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Sur lintégrale I, = [x"e>*dx,

PAR
FELIX VANEY

1. — Dans un travail précédent %, j’ai étudié l'intégrale :
(1) L

pour n entier positif et a, b nombres réels, a n’étant pas nul. Il m’a
paru intéressant d’examiner spécialement le cas particulier :

I, = fxn e du,

oua=1c¢et b =0, e empruntant une méthode due a Hermite 2.

2. — En partant de 'identite, pour n entier positif,

a%[xn*’ex‘] = 22" + (n— 1) an—2 ¢,

puis en multipliant par dx et en intégrant, il vient :
an—te? =2 [an e dr + (n — 1) [an—2 e d,
qui fournit la formule de récurrence :
z»—t ., n—1
(2) by = 9 & — — 5 In — 2

e} —

Donnons successivement a n les valeurs 0, 1, 2, etc., en séparant
les résultats pour n impair et n pair :

n=3:13=%(x2~—1) 8 5

s

n=3:1;= (‘—‘)-—:rﬂ—]—l) £}

! Bulletin des sciences naturelles, 1924.

a"dx
* (Fuvres. Tome II, p. 481. Sur l'intégrale VW
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6 4

n=7:17=3(%—%+x2——1)ex’.

T .. 1
n=2:12=‘2'6x—210,
n=4 142(%5!:3—253)830’_'"210’

~ =4

n==6 Isz(%ﬁ—zﬁJr?lé—Bx) ’—?%"Io;

T 7 7.5 7.5.3 \ .. 3.5.7
"=8”8=(x§_1‘”"’+Tx3—Tx)e’°+*Té“‘°-

Il résulte de la formule de récurrence (2) que lintégrale I,
présente deux cas bien distincts, suivant que n est impair ou pair.
Dansle casden = 2p + 1, il vient :

(3) Izp +1 =Py e
ou P,, désigne un polynome en x de degré 2p; le produit e—*'Io, 44
est donc entierement rationnel. .

Pour n = 2p, nous avons

(4) Lp = Py — 1 €2 + A, [ dx.

ou ?,, — 1 désigne un nouveau polynome de degre 2p — 1 et ol
A, est une constante.

Je cherche a déterminer les polynomes P,, et ?,, _ 1 ainsi que
quelques-unes de leurs propriétés.

3. — Dans le cas de n impair, U'intégrale I,, y se calcule
facilement par la substitution 22 = z et au moyen du procédé de
I'intégration par parties ; il vient :

L l)_" x 2[)_ x?,p -2

Afin de mieux mettre en évidence la nature de ce polynome
Py, je puis poser pour obtenir Py, :

T+ (—1) P % Fotfpme 1)P]e’°’.

(6) f W+t @2 dy = Py e — C,

'Y ¢
ou C est une constante ; on en déduit :

P
Py, = Ce—* + e*x’f £ + lg¥* d.
[}

Or, si 'on développe chacun des deux termes de cette somme
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suivant les puissances ascendantes de la variable, le premier terme
donnera la série infinie suivante :

— x*  xt as i _
(7) Ce _(:(1—1-!+:i ot 1)pp!+....),

quant au second terme, il donnera aussi une série infinie, mais qui
commence par x?¢ + 2, Comme Py, est un polynome de degré 2p,
1l en résulte que V'effet du second terme doit étre de détruire tous
les termes de la série Ce —*2?, venant apres la puissance x*? ; on en
déduit la proposition suivante :

I. — Dans la relation (3), le polynome Py, de degré 2p est forme,
a un facteur constant preés, des premiers termes du développement
de ¢ —*, jusqu’au terme en x?r, suivant les puissances ascendantes
de la variable.

La constante C se détermine par comparaison des développe-
ments (3) et (7) ; il vient :

C:(#I)P%

Remplacons maintenant dans la formule de récurrence (2) n
par 2p + 1, puis écrivons pour I son expression (3), nous obtenons
ainsi la formule de récurrence entre deux polynomes consécutifs :

2D
@®) Py + PPy = "5

En outre, si nous dérivons deux fois de suite ’équation (6),
ce qul donne :

x2p+1 —
dx

+ 2z P2ps

et

d ng
dr

puis si nous éliminons le terme indépendant de Py, et de ses déri-
vées, nous trouvons l'équation différentielle linéaire du second
ordre sans second membre :

©) .y

&P
@p+ D = £ 2Py + 205

—l—(2x2-——2p——1)—£)—4p:1:P 0.

Or cette équatlon est aussi vérifiée en posant P = e —*'; d’ou
la conclusion :

IT. — SiI'on partage d’'une maniére quelconque le développement
ordonné suivant les puissances croissantes de x de la série e — ¥,
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les deux parties satisfont a la méme équation différentielle du second
ordre.

4. — Pour n pair, j’établis la formule de récurrence entre deux
polynomes 2 de la relation (4), puis je détermine le coefficient
Ao

Pour cela, faisons dans (2) n = 2p et portons l'expression (4)
dans cette nouvelle relation, il vient :

ot =1 2p —1

?21)—-1 ex2+A.pIO——2—ex —

En identifiant les coefficients de e**, nous avons la formule de
récurrence entre deux polynomes P consécutifs :

[?213—3 e '+‘ A—p —1 IO]~

_1 2p — 1
(10) Pop —1 + = & Pop — 3 = x—z——,

et en comparant les coefficients de Iy, nous trouvons entre deux
constantes A la relation suivante :

2p — 1
(11) Ap=—E— A
Posons A, = 1 ; nous aurons successivement :
1 3
Ay = —35 A, = —§A1’ etc.
135 2p-——1 1.3.5...(2p—1)
—_ p F_ - (—1)? :
(12) et Ay =(—1P55 5 5= =(—1) 5
Pour déterminer le polynome %y, — 4, je tire de la relation (4) :
(13) Pop—1=—Ap e [e dx + =+ [2% & da

et, opérant comme dans le cas de n impair, j'obtiens la conclusion :

ITI. — Dans la relation (4), le polynome P, _; est formé, a
un facteur constant prés, des premiers termes du développement

de la fonction transcendante e —*' Iex’ dzr, jusqu'au terme en

x* — 1, suivant les puissances ascendantes de la variable.
Or ce développement s’obtient immédiatement au moyen de
I’équation différentielle :

dy _
(14) o T2y = 1

X
qui est vérifiée par la fonction y = e—* [ ex* dx.
e 0
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Posons :

y=1ux+uwya®+ ...... +upxett 4 .,
nous trouvons facilement :
i = 1 et Cp+Du +2u,—1 =0;
ce qui fournit :
D 217
W=D 35 oD
et, par suite, le développement suivant :
(15)
x 2 2 211 9

—x? 2 N 4+ s — S o —
e ./O'edx T—3 35x° oo +(— 1)35 OpT ® +

Portons dans (13) le développement (15) ainsi que la valeur de
A, donnée dans (12), nous obtenons I’expression générale du poly-
nome P :

(0 s e D o e

20 g ]
_ — p—1].
+ =T gE (2p+1) <
qui satisfait a I’équation différentielle du second ordre avec second
membre :

dz P . 1.3.5...(2p—1)2
17) x5+ 2(@ 2—p)—z)-2(2p—1):1:? =(—1)? (25’ )2p,

Lausanne, aotlt 1923.
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