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Sur l'intégrale I„ jxn ex'2 dx,
PAR

FÉLIX VANEY

1. — Dans un travail précédent1, j'ai étudié l'intégrale :

(1) ln=jxneax' + bxdx,

pour n entier positif et a, b nombres réels, a n'étant pas nul. U m'a
paru intéressant d'examiner spécialement le cas particulier :

In JVe^da;,

où a 1 et ft 0, eil empruntant une méthode due à Hermite 2.

2. — En partant de l'identité, pour n entier positif,
d

dx
cn -1 gx' 2xn e?' + (n — 1) xn ~2 e-\

puis en multipliant par dx et en intégrant, il vient :

x» _ i ex-- _ 2 JV1 e? dx + (n — 1) jxn - 2 e? dx,

qui fournit la formule de récurrence :

(2) In =2 eX" 2^In-2'
Donnons successivement à n les valeurs 0, 1,2, etc., en séparant

les résultats pour n impair et n pair :

n 1 : Ij - e*! ;

n 3 : I3 \ (x2 — 1) ^ ;

n 5: 15= (~ — x2 + l)e*>;

1 Bulletin des sciences naturelles, 1924.
xmdxÇ xm,

* Œuvres. Tome II, p. 481. Sur l'intégrale I ,—
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Il résulte de la formule de récurrence (2) que l'intégrale In

présente deux cas bien distincts, suivant que n est impair ou pair.
Dans le cas de n 2p + 1, il vient :

(3) I2P + 1 — "2p &
où P2p désigne un polynôme en x de degré 2p; le produit e~x'\iv-ri
est donc entièrement rationnel.

Pour n 2p, nous avons

(4) I2P <?2P _ 1 e2 + Ap JV dx.

où *?2P _ 1 désigne un nouveau polynôme de degré 2p — 1 et où

Ap est une constante.
Je cherche à déterminer les polynômes P2P et .P2P _ 1 ainsi que

quelques-unes de leurs propriétés.

3. — Dans le cas de n impair, l'intégrale I2P + 1 se calcule
facilement par la substitution x2 z et au moyen du procédé de

l'intégration par parties ; il vient :

(5) I2p+i — 'T— + + (-1)p-^+(—l)p]e-'.2Lp/ (P-1)!
Afin de mieux mettre en évidence la nature de ce polynôme

P2p, je puis poser pour obtenir P2p :

(6) A;2? + * e*2 dx P2p ex' — C,
J 0

où C est une constante ; on en déduit :

P2p Ce-*' + e~*' TVp + V dx.

Or, si l'on développe chacun des deux termes de cette somme
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suivant les puissances ascendantes de la variable, le premier terme
donnera la série infinie suivante :

(/y2
.Y.4 7.6 f2p

1-Î! + l|-3l+--+(-1)Pp7+-
quant au second terme, il donnera aussi une série infinie, mais qui
commence par x2p + 2. Comme P2p est un polynôme de degré 2p,
il en résulte que l'effet du second terme doit être de détruire tous
les termes de la série Ce — *2, venant après la puissance x2p ; on en
déduit la proposition suivante :

I. — Dans la relation (3), le polynôme P2p de degré 2p est formé,
à un facteur constant près, des premiers termes du développement
de e — x', jusqu'au terme en x2?, suivant les puissances ascendantes
de la variable.

La constante C se détermine par comparaison des développements

(5) et (7) ; il vient :

C (_i)P^.
Remplaçons maintenant dans la formule de récurrence (2) n

par 2p + L puis écrivons pour I son expression (3), nous obtenons
ainsi la formule de récurrence entre deux polynômes consécutifs :

(8) P2p +pP2p_2 Ç
En outre, si nous dérivons deux fois de suite l'équation (6),

ce qui donne :

x2p + i =^ + 2xP2p,
et

puis si nous éliminons le terme indépendant de P2p et de ses
dérivées, nous trouvons l'équation différentielle linéaire du second
ordre sans second membre :

(9) x^ + (2x2-2p-l)^-4pxP 0.

Or cette équation est aussi vérifiée en posant P e ~ x' ; d'où
la conclusion :

II. — Si l'on partage d'une manière quelconque le développement
ordonné suivant les puissances croissantes de x de la série e — *',
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les deux parties satisfont à la même équation différentielle du second
ordre.

4. — Pour n pair, j'établis la formule de récurrence entre deux
polynômes T de la relation (4), puis je détermine le coefficient
Ap.

Pour cela, faisons dans (2) n 2p et portons l'expression (4)
dans cette nouvelle relation, il vient :

r2p — i On 1

<P2p _ t ex* + Ap I0 ~~ e-* — ^ft-^ [^p-3 e* + Ap _ I„].

En identifiant les coefficients de e*\ nous avons la formule de
récurrence entre deux polynômes P consécutifs :

(10) <?2p _! + ^f— <?2p -3 —~,
et en comparant les coefficients de Io, nous trouvons entre deux
constantes A la relation suivante :

(H) Ap — ^PzzÌAp-j.

Posons A0 1 ; nous aurons successivement :

1 3
Aj — -sr ; A» — - -y Aj, etc.

(12) et Ap (-If \. 11.... 2-Eçl (_d> 1-3-5-gp-l)

Pour déterminer le polynôme <?2p _ i, je tire de la relation (4) :

(13) <?2p - i — Ap e~ *" JV tfz + e~ x' JV* ex* dx

et, opérant comme dans le cas de n impair, j'obtiens la conclusion :

III. — Dans la relation (4), le polynôme f?2p _ i est formé, à

un facteur constant près, des premiers termes du développement
de la fonction transcendante e— x* J e** dx, jusqu'au terme en

x2p — i9 suivant les puissances ascendantes de la variable.
Or ce développement s'obtient immédiatement au moyen de

l'équation différentielle :

(14) fx + 2xy l,

qui est vérifiée par la fonction y e~ x* i e*2 dx.
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Posons :

y u0 x + ui x3 + + up x2p + l +
nous trouvons facilement :

u0 1 et (2p + 1) Up + 2 Up _ j 0 ;

ce qui fournit :

2P
«p (— 1)P

3.5 (2p + l)
et, par suite, le développement suivant :

(15)

¦*-*-§*¦ +53*—••+<-1>"3^+i^+'+-
Portons dans (13) le développement (15) ainsi que la valeur de

Ap donnée dans (12), nous obtenons l'expression générale du
polynôme <P :

fx* / e*
J 0

(16) gVp_1 (-l)" + lL3-5-^2P-1> _2 _2* _X 31 +3.5 •

+ ft'J»"'3:5-^1)*'*-'}
qui satisfait à l'équation différentielle du second ordre avec second
membre :

(17) ,**+ 2^-p)f-2(2p-l)^=(-l)>-J-5-<|r1>2P.

Lausanne, août 1923.
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