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Calcul des vitesses de régime dans les tubes

cylindriques

PAR

MAURICE PASCHOUD

1. — Dans le problème de l'écoulement permanent bien
continu du liquide qui remplit un tube de section donnée

a, tube mouillé par le liquide, la vitesse V du filet fluide
qui perce cette section au point (x, y) est régie par l'équation

indéfinie :

tT dr\ daV T^ Tr pgl

p étant le poids spécifique du liquide, s son coefficient de

viscosité, g l'accélération de la pesanteur et I la pente
motrice qui produit l'écoulement.

Le long du contour X du tube, le fiuide est immobi.isé
et l'on a la condition définie

(2) V 0.

Ce problème paraît bien particulier. En réalité, il
présente un grand intérêt en raison des nombreuses questions
de physique mathématique qui s'y ramènent. Citons

parmi les plus importantes de ces questions celle de la

torsion d'un cylindre élastique plein, de section normale
donnée a, et celle de l'équilibre élastique d'une membrane

homogène, mince, flexible, également tendue dans tous
les sens, fixée sur un cadre X plan et sollicitée par une

charge constante par unité d'aire.
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Kx2
Si l'on pose V -=—\- ,p l'équation (1) prend la

forme At<P 0 et la condition définie (2) devient

<P= K—
2

Ainsi, notre problème est un cas particulier de celui
des températures stationnaires. Plus généralement, puisqu'il

s'agit de trouver une fonction harmonique dans un
domaine plan a limité par un contour fermé X, fonction
prenant des valeurs données sur ce contour, on a affaire
à un cas particulier du problème de Dirichlet dans le plan.

2. — A part le cas de la section rectangulaire, où
l'intégrale de (1), due à Fourier, est une série infinie de

termes transcendants, la méthode la plus féconde pour
traiter cette question est celle que Saint-Venant a indiquée

dans son mémoire sur la Torsion des prismes (Savants
étrangers, t. XIV). Cette méthode est exposée dans le
Cours d'analyse de M. Boussinesq (T. II, Compléments,
p. 419-426). Dans son cours, M. Boussinesq indique la
solution rigoureuse du problème pour la section elliptique
et pour la section triangulaire équilatérale. Il y donne,

pour la section carrée, une solution approchée. Plus tard,
(C. R., t. 158, 1914, et Annales scientifiques de l'Ecole
normale supérieure, t. 32, 1915), toujours pour le cas de

la section carrée, il a poussé le calcul plus loin. Après de

Saint-Venant, M. Boussinesq exprime tp par un
polynôme, dont chaque partie, homogène de degré n est formée
au moyen des deux intégrales évidentes (x-±-yY — l)n
de At O 0. En s'arrêtant aux termes du ne degré,
l'expression ainsi obtenue pour V contient In + 1

constantes arbitraires. On dispose de ces constantes de manière
que l'expression vérifie la condition V 0 en 2n + 1

points régulièrement distribués sur le contour du tube.
Quelquefois, l'équation V 0 représente alors tout le
contour du tube et la solution obtenue est rigoureuse.
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Lorsque cela n'a pas lieu, l'expression de V se trouvant
nulle en In -f- 1 points du contour, on peut admettre
qu'elle représente approximativement les vitesses,
l'approximation étant d'autant plus grande que n est pris
plus élevé.

3. — La méthode de Ritz (Œuvres, Gauthier-Villars,
1911) permet de retrouver les solutions rigoureuses du
problème dans les cas du contour elliptique et du contour
triangulaire equilateral et de donner une solution nouvelle

pour la section rectangulaire.
Ritz remarque que la fonction V qui vérifie l'équation^)

et qui s'annule sur le contour du tube rend extre-
mum l'intégrale

« Him+Q'-^: da

étendue à toute la section du tube. En effet, la variation
première de I est

Jay dx dx dy dy J

Comme V 0 sur le contour, on a aussi d V 0 su"
ce contour et d I s'écrit, en appliquant à ses deux premiers
termes la formule de Green

dl —2 j [J2Y+K]âVda.

Sous cette forme, on voit que toute solution de (1)
annule d I. Alors, au lieu de.partir des équations (1) et (2),
nous considérerons ces équations comme les conditions
nécessaires pour rendre minimum l'intégrale I. En
supposant la solution développée en série de polynômes ou en
série de Fourier, nous la représenterons par une série
limitée de polynômes ou de fonctions trigonométriques,
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chacun des termes de cette série étant affecté d'un coefficient

arbitraire. En portant cette série limitée au terme
de rang m dans l'intégrale /, celle-ci devient une fonction

connue lm des coefficients aibitraires. Il reste à

déterminer ces coefficients de façon à rendre Im extre-
mum.

Contour elliptique.

x2 y2
4. — Soit l'ellipse rapportée à son centre-^ +^=2.

En tenant compte des conditions de symétrie, nous
prendrons pour V l'expression suivante, en série de
polynômes qui vérifiant la condition V 0 au contour :

V =(1 - % - î) [A + B^2 + & + ••¦]•

En première approximation, nous ne conservons que
le terme en A. L'intégrale / devient

'-.ah'i+^2K4('-M)]**
y + S>+b\/1-X-s »+" ,t+b\/l~-,

4A' I \\dx \ dy+4A2 / dx I f-4dy

t/ t/ /, ' x' t/ „ *J — b i A X--- — a -H/ —a 1/1Va' V a'

r+a r+iV~ì r+axi Vr-i
2KA / dx j dy + 2KA j ^ dx j dy

r+- +"i/ril
+ 2KA f dx j I)2

•^ dx.
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La condition de minimum -=-£ -= 0 donne, après que

l'intégratior par rapport à y a été effectuée :

ü£>f v/.-l^ + ^f (v/,-|
" — a *) — a

(•+ « /»+ «

-4KM s/'-P^ + ^cT2) N/1-

.2 •'

21
dar

¦|k6] iV/1—^1 dx- 0.iV'-l1

Toul calcul fait, il vient :

16A/62 1\6ö7l 8 6vt
t-, 2abK x ^\- r-rbKazTrr- 0, dou
16 o 16

K a2ò2 ogI q»6» / x2 y2

2 a2+b2 2 e a2+b2\ a2 b2

C'est la solution rigoureuse, car, outre la condition (2)
au contour, elle vérifie rigoureusement l'équation (1).

A titre de comparaison, voici la solution de M. Boussi-
Kx2

nesq. En posant V -y- + <P, le problème revient,

on l'a vu, à intégrer l'équation (4) J2 <I> 0, avec
Kx2

(5) </» —— sur le contour.
tu

La fonction <P A + B (x2 — y2) + — formée

comme il a été dit au § 2, satisfait à l'équation (4).
Ecrivons, pour déterminer les constantes, que la condi-
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tion (5) est satisfaite aux quatre sommets de l'ellipse. Il
vient

K a2
_ K a2 b2

2 a2 + b2 ' 2 a2 + b2

m V *L**L/i |
x2-y2 a2 + b2 \ =^I_o^/ _t_tK' 2a2+b2\~t' b2 ' a2b2 J 2e a2+b2\ a2 b2

expression trouvée ci-dessus.
Ces exemples montrent bien les caractères différents

des deux méthodes.
Dans la dernière, on part d'un polynôme qui satisfait

à l'équation indéfinie et la condition au contour permet
de déterminer les constantes arbitraires. Avec Ritz, au
contraire, on choisit un polynôme qui satisfait aux conditions

au contour et les constantes se déterminent en
écrivant que l'intégrale I est minimum, condition qui
remplace l'équation indéfinie.

L'expression (6) de la vitesse montre que cette vitesse
est maximum au centre de l'ellipse, pour x y 0 et
l'on a :

ir o g l a2b2
V max r '

2e a2+b2

Le débit du tube se calcule facilement. L'équation
x2 u2

d'une ellipse d'égale vitesse est -- -\- %à — u et l'aire de

cette ellipse % a b u. L'aire comprise entre cette
ellipse et l'ellipse infiniment voisine e%\. it a b du. On a
donc le débit :

1 2e a2+b2J U ' 47ta2+b2 e

<r étant l'aire tz a b de la section du tube.
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Q 1 ab p glLa vitesse moyenne U — t— -5 r- —— a.J a 4 t a2 + b2 e

Si l'on pose U k K a, k étant le* coefficient caractéristique

de la forme du tube, il vient k -7— ~- n-H 4 t: a2 + b2

Lorsque a b — r, l'ellipse devient un cercle de

rayon r. Pour ce cas, on a

Kr2
4 '

J_
8ît"

Pour trouver la section elliptique qui, à surfaces égales,
donne le débit le plus fort, il faut rendre k maximum ou

- 4tt t + - I minimum. Pour cela, il faut que a b.
k \b a)

k

C'est donc le cercle qui donne le débit le plus fort,
ainsi qu'on pouvait le prévoir.

La section étant toujours elliptique, supposons que
b augmente indéfiniment, a restant fixe. Pour tous les

points à distance finie, on aura les expressions suivantes :

V= j(r2 — x2— y2) j V max -

'Q=~K<t2 U
OTT ÌK" et A-

V **(!-:*). Vr
Ik i \ O / lin

K«2 TT Ko2
max= -s- U -j-^ lim 4

Contour triangulaire equilateral.

5. — La méthode de Ritz permet de traiter ce cas
aussi simplement que le précédent ; l'écriture, que nous
abrégeons dans ce qui suit, est seulement un peu plus
longue.

Pour V, nous prenons l'expression suivante, où h

représente la hauteur du triangle.

V= y (y-h+}r3 x) (y-h -]/3 x) [A+By+C (x>+y2) + ]

51-193 40
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Elle satisfait à la condition V 0 sur le contour du
triangle equilateral et aux conditions de symétrie de ce

triangle.
En première approximation, il vient :

li= f- I [A2 (18x2y2 + 9x4 + 9y+ — 6/i2 x2 + 22/i2 y8

+ 24hx2y — 24/jy3 — 8ft3y +/i4) - 2KA(if — 2hy2

+ h2 y — 3 x2 y)] dx dy

intégrale double étendue à l'aire a du triangle.

La condition de minimum -y-^ 0 donne, toutes les
dA

quadratures étant effectuées

r5^Ah('-4-wKh^° d'où A=4^>

Donc, V ||i y (y - h + /3 x) (y - h _]/3 x).

C'est encore la solution obtenue par M. Boussinesq au

moyen de la méthode de Barré de Saint-Venant. Elle
satisfait rigoureusement soit à la condition au contour,
soit à l'équation indéfinie (1).

On peut lui donner une forme plus symétrique. Appelons

p, p', p" les distances d'un point (x, y), intérieur au
triangle, respectivement, aux trois côtés du triangle.

P y p> h-y-^* p^h-^l+ï^
et V s'écrit V P-ll PP'j" 'tUl P-P'f?

e h e p + p + p

Sous cette forme, on voit que le maximum du produit
p, p', p" des trois facteurs p, p', p", dont la somme
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p + p'+p" h est constante, a lieu pour p= p' =p" -,
soit au centre du triangle et l'on a :

ir PQ I L,
1 Pa IV max '---%- h2 —— '-?— a21e 9/3 s

si a est la surface du triangle.

On obtient sans peine :

h:Q 2 \dy\ Vdy
60)3 e 20]/3 e

o " o

u=/° g Ig
20 /3 e

Enfin, si l'on pose U —- kKa, il vient pour le coefficient

k caractéristique de la section triangulaire équila-

térale k= ?-
20) 3

6. — Une fois que l'on connaît la forme des solutions
dans les deux cas précédents, il est très facile de retrouver
dans ces deux cas les coefficients numériques. Il suffit de

/ J..2 U2\
partir des expressions V K Ce (1 -, — j-\ dans le

cas de l'ellipse et V K C, y (y — h + /3 x) (y - h — /3 x)
dans celui du triangle et de déterminer direct iment Ce et
C, en écrivant que l'équation J2 V — K est identiquement

vérifiée. On trouve de suite :

1 a2b2
_

1

2 ^+b2 U~Th
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Contour rectangulaire.

7. — Pour traiter ce cas de la même façon que les deux
précédents, il faudrait partir de l'expression suivante d2

la vitesse, au moyen de polynômes

V (x2 — a2) (y2— b2) [A + B (x2+y2) + .]

Elle s'annule sur le contour du rectangle de centre à

l'origine et de côtés 2 a et 2 b et elle satisfait aux conditions

de symétrie du rectangle. La première approxima-
5 K a3 b3

tion donne presque sans calcul, A —- —=- -—f -1 g a6 D3 _|_ a3 f,!,

5 K a3bs
d'où la solution approchée V -^- - ,3 8 (x2 — a2) (y2 — ô2)

Mais si l'on veut passer à une deuxième approximation,
en utilisant les deux constantes A et B, les calculs, sans
offrir de difficultés, deviennent d'une longueur rebutante.
On sait du reste, à priori, grâce à la solution de Fourier
sous forme de série infinie simple de termes transcendants

que, quelque grand que soit le nombre des constantes
utilisées, jamais on n'obtiendra une solution vérifiant
rigoureusement l'équation indéfinie (1). D'ailleurs, la
première approximation obtenue ci-dessus donne, il faut
le remarquer, des résultats déjà assez exacts. Pour nous
en rendre compte, calculons le coefficient k caractéristique

de la forme carrée, en nous servant de cette approximation.

Elle donne pour le carré les expressions :

V -r-rrr— (X2 — Ö2)2 V HiaX16 a2 v 16

C 5K 5K
Q= / Vdxdy -q- a4 — ôTfi ff2> <* étant la section=4a2.

5KLa vitesse moyenne est U q-j^ a> d'où pour le coeffi-
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5
cient k la valeur approchée k t-t-t 0,0347. Or, la valeur

exacte de k, ainsi que nous le verrons plus loin, est 0,0351.
4 1 '

L'erreur relative est de -r—-- —- seulement.
351 88

5
Si l'on pose Wmax k'Ka, on trouve ici k' ¦—

0,0781. La valeur exacte de k' est 0,0736. L'erreur relative

— rjôc 7^est plus grande que sur k.

8, — M. Boussinesq, dans son mémoire cité des Annales
de l'Ecole normale supérieure, a calculé, par la méthode
de Barré de Saint-Venant, une troisième approximation
dans le cas de la section carrée et il obtient pour V
l'expression suivante :

Kff|"73
16 75P| - «-^+1(1 _ J* + 6£V -t) + g *']

ou £ - » •- et
a ' «

<// B f| +?4 — 6 f2 jy2 -r-

+ C C- ~ + çs - 28 ?fi -y2 + 70 ,-4 9* - 28 .i2 -r,« + y* \

^D^+£12-66f1V+495?y-924?y+495 ?V -662^10+>?12)-f-.

„ 140 857.81.3 _ 99 088.81 T^ -119.812
avecB= .„ on 00_ .^ C ^tt?^ ,on i tô D

10.39 337 142' 10.39 337142' 10.39 337142

Cette expression est très compliquée et elle ne met pas
en évidence la symétrie du carré. En outre, l'approximation,

qui est très bonne, il est vrai, ne peut pas être pousséa
plus loin, car les calculs deviennent inextricables.

9. — La méthode de Ritz, et cela montre sa souplesse,
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va nous fournir une expression de V tout à fait
symétrique et où l'approximation peut être poussée aussi loin
que l'on voudra. Il suffit de prendre pour V, au lieu d'une
série de polynômes, une série double de Fourier. Prenons
donc l'expression suivante, qui s'annule sur le contour du
rectangle (x2— a2) (y2 — b2) 0.

m n

\ mn" / / J\r.
mitx nny

COS - COS

_ imn 2 a 2 6
i i

=1.-3,5 71=1.-3,6

En portant Vmn à la place de V dans l'intégrale /, et
en appliquant les conditions de minimum

a Vmn r\
d A^ "
,»=1,-3,5,...
»=1,-3,5,...

j'ai montré (C. R. Académie des Sciences t. 158, p. 1743)

que les coefficients Amn se déterminent individuellement,
ce qui est essentiel pour que le calcul soit possible
pratiquement et que l'on peut trouver leur expression générale.

On trouve ainsi :

m rr x n % u

16K^x COSTFCOSTT

V-V22„r(«y+(SÏ).mn

série absolument et uniformément convergente dans
toute la section du tube.

Cette expression montre immédiatement que la vitesse
maxima a lieu au centre du tube et donne

16 K X X 1^21 mn\ | yft + (^iX (mn
\\J~a



CALCUL DES VITESSES DE RÉGIME DANS LES TUBES 599

/¦»+<> r>+i>

Q=l \ Ndxdy
s —a «¦' —b

64. a. K llM(M<M
u

64. a. K 11~j— ^— m2n2

1

2
b

2 fl
m2 —h « ta ft

Enfin, pour le coefficient /c caractéristique de la
section rectangulaire, il vient :

" W 2- 2- m2n2 \m2 - + n2 r« + "*
10. — Si, la longueur a d'un des côtés du"rectangle

restant fixe, celle b de l'autre côté augmente indéfiniment,
il vient pour Ven tous les points à distance finie
l'expression limite

V,
16K

lim 1^11
cos

mirx

mn

2 a 64.K. a2 x\ cos m ex
42 „.2m'st-

Ta2
s-â j^m"

Or, on sait que 1
tc2[z+-cosmz \ 2

/n:! 2S "
r-[z + l

En utilisant cette relation, il vient, toutes réductions

1 - -„ et„ 16. K. a2 vr3 1 /. x2\ K a2
faites, Ylim —-g—. 2"3. - ^1 - ^

\ - — -

„ K a2
par suite, V/£m -75-.

mart «

Ce sont les mêmes expressions que celles trouvées pour
la vitesse limite dans le cas de la section elliptique. Il en
résulte une vérification de tous nos calculs.



600 MAURICE PASCHOUD

On trouve de même

256 K x~ NÇ
• 1

_ 256. K. a2 g Ka2
U"'" ~ n* '2L 2L '.m* ~ *6 ' 768 "" 3 '

„ n m2n2 —
a1

valeur plus grande, ainsi qu'on pouvait le prévoir, que
celle de U lim. dans le cas du tube elliptique.

11. — En faisant a b dans les formules du § 9, il
vient pour le cas du carré les formules suivantes :

mn-x nnif
hC tt ^ COS --z- COS -ïj-2

v 16K\ \ 2a 2a^22
v =«\\max — o 7 7max — 2 X y

Q=-*-!ßS

u

m

_ 64. a. K ^ft %T 1

~ t6 2L 2m2n2[m2 + n2]'
m n

k= W 2 2- m2n2[m2-\-n2] '

Deuxième solution pour le contour rectangulaire.

12. — Dans le cas du contour rectangulaire, on peut
donner une autre solution qui est très analogue à celle de
Fourier.

Il s'agit d'intégrer l'équation (1) Jt V — K, avec la
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condition V 0 au contour. Nous supposerons V de la
^V ITI*formeV= > Y, cos-^r—, les Y,- étant fonction de u seul.

fc=l,3.3
Cette expression s'annule pour x ± a. Si l'on pose,

i /T

pour abréger l'écriture, a, ^—, il vient en portant

cette expression de V dans (1)

Yl «21 COS Ys f'B2 COS -ss- ¦ + ï j cos -r—2a 2a lu
+ Y'scos^ + ..- —K

2 a

Multiplions les deux membres par cos —- et intégrons

2Kde — a à -\- a, il vient finalement Y", — a, Y, — — et,
a«!

2 Kd'une façon générale Y."i—a.2 Y. — avecft ' ' ' a a.
i 1, —3, 5,..

9KL'intégrale générale de cette équation est -—n aaf
+ A{Sh aty + B ch aty. Si l'on tient compte de la condition

V 0, pour y ± b, on détermine At et Bf et il
vient enfin :

,7 'ST 16/ca2 /. ch ai u\ isxx nV= 2. -^-(l--ilTb) C0S Ya~' 0n en tire
-'¦-»*¦" \ C/i2"^/

16 K a2
* max —

yL2|K«3r _2a^-|
i

U= > .._. 1 — -—j A-— et
Z__ i*iz* y iTzb 2aJ
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i

Si, la longueur de a restant fixe, celle de b augmente
indéfiniment, il vient pour tous les points à distanca
finie

16 K a2 1 itrx K a2 f *^
V„m= >-?- f3coS-^-= 2 U

t. K«2
d ou Vu,,, —

iiu/.r ^

32'Ka2 _ Ka
De même TT ^ft 32'Ka2

2 '

Ce sont bien les valeurs trouvées par la première
méthode.

13. — A cause de la symétrie du tube, les expressions
ci-dessus de V, Q, U et k ne doivent pas changer si l'on
y remplace x par y et a par b. On "obtient de cette façon
des identités curieuses, telles que la suivante :

X£'(, c'"2¥| ux s: fi, "2^1 ¦'*»2 H > --^] «- îï - 2^' -^)cos-2T

dont la raison profonde réside dans ceitaines transformations

des fonctions elliptiques, ainsi que l'a montré
M. Purser (Messenger of. Math. Vol. XI).

Comparaison des résultats obtenus par les deux méthodes.

14. — On obtient d'autres identités en comparant les
résultats donnés par les deux méthodes ci-dessus.
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Par exemple, on a :

22
msix n-Tzu

COS—: OS -rr—2 a 2 b

m n m im+m r. 2 nf

ch mizy\
~2ct\

ch
rnirb
~2aJ

;C0S-
mr.x
~2a

- V - I 1— - 2~ ì
co- —

\ Ch-2bJ

En particulier, si l'on identifie les valeurs de k pour la
section carrée, on trouve :

ix/2Y ^T NT 1
_ 1 _ l4 XT tt%

W 2 2 m2n2(m2+n2) 12 w« Z- ~^-
m n i '

identité que j'ai établie directement (Bulletin de la Société

vaudoise des Sciences naturelles, t. 51, p. 255).

15. — Il est facile de montrer directement l'identité
des expressions données pour V par les deux méthodes.

Pour cela, calculons la somme

Sr2
cos nxy

2b

n=i,-3,S... "I'

4 a2 b2

+-m
_„ o 4a252 NT" cos nzElle s écrit : >s > —¦--—rO mx2 z__ n/ + /i3/c

si l'on pose 7pr z, 1 m2b2,k a2.

Soit alors v > —,--—S1 7 -——/ nl + n3k Z— l+n
cos n z_ __



604 MAURICE PASCHOUD

On vérifie de suite que l'on a :

7 7 // XT cos n z r.
IV kv > -j7 n 4

n=J,-3,5..

les dérivations successives terme à terme de la série v

étant légitimes.

L'intégrale générale de l'équation lv — k v" — t

estV Asft y ïZ + Bc/l VftZ+4l'

Comme v est paire, A '= 0. D'ailleurs v s'annule pour

% 1

y *= b, ce qui donne : B - j^p ——ft
ch

On trouve ainsi : v
4m2b2

ch

2a

mxy
2a

ch
mizb
YcT

¦et S
4 a2 b2 %

mn2 4 m2 b2

ch mny
2a

ch
mnb

a2 1

s-z m3

ch

ch

mrzy\
2a

m-jtb
~2o.

De la même façon, on verrait que :

COS
liTZX

2ä ch

m
f /mvr\2 [ni

I17ZX\

¦= -' 1 I
1 _

C/i-JÄ
vr /!3| nnach

2 b
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Ces résultats montrent bien que

m-KX nnu / mizu
COS -r- COS -r-r-~ / Ch -r-—Z-

2a 2 6 a2XT ÏJ, 2a 1 mxx
COS^r—.mnb\ 2a

xr xr 2a 26
_ o?xr J_ _4- 4-mnr(25Y+fôV""'tZm1 ~

2Ä

2a

n-KXch
26 nvru'cos -mt a) '26'

Résultats numériques.

16. — Nous avons vu que, dans les trois formes de
sections étudiées précédemment, la vitesse maximum Vmax
et la vitesse moyenne U peuvent se mettre sous la forme

Wmax=k'Kcr U /< K <T

les coefficients k' et A: étant caractéristiques pour les
sections de tube considérées.

M. Boussinesq a montré (Annales de l'Ecole normale
supérieure, 1915) que le fait est général pour toutes les
formes de tubes.

Voici les valeurs numériques de k' et de k pour le

triangle equilateral, le carré et le cercle.
Triangle equilateral :

k' -i= 0,0642 k —U 0,0289 ;
9/3 20/3

carré : k' 0,0736 k 0,0351 ;

2 0,0796 k=2
4 n 8vT

cercle : k' ~ 0,0796 k= J~= 0,0398.
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En supposant la continuité, les valeurs de k' et de k
pour des tubes en forme de polygones réguliers de plus
de quatre côtés seront comprises entre celles obtenues

pour le carré et pour le cercle.
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