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Recherches sur la théorie
des déformations des systèmes élastiquesd

PAR

B. MAYOR, professeur.

CHAPITRE, IV
La correspondance entre les systèmes articulés

à trois dimensions et les systèmes complexes.

27. Des considérations en tout point semblables à

celles qui précèdent peuvent être étendues aux
systèmes articulés à trois dimensions du type habituellement

envisagé en statique graphique. Elles conduisent
à des formules et à des développements analytiques
rigoureusement identiques à ceux ' qui précèdent et
qui font prévoir qu'il existe d'étroites relations entre
les systèmes articulés de l'espace et ceux du plan. D'ailleurs,

comme je l'ai montré dans une note très
succincte* que je me propose précisément de développer
ici, il est possible de faire correspondre à tout système
articulé gauche du type ordinaire un système articulé
plan qui le représente complètement au point de vue
de la statique graphique, puisque cette correspondance
est telle que le calcul du système plan entraîne le calcul
immédiat du système de l'espace.

Pour établir cette propriété, considérons préalablement

un complexe linéaire r dont l'axe coïncide avec

1 Voir Bull, Soc. Vaud. Vol. 50. N» 182.
8 Comptes Rendus, 30 août 1915.
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l'axe Oz d'un système coordonné et dont le paramètre
a ne soit ni nul ni infini. Utilisant une terminologie
proposée par M. Lazzeri et qui simplifie le langage,
convenons d'appeler antiprojection d'un vecteur V, la

projection sur le plan des xy du conjugué de ce vecteur
par rapport au complexe r. Cette antiprojection V
est définie analytiquement dès que l'on connaît ses

projections X' et Y' sur les axes Ox et Oy, ainsi que
son moment N' par rapport au point O. Ces quantités,
que l'on peut appeler les coordonnées de V, sont liées

aux projections X, Y, Z du vecteur V par les relations 1

X' - X, Y' - Y, N' aZ

qui vont jouer un rôle essentiel.
Ces préliminaires posés, envisageons un système articulé

gauche S possédant m barres et n nœuds, h de ces
nœuds étant assujettis à glisser sans frottement sur
des surfaces données. Désignons d'une manière générale

par X,-, Y„ Z, les projections de la force extérieure.
F» qui sollicite l'un quelconque, P„ de ces nœuds et par
X,-, Y/, N/ les coordonnées de l'antiprojection F/ de

cette force, de sorte que

(1) X,' - X„ Y/ - Y,-, N/ ali.
Soient ensuite Ai*, Bi*, C,* les projections d'un

vecteur Vr* d'intensité arbitrairement «hoisie, admettant

pour ligne d'action l'axe de la barre de longueur
lut qui réunit les nœuds P< et P*, et pour sens celui
qui va de P,- à P*. En désignant alors par A,*', B,-*'

et H,*' les coordonnées de l'antiprojection \ik' de ce

vecteur, on aura

(2) Ai* — Ai*, Bi* — Bi*, Hi* aCj*

En admettant e fin que Pr représente un nœud

1 B. Mayor, statique graphique des systèmes de l'espace, p. 49.
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assujetti à demeurer sur une surface donnée, nous
désignerons par Ar, Br, Cr les projections d'un vecteur "W

dont l'intensité et le sens peuvent être arbitrairement
choisis, mais dont la ligne- d'action se confond avec la
normale au point Pr de la surface correspondante.
Les coordonnées Ar', B/, H/ de l'antiprojection V/
de ce vecteur sont alors données par les formules

(3) A/ - A% B/ - Br, H/ a Cr.

Dans ces conditions, les règles de la statique permettent

de faire correspondre, à tout nœud libre tel que Pi,
trois équations de la forme

x, + ì:t*^=o,
i * tic

(4) { Yf+2'T,3=-0,

Z, + IT(l^ 0,
i ' ,k

et, à tout nœud tel que Pr assujetti à une liaison, trois
équations du type

Xr+Rr^+2Trs~ 0,
V r r * rs

(§) { Yr + R^ + S Tr.^ O,
V r r r rs

Zr + Rr TV- + S T,S STj— O,

dans lesquelles T(* et Rr représentent la tension engendrée

dans la barre /»•* et la réaction exercée sur le nœud
P,., tandis que le symbole S indique une somme dont

i
les termes correspondent aux diverses barres issues du
Hœud Pi.
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En désignant ensuite par xu yif Zi les coordonnées
du nœud Pi, par ôxu ôyt, ÔZi les projections du
déplacement supposé infiniment petit Jt que subit ce nœud
sous l'action des forces extérieures et par dlik
l'allongement de la barre /i*, on a immédiatement

(Xi — xh) (dxi - ôxh) + (y{ — yh) (ôyt - dy,,) -f
+ (Zi — Zh) (ÔZi — ÔZk) lu Ôlu

D'ailleurs, par définition même du vecteur V,* on
peut écrire

__
Ai*.

Xt .r* — tt in,
y il;

y* y it — — sr,- lik zt -- r* — vy- Hit,
Vj* Vj*

tandis qu'en vertu d'une formule élémentaire de la
résistance des matériaux

0/j/, put 1 i*,

Pik désignant un coefficient qui caractérise la barre
considérée au point de vue de l'élasticité et que nous
appellerons son module.

Dans ces conditions, la relation précédente peut être
mise sous la forme

(6) A,* (ÔX; - dxk) + Bi* (ôy.; - ôyk)

-f Ci* (ÔZi — tek) — p-ik V,-* Ti*,

et il est bien évident qu'aux m barres du "système
correspondent m équations de ce type.

Enfin, le déplacement du nœud Pr doit s'opérer sur
une surface donnée. Par définition même de Vr, il est
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normal à ce vecteur et l'on peut écrire encore h équations

de la forme

(7) Ar ÔXr + Br 0> + G,- ÔZr O

Les équations (4), (5), (6) et (7) sont au nombre de
3n + m + h. Elles permettent donc, lorsque leur
déterminant ne s'annule pas, c'est-à-dire dans tous les cas
où le système envisagé remplit les conditions qui
autorisent son emploi dans l'art de la construction, de déterminer

les tensions de toutes les barres, les réactions de

toutes les liaisons et les déplacements de tous les nœuds.
Ce sont en définitive les équations fondamentales dont
dépend tout le calcul du système S, mais pour faire
apparaître la relation qui lie les systèmes de l'espace à

ceux du plan, il est nécessaire de les transformer.
Or en désignant par T,*' et Rr' les projections sur

le plan des x y de la tension T»* et de la réaction R,.

on a immédiatement

1 ik 1 il. Rr Rr
v«~vtt' ' Vr-v7

Posons ensuite

(8) ÔXi — Tji ÔlOi ôyi ?/ ôa

el remarquons tout de suite que ces formules sont
susceptibles d'une interprétation géométrique simple. Si

l'on désigne, en effet, par ai l'antiprojection du dépla-
cemeni At du nœud P,, on vérifie sans peine que le

pôle de la ligne d'action de J/ par rapport à une
circonférence imaginaire décrite du point O comme centre
avec un rayon égal à a/ —1 admet précisément pour
coordonnées les quantités £/ et yj/.

En tenant alors compte de ces derniers résultats
ainsi que des formules (1), (2) et (3), on voit immédia-
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tement que les équations fondamentales (4), (5), (6)
«t (7) prennent respectivement les formes suivantes

Xi' + 2-Ti*'^ 0,
i v,-*

(4') { Y/ + 2' T,*' |^=0,
i Vi*

N ' + I T,*' ^ O,
i Vi*

Xr' + R/^ + 2'Tr/^=0
V r r V rs

(5' \ Y/ + Rr' ^ + 2 Tr/ K O,

Nr' + Rr'^' + 2'T„'^' 0
V r r V rs

(6') A,-*, W ôwk'- yt'dan')+
+ Bi*' (ft' ôio/ — ç*' <W) — Hi*' (dw/ ôa>k)

V..'
A t'A A^i/f Tr 7 J

Vi*

(7') A,.' r,/ - Br' fr + H/ 0.

Il est évident que, comme celles dont elles dérivent,
ces équations permettent le calcul complet du système S.

Elles donnent, en effet, les projections de toutes les
tensions et de toutes les réactions sur le plan des xy,
et, par l'intermédiaire des formules (8), les déplacements

de tous les nœuds.
Ces résultats obtenus, considérons un système articulé

complexe S', entièrement contenu dans le pia»
des xy et constitué de la manière suivante :

Sur la ligne d'action de chaque vecteur tel que V«',
choisissons deux points, P/ et P*', astreints à la seule
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condition que le sens qui va de Pi' à P*' soit précisément

celui de V,*', et supposons que ces points limitent
une barre /,¦*' appartenant à S' et caractérisée par un
module pik' vérifiant la relation

(9) fia' Vi*'2 //.,* 'ik".

A toute barre de. S correspond ainsi une barre de S',
tandis qu'à chaque nœud P du premier système
correspondent autant de points distincts P,' qu'il y a de

barres aboutissant à ce nœud. Admettons alors que
tous ces points Pi' se confondent avec les centres d'une
série d'articulations à l'aide desquelles on attache les
barres correspondantes de S' à une même plaque (P,')
infiniment mince, mais absolument rigide et de forme
arbitraire. Dans ces conditions, aux n nœuds de S

correspondent, dans S', un même nombre de plaques (P/)
qui peuvent se superposer partiellement, mais que nous

supposons libres de se déplacer les unes- par rapport aux
autres dans la mesure où le permet l'élasticité des barres
qui les réunissent. Admettons encore que toute plaque
(P/) qui correspond à un nœud non libre Pr de S soil
assujettie à la liaison suivante : un point invariablement

lié à cette plaque et choisi sur la ligne d'action de

V/ est astreint à glisser sans frottement sur une courbe
située dans le plan des xy- et normale à cette ligne d'action.

Comme nous allons le montrer, le système S' ainsi
eonstitué représente complètement, au point de vue de

la statique graphique, le système S.

Admettons en effet qu'une plaque quelconque de S'

soit sollicitée par une force représentée par l'antiprojection

de la force extérieure appliquée au nœud
correspondant de S.

Si l'on exprime en premier qu'une plaque telle que
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(Pi') demeure en équilibre sous l'action de la force
extérieure Fi' qui y est appliquée et des tensions des barres
correspondantes, tensions que nous désignerons d'une
façon générale par Ti*', on obtient des équalions
rigoureusement identiques aux équations (4').

De même, si l'on envisage une plaque telle que (P/),
en exprimant que la force extérieure Fr' et la réaciion
de la liaison correspondante, que nous désignerons par
Rr', font équilibre aux tensions correspondantes, on
obtient encore des équations identiques aux équations (5').

Considérons ensuite la barre lik' et les deux plaques
(Pi') et (P*') sur lesquelles ses extrémités sont
attachées. Lorsque le système S' se déforme sous l'action
des forces extérieures, (Pi') et (P*') subissent dans le

plan des xy des déplacements très petits que l'on peut
assimiler à des rotations ôw/ et ôa>k' s'opérant autour
de centres dont les coordonnées seront désignées par
fi', r)/ et ç*', r)k'. Dans ces conditions la barre /,•*'

subit un allongement OU/,' que l'on peut facilement
déterminer. La projection, sur la direction du vecteur
V,*' qui coïncide en direction avec /«,', du déplacement
du point d'attache Pi' de cette barre avec la plaque (Pi')
est égal, en effet, au quotient par Vi*' du moment relatif
de la rotation ôw/ et du vecteur V,*'. En d'autres termes,
il a pour valeur

,p [A'i* rji — Bu/ f'i-f H,-*'] ôoji
\ ili

Une expression analogue donne la projection sur la,
même direction du point d'attache P*' d'où il résulte

que rallongement <M,*' de la barre est donné par la
formule

ÔUk v [Ai*' (¦/],,' ôojk —r]/ orni) —Bi*' (Sk'ôcuk — Si' ôoji')

+ H,-*' (<W - dm/)].
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En tenant alors compte de la relation (9) on voit
immédiatement que les tensions produites dans les
diverses barres du système S' vérifient des relations
identiques aux équations (6').

Les liaisons auxquelles les plaques telles que (Pr')
sont assujetties conduisent facilement enfin à h
relations de la forme

Ar 'f)r — Br fr "T" Hr O,

et qui sont par conséquent identiques aux équations
(7').

En définitive, les relations dont dépend le calcul
complet de S' sont exactement les mêmes que celles

qui correspondent à S. Le calcul de S' entraîne donc
celui de S, de sorte qu'au point de vue de la statique
graphique, le premier de ces systèmes représente
complètement le second. Il convient cependant de noter
qu'au point de vue de la géométrie cette représentation
est incomplète, car il est manifestement impossible,
lorsqu'on se donne uniquement le système S', de

retrouver la forme et la position de S.

D'autre part, le complexe r pouvant être arbitrairement

choisi, à un même système S correspondent
une infinité de systèmes S' ; en revanche, à un
système S' complètement arbitraire, ne correspond, en

général, aucun système. S.
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