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Calcul des vitesses de régime dans les tubes
cylindriques
PAR

MAURICE PASCHOUD

1. — Dans le probléme de I’écoulement permanent bien
continu du liquide qui remplit un tube de section donnée
o, tube mouillé par le liquide, la vitesse V du filet fluide
qui perce cette section au point (z, y) est régie par I’équa-
tion indéfinie :

&V | BV

W) V=St I

Y n O K=1929-"
= ap K, ou K S
p étant le poids spécifique du lié]uide, e son coefficient de
viscosité, g ’accélération de la pesanteur et I la pente
motrice qui produit 1’écoulement.

Le long du contour X du tube, le fiuide est immobi-isé

et I’on a la condition définie
(2) V = 0.

Ce probléme parait bien particulier. En reéalité, il pré-
sente un grand intérét en raison des nombreuses questions
de physique mathématique qui s’y rameénent. Citons
parmi les plus importantes de ces questions celle de la
torsion d’un cylindre élastique plein, de section normale
donnée o, et celle de I’équilibre élastique d’'une membrane
homogéne, mince, flexible, également tendue dans tous
les sens, fixée sur un cadre X plan et sollicitée par unc
charge constante par unité d’aire.
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s 1 K a2 )l :
Si 'on pose V = — 5 + ¢ , I’équation (1) prend la

forme A,(D = 0 et la conmtlon deﬁme (2) devient -

Ainsi, notre probléme est un cas particulier de celui
des températures stationnaires. Plus généralement, puis-
qu’il s’agit de trouver une fonction harmonique dans un
domaine plan ¢ limité par un contour ferme ¥, fonction
prenant des valeurs données sur ce contour, on a affaire
a un cas particulier du probléme de Dirichlet dans le plan.

2. — A part le cas de la section rectangulaire, ou 'in-
tégrale de (1), due a Fourler, est une série infinie de
termes transcendants, la méthode la plus féconde pour
traiter cette questlon est celle que Saint-Venant a indi-
quée dans son mémoire sur la Torsion des prismes (Savants
étrangers, t. X1V). Cette méthode est exposée dans e
Cours d’analyse de M. Boussinesq (T. II, Compléments,
p. 419-426). Dans son cours, M. Boussinesq indique la
solution rigoureuse du probléme pour la section elliptique
et pour la section triangulaire équilatérale. Il y donne,
pour la section carrée, une solution approchée. Plus tard,
(C. R., t. 158, 1914, et Annales scientifiques de I’ Ecole
normale supérieure, 1. 32, 1915), toujours pour le cas de
la section carreée, il a poussé le calcul plus loin. Aprés de
Saint-Venant, M: Boussinesq exprime @ par un poly-
noéme, dont chaque partie, homogéne de degré n est formée
au moyen des deux intégrales évidentes (xy)y —1I1)"
de A, ® = 0. En s’arrétant aux termes du n° degré,
I'expression ainsi obtenue pour V contient 2n + 1 cons-
tantes arbitraires. On dispose de ces constantes de maniére
que l'expression vérifie la condition V = 0 en 2n + 1
points réguliérement distribués sur le contour du tube.
Quelquefois, I’équation V = O représente alors fouf le
contour du tube et la solution obtenue est rigoureuse.
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Lorsque cela n’a pas lieu, I'expression de V se trouvant
nulle en 2n + 1 points du contour, on peut admettre
qu’elle représente approximativement les vitesses, 1’ap-
proximation étant d’autant plus grande que n est pris
plus éleve.

3. — La meéthode de Ritz ((Euvres, Gauthier-Villars,
1911) permet de retrouver les solutions rigoureuses du
probléme dans les cas du contour elliptique et du contour
triangulaire équilatéral et de donner une solution nouvells
pour la section rectangulaire.

Ritz remarque que la fonction V qui vérifie I'équa-
tion(1l) et qui s’annule sur le contour du tube rend extre-
mum l’integrale

o L8 () -me

étendue a toute la section du tube. En effet, la variation
premiére de I est

d\/ dV dV dV.
01 = [IQI. 0 +2 llal 2K3V|d0

Comme V = O sur le contour, on a aussi é¢ V = 0 sur
ce contour et & I s’écrit, en appliquant a ses deux premiers
termes la formule de Green

il =—2 f 4,V + K] Vdo.
G i

Sous cette forme, on voit que toute solution de (1)
annule ¢ I. Alors, au lieu de.partir des équations (1) et (2),
nous considérerons ces équations comme les conditions
nécessaires pour rendre minimum l'intégrale I. En sup-
posant la solution développée en série de polynémes ou en -
séric de Fourier, nous la représenterons par une série
limitée de polyndmes ou de fonctions trigonométriques,
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chacun des termes de cette série étant affecté d’un coefff-
cient arbitraire. En portant cette série limitée au terme
de rang m dans l'intégrale I, celle-ci devient une fonc-
tion connue I, des coefficients arbitraires. Il reste a
déterminer ces coefficients de facon a rendre I, extre-
mum.

Contour elliptique.

4. — Soit Pellipse rapportée & son centre +

En tenant compte des conditions de symetrle, nous pren-
drons pour V l'expression suivante, en série de poly-
nomes qui vérifiznt la condition V = 0 au contour:

V(1-GF-%)a+B@+p+.

En premiére approximation, nous n¢ conservons que
le terme en A. L’intégralc I devient

22 Uz o ; 12 | 12
e ) (-5
+ +b > R A
= 4A? f "%dxf dy+4A2J dxj
a o I
'J_a wb\/l_';:; i —bL/j_z;
ta ey At +8 /1
_‘)KAf dx l dy +2KA / g—;dtf
i P /I'“E Y —a —b\/1
+ a + 0 _w_g_;
» 2
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dl, ’
La condition de minimum ﬁ = 0 donne, aprés que

r mtegratlol par rapport a y a éte effectuée :

» 1+ a ' ' ’.‘+ a

16 A b L 16A { | /. a2’
0 g \/1“‘““23’32(133—‘—3_[) t\/l-—ﬁl dx

44 a '
4 a3
+-3Kbs \\/1——3”—\ dz — 0.

— da

Toul caleul fait, il vient :

16 A /b2 1\ 6bax 8 7% e
_(.d__z.j_wb_) 15 2 abK,LJr,L—))bKal =0, dou

3

2 h2 2 h2 2 2
fem B _BE V—*"f’l—“——l’---—(1—“—:--%§).

S EFre © T2 @@L b? (2
C’est la solution rigoureuse, car, outre la condition (2)
au contour, elle vérifie rigoureusement I'équation (1).

A titre de comparaison, voici la solution de M. Boussi-
K z?

nesq. En posant V_———-z— -+ @, le probleme revient,
on I'a wvu, a intégrer Péquation (4) 4, @ = 0, avec
- K a2 -

b)) ¢ = 5 Sur le contour.

La fonction @ = A + B (@* —y? + .... formée
comme il a été dit au § 2, satisfait a lequatlon 4).
Ecrivons, pour déterminer les constantes, que la condi-
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tion (5) est satisfaite aux quatre sommefs de 'ellipse. Il

vient
2 2 h2
B “I.zga?"?ﬁ? . A=3 a2a+b1b2 o
__.K a2 b2 r—yr a4 b oyl a2 b? I
(©) V ] 2+b2(1+ b2 a2 h? x)_ Qe a2+b2( o b2

expression trouvée ci-dessus.

Ces exemples montrent bien les caractéres différents
des deux méthodes.

Dans la derniére, on part d’un polynome qui satisfait
a I’équation indéfinie et la condition au contour permet
de déterminer les constantes arbitraires. Avec Ritz, au
contraire, on choisit un polyndéme qui satisfait aux condi-
tions au contour et les constantes se déterminent en écri-
vant que l'intégrale I est mmlmum, condition qui rem-
place I’équation indéfinie.

L’expression (6) de la vitesse montre que cette vitesse
est maximum au centre de l'cllipse, pour x = y = O et
I'on a :

pgl ab?
2¢ a4 b?

Vmax =

Le débit du tube se calcule facilement. L’équation
2 2
d’une ellipse d’égale vitesse est 2—2 —+ %-é-: u et l'aire de
cette ellipse == a b u. L’aire comprise entre cette
ellipse et I'ellipse infiniment voisine est = a b du. On a
donc le débit :

1

_zmpgl & b? /‘ 1 ab, pgle®
U= wrr/ =W =marp

o étant Paire = a b de la section du tube.
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— e _ Q1 ab pgl
La vitesse 1'n0yenne_Uﬂ——‘—;—47r TR

Si 'on pose U = kKo, k étant lc coefficient caractéris-

: o 1 ab
1 — Tt S
ique de la forme du tube, il vient k ET P
Lorsque a = b = r, Ulellipse devient un cercle de
rayon r. Pour ce cas, on a
K Kr?
V o— (222 e ey
AY i (r*—a>—p? , V max 1
, 1 . 1 " 1
Q—-%K(f s []—g;cKG' et l\—a-g'E

Pour trouver la section elliptique qui, a surfaces égales,
donne le débit le plus fort, il faut rendre k¥ maximum ou

%: 4 (% L g) mininmum. Pour cela, il faut que a = b.
C’est done le cercle qui donne le débit le plus fort,
ainsi qu’on pouvait le prevoir.

La section étant toujours elliptique, supposons que
b augmente indéfiniment, a restant fixe. Pour tous les

- points a distance finie, on aura les expressions suivantes :

K a? Ka* - K a2
V = — z‘~’(1——~) , Vmax=-—-—, U = —
lim 2 a? lim 2 litn 4
Contour triangulaire équilatéral.
5. — La méthode de Ritz permet dec traiter ce cas

_aussi simplement que le précédent ; I’écriture, que nous
abrégeons dans ce qui suit, est seculement un peu plus
longue.

Pour V, nous prenons l'expression suivante, ou h
représente la hauteur du triangle.

V=yy—n+Y32) (y—hH=)32) [A4+By+C@*+y3)+. ]
51-193 40
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Elle satisfait a la condition V = O sur le contour du
triangle équilatéral et aux conditions de symeétrie de ce
triangle. -

En premiére approximation, il vient :

fja [A* (18z*p? + 92t + 9 y* — B h22® + 22 ko g

+24ha*y—24hy>*—8h*y + h*) — 2 KA (y* — 2 hy?
+ h*y—3a2y)] dz dy
intégrale double étendue a 1’aire ¢ du triangle.

La condition de minimum g—;l = (0 donne, toutes les

quadratures étant effectuées

o
4VSKh*”—-O d’ou A_—_—IS

8 -"'_' | 6___
ol #24 — 55 i

Done, V= %_Q__ yy ~h—{—l 31) (y-——h-_]/3a:)

(est encore la solution obtenue par M. Boussinesq au
moyen de la méthode de Barré de Saint-Venant. Elle
satisfait rigoureusement soit a la condition au contour,
soit a I’équation indéfinie (1).

On peut lui donner une forme plus symetrlque Appe-
lons p, p’, p” les distances d’un point (x, y), intérieur au
triangle, respectivement, aux trois cotés du triangle.

- h—y—wl/fgx p,,_h——y—{—}fgx

P=y » p = 7 . a
- oglpp.p° pgl pp.p
et Vs'écerit V="' - ,
€ h e p+p +p

Sous cette forme, on voit que le maximum du produit
. P> p's p” des trois facteurs -p, p’, p”, dont la somme



CALCUL DES VITESSES DE REGIME DANS LES TUBES 9599

p+ p’ +p" = hest constante a lieu pour p=p’ = p’'=

wl =

s

" soit au centre du triangle et ’'on a :

‘ogIhz: 1 pgl
27 ¢ 9Y3 ¢

Vmax =

ag

ol

si o est la surface du triangle.
On obtient sans peine :

h—y

szj‘zyjﬁ\/g‘ Vldy | .ong-h“#,ogIa2

T 60Y3 s 203
0 0

oglo

T 20)/3¢

Enfin, si I'on pose U = kK, 1l vient pour le coefli-
cient k caractéristique de la section triangulaire équila-

1
terale k= —=
20) 3
6. — Une fois que 'on connait la forme des solutions

dans les deux cas précédents, 1l est trés facile de retrouver
dans ces deux cas les coeflicients numériques. Il suffit de

2 #72
a y) dans le

az b
cas de Dellipse et V==K Cy(y —h+}32) (y —h—)32)
dans celui du triangle et de déterminer direct :ment C, et
C,en écrivant que 'équation 4, V= — K est identique-
ment vérifiée. On trouve de suite :

~partir des expressions V = K (, (1 —

1 a2 b 1

C=s5erp © Ce=1h-
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Contour reetangulaire.

7. — Pour traiter ce cas de la méme facon que les deux
précédents, il faudrait partir de 'expression suivante dz
la vitesse, au moyen de polyndmes

=@—a) (PP—0) [A+B@*+y*) +. . ]

Elle s’annule sur le contour du rectangle de centre a
I’origine et de cotés 2 a et 2 b et clle satisfait aux condi-
tions de symétrie du rectangle. La premiére approxima-
oK a® b®

tion donne presque sans calcul, A = 8 TP L

d la solutionappro heeV——rK Ll 2 2) ( b
ol1la solutionapproc 8a-’b3+13b’(x—a)y# 2)

~ Mais si I’'on veut passer a une deuxiéme approximation,
en utilisant les deux constantes A et B, les calculs, sans
offrir de difficultés, deviennent d’une longueur rebutante.
On sait du reste, a priori, grace a la solution de Fourier
sous forme de série infinie simple de termes transcendants
que, quelque grand que soit le nombre des constantes
utilisées, jamais on n’obtiendra unec solution vérifiant
rigoureusement I'équation indefinic (1). D’ailleurs, la
premiere approximation obtenue ci-dessus donne, il faut
le remarquer, des résultats déja assez exacts. Pour nous
en rendre compte, calculons le coefficient k caractéris-
tique de la forme carrée, en nous servant de cette approxi-
mation. Elle donne pour le carré les expressions :

_ oK o _OSKa
V_lﬁaz(a: a?) , Vmax = 16
_ _ oK, _9K , 42
—L[Gdedy_Ta =g 60,aetantlasect10n_4a.

La vitesse moyenne est U gill% o, d’ou pour le coeffi-
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p-—

144 =0,0347. Or, lavaleur

exactle de k, ainsi que nous le verrons plus loin, est 0,0351.

cient kla valeur approchée k =

4 1
L’ B e t.
erreur relative est de 351 — 8 seulemeu 5
Si I'on pose Vmax = k' Ko, on trouve ici k' = i

= 0,0781. La Valeur exacte de k' est 0,0736. L’erreur rela-

45 1
tive == 73 = Eest plus grande que sur k.

8. — M. Boussinesq, dans son memoire cité des Annales
‘de ’Ecole no.male supérieure, a calculé, par la méthode
de Barré de Saint-Venant, une troisiéme approximation
dans le cas de la section carrée et il obtient pour V I'ex-
pression suivante :

Ko [73 . 1 5 23 L
V=5 i3 B s e e s ) 4 g0

=§ et

4 e 22
=B (5408 )

+(I(*}9§ ~R ‘)8~6F2+70 4f4*ﬁ)8'2'06+f)

ol ;-:;'{3. y
T

+D( T3+ &1 6651072 -4958%4 — 0242584495 547;"*——662q51°+7;12)—{—..

avecp 140857.81.3 . 9908881 . —119.812
“PT1039337142 T 10.39 3371427 10.39 337 142

Cette expression est tres compliquée et elle ne met pas
en évidence la symétrie du carré. En outre, I'approxima-
tion, qui est tres bonne, il est vrai, ne peut pas étre pousséz
plus loin, car les calculs deviennent inextricables.

9. — La méthode de Ritz, et cela montre sa souplesse,



1510 7o SN _© MAURICE PASCHOUD

va nous fournir une expression de V tout a-fait symé-
-trique et ou 'approximation peut étre poussée aussi loin
que I’on voudra. Il suffit de prendre pour V, au lieu d’une
série de polyndmes, une série double de Fourier. Prenons
-donc 'expression suivante, qui s’annule sur le contour du
rectangle (22— a?) (y2— b2) = 0. |

2 Z Amn cos = “7 nz by

m=i, —3 5 n__‘l —-3,b

En portant Vmn a la place de 'V dans l’intégrale I, et
en appliquant les conditions de minimum

d Lnn .
aA, Y

#=1,—3.5,...
v=1,—3,5,...

- j’ai montré (C. R. Académie des Sciences t. 158, p. 1743)
que les coeflicients Amn se déterminent individuellement,
ce qui est essentiel pour que le calcul soit possible prati-
quement et que l'on peut trouver leur expressmn géne-
rale.

On trouve ainsi : -
mzxy nzwy
_ 16K % 3%
2 2 ) oy
n [( + '2_"5)

série absolument et uniformément convergente dans
toute la section du tube.

Cette expression montre immédiatement que la wtesse
maxima a lieu au centre du tube et donne

- G S
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1

ta b
Q= ( ' dedy***ﬁ4 < Kz Zm%z[(;;) +(z£b)2]

’—ﬂ‘"l-—

-T2 2 |
m? n2 lmz .+ n? b]

Enfin, pour le coefficient k caractéristique de la sec-
tion rectangulaire, il vient :

NG\ N 1
8= (:«') 2 2 m‘2 n2 ng ne _‘}] '
m n ‘- a + b

10. — Si, la longueur a d’un des cotés du rectangle res-
tant fixe, celle b de I'autre coté augmente indéfiniment,
1l vient pour Ven tous les points a distance finie I'ex-
pression limite |

mmx
v 16K O 2a 64K . ® = coOS mza X
lim — m2 "1'2 v 4 ——-_m3 .
mn =
- 2
2
- il i — 7 |z —
Or " cosmz ( 5 ' ( +_2)
Or, on sait que = g T 8
m

En utilisant cette relation, il vient, Loutes réductions

2 3 2 2 2
s, W, o 0z B B2 2 1(1-—3) _Ka (1—"3) et

73 93" 4 a? 2 a?
) K a2
par suite, Vip = —5—.
max 2

“Ce sont les mémes expressions que celles trouvées pour
la vitesse limite dans le cas de la section elliptique. Il PII
résulte une vérification de tous nos calculs.
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On trouve de méme

valeur plus grande, ainsi qu’on pouvait le prévoir, que
celle de U lim. dans le cas du tube elliptique.

11. — En faisant ¢ = b dans les formules du § 9, i
vient pour le cas du carré les formules suivantes :
cos BEL o5 B7Y
16 K Z 2 2a 2a
nr
| (72 ) +(za) |

“Z%nm T
D ¥ (e

2a

U — 64.0. K z Z" 1
B m?n*[m2+ n?|’
(2)' 2 >
A\ z m2n2[m24-n?| °

Deuxiéme solution pour le contour rectangulaire.

12. — Dans le cas du contour rectangulaire, on péut
donner une autre solution qui est trés analogue a celle de

Fourier.
Il s’agit d’intégrer I'équation (1) 4, V= — K, avec la
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condition V = 0 au contour. Nous supposerons V de la

formeV = 2 Y; cos % lesY; étant fonction de y seul.

i=1,3.3
Cette expression s’annule pour x=== a. S1 'on pose,.

- R
=, 1 vient en portant

pour abréger 1'écriture, «; = 5q

cette expression de V dans (1)

;ﬁ 3;; .+ Y, cos f—;i:'
+ Y"; cos é)j__ﬂf —K
Multiplions les deux membres par cos g—g et Intégrons.
de — a a + a, il vient finalement Y, —a, Y, = — g—g et,
d'une fagon géncrale Y/'i —a?¥Y, = — i—a , avec

i=1,—3,5

L’intégrale générale de cette équation est s

+ A;sha;y + B ch «;y. Si1'on tient compte de la COHdl-
tion V = 0, pour y = == b, on determlne A; et B; et il
- vient enfin :

| 16 k a? ha z -
V= E ——3——? 1— 29N cos 22 On en tire
ctz Chlﬂ'b 2a

j—1,—3,5, .. a
' ’ 2 a

16K ¢ - 1 P
7 —_ — _
\m“‘?ﬁ =3 Zi"'(l wrb)

. ch L0
! 2a

Q= 21261{(13 2a . i7h
147t iz Za

5 )
U— ZSQK(I [lh— .2a thmb] ot
ib 2a
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NP 1] a a? i7h
k= (Z) 214[21; z~b2th2(1]'
Si, la longucur de a restant fixe, celle de b augmente

indéfiniment, il v1ent pour tous les points 4 distanc2
finie

v N 16K@ 1 ize  Kat(, @
lim — ‘ e lacu,za —2 - — a2
5o g . K a2
- dol Vi = =5+ .

i 2 9
De méme, Upn = E 3%5@“ (1—0) = 523_

i

Ce sont bien les valeurs trouveées par la premiere mé-
thode. R ‘

13. — A cause de la symétrie du tube, les expressions
ci-dessus de V, Q, U et k ne doivent pas changer si 'on
y remplace x par-y et a par b. On obtient de cette fagon
des 1dent1tes curieuses, telles que la suivante :

dmy T

a2 Bl ; B ch —
E“{a‘ 1———--—.2% COSL;—:EZZ% - 24 cosl—g
S o 7T a s | hlrca 2b

2a ‘ 2b

dont la raison profonde réside dans certaines transfor-
mations des fonctions elliptiques, ainsi que 1’a montré
M. Purser (Messenger of. Math. Vol. XT).

Comparaison des résultats obtenus par les deux méthodes.

14. — On obtient d’autres identités en comparant les
résultats donnés par les deux méthodes ci-dessus.
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Par exemple, on a :

mzx 7Y ' L, may\
z Z COS —5—— €08 - 2,22 1(1_Lh2—‘“1\;cosm5x
7\ na\t] T = m? mmb | 2
m mn[(\——i---a) —}—(E)} BT ch 50 /,’
nwx
b1 . h 2b__\ éo«' nwy
ST (e 4P
,l \ -ch 5p /

En particulier, si I’on identifie les valeurs de k pour la
section carrée, on trouve :

G - 53307
Z 2 m2n2(m2—|—n2) 12 = —

1

identité que j’ai établie directement (Bulletin de la Sociélé
vaudoise des Sciences nafurelles, t. 51, p. 255).

15. — 11 est facile de montrer directement l'identité
des expressions données pour V par les deux méthodes.

Pour cela, calculons la somme

o nwy
S Z cos o o
2 Tne\ 2]
n=1{,—4,5. m”[(Za) +(§'§):|
s b 4 a® b2 cosn z
Elle secrit : S gy 2 Nk
si 'on pose g—g: z, l=m2 b k= a®

—_— B cos n z z cos Nz
OLaOTSU—ZnI+n3k ]+n2k n

I
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On vérifie de suite que l'on a :

cosnz =
lv—kv' = ==
n 4

- n=1,—-3,5.. @

les dérivations successives terme a terme de la série v
étant légitimes.

L’intégrale générale de P'équation [v — k p" —

[ l 7
est V=A sh \/;zz—i—Bch \/;CZ+H.

Comme v est paire, A = 0. D’ailleurs v s’annule pour

) &

: oz 1
y=0b, cequidonne :B=— ;5% ——
ch—
2a
- mzxy |
ch =Y
O t ’ 3 1 . D = __7_?m ]_ 2 a_
ch 5=
L .
B mny | / m=y
ch = ¢
ot 4(12b2 7 1_“A.._2a ar 1 h 2a
S mz? 4 m® b? Chmrcb o m3| ; mz b
| wa ] - \ ¢ 3?
De la méme facon, on verrait que
| cos 17X op 15T
\ C 2a b% 1 2b
. , WES-T| 3 JERE- Ly
mw nw nraj

= 7T\ 2 ; < nd
ma| (57) +(55) | by
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Ces résultats montrent bien que

‘ T w mry\
= iy o @ %a |\  mnzx
| : — ——— |eos—=-=
E Zmn @)2+( ) Zma mrrb a
mon (2a 2b 2a
nrx
b2~ 1 h 53 nzy
=y — 11— cos ‘
cmnf* chnvra 2D
\ 2b /

Résultats numeériques.

16. — Nous avons vu que, dans les trois formes de sec-
tions é¢tudiees précedemment, la vitesse maximum Vmaz
et la vitesse moyenne U peuvent se mettre sous la forme

V;naq;:k’K(f ’ ' U:IfKG,

les coeflicients k’ et k étant caractéristiques pour les sec-
tions de tube considérées.

M. Boussinesq a montré (Annales de I’ Ecole normale
supérieure, 1915) que le fait est général pour toutes les
formes de tubes.

Voici les valeurs numériques de kX’ et de k pour le
triangle équilatéral, le carré et le cercle. '

Triangle équilatéral :

" 1 1

= — = 0,0642 , k= — = 0,0289 ;
91/ 3 207 3
carre : k' = 0,0736 y k= 0,0351;
1 1

cercle : k' = = 0,0796 ; k= 8. 0,0398.

4r
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En supposant la continuité, les valeurs de k' et de k
pour des tubes en forme de polygones réguliers de plus
de quatre cotés seront comprises entre celles obtenues
pour le carré et pour le cercle.
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