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Transformation d'une série double
PAR

MAURICE PASCHOUD

1) Dans une note des Comptes Rendus de l'Académie
des Sciences, t. 158, p. 1743, note relative au problème
du régime uniforme dans un tube de section carrée, j'ai
indiqué une expression curieuse, en série double, du coefficient

k, caractéristique de la forme carrée, à savoir la
formule :

\^ k= (j.) 2! 2. m2 n2 (m2 + /J«)

où m 1, 3, 5,.. ; n 1, 3, 5,..
Cette série double permet, bien plus facilement que

les expressions de k données autrefois par Fourier, par
de Saint-Venant et plus récemment par M. Boussinesq,
de calculer la valeur numérique de k.

Cependant, il faut prendre environ cent termes de la
série (1) pour avoir A' avec une erreur relative de moins
de un dix millième.

2) Je vais montrer que l'on peut transformer la série
double (1) en une série simple si rapidement convergente
qu'il suffit d'en calculer trois termes pour obtenir cette
approximation du dix-millième.

On peut écrire:
'2N

n m

W [^ 7? ^ Th1 ~ ^. ri1 2. m2 + n2J

m n m
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Or, on sait que : (Voir par ex., Fabry, Théorie des:

séries à termes constants, p. 87 et suivantes)

-rr et 5I*L. m2 8 ^L n4 96

m 1,3, 5,.. /1 1,3,5,..
D'autre part, au moyen des méthodes de sommation

de Caucby, (Voir, Collection Borei, Le calcul des résidus?

par M. Lindelöf, p. 54) ou par une méthode élémentaire
que j'exposerai plus loin, on trouve que

^ 1 th^r1^£. (2 v - l)2 + m2 4 (2 v - 1)
m=l,3,5...

p3r p—.
où th x tangente hyperbolique de x —

ga; + g-»

En tenant compte de ces expressions, il vient :

2\6^3 ^ /2\6 7z ^ 1 4U(2v-l)vr
t:7 23 3.25 Vv 22^.(2v-l)5

v=l
1 24 r«,*. 1^3-, ^5- 1 iÎ2~F» Lth2+^thT + 55thT+--J

Le 1er terme de cette série donne /c 0,035375; deux
ternies donnent A- 0,035160 ; enfin, avec trois termes,
on obtient k 0,035143, valeur exacte au dix millième
près.

Le convergence est donc très rapide.
3) On peut calculer avec une grande approximation

une limite supérieure de l'erreur commise quand on
s'arrête à un terme déterminé de la série des th.

Supposons en effet que le dernier terme calculé dans

cette série soit -s-- r^- th -r-—— où n a une valeur
(In — l)s 2

déterminée. Appelons R le reste de la série.
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Puisque les th sont toujours inférieures à 1, on a

R <r l r-'
1

4-"^ (2n + l)5 r(2/i + 3);'T "
ou R <

] 1 1

(2 n + l)4 + (2 n + 3)4 + '

2n+ 1

ou enfin
IV 1 1 1

R< '
2n + 1 96 1 34 (2n-l)4_

L'expression dans le crochet se calcule facilement si

n a une valeur déterminée.
4) Voyons maintenant comment on peut obtenir, par

une méthode élémentaire, la relation

^ (2n — lV
th*2"::1)*

(2n-1)2 + /t?2 4(2n — l)
/7i=l, 3, 5,...
•que j'ai utilisée plus haut.

Je partirai de l'expression bien connue du cosinus en

produit infini.
oo

On a cos* "|~J (l - (-^j^p)
v=l

Or, on sait que l'on passe du cosinus au cosinus

hyperbolique au moyen de la relation cos ix ch x.
Il viendra donc en remplaçant x par ix dans la relation

ci-dessus
rxr\

Ch X =r. I 1(1+ 4 'VÎnu=i
¦d'où, en prenant le logarithme,

(2 v - \y n2

v=l

l0gChX Il0g(1 + (2,-1)2^)
v=l
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En dérivant, il vient enfin,

8xthar— 2(2v-l)2>r2 + 4x2
v=l

OU th X 8 X\ ; - -f .- ; -j- • • |
[n2 + 4x2 (37r)8 + 4xs J

En faisant £ ^ i/-7

^1 « ./a o K /a
th2V7, 8-2V6

on obtient

1 1

+ ]
ou

oo

^ V06 ^ a + (2n-l)*&
77 1

et par suite

_ oo

[\Jab 2 V b~ 2. a + (2n
71=1

1)2&

Si l'on fait b 1 et o (2i>— l)2 il vient finalement
1

-£. (2v- l)2 + 77i2 4(2 v-1)
777= 1,3, 5,.

th (2 V- 1)7,

C'est la relation qu'il s'agissait d'obtenir.
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