1937, p. 244. ou aussi L’En-
seignement mathématique, t. XXXVI, p. 109.

5 Exercices de Frenet, n° 204,
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Ce point a cotes entiéres, ce nceud, dirons-nous, que, le
cas échéant, on représentera également par la lettre A.g,, sera
le point ou neeud représentatif du terme considéré.

On construit de la sorte, ou, tout au moins, on suppose,
construits de la sorte, tous les nceuds représentatifs des lermes
effectifs de F(x,y,z) et, procédant d’une facon analogue a celle
dont on procéde lorsqu’il s’agit d’aboutir & un polygone de
Newton, on obtient finalement une surface polyédrale ouverte.
Cette surface polyédrale a faces planes, constitue pour O le
polyédre analytique de la surface (S) analytique en O, corres-
pondant a (1).

Prenons, pour fixer les idées, un exemple particulier et,
pour cela, considérons tout d’abord l'expression

=10 {2 7).
avec
(3) ® (x,y) = Bz |- ar21y2 | Dxiéyt
+- batty? + ozt yio - dotyts |- Hatys,

ou les coefficients B, D, H sont, chacun, différents de zéro,
les coefficients a, b, ¢, d, en revanche, nuls éventuellement.

Au terme z, correspondra dans le polyédre, le nccud dé-
désigné par A.

A (0,0,1)

8 (2¢,0,0)

D (26,4,0)

Fig. 2.
M (4, 16,0)
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Cela étant, le polyédre & de u, sera celui que donne fig. 2,
chaque terme de u donnant lieu a un nceud représentatif qui
appartient en fait a .

Supposons, ensuite, un ensemble de termes

DM g x4yl

dont tous les nceuds représentatifs soient situés a lintérieur
de You sur son contour, sans toutefois se confondre avec aucun
nceud représentatif d'un terme quelconque de u. L’intérieur
de & est défini par opposition a l'origine Q, laquelle, par dé-
finition, est & l'extérieur de £°.

%, dans ces conditions, sera encore le polyédre analyti-
que de

(4 Floye) —ut SMp b

A remarquer que, dans F, 'on est toujours en droit de sup-
poser le coefficient numérique du terme en z seul, égal
a1, car ce coefficient, lorsque le point O est régulier,
est toujours différent de zéro, alors que l'équation F = o est
seule en cause.

Appelons, en outre, partie principale du polyédre, la partie
que constituent les deux faces ABD et ADH . Cette partie prin-
cipale est bien déterminée dans chaque cas particulier, ici,
par les sommets A, B, D, H, effectifs puisque dans u, A,
B, D, H représentent respectivement des quantités, toutes, dif-
férentes de zéro. |

Dans le cas que nous étudions, la construction du polyédre
sera toujours rapide. Celui-ci, en effet, est déterminé dés que
I'on connait sa trace sur le plan des Qo, QB, c’est-a-dire le
polygone de Newton en O de l'expression F(z,y,0), sans que
dans celui-ci les cOtés extrémes soient confondus nécessairement
avec les axes Qu et QP .

5. Indicatrice.
Etant donnée la surface (S), d’équation

(1) F(z,y.2) =o, (5)

et son polyédre ¥ en O, son indicatrice en O sera, par dé-
finition, la surface (J) d’équation
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(5) 24 a(mp) —o. @

Le premier membre de cette derniére équation que nous utili-
sons aussi pour définir d’'une maniére générale @, est formé
par l’ensemble des termes de F, dont les necuds représentatifs
appartiennent a la partie principale de £ .

Comme plus haut, 'on admet, supposition sans 1mportance
et faite seulement pour la facilité de 1'exposé, que le coefficient
du terme en z, dans F, est égal & un. ’

La surface (J) est en O, no 6, osculatrice, du second or-
dre au moins, a (S). Elle correspond au paraboloide que l'on
fait d’habitude intervenir, lorsque le point O étant elliptique
ou hyperbolique, on veut étre renseigné sur la structure de
(S) en O.

Mais, la surface (J) qui, le cas échéant, peut se confondre
avec le paraboloide, donne souvent, d’une maniére plus com-
pléte, la structure de (S).

Soit, par exemple, I'équation

(6) z=xy—as—y3,

le polyédre en O correspondant s’obtient immédiatement. Sa
partie principale a deux faces.

Les termes se rattachant a ces deux faces, conduisent res-
pectivement aux deux équations

=z(y—2%) et z=yl@—y).

Par ces derniéres, on est beaucoup mieux renseigné, qu’aprés
avoir constaté, par l'examen pur et simple de (6), que O est
un point hyperbolique et la surface remplacable, au voisinage
de O, par le paraboloide z==xy . .

Ces questions dépassent les limites de ce travail; on verra
plus loin cependant, au n° 10, avec plus de précision, 'avan-
tage que présente l'introduction de la surface (J), quand le
point est parabolique.

6. Par application du théoréme préliminaire de Weierstrass,
détachons maintenant de I'(x, y,z) , le facteur qui, égalé a zéro,
représente (S) au voisinage de

On a, comme on le sait,

(1) F(zy.2)=[z-+g(x.y)]E(2,y.2),

g(x,y) étant série entiére en z,y, nulle pour x=y=o0, el
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E(z,y,z) série entiére en z,y,z, différente de zéro pour
= ¥ = F—=1,

La décomposition en facteurs (7) n’est possible que d’une
seule facon.

D’autre part, on a:
(8) E(o,0,0)=1,
le coefficient de z dans F, étant égal a 1.

Si, donc, on construit le polyédre en O, de la surface

(9) z+g(z,y)=o,

la partie principale de celui-ci sera 1dent1que a la partie
principale du polyédre de (S) en O. Ceci, a cause de (7)
et (8) et de la facon dont se constitue le polyédre résultant
du produit de deux facteurs, les polyédres de chacun de ces
deux facteurs étant connus. ,

On a donc par 1li, d'une maniére nette, la vérification
de la propriété d’osculation de (J) et de (S), en O, signalée
au n° 5, puisque (9) est en fait I'équation de (S) au voisi-
nage de O

D’un autre co6té, 1'équation

(10) g(2,y)= o,

équivalente, en général pour le voisinage de O seulement,
a I'équation

(11) F(z,y,0)—o,

représente, pour le voisinage de O, l'intersection de (S) avec
son plan tangent.

Chacune de ces équations (10) et (11) possédera donc
en O et d'aprés ce qui précéde, méme polygone de Newton,
polygone correspondant d’ailleurs aux différents termes de @ .

C'est donc par la discussion de @, qu’en certains cas, l'on
pourra reconnaitre, si, en O, il y a ou non extremum pour (S).

Ce dernier résultat aurait pu s’obtenir, d’ailleurs, sans in-
tervention du polyédre. La chose est manifeste; la considéra-
tion seule des polygones aurait suffi. Le polyédre, toutefois,
fait mieux ressortir ce qu’est l'indicatrice généralisée.
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7. Maxime et minima.
Soit
O(x,y) =Py (x,y) , p=0, g>0;

a cause de la signification méme de @ relativement au poly-
gone, F(z,y,0) se trouvera divisible par zP et y?, de sorte
que les droites

T=0,Yy=0

confondues, chacune p et q fois, appartiennent a l'intersection
en O de (S) avec son plan tangent.

Si, donc, les exposants p et g sont tous deux pairs, ou
tous deux nuls, ou l'un nul et 'autre pair, les facteurs petgq
resteront sans influence sur lexistence éventuelle d’un ex-
tremum.

Si, au contraire, un seulement de ces deux exposants p
ou g est impair, (8) étant, pour le moins, coupée en O, par
une droite de multiplicité impaire, il ne pourra y avoir d’ex-
tremum en O.

Ce cas écarté, la discussion portera sur ¥(z,y) ou, plus
exactement, sur les polynémes qui se déduisent de W, relati-
vement aux coOtés du polygone auquel W appartient.

Ces polynomes se décomposent finalement, a un facteur
numérique preés, en un produit d’expressions de la forme

(12) (94 axry =1,

dans lesquelles a représente une quantité réelle ou complexe,
p et ¢ deux entiers sans diviseur commun, positifs et pou-
vant se réduire tous deux a l'unité.

Ces quantités p et ¢ sont en relation avec les inclinaisons
respectives des divers cdtés du polygone; X est un entier po-
sitif, égal ou supérieur a un, déterminé également par ces
coOtés.

Comme ¥ est réel, ceux des facteurs qui seront complexes
seront toujours deux a deux conjugués.

Rien n’exclut que lintersection de (S) en O par le plan
tangent ait des parties indépendantes et multiples; cela ne mo-
difie en rien ce qui va suivre, -

Cela étant, des paraboles généralisées

(13) r=yl+arf=o,
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qui, parfois, sont de simples droites, on peut, dans certains
cas, tirer des conséquences relatives a l'allure générale de la
courbe d’intersection.

C'est ainsi que le point O est isolé, si toutes les parabo-
les (13) sont imaginaires, que la courbe d’intersection com-
porte certainement une branche réelle si, la parabole r=o
étant réelle, I'exposant X correspondant est impair, qu’en re-
vanche, I'on ne peut se promoncer si, la parabole r=o étant
réelle, ’exposant correspondant X\ est pair.

Tout ceci, comme conséquence de la facon dont, par le
calcul, on passe des paraboles (13) aux diverses branches que
la courbe d’intersection peut présenter en O.

On en déduit aussitot la conclusion suivante :

1o si toutes les paraboles, sans exception, sont imaginai-
res, il y a extremum ;

20 si, une seule d’entre elles étant réelle, est multiple d’or-
dre impair, il ne peut y avoir extremum;

30 s1, toutes celles de ces paraboles qui sont réelles, le
sont avec un ordre pair de multiplicité, il y a doute.

On remarquera l’analogie compléte de ce dernier énoncé
avec l'énoncé paralléle relatif a l'indicatrice de Dupin, l'é-
noncé relatif a l'indicatrice de Dupin, se rattachant lui-méme
a une circonstance trés particuliére du cas qui se présente ici.

Reste encore, en présence d'un extremum, a distinguer
si, maximum ou minimum, il y a. Cette discrimiation fa-
cile se fera, d’'une maniére ou d’une autre, par une section
appropriée de la surface, si I'on veut.

8. Exemples.

a) 7| % | g1yt | piyte
+ h25 + kxyz + lxbyt6=o.

ou h, k, I sont des coefficients numériques quelconques, mais
réels. :

Le polyédre en O est donné, fig. 2 ; on a

O = x26 | m16y4 -+ x4y16 = 7t (ym -+ x12y4 -+ mzz) s
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de sorte que
o= il U D)
avec
W o— y16 | pi2yt | g2

Le facteur x4, entrant dans ¢ , est sans influence sur la dis-
cussion.

En correspondance avec les cotés internes du polygone,
on a, dautre part,

yi4-x20=0 et y2fxi?=o0,.

Ces deux lignes sont imaginaires, chacune.

On est donc certain, sans qu’il soit nécessaire d’utiliser
les expressions introduites sous (13) dans lesquelles p et ¢
sont sans diviseur commun, quen O, il y a extremum.

Il s’agit d’'un maxzimum, puisque la section par le plan
y=o0, par exemple, donne la courbe

z-22%-Lhzb=o0,
dont l'allure en O est celle de la parabole
zZ--x%=0.

b) : z=xy2(a—x—y), a=Fo.

Voir (2), ne3.
@ f— m3y2 .

Pas d’extremum en O, a cause de la présence du facteur a3.
- ¢) t=(y—at)2f-yr— a8,
O =(y—a2)*.

Cas douteux. Il n’y a pas, comme ScHEEFFER ¢ auquel l'exem-
ple est emprunté, le faisait remarquer, d’extremum en O, puisque,
le long de la parabole, y = 22,2, au voisinage de O, devient
négatif.

9. Soit l'équation
(14) 2= (z,y)+ EMap“,r“yﬁz'/

¢ ScHEEFFER, loc. cil., p. B75.
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avec

®=y*—(p-+q) yx?+ pqa*,

et ou les termes comprissous le signe de sommation >, rela-
tivement au polyédre en O que caractérise @, sont de méme
nature que ceux de l'ensemble analogue considéré sous (4).

Comme on a
= (y — px?) (y — q=*)

et que les deux paraboles que représente ainsi l'équation
® =o0, sont réelles, la surface (14) n’a pas d’extremum en O,
lorsque les quantités réelles p et g sont distinctes.

Si p=gq, il y a doute.

Si l'on a plus spécialement p et g positifs avec p==q, on
a, en O, avec (14), l'exemple du type de singularité consi-
dérée par Peano 7, exemple qui a fait époque.

Chaque section plane par Oz, présente un minimum en O,
alors que la surface elle-méme n’en présente pas.

On a maintenant de nombreux exemples de faits analogues.
La surface de HEebprick®, non analytique en O, vaut, a ce
propos, la peine d’étre signalée.

10. Nous ferons ici, par le moyen de la surface indica-
trice (J), telle qu’'elle a été définie au nob, I'étude d’une
surface au voisinage de O, O étant parabolique.

Considérons, pour cela, la surface (S) qui répond a I’équa-
tion :

(15) 8a2Rz=(2ax + y2)2 + S M,pa*yPz! , a>o0,R>o0.

dans le second membre de laquelle les termes sous >, satis-
font encore aux mémes conditions que précédemment.

La surface indicatrice (J) de (S) en O, a par suite, pour
équation

(16) 8a?Rz = (2ax | y2)2.

Le point O est ainsi parabolique pour (S) et pour (J), le
rayon de courbure principal non infini étant égal a R.

7 GenoccHi-PeEano. Calcolo differenziale, Torino, Bocca, 1884, p. XXIX.

8 A peculiar example in minima of surfaces. Annals of mathematics, Second
Series, Vol. 8, 1906-07.



MAXIMA, MINIMA, INDICATRICE 249

C'est le rayon de la section par le plan y=o0, section
qui, dans ce plan des zz, a, d’aprés (16), sensiblement au voi-
sinage de O, pour équation

(17) 2Rz =2zx2.

- L’intersection de (8) en O, par le plan tangent z=o0, sera
d’autre part et toujours d’aprés (16), sensiblement au voisinage
de O, la parabole comptée deux fois :

(18) (2ax 4 y2)2=o0.

La forme de (S) en O, est ainsi caractérisée, pour autant
que cela se peut, par les deux sections (17) et (18) de (J), sans
que toutefois I'on pulsse dire, le premier membre de (18)
étant un carré parfait, si (S) en O, traverse ou non son plan
tangent.

A vrai dire, I'équation (15), suivant ce que seront les

termes sous >, sera celle d'un tore, d’un tore dont l'axe de
symeétrie, parallele a Oz, sera situé a la distance a du centre
du cercle générateur, lequel sera de rayon R.

Le point O sera un point du paralléle inférieur, 'axe Oz,
tangent au méridien et dirigé vers l'extérieur, 'axe Oy, tan-
gent au paralléle.

Dans ces conditions, en O, le méridien répondra a I'équa-
tion

x? - 22— 2Rz=o0,

le paralléle a 'équation
x2+y2-4-2ar=o0.

Par comparaison de ces deux derniéres équations avec (17)
et (18), on voit que |'approximation obtenue par le moyen
de la surface indicatrice (J) est meilleure que celle dont gé-
néralement, on se contente en pareil cas.

11. Nombreux sont les travaux échelonnés depuis Preawo
jusqu’a aujourd’hui, concernant I'immense variété de points ré-
guliers qui viennent d’étre considérés. La liste du début, in-
compléte d’ailleurs, en fait foi.

StAECKEL, loc. cit., a), a fait construire un modéle relatif
a I'un d’eux. En géométrie, les surfaces minima ont fait ap-
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paraitre ces sortes de points réguliers. Pas plus que des points
d’inflexion sur une courbe plane, on ne peut en faire abs-
traction.

Par le polyédre et la surface indicatrice qui s’y rattache,
on domine, en une certaine mesure, tous les points réguliers.
Le polyédre fournit, de leurs voisinages, lapprox1mat10n pre-
miére la plus naturelle.

Son usage, & cause de cela, s'étend bien au dela des appli-
cations qui viennent d’en étre faites.

SaLMoN, en 1848 déja, rapprochait 1'un de l'autre, le point
parabolique d’une surface et le point d’inflexion d’une courbe
plane, en montrant que le plan tangent au premier devait
étre compté pour double. Pareilles évaluations, dans les innom-
brables cas particuliers qui se rencontrent, peuvent é&tre né-
cessaires. L’introduction du polyédre, souvent, les facilitera.

D’une maniére générale, le polyédre aplanit 1'étude des
transformés de n’'importe quel point régulier ou singulier. Mais,
ceci suppose la connaissance, maintenant rigoureusement éta-
blie, de ces derniers, par le moyen du polyédre.

On peut se demander également si, par son moyen, il ne
serait pas possible de constituer, pour les extrema des fonc-
tions de trois ou d'un plus grand nombre de variables indé-
pendantes, des critéres de quelque portée.

En un mot, il semble que, par le concours du polyédre, on
soit & méme de parvenir a d’intéressants résultats.

Lausanne, le 18 janvier 1937.
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