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Transformation d’une série double

PAR

MAURICE PASCHOUD

1) Dans une note des Comptes Rendus de I’ Académie
des Sciences, t. 158, p. 1743, note relative au probléme
du régime uniforme dans un tube de section carrée, j’ai
mdiquéune expression curieuse, en série double, du coeffi-
cient k, caractéristique de la forme carrée, a savoir la
formule :

(.1) g = (rg-)b 2 2 m?* n® (n%z2 + n?)

ou M =1z 8, Dssn § B= 15 By 8«

Cette série double permet, bien plus facilement que
les expressions de k données autrefois par Fourier, par
de Saint-Venant et plus récemment par M. Boussinesq,
de calculer la valeur numérique de k. |

Cependant, il faut prendre environ cent termes de la
série (1) pour avoir k avec une erreur relative de moins
de un dix milliéme.

2) Je wvais montrer que 'on peut transformer la série
double (1) en une série simple si rapidement convergente
qu’il suffit d’en calculer trois termes pour obtenir cette
approximation du dix-milliéme. '

On peut écrire:
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Or, on sait que: (Voir par ex., Fabry, Théorie des
series c‘t termes constants, p. 87 et suivantes)

o 1 ot
§m~ g nt— 9
m=—13,),.. | n=1,3.5, ..

D’autre part, au moyen des méthodes de sommation
de Cauchy, (Voir, Collection Borel,' Le calcul des résidus,
‘par M. Lindelof, p. 54) ou par une méthode élémentaire
que j’exposeral plus loin, on trouve que

E 1 _ T th v —Px
Qv -1+ m* 4Q2v — 1) 2

m=1,3,5...

. er —e—x
ou thzx tangente hyperbolique de a: P —

En tenant compte de ces expressions, il vient:
2 p X

LA = Nz 1 2y —D=
"—(E) i 3.0 («—) = 2m
. v=1

1 24 7 1 3= ., 1 . 5=«

Le 1er terme de cette série donne k = 0,035375; deux
termes donnent k — 0,035160; enfin, avec trois termes,

on obtient k = 0,035143, Valeur exacte au dix milliéme
pres.

Le convergence est donc tres rapide.

3) On peut calculer avec une grande approximation
une limite supérieure de l'erreur commise quand on
s’arréte a un terme déterminé de la série des th.

Supposons en effet que le dernier terme calculé dans

' 5 ; 2n — D= . )
cette serie soit @n =1y th 5 Ounaune valeur

1

-
ps

)

l\.a

déterminée. Appelons R le reste de la série.
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Puisqué les th sont toujours inférieures a 1, on a
1 B | 1
Cnriy T @nr3 T

OHR<1[ 1, +__]

R <

2n+11@2n+ D 2n+ 3)
ou enfin | :
1 x* 1 1 | 1
R<2n+1[96_1‘"3_4 """" (2n—~1)“:|

L’expression dans le crochet se calcule facilement si
n a une valeur déterminée.

4) Voyons maintenant comment on peut obtenir, par
une méthode élémentaire, la relation

E 1 _ re th 2n—1)=
Cn—1)*+m* 4@2n—1) 2
=13, Ds's x -
que j’ai utilisée plus haut.

Je partirai de l'expression bien connue du cosinus en
produit infini.

On a COST — I ( = 1)___)

Or, on sait que lon passe du cosinus au cosinus
hyperbolique au moyen de la relation cos ix = ch «.

Il viendra donc en remplacant x par ix dans la rela-
tion ci-dessus

'r‘T 4 z?
ch x = 1+(2v_1)2_)

d’oll, en prenant le logarlthme,

o 4 x?
log ch x = 2 log - (1 e 1)27:2)

v..—_:l




258 MAURICE PASCHOUD

En dérivant, il vient enfin,

- S8z
the= 2 Gv=1p= 7 iz*
|
tha=—8g ! + 1 J me
ou ME=O S T A T B+ 4x

En faisant x— 7—: \/ x on obtient

-'r a 1 1
th—\/ =\/= e — +---
b~ 2 b[ +4:'ra nta ]

4?5 G +4.75

1
“’“\/b—4 \/b .::"[a+b+a+32b+ ]
4 [ = 1
“E\/“b§a+(2n—1)2b
fi=1

et par suite

T T la. 1
4\/a_13th§\/7)— §a+(2n—l)2b
n— ,

- Silon fait b =1 et a=(2v — 1)? il vient finalement

1 o 7 th Qv — D=
Rv—1)2+m* 4Q2v—1) 2

m:1,3,5,.-u

C’est la relation qu’il s’agissait d’obtenir.
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