Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 54 (1921-1922)

Heft: 206

Artikel: Les éléments et leurs combinaisons à l'état cristallisé : considérés au

point de vue des volumes atomiques et moléculaires

Autor: Cherix, M.

DOI: https://doi.org/10.5169/seals-270933

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les éléments et leurs combinaisons à l'état cristallisé,

considérés au point de vue des volumes atomiques et moléculaires.

PAR

M. CHERIX

Première partie.

Dans les corps composés, à l'état solide en particulier, les atomes constituant les molécules apparaissent-ils sous une ou plusieurs formes caractéristiques à chaque élément, ou bien l'atome, en se combinant, prend-il une forme variable selon les affinités qui entrent en jeu? Telle est la question que nous nous sommes posée en premier lieu.

Sous le nom de forme, nous entendons essentiellement le volume atomique ou spécifique de l'élément

$$V = \frac{m}{d}$$

pour l'instant sans autre distinction géométrique.

Des 83 éléments connus, aux conditions ordinaires, la plupart sont à l'état solide, formant une masse amorphe ou cristalline. Si nous considérons les volumes atomiques de ces éléments et ceux qui peuvent leur être attribués dans leurs combinaisons cristallisées, lesquels volumes résultent de déductions laborieuses s'étendant sur un nombre assez considérable de corps, nous distinguerons deux groupes d'éléments, selon que les volumes de combinaison seront plus petits ou égaux sinon plus grands que celui de l'élément libre.

Dans le premier cas, il y aura donc une contraction de l'atome, dans le second maintien de la forme primitive ou expansion de la particule.

A titre d'exemples, nous citerons comme appartenant au premier groupe, les alcalis et les terres alcalines et désignerons les diverses grandeurs de combinaison par des lettres de l'alphabet grec jointes à la formule de l'élément et comme types du deuxième groupe nous citerons le fer, le cuivre, le zinc, etc., en appliquant le même système

de dénomination que ci-dessus avec adoption comme indice des lettres latines.

Exemples : Premier groupe : le potassium $K\alpha$, $K\beta$, $K\gamma$, le sodium $N\alpha\alpha$, $N\alpha\beta$, $N\alpha\gamma$.

Deuxième groupe: le fer, Fea, Feb, le cuivre Cua, Cub.

Cette classification n'a rien de rigoureux en ce sens qu'elle ne s'étend qu'à un nombre restreint d'éléments étudiés, et même parmi ceux-ci y en a-t-il appartenant aux deux groupes, le magnésium entre autre; mais elle permet, comme nous le verrons dans la suite, une désignation plus facile des éléments dans leur comparaison.

Quant aux volumes de combinaison des autres éléments, liquides ou gazeux, à la température ordinaire, nous avons appliqué la même méthode de détermination que pour les premiers, c'est-à-dire en procédant par comparaison et tâtonnements sur un grand nombre de combinaisons.

Nous avons pris en considération autant que possible les combinaisons les plus simples dans la pensée que le groupement des particules serait moins influencé par des causes secondaires et les écarts plus atténués.

Nous groupons les valeurs obtenues des divers éléments dans le tableau ci-après, qui résume en partie ce que nous avions déjà publié dans un précédent mémoire paru au numéro 176 du Bulletin de la Société Vaudoise des Sciences Naturelles.

La première colonne du tableau indique le volume atomique de l'élément Va, la deuxième le volume de combinaison avec les éléments et groupes monovalents Va₁ et la troisième avec les éléments et groupes bi- et polyvalents Va₂.

Eléments	Va	Va_{1}	Va_2
K	45,46	22,73	15,15
Na	23,71	11,85	7,90
Li	11,68	5,84	3,89
Ca	25,35	20,28	10,14
Sr	34,47	$27,\!57$	13,79
Ba	36,63	29,30	14,65
Mg	13,95	23,25	4,65
Zn	9,14	18,28	9,14
Cu	7,22	14,44	7,22
Pb	18,22	18,22	9,11
Cd	13,07	26,14	13,07
Ag	10,62	10,62	

Port Mills	NATIONAL SERVICES		
Mn	6,87		6,87, comme permanganate 13,74
\mathbf{Al}	10,15	**	5,08
Fe	7,10		7,10
Cr	7,65	15,44	7,65, comme chromate 22,95
Pt	9,08	18,16	*
Wo	9,63		9,63
Si	11,51		11,51
Ti	9,86		9,86
S	15,64	15,64	15,64
Cl	15,00	15,00	15,00
O		4,93	4,93
H		4,17	4,17
N		11,11	11,11
C_a		9,4	41
$C_{\mathbf{b}}$		8,4	40
C_d		5,4	40
C_c		3,4	43
NH ₄ co	mme ra	dical 20,2	25
NO_3))	» 20,9	
CO_3))	» 34,2	
COOH	»	» 20,1	17

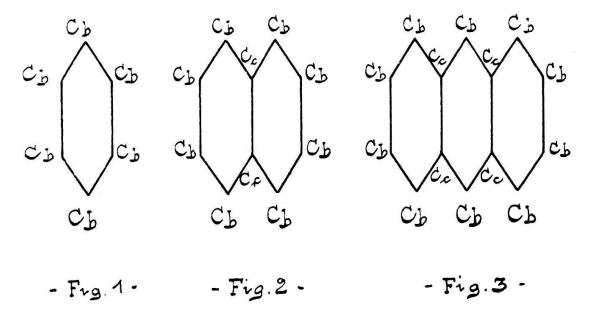
Si nous envisageons les multiples combinaisons des éléments, nous sommes parfois, il est vrai, loin d'une concordance parfaite entre l'expérience et le calcul; maintes fois même, les écarts sont considérables, néanmoins une régularité se fait constater et les exceptions sont à considérer plutôt comme des groupements intéressants, qu'il y aurait lieu d'examiner de plus près.

Il va de soi que dans une molécule de constitution compliquée, la substitution d'un élément de volume réduit, l'hydrogène par exemple, par un autre plus volumineux, le chlore, entraîne des changements autres que si la substitu on a lieu sans dérangements aucuns, soit dans la molécule même, soit dans la superposition des particules.

Le fait qu'on peut attribuer aux éléments dans leurs combinaisons les plus variées, une ou plusieurs formes bien caractérisées comme volume spécifique, dénote que le groupement dans la molécule et la superposition des molécules en cristaux s'effectuent sans vides ou avec fort peu de place perdue. Ces formes particulières attribuées aux éléments font supposer que ceux-ci, bien que combinés, conservent néanmoins leur individualité de volume et qu'ils appa-

raissent simplement sous un autre état, une sorte de modification allotropique, laquelle aussi, en certains cas, existe à l'état libre. Un exemple illustrant cette manière de voir est donné par le carbone.

Au tableau page 393, nous relevons quatre grandeurs de volume de combinaison :


Or, si nous mettons en regard les densités des modifications connues de l'élément, à savoir :

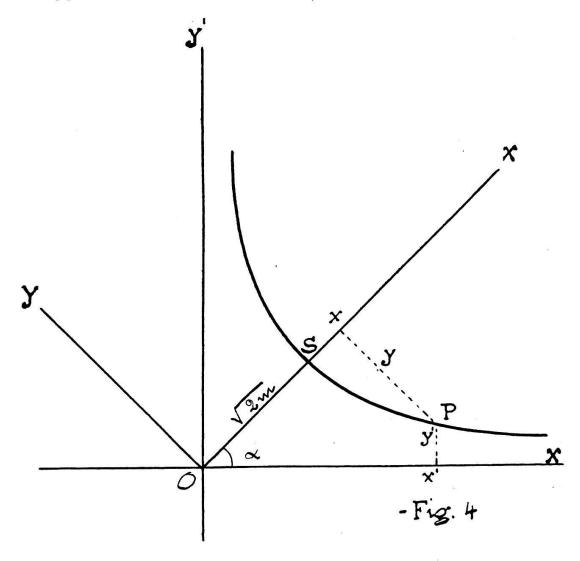
carbone	amorphe	comme	charbon	1,2-1,5
))))))	anthracite	1,3–1,8
))	cristallisé))	graphite	2,0-2,2
)))));	diamant	3,5

nous constatons des liens de proche parenté entre les états de combinaisons et les états allotropiques.

Nous admettons la modification C_a dans les corps inorganiques et organiques de la série grasse; C_b dans le benzène et ses dérivés (fig. 1); C_c dans les anneaux du benzène comme atomes liant les anneaux entre eux (fig. 2, 3) et C_d dans le carbure de silicium par exemple.

Le carbure de calcium, bien qu'obtenu au four électrique, renferme contre toute attente la modification $C_{a,}$ ce qui explique l'importance de la combinaison comme point de départ pour la préparation des corps de la série grasse et aromatique.

Partant des considérations que nous venons de développer, les atomes après réaction doivent donc pouvoir se souder les uns aux autres avec une surface de contact de même grandeur. Admettons celle-ci égale à 1, les chiffres des volumes de combinaison établis plus haut sont à considérer comme longueurs relatives desdits atomes et nous nous représenterons, par exemple, les sels de sulfate et de nitrate de potassium de la façon suivante :


Les complexes d'atomes s'enchevêtrent les uns dans les autres sans perte de place en formant des bandes droites, lesquelles, à leur tour, peuvent se souder entre elles de manière que la deuxième tranche de bandes vienne se ranger parallèlement à la première ou bien perpendiculairement ou encore en diagonale, selon les lois qui président à la cristallisation.

Deuxième partie.

Représentation analytique des volumes atomiques. — Si l'on porte, pour les diverses modifications d'un élément, du potassium par exemple, les volumes atomiques comme abcisses et les densités correspondantes comme ordonnées et qu'on relie ensuite les points obtenus, il en résulte une courbe dont le prolongement ne présente aucune difficulté en supposant les grandeurs portées comme variables d'après l'équation générale xy = m.

La courbe que nous avons devant nous n'est autre qu'une hyper-

bole équilatérale exprimée par l'équation des asymptotes. Traçons l'axe OX de la courbe (fig. 4) et perpendiculairement à celui-ci au point O l'axe OY, qui détermine un nouveau système de coordonnées YOX formant un angle de 45° avec l'ancien Y'OX'. Le point d'intersection S de la courbe avec l'axe OX représente le sommet de l'hyperbole distant du centre de $\sqrt{2m}$

Un point quelconque P de la courbe peut être déterminé soit par les coordonnées x' y' ou x y, lesquelles se déduisent des premières de façon très simple.

Nous posons:

$$x = x' \cos \alpha + y' \cos \alpha$$

au cas particulier, α égalant 45°, nous avons

$$x=rac{x'+y'}{\sqrt{2}}$$

Comparons la grandeur de l'abcisse x variable pour chaque

point P à la grandeur constante OS = $\sqrt{2m}$, que nous ramènerons pour simplifier à \sqrt{m} et désignons le rapport de x à \sqrt{m} par C, qui veut dire coefficient de contraction ou d'expansion.

$$C = \frac{x}{\sqrt{m}}$$

en introduisant $x'=\frac{m}{\delta}$, volume atomique et $y'=\delta$ densité, nous avons pour un élément quelconque

$$C = \frac{\frac{m}{\delta} + \delta}{\sqrt{2m}} \tag{1}$$

C devient un minimum $=\sqrt{2}$ pour le sommet de la courbe S et va en augmentant soit pour les points au delà à ordonnées positives et en deçà à ordonnées négatives par rapport à l'axe OX. Nous faisons figurer au tableau ci-après les valeurs de C de la plupart des éléments avec les densités admises. Les coefficients sont classés d'après leurs grandeurs en commençant par les éléments à ordonnées positives, puis viennent ceux à ordonnées négatives formant à l'encontre des premiers une série ascendante. Au tableau, nous portons à l'endroit qu'il convient les valeurs de C relatives aux diverses modifications hypothétiques des éléments ainsi que celles correspondant aux éléments liquides ou gazeux dont nous ne connaissons que les volumes de combinaison. Afin d'éviter toute fausse interprétation, nous marquons ces données complémentaires d'un astérisque.

	m	d	Va	\boldsymbol{C}
Osmium	190,9	22,48	8,492	1,585
Iridium	193,1	22,42	8,613	1,579
Platine	195,2	21,5	9,08	1,548
Titane	48,1	9,86	4,878	1,503
Tungstène	184,0	19,10	9,633	1,498
Or	197,2	19,30	10,218	1,486
*Fluor	19,0	5,706	3,33	1,466
Urane	238,2	18,7	12,737	1,443
Ruthénium	7, 101	12,26	8,295	1,441
Rhodium	102,9	12,1	8,504	1,436
Nickel	58 ,7	8,9	6,593	1,430
Cobalt	58,97	8,5	6,938	1,4215
Cuivre	63,57	8,8	7,22	1,4214
Palladium	7, 106	11,4	9,36	1,421
Manganèse	54,93	8,00	6,866	1,418

*Magnésium γ	24,32	5,229	4,651	1,417
Fer	55,84	7,86	7,10	1,416
*Aluminium β	27 , 1	5,34	5,075	1,4147
Argent	107,88	10,62	10,158	1,4146
Diamant, C _d	12,005	3,50	3,429	1,4144
$\sqrt{2}$				1,4142
Mercure	200,6	13,59	761, 14	1,4154
Chrome	52,0	6,80	7,647	1,416
Zinc	65,37	7,15	9,143	1,425
Molybdène	96,0	8,56	11,215	1,427
Thallium	204,0	11,85	17,215	1,439
Cadmium	112,4	8,60	13,07	1,445
*Oxygène	16,00	3,245	4,93	1,446
Bore	11,0	2,68	4,105	1,4467
*Barium y	137,37	9,375	14,65	1,4496
Tantale	181,5	10,78	16,84	1,4495
Plomb	207,2	11,37	18,223	1,4537
Vanadin	51,0	5,5	9,273	1,463
*Platine b	195,2	10,75	18,16	1,463
Thorium	232,4	11,1	20,937	1,486
Gallium	69,9	5,95	11,748	1,4968
*Magnésium β	24,32	3,486	6,976	1,5002
*Tungstène _b	184,0	9,55	19,266	1,5024
Indium	114,8	7,42	15,471	1,5108
Bismuth	208,0	9,80	21,224	1,521
*Strontium 7	87,63	6,355	13,79	1,522
*Lithium γ	6,94	1,782	3,894	1,523
Etair	118,7	7,25	16,372	1,533
Arsenia	74,96	5,73	13,08	1,536
Glucinium	9,1	1,99	4,573	1,538
Germanium	72,5	5,47	13,254	1,555
Carbone, C _c	12,00	2,222	5,40	1,555
*Plomb _b	207,2	5,685	36,47	1,565
*Calcium _Y	40,0	3,944	10,14	1,574
Antimoine	120,2	6,715	17,900	1,5876
*Sodium 7	23,0	2,91	7,904	1,594
Scandium	44,1	3,86	11,425	1,628
Cérium	140,25	6,72	20,87	1,647
*Cuivre b	63,57	4,40	14,448	1,672
Tellure	127,5	6,40	19,922	1,682
Sélénium	79,2	4,80	16,5	1,69
	17	656		

*Manganèse _b	54,93	4,00	13,732	1,692
*Fer _b	55,84	3,93	14,208	1,716
Lanthane	139,0	6,16	22,565	1,723
Aluminium	27,1	2 , 67	10,15	1,741
*Chrome b	52,0	3,40	15,294	1,833
Silicium	28,3	2,45	11,51	1,856
*Lithium β	6,94	1,188	5,842	1 ,887
*Zinc b	65,37	3,575	18,28	1,912
Iode	126,92	4,948	25,65	1,921
Zirconium	90,6	4,15	21 ,83	1,930
Phosphore métallique	31,04	2,34	13,265	1,980
Carbone, C _b	12,00	1,4285	8,40	2,006
*Potassium γ	39,10	2,58	15,15	2,005
*Brome	79,92		21,8	2,014
*Barium β	137,37	4 ,6875	29,306	2,051
*Chlore	35,46		15,00	2,062
*Sodium β	23,0	1,94	11,85	2,034
Carbone, C _a	12,00	1,276	9,41	2,181
Soufre	32,06	2,05	15,64	2,210
Magnésium	24,32	1,743	13,953	2,251
*Strontium β	87,63	3,178	27,57	2,323
*Azote	14,01		11,11	2,337
Phosphore cristallisé	31,04	1,84	16 ,87	$2,\!374$
Barium	137,37	3,75	36,63	2,436
*Chrome c	52,0	2,267	22,941	2,472
*Calcium β	40,07	1,972	20,28	2,488
*Potassium β	39,10	1,72	22,73	2,765
Strontium	87,63	THE PERSON NAMED IN	34,47	2,796
Calcium	40,07	1,578	25,35	3,011
*Hydrogène	1,0		4,17	3,017
*Magnésium _b	24,32	1,162	20,929	The same and the same
Lithium	6,94	0,594	11,684	1.51
				$\alpha = 2.443$
*Ammonium	18,0	0,889	20,25	3,523
Sodium	23,00	0,97	23,711	
Rubidium	85,45	1,52	56,22	
Césium	132.81	1.88	70.64	
Potassium	39.10	0.86	45.46	5.238

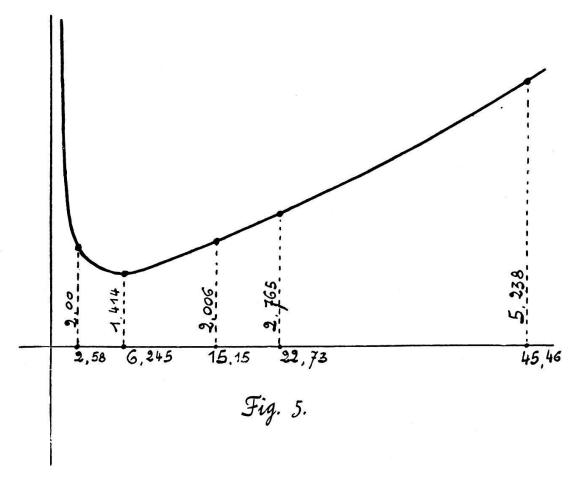
De l'examen du tableau ci-dessus ressort une classification particulière des éléments, où en maints endroits se retrouvent les affinités chimiques de même nature. Les métaux du groupe du platine figurent en tête et en dernier lieu viennent les alcalis avec les plus fortes contractions. Une place particulière est réservée aux éléments C_d, Ag, Hg, Cr, Mn, Fe, qui viennent se grouper très près du sommet S de l'hyperbole; les valeurs de C diffèrent à cet endroit de fort peu entre elles alors que, dans les autres directions, d'élément à élément les écarts deviennent déjà considérables.

Jusqu'au magnésium ce sont les éléments à modifications a, b, c, etc. qu'on rencontre, à partir de là ceux à modifications α , β , γ , etc.

Les métalloïdes proprement dits occupent une place particulière entre les éléments du groupe de l'aluminium et ceux du groupe des terres alcalines. L'oxygène et le fluor font exception en ce sens que chez les autres métalloïdes, c'est la modification α seule qu'on constate alors que pour l'oxygène c'est la modification β et le fluor la modification γ , qui entrent en ligne de compte, donnant ainsi un rang plus avancé à ces éléments.

Les propriétés chimiques se déduisent des états a et α et non pas des états intermédiaires.

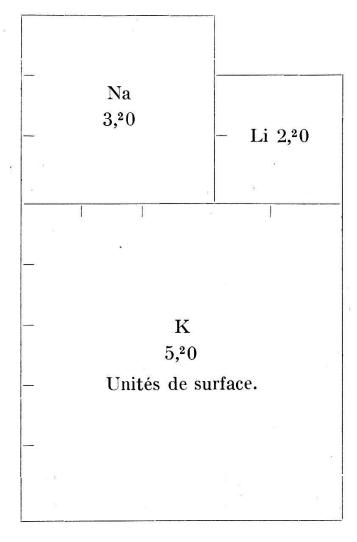
Le tableau commence et se termine par les éléments cristallisant d'après le système régulier; entre le bismuth et le magnésium viennent se ranger de préférence ceux appartenant à d'autres systèmes.


Considérons l'équation (1), page 397 et posons pour un instant m constant et δ variable. Prenant à titre d'exemple le potassium pour lequel m=39,15, nous avons comme valeurs de C correspondantes aux densités =0,85,1,72 et 2,58:5,238,2,765 et 2,005.

Portons comme abcisses les valeurs $\frac{m}{\delta}$ et celles de C comme ordonnées et dans le but de compléter la courbe introduisons d'autres valeurs de δ plus grandes et plus petites que celles ci-dessus. La nouvelle courbe représentera le lieu géométrique de toutes les grandeurs de C, voir fig. 5, où la courbe est esquissée.

La courbe est infinie et possède un minimum lorsque $C = \sqrt{2}$, donc indépendant de la valeur m.

Etendons cette manière de voir aux autres éléments, de préférence à ceux dont nous connaissons mieux les diverses modifications; nous obtenons une série de courbes représentant les valeurs intermédiaires de C.


Considérons les surfaces comprises entre les diverses courbes

et l'axe O X d'une part, et d'autre part les valeurs de C correspondantes aux modifications, nous faisons les constatations suivantes :

Elém	ents : ∫ α—γ	<i>∫</i> αβ	∫ βΥ					
Li	18,457	15,136	3,321	unités	de	surfac	e.	
Na	40,790	33,623	7,167))))	»		
Na	₂ 109,77	91,505	18,265))))))		
\mathbf{K}	109,02	90,94	18,080))))))		
Ba	42,079	16,436	25,643))))))		
Ba	107,605	43,856	63,749))))))		
Sr	44,149	17,642	26,507))))))		
Ca	34,534	13,940	20,594))))	»		
Ca	91,492	37,994	53,498))))))		
	<i>∫ α</i> —γ	$\int a - b$	∫ αβ	∫ β-	γ			
Mg	35,368	18,898	13,080	3,39	90 1	unités	de sı	ırface.
Mg	92,226	51,385	33,306	7,5	35	»)))2
il s'ei	n suit :							
$K_{\alpha}-\beta=Na_{2\alpha}-\beta=Ca_{2\alpha}-\gamma=Mg_{2\alpha}-\gamma$ unités de surface. 90,94 91,5 91,49 92,22								
	$_{2^{\alpha}}$ — $_{\gamma}=K_{\alpha}$ — $_{\gamma}$	1000 0000 E 940 D	1000 to 1 20 to))))	æ

Les trois éléments Li, Na et K forment donc un groupe caractérisé par des rapports de surfaces de contraction très simples, représentés à la figure ci-contre :

Un examen plus approfondi des coefficients de contraction fait ressortir d'autres particularités encore; ainsi, dans les groupes suivants, la somme des coefficients est identique.

$$\begin{array}{c} K_{\alpha} \; + \; Na_{\alpha} \; = \; Rb_{\alpha} \; + \; Cs_{\alpha} \; = \; 8,870 \\ Ca_{\alpha} \; + \; Mg_{a} \; = \; Ba_{\alpha} \; + \; Sr_{\alpha} \; = \; 5,232 \\ Ba_{\alpha} \; + \; Sr_{\alpha} \; + \; Na_{\alpha} \; = \; Rb_{\alpha} \; + \; Cs_{\alpha} \; = \; 8,870, \; K_{\alpha} \; = \; Ba_{\alpha} \; + \; Sr_{.\alpha} \\ Al_{\alpha} \; + \; Sc_{a} \; = \; La_{a} \; + \; Ce_{a} \; = \; 3,370 \\ Zr \; + \; Te \; = \; Se \; + \; J \; = \; 3,611 \\ Pb_{a} \; + \; Ga_{a} \; = \; To_{a} \; + \; Va_{a} \; = \; 2,950 \\ Ta_{a} \; + \; Tl_{a} \; = \; B_{a} \; + \; Cd_{a} \; = \; 2,890 \\ Mo_{a} \; + \; Hg_{a} \; = \; Zn_{a} \; + \; Cr_{a} \; = \; 2,842 \\ Ag_{a} \; + \; Pd_{a} \; = \; Mn_{a} \; + \; Fe_{a} \; = \; 2,835 \\ Co_{a} \; + \; Ru_{a} \; = \; Ni_{a} \; + \; Rh_{a} \; = \; 2,863 \\ Ur_{a} \; + \; Ni_{a} \; = \; Rh_{a} \; + \; Ru_{a} \; = \; 2,875 \\ Os_{a} \; + \; Wo_{a} \; = \; Ir_{a} \; + \; Ti_{a} \; = \; 3,082 \\ Wo_{a} \; + \; Au_{a} \; = \; Pt_{a} \; + \; Rh_{a} \; = \; 2,984 \\ \end{array}$$

Nous désignerons ces éléments sous le nom de systèmes ou couples complémentaires et il se peut qu'entre eux, une fois tous les couples connus, on constate de nouvelles relations.

Partant d'un couple quelconque, il résulte que les conditions d'équilibre doivent satisfaire l'équation suivante :

$$\frac{\frac{m_1}{\delta_1} + \delta_1}{\sqrt{2m_1}} + \frac{\frac{m_2}{\delta_2} + \delta_2}{\sqrt{2m_2}} = \frac{\frac{m_3}{\delta_3} + \delta_3}{\sqrt{2m_3}} + \frac{\frac{m_4}{\delta_4} + \delta_4}{\sqrt{2m_4}}$$

Or, deux cas sont possibles:

1º L'égalité est la résultante d'un pur effet du hasard; possibilité qui n'est guère probable, vu la répétition fréquente et régulière en suivant le tableau de cas semblables, formulant presque une loi.

 2° Les grandeurs m_1 , m_2 , m_3 , m_4 , à considérer comme variables quant à δ_1 , δ_2 , δ_3 , δ_4 , ont un rapport commun, que nous expliquerons le plus simplement de la façon suivante :

$$m_1 = x + y$$
, $m_2 = z + w$, $m_3 = x + w$, $m_4 = z + y$

A l'appui de ce que nous venons d'avancer, il y a lieu de faire remarquer que, parmi les combinaisons, on retrouve aussi des couples présentant les mêmes conditions d'équilibre que les éléments.

Nous nous contenterons pour le moment de n'en citer que quelques-uns, nous réservant de revenir plus tard sur le sujet.

Pour obtenir les coefficients de contraction des corps composés, on procède de la même marière que pour les éléments. On part de la formule m

$$C = \frac{rac{m}{\delta} + \delta}{\sqrt{2m}}$$

où m = poids moléculaire de la combinaison.

Ainsi nous obtenons les couples suivants:

$$\begin{array}{c} {\rm K~Cl~+~Na~N~O_3~=~K~N~O_3~+~Na~Cl} \\ \frac{7,45}{1,995} + 1,995 \\ \hline \sqrt{2 \times 74,5} \\ \end{array} + \frac{85}{\sqrt{2 \times 85}} + 2,26 \\ \hline \sqrt{2 \times 85} \\ \end{array} = \frac{101}{2,08} + 2,08 \\ \hline \sqrt{2 \times 101} \\ + \frac{5,85}{2,15} + 2,15 \\ \hline \sqrt{2 \times 585} \\ \end{array} \\ 3,22 \\ + 3,06 \\ = 6,28: 3,56 \\ + 2,71 \\ = 6,27 \\ {\rm K_2~C~O_3~+~Ca~S~O_4~=~K_2~S~O_4~+~Ca~C~O_3,~6,266} \\ {\rm K_2~SO_4~+Ba~C~O_3~+~Sr~C~O_3~=~K_2~C~O_3~+Ba~S~O_4~+~Sr~S~O_4,8,60} \\ {\rm K_2~SO_4~+Ba~C~O_3~+~Sr~C~O_3~=~K_2~C~O_3~+Ba~S~O_4~+~Sr~S~O_4,8,60} \\ {\rm Na~Cl~O_3~+~KBr~O_3~=~Na~Br~O_3~+~K~Cl~O_3,~6,31} \\ {\rm K~N~O_3~+~Na~N~O_3~+~3~N~H_4~Cl~=~3~N~H_4~N~O_3~+~K~Cl~+~Na~Cl,17,30} \\ {\rm Zn~S~O_4~+~Mg~C~O_3~=~Zn~C~O_3~+~Mg~S~O_4,~5,19~etc.} \end{array}$$

Dans chaque groupe considéré isolément, on retrouve des deux côtés les mêmes éléments ou radicaux, mais ordonnés d'une manière différente; l'ordre est interverti d'après le schéma:

$$xy + zw = xz + yw$$

Dans l'équation (1) les sels de Ba et Sr fonctionnent de part et d'autre comme sels doubles, d'après l'équation :

$$K_{\alpha} = Ba_{\alpha} + Sr_{\alpha}$$

Nous reportant aux couples d'éléments, par exemple au premier cité, page 403:

$$K_{\alpha} + Na_{\alpha} = Rb_{\alpha} + Cs_{\alpha}$$

il y a lieu de considérer, en admettant le cas le plus simple

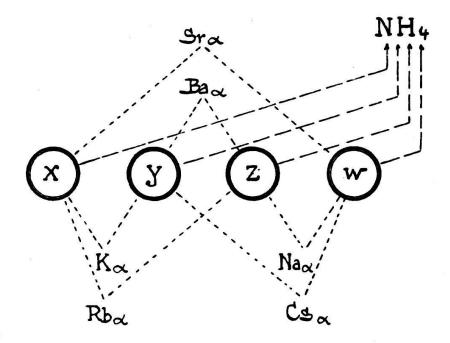
$$K_{\alpha} = xy$$
, $Na_{\alpha} = zw$, $Rb_{\alpha} = xz$ et $Cs_{\alpha} = yw$

et d'après l'équation:

$$Ba_{\alpha} + Sr_{\alpha} + Na_{\alpha} = Rb_{\alpha} + Cs_{\alpha}$$

 $Ba_{\alpha} = yz$ et $Sr_{\alpha} = xw$

D'autre part


$$4\,N\,H_{\textbf{4}} = K_{\textbf{\alpha}} + R\,b_{\textbf{\alpha}} + Cs_{\textbf{\alpha}}$$

ou en substituant la formule des éléments

$$N_4 H_{16} = xy + xz + yw$$

2 (xy), $zw = xy + xz + yw$

c'est-à-dire que dans le radical ammonium, nous retrouvons les mêmes sous-atomes constituant par groupes de deux les 6 éléments K_{α} , Na_{α} , Rb_{α} , Cs_{α} , Ba_{α} et Sr_{α} .

Nous illustrons les diverses combinaisons par le tableau ciaprès:

x, y, z et w sont des sous-atomes ou des complexes de sous-atomes de même valence.

Les éléments Ca_{α} , Mg_{α} et Li_{α} , ne figurant pas au tableau, sont issus des mêmes sous-atomes mais dans des rapports différents, ce que l'on explique par les conditions d'équilibre suivantes :

$$K_{\alpha} = Ca_{\alpha} + \frac{Cs_{\alpha}}{2} = 5,237$$
ou
$$Ba_{\alpha} + Sr_{\alpha} = Ca_{\alpha} + \frac{Cs_{\alpha}}{2} = 5,237$$

$$yz \quad xw = yw \frac{xz}{2} \frac{xz}{2}$$

$$Ca_{\alpha} + Mg_{\alpha} = Ba_{\alpha} + Sr_{\alpha} = 5,24$$

$$yw, \frac{xz}{2} \frac{xz}{2} = yz \quad xw.$$

$$Li_{1/2}\alpha + Sr_{\alpha} = Ca_{\alpha} + \frac{Cs_{\alpha}}{2} = 5,237$$

$$zy \quad xw = yw \quad \frac{xz}{2} \frac{xz}{2}$$

$$Li_{1/2}\alpha = Ba_{\alpha} \text{ ou } Li_{\alpha} = \sqrt{2} \quad (yz)$$

Les modifications β et γ forment aussi des couples complémentaires, par exemple :

$$K_{\beta} + Na_{\beta} = Ca_{\beta} + Sr_{\beta} = 4,800$$

 $Na_{\gamma} + Li_{\gamma} = Ca_{\gamma} + Sr_{\gamma} = 3,100$
 $Sr_{\gamma} + Li_{\gamma} = Ba_{\gamma} + Na_{\gamma} = 3,04$

Ces dernières conditions dont l'interprétation devient de plus en plus difficile, dénoteraient cependant que même les sous-éléments x, y, z et w, ont encore entre eux une certaine parenté. Nous démontrons donc ainsi l'existence de sous-atomes de contractibilité différente et les éléments ne sont autres que des combinaisons d'un ordre particulier, rappelant celles des groupes ou radicaux à séries homologues, avec la propriété de pouvoir exister telles quelles, c'est-àdire à l'état libre.

L'origine commune de certains groupes d'éléments se trouve aussi confirmée par des propriétés chimiques analogues.

On peut dire que les éléments faisant partie d'un même groupe sont entre eux comme les couleurs complémentaires ; ainsi l'addition du rouge et du vert donne le blanc comme le bleu et le jaune, d'une part et d'autre existe le même état d'équilibre. L'ammonium venant s'ajouter à la série des éléments alcalins et terres alcalines, étend considérablement le champ de combinaisons des sous-atomes x, y, z et w et il y aurait peut-être lieu de considérer deux types de combinaisons, l'un groupement « métaux », l'autre « métalloïdes ».

Comme on le voit, le champ d'études dans cette direction est très étendu.

Je crois avoir assez clairement démontré par l'existence des couples complémentaires le parallélisme dans la constitution des corps simples et des corps composés, système des combinaisons à double changement ou interposition, parallélisme qui pourrait être étendu sans trop de hardiesse, croyons-nous, aux rayons lumineux des couleurs complémentaires. Le fait qu'en passant d'un élément à un autre corps simple implique aussi une transformation des rayons lumineux, caractérisée par la différence des spectres, dénote une corrélation étroite entre matière et lumière et faisant allusion au parallélisme ci-dessus, il n'y a qu'un pas à faire pour admettre que matière et lumière sont deux essences qui s'engendrent réciproquement. D'une manière générale le point de départ, comme constitution et non pas comme origine, serait la lumière qui se modifierait selon les circonstances par des transformations successives en corps simples les plus primitifs d'abord et corps composés, lesquels à leur tour redeviendraient lumière formant dans l'univers un cycle complet.

Sarreguemines, le 23 janvier 1921.

CHERIX.

Remarque: C'est intentionnellement que nous n'avons pas parlé dans le développement ci-dessus des découvertes récentes d'ordre physico-chimique concernant la la constitution des atomes, le but cherché étant simplement de montrer qu'en se basant sur des données chimiques générales connues depuis longtemps, on arrive à la conclusion ferme que l'atome ne peut être l'expression extrême de l'indivisibilité de la matière.