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RECHERCHES
SUR LA

Théorie des déformations des systèmes élastiques

PAR

B. MAYOR, Professeur.

Introduction.

Dans l'étude géométrique des systèmes envisagés par
la Statique graphique et la| Résistance des matériaux,
le principe des travaux virtuels et les théorèmes de

Maxwell conduisent naturellement à un complexe quadratique

qui joue, dans l'espace, un rôle identique à celui de

l'ellipse d'élasticité des systèmes plans. Mais, ainsi que je
l'ai montré dans une note très condensée1, il est encore

possible, à l'aide de ces mêmes principes, de mettre en
évidence des éléments géométriques qui n'avaient été

signalés ni dans le cas du plan ni dans celui de l'espace.
Ces éléments accompagnent en quelque sorte l'ellipse
d'élasticité ou le complexe correspondant et s'évanouissent

précisément dans tous les cas où l'on avait pu,
jusqu'ici, faire intervenir utilement ces derniers. Dans
ces conditions, il est à présumer qu'ils pourront jouer un
rôle très étendu dans la théorie des déformations en
élargissant, dans une grande mesure, le champ des appli-

1 Comptes rendus des séances de l'Académie des sciences, 15 avril 1912.
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cations de l'ellipse d'élasticité. C'est pourquoi, tout en
laissant provisoirement de côté le cas des systèmes à
trois dimensions qui exige des développements analytiques

importants, je me propose d'étudier ici les

propriétés de ces éléments dont je n'avais pu que signaler
l'existence dans la note déjà citée.

J'utiliserai systématiquement, dans ce but, des
coordonnées trilinéaires d'un type particulier, dont l'origine
mécanique est évidente et dont j'ai déjà indiqué une
application1. Il est toutefois indispensable que je revienne,
pour les compléter, sur la définition et les propriétés de
ces coordonnées, qui paraissent devoir jouer un grand
rôle dans toute question où il est nécessaire de considérer
simultanément les propriétés descriptives et les propriétés
métriques des figures de la géométrie plane.

'Bulletin technique de la Suisse Romande : 10 décembre 191 lt
10 février 1912 et 10 décembre 1912.
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CHAPITRE PREMIER

Coordonnées d'un vecteur et d'une masse.

1. Coordonnées d'un vecteur. — Considérons, dans un
plan, trois axes u, v, w, c'est-à-dire trois droites sur
chacune desquelles un sens de parcours positif ait été choisi
une fois pour toutes. Supposons, de plus, que ces droites
ne passent pas par un même point, mais forment un
triangle qui sera dit le triangle de référence.

Un vecteur quelconque P étant donné dans le plan
de ce triangle, supposons qu'on le décompose en trois
composantes admettant respectivement les droites u, v

et w pour lignes d'action ; convenons ensuite de désigner

par X, Y et Z les intensités des composantes obtenues,
chacune d'elles étant affectée du signe plus ou du signe
moins, suivant que son sens concorde ou ne concorde

pas avec le sens de parcours positif choisi sur l'axe
correspondant. Comme la décomposition d'un vecteur
suivant trois directions non concourantes est toujours
possible d'une manière et d'une seule, à tout vecteur P
correspond ainsi un système de Valeurs, et un seul, des quantités

X, Y et Z. Réciproquement d'ailleurs, à tout système
de valeurs de ces mêmes quantités correspond un vecteur
P et un seul. En conséquence, les quantités X, Y et Z
seront dites les coordonnées du vecteur P relativement
au triangle de référence choisi.

2. Coordonnées homogènes d'une droite. — Le résultat
qui précède peut être interprété d'une manière un peu
différente.

Tout d'abord, si l'on déplace le vecteur P sur sa ligne
d'action sans changer son intensité ni son sens, ses coor-
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données ne subissent aucune modification. D'autre part,
si l'on multiplie par un nombre arbitraire p l'intensité de
P, ses coordonnées se trouvent multipliées par le même
facteur. D'après cela, les quantités X, Y, Z peuvent être
considérées comme les coordonnées homogènes de la droite
qui se confond avec la ligne d'action de P.

Considérées à ce point de vue, les quantités X, Y et Z
forment bien un système particulier de coordonnées tri-
linéaires : elles sont en effet proportionnelles aux distances
qui séparent les sommets du triangle de référence de la
droite considérée, les facteurs de proportionnalité étant
respectivement égaux aux inverses des hauteurs de ce

triangle.
Ajoutons encore qu'il ne résulte aucune ambiguité du

double sens que l'on peut attribuer à ces coordonnées si,
du moins, on a soin de spécifier dans chaque cas la nature
de l'élément auquel elles se rapportent.

3. Les coordonnées qu'on vient de définir jouissent de

propriétés évidentes, mais essentielles.
Considérons, en premier lieu, des vecteurs Plt P2, ...P„

...P„, en nombre quelconque, et désignons, d'une manière
générale, par X,, Y,-, Z, les coordonnées de P,. Le théorème

des moments montre alors immédiatement que les
coordonnées X, Y, Z de la résultante de ces vecteurs
sont données par les formules :

X 2X,.,
i

Y 2 Y,-,
1

n
z n(.i

Considérons ensuite deux droites quelconques h et /2,

admettant respectivement pour coordonnées homogènes
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X„ Y„ Z„ et Xj, Y2, Zs. Il résulte de la propriété qui.
précède que les formules :

X X X, + p x2,
Y AY, + ^Y2,
Z X Z, -f- fi z,,

définissent, quelles que soient les valeurs attribuées à
A et y, une nouvelle droite qui passe par le point de-rencontre

de 4 et de /r De plus, il est visible qu'en donnant
X

au rapport — toutes les valeurs possibles, la droite

correspondante engendre complètement le faisceau déterminé

par h et h

4. Intensité d'un vecteur. — Pour obtenir l'intensité
d'un vecteur P défini par ses coordonnées X, Y, Z, admettons

une fois pour toutes que l'on ait fixé les sens positifs
sur les axes u, v et w, de manière que les sens de rotation
qui en résultent soient tous positifs pour un point situé
à l'intérieur du triangle de référence. Si l'on désigne alors

par A, B, et C les angles de ce triangle, on voit immédiatement

que les projections du vecteur P sur l'axe u et sur
un axe perpendiculaire à ce dernier ont respectivement
pour expressions

X - Y cos C - Z cos B
et Y sin C — Z sin B

On aura donc, pour exprimer le carré de l'intensité de

P, la formule
P2 (X -Y cos C -Z cos B)2 -f (Y sin C - Z sin B)2,

ou, en tenant compte du fait que la somme des angles
du triangle de référence est égale à deux droits,

P*=X2 + Y2+Z2-2YZcosA-2ZXcosB-2XYcosC.
Il convient de remarquer qu'en posant, comme de cou-
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turne, ê=j/ — 1, la formule précédente peut être mise

sous la forme suivante
P2 (X eiB + Y e-iA - Z) (X e~iB + Y e'A - Z)

Les points circulaires du plan peuvent être regardés
comme les enveloppes des lignes d'action des vecteurs
dont les intensités sont nulles, mais dont les coordonnées
conservent des valeurs finies. Ils seront donc représentés,
en coordonnées-lignes, par l'équation

X*+Y2+Z*-2YZcosA-2ZXcosB-2XYcosC=0
qui, d'ailleurs, se décompose dans les deux suivantes

X eiB + Y e~iA - Z O,
X e--'B + YelA-Z O.

5. Coordonnées d'une masse ponctuelle. — Aux coor-
-données de vecteurs ou de droites qui viennent d'être
définies, correspondent dualistiquement des coordonnées

ponctuelles dont l'origine mécanique est tout aussi simple.
Considérons, en effet, une masse de nature arbitraire

et d'intensité m, concentrée en un point que nous désignerons

également par m et qui peut être quelconque dans
le plan du triangle de référence. Convenons ensuite de

désigner par x, y et z les moments statiques de cette
masse relativement aux axes u, v, w, ces moments statiques

étant affectés du signe qui résulte de la convention
suivante : dans le cas où le sens positif fixé sur l'axe
envisagé donne lieu à un sens de rotation positif par
rapport au point m, le signe du moment statique est le
même que celui de la masse considérée ; lorsque, au
contraire, ce sens de rotation devient négatif, le signe
du moment statique est l'inverse de celui de la masse.

A toute masse ponctuelle correspond ainsi un système
de valeurs et un seul des quantités x, y et z. Réciproquement,

à tout système de valeurs de ces quantités on peut
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faire correspondre une masse ponctuelle m, dont l'intensité

et la position sont déterminées sans ambiguité. D'une
part, en effet, les distances du point m aux côtés du
triangle de référence sont entre elles dans les mêmes

rapports que les quantités x, y et z, et l'on sait que ces

rapports suffisent pour déterminer la position de ce point.
D'autre part, enfin, la position de ce point étant
déterminée, l'une quelconque des quantités x, y ou z permet
ensuite de déterminer l'intensité de la masse. En
conséquence, les quantités x, y, z seront dites les coordonnées
de la masse m.

On peut remarquer tout de suite que l'intensité d'une
masse s'exprime linéairement en fonction de ses
coordonnées.

Prenons, en effet, comme sens positifs sur les axes
u, v, w ceux qui ont été fixés au paragraphe précédent.
Si l'on désigne alors par a, b, c les côtés et par S la surface
du triangle de référence, on obtient immédiatement, pour
intensité d'une masse m de coordonnées x, y, z,
l'expression

m — jr-ç (ax + by + cz).

En désignant par R le rayon du cercle circonscrit au
triangle de référence et en posant une fois pour toutes

H - S
H - R'

la formule obtenue peut être mise sous la forme

m -JJ- (x sin A + y sin B + z sin C).

6. Comme dans le cas d'un vecteur, les coordonnées
d'une masse sont susceptibles d'une deuxième interprétation.

Si l'on multiplie, en effet, par un facteur arbitraire une
50-182 5
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masse sans changer son point de concentration, ses
coordonnées sont évidemment multipliées par le même
facteur. On en conclut que les quantités x, y, z peuvent être
regardées comme les coordonnées homogènes du point
de concentration de la masse correspondante, ce qui
d'ailleurs est évident.

D'autre part, les propriétés de ces nouvelles coordonnées

sont entièrement analogues à celles qui caractérisent
les coordonnées d'un vecteur.

Considérons, en effet, un système de masses mi, mz,

...m„ ...mn en nombre quelconque, et désignons, d'une
manière générale, par x„ y„ zt les coordonnées de la masse

m,. Il résulte alors immédiatement de la théorie des

moments statiques que les coordonnées x, *y, z de la
masse résultante du système sont données par les
formules suivantes :

n

1

2, Z.

En désignant ensuite par xi, yx, zi et xs, yt, zî les
coordonnées homogènes de deux points quelconques /m et m?,

on vérifie sans aucune peine que les formules

JL/ A, Xj ~f~ ("-*¦ •*'2 9

y => & + p y% >

z X z1 -\- fi z2

définissent, quels que soient X et y, un point de la droite
qui réunit mi et mi, Il est visible, de plus, qu'en donnant

X
au rapport — des valeurs convenables, on peut obtenir

tous les points de la droite considérée.
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7. Moment relatif d'une masse et d'un vecteur. —
Considérons simultanément une masse m et un vecteur P dont
la ligne d'action sera toujours assimilée à un axe ayant
le sens même du vecteur. Convenons ensuite de désigner
sous le nom de moment relatif de ces deux éléments, le
produit de l'intensité du vecteur par le moment statique
de la masse relativement à la ligne d'action de P, ce
moment statique étant pris avec le signe qui résulte de
la convention faite précédemment. On peut remarquer
que ce moment relatif, que nous désignerons indifféremment

par l'une ou l'autre des notations

(P,m) ou (m,P),
n'est pas autre chose que le moment relatif de deux
vecteurs dont l'un se confond avec P, tandis que l'autre est
normal au plan du triangle de référence, passe par le
point m et possède une intensité égale à celle de la masse m.

Proposons-nous de déterminer la valeur de ce moment
relatif en fonction des coordonnées X, Y, Z du vecteur
et des coordonnées x, y, z de la masse.

Observons à cet effet qu'en vertu d'un théorème bien

connu, la somme des moments relatifs d'un nombre
quelconque de vecteurs par rapport à une même masse est

égale au moment relatif de cette masse et de la résultante

des vecteurs considérés. Et comme X, Y, Z sont
précisément les composantes du vecteur P suivant les

axes u, v, w, le moment relatif cherché a évidemment

pour valeur
(P, m) X x + Y y + Z z.

8. Des conséquences essentielles découlent de la
formule qu'on vient d'établir.

Le moment relatif d'un vecteur et d'une masse s'annule

lorsque la masse est située sur la ligne d'action du

vecteur. Il ne s'annule même que dans ce cas, si, du
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moins, on suppose, comme nous le ferons dans la suite,
que les intensités de la masse et du vecteur sont
différentes de zéro. En conséquence, la relation

Xx + Yy + Zz =0
exprime la condition nécessaire et suffisante pour que la
masse m soit concentrée en un point de la ligne d'action
du vecteur P.

D'après cela, lorsqu'on regarde X, Y, Z comme les
coordonnées homogènes d'une droite et x, y, z comme les
coordonnées homogènes d'un point, l'équation précédente

exprime que ce point et cette droite sont unis. Dès

lors, si l'on convient de regarder X, Y, Z comme des

variables, cette équation représente le point admettant x,
y, z pour coordonnées ponctuelles ; elle représente, au
contraire, la droite ayant X, Y, Z pour coordonnées-
lignes, lorsque x, y ,z sont les variables.

9. Masses cycliques. — La formule qui donne le carré
de l'intensité d'un vecteur est, actuellement, susceptible
d'une interprétation importante.

Il résulte, en effet, du paragraphe 4 que les points
cycliques du plan sont caractérisés, en coordonnées-lignes,

par les équations
X eiB + Y e-iA - Z O,

X e~iB + Y eih- - Z O,

de sorte que les coordonnées homogènes de ces points
sont respectivement proportionnelles aux quantités

em, e~iA, — 1

e-iB, eiA, — 1.

Considérons alors deux masses y et y.", admettant
respectivement pour coordonnées

x' em, y' — e~ik, z' — 1,

x" e-iB, y" eiA, z" -1
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Elles sont évidemment concentrées aux points cycliques

et, pour cette raison, seront appelées les masses

cycliques. De plus, si l'on calcule, par exemple, l'intensité

de la masse y' à l'aide de la formule du paragraphe 5,

on obtient

fi' -^j (eiB sin A + e-jAsinB — sin C)ri
ou, après des transformations évidentes,

y' 4" [sin (A + B) - sin C],ri
c'est-à-dire

y' O,

puisque la somme des angles du triangle de référence
est égale à deux droits.

Un calcul analogue montre que la masse y" s'annule
aussi, de sorte que les intensités des masses cycliques
sont nulles toutes deux.

Or, en tenant compte des notations qui viennent d'être
fixées, l'une des formules qui donne le carré de l'intensité

d'un vecteur P (§4) peut être mise sous la forme

P2 (X x' + Y y' + Z z') (X x" +Y y" + Z z"),

et comme les parenthèses du second membre représentent
les moments relatifs du vecteur P par rapport aux deux
masses cycliques, on peut énoncer le théorème suivant :

Le produit des moments relatifs d'un même vecteur par
rapport aux deux masses cycliques est égal au carré de

l'intensité de ce vecteur.

10. Coordonnées d'un couple. — Un couple de vecteurs
peut être assimilé à un vecteur nul ayant pour ligne
d'action la droite de l'infini du plan, le moment de ce

vecteur par rapport à un point quelconque du plan étant
précisément égal au moment du couple. Proposons-nous
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alors de déterminer les coordonnées d'un couple de
moment M.

Il suffit, dans ce but, de remarquer que le moment
relatif du vecteur équivalent au couple et d'une masse
quelconque m est égal au produit de l'intensité de cette
masse par le moment du couple. On aura donc, en
désignant par X, Y, Z les coordonnées du couple et par
x, y, z celles de m,

Xx + Yy + Zz=Mm,
ou, en remplaçant m par sa valeur (§ 5),

MX x + Y y + Z z j- (x sin A + y sin B + z sin C).

Cette relation devant être vérifiée quelles que soient les
valeurs de x, y, z, on aura nécessairement

X M sinA

Y M

Z M
H

Ces formules résolvent le problème proposé. Elles
montrent, de plus, que les coordonnées de la droite de l'infini
sont proportionnelles à sin A, sinB, sinC, de sorte que cette
droite est représentée, en coordonnées-points, par l'équation

x sin A + y sin B + z sin C 0.

11. Produit ponctuel de deux vecteurs. — Considérons
deux vecteurs P et P' dont les lignes d'action se rencontrent

en un point m que nous supposerons tout d'abord
à distance finie. Nous désignerons alors, sous le nom de

produit ponctuel de P par P' et nous représenterons par
le symbole

(P,P')

H
sin B

H
sin C
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une masse concentrée au point m et dont l'intensité est

égale, en valeur absolue, à l'aire du parallélogramme
qu'on peut construire sur ces deux vecteurs après qu'on
les a déplacés sur leurs lignes d'action de manière que
chacun d'eux admette pour origine le point m. De plus,
cette masse sera considérée comme positive dans le cas
où le sens de rotation de P par rapport à un point situé à

l'intérieur du parallélogramme précédent sera lui-même
positif, tandis qu'elle sera négative dans le cas contraire.

Il est essentiel de remarquer que cette notion de produit

ponctuel n'est pas identique à celle du produit
vectoriel telle qu'elle est définie dans l'édition française
de Y Encyclopédie des sciences mathématiques1. La première
fait intervenir, en effet, une masse ponctuelle liée à un
point parfaitement déterminé, ce qui n'est pas le cas
de la deuxième.

Il résulte, de la définition même du produit ponctuel,
que le produit de P par P' est égal, mais de signe
contraire, au produit de P' par P :

(P, P') - (P', P).

En particulier, le produit ponctuel d'un vecteur par
lui-même est égal à zéro :

(P, P) O.

Si, d'autre part, on désigne par « l'angle formé par les
deux vecteurs, l'intensité de la masse m qui représente
le produit ponctuel est donnée, en valeur absolue, par
la formule

m P P' sin a.

Par conséquent, lorsque les deux vecteurs P et P'
sont parallèles, leur produit ponctuel est représenté par
une masse nulle rejetée à l'infini.

1 Tome IV, volume 2, fascicule 1.
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Revenant au cas général de deux vecteurs quelconques,
considérons un axe £ qui coïncide avec la ligne d'action
de P, le sens positif choisi sur cet axe étant d'ailleurs
arbitraire. Soit § l'abscisse du point m mesurée sur cet axe,
à partir d'une origine fixe quelconque O, et désignons
encore par M' le moment de P' par rapport à O et par Pf
l'intensité du vecteur P prise avec le signe plus lorsque ce

vecteur a même sens que l'axe envisagé. On vérifie alors,
sans aucune difficulté, que l'on a, en tenant compte des

signes,

m £ Pf M'.

Imaginons alors que l'on décompose P' en un nombre
quelconque de vecteurs composants Pi', P2', ...P/, ...PJ
formant un système que nous désignerons par S' pour
abréger le langage, puis formons les produits ponctuels
de P avec chacun des vecteurs de ce système. Le produit
ponctuel de P par P/ est représenté par une masse m,
concentrée en un point de l'axe OJ dont l'abscisse vérifie
l'équation

mt h Pf M/,
dans laquelle M/ représente le moment de P/ par
rapport à O. Par suite

2 mt £,. Pf 2 M/,
i 1

et comme, en vertu du théorème des moments,

W 2 M/
1

on aura nécessairement,
n
2 mt S, m'ê.

Cette équation devant être vérifiée quelle que soit
l'origine choisie sur la ligne d'action de P, on en conclut
que le produit ponctuel (P,P') s'obtient en composant
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les produits partiels (P,P,-') comme des masses
ordinaires.

On démontrerait d'une manière analogue que, pour
déterminer (P,P'), il suffit encore, après avoir remplacé
P par un système équivalent quelconque S constitué par
les vecteurs Pi, P2, ...P,, ...P„, de former tous les produits
partiels (P,,P'), puis de les composer comme des masses
ordinaires. Par suite, il est bien évident qu'on arrive
encore au même résultat lorsqu'après avoir remplacé
simultanément P et P' par les systèmes S et S' on forme
tous les produits partiels tels que (P,,Pk') et qu'on les compose

comme des masses.
Il est facile, en tenant compte de ces résultats, de

déterminer les coordonnées du produit ponctuel de deux
vecteurs quelconques.

Désignons, en effet, par X, Y, Z et par X', Y', Z' les
coordonnées ou composantes des vecteurs P et P' par
rapport au triangle de référence précédemment choisi,,
et remarquons que X, Y, Z forment un système équivalent
à P, tandis que X', Y', Z' forment un système équivalent
à P'. De la sorte, on est conduit à former les produits de

chacune des composantes de P avec chacune des composantes

de P'.
Or, on a évidemment

(X, X') (Y, Y') (Z, Z') O.

D'autre part,

(Y, Z') - Y Z' sin A,
(Z, Y') - Z Y' sin A.

D'ailleurs, les masses qui représentent ces deux
derniers produits sont concentrées toutes deux au sommet A
du triangle de référence et peuvent être remplacées par
une masse unique ayant

(Y Z' - Z Y') sin A
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pour intensité. Les coordonnées x-,, ylt zx de cette masse
auront donc pour valeurs, en désignant par h la hauteur
du triangle qui correspond au sommet A,

xi h sin A (Y Z' — Z Y')
pi O,

zi =0.
Mais on reconnaît facilement que le produit h sin A

est précisément égal à la quantité H introduite
précédemment (§5) et les formules précédentes peuvent
s'écrire :

xi H (Y Z' - ZY'),
m o,
zx O.

Un calcul semblable au précédent montrerait que les

produits (Z, X') et (X, Z') donnent lieu à une nouvelle
masse ayant

xg 0,
y, H (Z X' - X Z'),
z% 0.

pour coordonnées ; et qu'enfin (X,Y') et (X',Y) donnent
une masse ayant pour coordonnées

Xs 0,
y» 0,
za H (X Y' - X' Y).

En conséquence, les coordonnées du produit ponctuel
(P, P') sont données par les formules suivantes

x H (Y Z' - Z Y'),
y H (Z X' - X Z'),
z H(XY' - YX'),

qui doivent être considérées comme fondamentales.
Comme application de ces formules, cherchons la con-
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dition de parallélisme de deux vecteurs et, par suite, de

deux droites.
L'intensité du produit (P, P') est par définition

P P' sin «,
mais elle est aussi donnée par la formule

m t— (x sin A + y sin B + z sin C).ri
On aura donc en égalant ces deux expressions, après

avoir remplacé dans la seconde x, y, z par les valeurs
obtenues

PP' sin « sin A(YZ'-ZY') + sinB(ZX' -XZ')
+ sin C (X Y' — Y X').

Par suite, la condition de parallélisme des vecteurs
P et P' ou des droites correspondantes est exprimée par
la relation

Sin A (Y Z' - Z Y') + sin B Z X'- X Z')
+ sinC(XY' - YX')=0

ou, ce qui revient au même,

sin A sin B sin C

X Y Z =0
X' Y' Z'

12. Produit vectoriel de deux masses. — Au produit
ponctuel de deux vecteurs on peut faire correspondre
dualistiquement une notion nouvelle que nous définirons
de la manière suivante :

Considérons deux masses m et m' situées à une distance

r l'une de l'autre. Nous appellerons produit vectoriel de

m par m' et nous représenterons par le symbole

[m, m']
un vecteur P ayant la droite de jonction de m et de m'
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pour ligne d'action, et pour intensité le produit
m m' r.

De plus, nous admettrons que ce vecteur a pour sens
celui qui va de m vers m' lorsque le produit algébrique
m m' est positif, tandis qu'il aura le sens de m' vers m
dans le cas contraire.

Il résulte de cette définition que le produit vectoriel
de m par m' est égal et directement opposé au produit
de m' par m. En particulier, le produit vectoriel d'une
masse par elle-même est donc nul :

[m, m] 0.

Des considérations élémentaires montrent immédiatement

que la projection du produit vectoriel de m par m'
sur un axe quelconque § passant par m est égale, en
valeur absolue, au produit de m par le moment statique
de m' relativement à un axe perpendiculaire à £, mais
passant encore par m. A l'aide de ce résultat et en
procédant exactement comme dans le cas du produit ponctuel,

on démontre bien simplement que si l'on désigne

par x, y, z et x', y', z' les coordonnées de m et de m'
relativement au triangle A, B, C, les coordonnées X, Y, Z
du produit ponctuel de ces masses sont données par les
formules

x 1

~H
Y

1

~H
Z

1

"H

y z -zy
Z X — X z

xy -yx
qui doivent aussi être considérées comme essentielles.

13. Lorsqu'on remplace dans les formules précédentes
les coordonnées des masses m et m' par celles des masses
cycliques, définies au paragraphe 9, on obtient, après
des réductions évidentes,
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sin A
X=-2i-jr-

sin B
: 2i

2i
H ;

sin C

H '

Il résulte immédiatement de là que le produit vectoriel
des masses cycliques se réduit à un couple dont le moment
est égal à 2 i.

Ajoutons encore qu'on déduirait facilement, des mêmes
formules, l'expression du carré de la distance qui sépare
deux points définis par leurs coordonnées homogènes.

14. Produit scalaire de deux vecteurs. — Rappelons
qu'on désigne sous le nom de produit scalaire ou de

produit intérieur de deux vecteurs P et P' le nombre
réel T défini par le produit de la longueur de P, par la
longueur de P' et par le cosinus de l'angle a des deux
vecteurs :

T P P'cos a.
On démontre alors immédiatement que le produit

scalaire de P par P' est égal à la somme algébrique des

produits scalaires de P par des vecteurs formant un
système équivalent à P'. En raisonnant comme dans les
deux cas précédents, on établit sans difficulté la formule
suivante, dans laquelle X, Y, Z et X', Y', Z' représentent

encore les coordonnées de P et de P',
T X (X' - Y' cos C - Z' cos B)
+ Y (Y' - Z'cos A — X' cos C)

+ Z (Z' - X' cos B - Y' cos A),
ou aussi

T X' (X - Y cos C - Z cos B)
+ Y' (Y — Z cos A - X cos C)

+ Z' (Z - X cos B - Y cos A).
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Si d'ailleurs on pose, pour simplifier l'écriture,

-Q -i [x2+Y2+Z2-2 YZcosA-2Z X cosB-2XY cose]

et

îi' y (X'8 + Y'2+Z'2 -2Y'Z'cosA-2Z'X' cosB-2X'Y' coscY

on vérifie facilement que l'on a encore

1_AòX7 +%Y'+i VU'
et, aussi,

T X òX + Y ^Y+ Z
ôZ

Il résulte immédiatement de ces formules que la
condition de perpendicularité de deux vecteurs, ou de deux
droites définies par leurs coordonnées homogènes, peut
être mise sous l'une ou l'autre des formes suivantes :

et

X SX7 + Y
ôY7 + Z

ô Z' - °'

ô îi ¦ ò îi ô ß _x ^x + Y ^y+ z n~a
D'autre part, si l'on désigne, comme nous l'avons déjà

fait, par x', y', z' et x", y", z" les coordonnées des masses
cycliques, la quantité îi qui représente la moitié du carré
de l'intensité de P peut, d'après le paragraphe 9, être
mise sous la forme

îi i (X x' + Y y' Z z') (X x" + Y y" + Z z").

Remplaçant alors îi par cette valeur dans la dernière
des expressions données pour T, on obtient, après des

réductions évidentes.
2 T (X x' + Y y' + Z z') (X' x" + Y' y" + Z' z")

f (X x" + Y y" + Z z") (X' x' + Y y' + Z' z')
Cette formule, qui généralise celle du paragraphe 9,
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s'interprète aisément, puisque les diverses parenthèses
du second membre représentent les moments relatifs des
vecteurs P et P' par rapport à chacune des masses
cycliques.

15. Coordonnées d'un déplacement. — La théorie des
coordonnées d'une masse trouve une application immédiate

et essentielle pour la suite dans l'étude du déplacement

infiniment petit d'une figure plane de forme
invariable.

Considérons, en effet, une pareille figure et admettons
qu'elle subisse, dans son plan, un déplacement arbitraire,
mais infiniment petit. On sait qu'un tel déplacement
peut toujours être obtenu en faisant tourner la figure
d'un angle infiniment petit m autour d'un point que nous
désignerons également par a et qu'on appelle le centre
de rotation. De plus, il est naturel de faire correspondre
à ce déplacement une masse fictive concentrée au centre
de rotation, l'intensité de cette masse étant précisément
égale à l'angle a, qui doit alors être regardé comme
positif dans le cas où la rotation correspondante s'opère
dans le sens positif, et comme négatif dans le cas
contraire. Dans ces conditions, la projection du déplacement
d'un point quelconque de la figure sur un axe passant
par la position initiale de ce point est égale, en grandeur
et signe, au moment statique de cette masse fictive
relativement à l'axe considéré. Cette projection dépend donc
uniquement de l'axe envisagé et non du point particulier
de la figure qu'on a choisi sur cet axe ; pour cette raison,
il est indifférent de l'appeler le déplacement du point
ou de la figure suivant cet axe.

Ces principes rappelés, admettons que l'on ait choisi,
dans le plan de la figure mobile, un triangle de

référence qui, cela est bien entendu, ne participe pas aux
déplacements que peut prendre cette figure.
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La masse fictive qui correspond à l'un quelconque des

déplacements de la figure, masse que nous désignerons
sous le nom de rotation, peut alors être définie analyti-
quement à l'aide de ses coordonnées x, y, z relativement
à ce triangle. Par suite, les quantités x, y, z peuvent être
regardées comme les coordonnées du déplacement lui-
même. Au reste, ces coordonnées ont une signification
géométrique simple : l'une quelconque d'entre elles est
égale, en effet, au déplacement que subit la figure suivant
l'axe correspondant.

On sait, d'autre part, que les rotations se composent
entre elles comme des masses ordinaires. Si donc la figure
subit, successivement ou simultanément, des rotations
en nombre quelconque, les coordonnées du déplacement
résultant sont données par les formules

n
X .2 X,

.1

n
y 2yt.

z v
1

où l'on a désigné par x,, y{, z, les coordonnées de l'une
quelconque des rotations composantes.



THÉORIE DES DÉFORMATIONS DES SYSTEMES ÉLASTIQUES 81

CHAPITRE II

Coniques d'élasticité de deux sections d'une poutre à

fibre moyenne plane.

16. Considérons tout d'abord, et dans le seul but de

fixer les idées, une poutre à fibre moyenne plane
assujettie à des liaisons arbitraires, et désignons par S' et S"

deux sections déterminées mais quelconques de cette
poutre.

Une force arbitraire F étant appliquée en un point
invariablement lié à la section S' par exemple, ce que
nous exprimerons en disant que F agit dans cette section,

proposons-nous en premier lieu d'étudier le déplacement
subi par S".

A cet effet, désignons par X, Y, Z les coordonnées de F
relativement à un système de trois axes u, v, w formant
un triangle de référence et, pour simplifier les notations
qui vont être fixées, convenons de faire correspondre
respectivement les indices 1, 2 et 3 à ces axes u, v, w. En
vertu d'une hypothèse fondamentale de la résistance des

matériaux, le déplacement subi par S" peut toujours
être assimilé à une rotation w", dont les coordonnées,
relativement au triangle de référence seront désignées

par x", y" et z". Si d'ailleurs on désigne d'une manière
générale par alt" le déplacement que subit, suivant l'axe k,

un point quelconque de cet axe lorsqu'il est. supposé
invariablement lié à la section S" et qu'une force unité
agissant dans S' est appliquée dans la direction positive
de l'axe i, le principe de la superposition des effets des

forces montre immédiatement que l'on a
50-182 6
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x" a"n X + a"n Y + a"31 Z,
(1) y" a"« X + tfn Y + a",« Z,

z" a"13 X + a"« Y + a"» Z.

Inversement, si l'on suppose ensuite la force F (X,Y,Z)
appliquée dans S", la section S' subit un nouveau
déplacement assimilable encore à une rotation w'. Il est visible,
de plus, qu'on aura, en désignant par x', y', z' les coordonnées

de cette rotation,
x' a'u X + a'n Y + a'31 Z,

(2) y'= a'12X + a'^Y.-fa'^Z,
z' a'13 X + a'w Y + a'33 Z.

Dans ces nouvelles formules, un coefficient tel que a\t
représente le déplacement que subit suivant l'axe i un
point quelconque de cet axe lorsqu'on le suppose
invariablement lié à S' et qu'une force unité, agissant dans S",
est appliquée suivant la direction positive de l'axe k.

Or, le théorème de' Maxwell sur la réciprocité des

déplacements montre immédiatement que l'on a, quels
que soient les indices i et k,

(3) a'ik d'hi.
Si donc on pose, en premier lieu,

(4) a'a + a"ih 2 Aik
a ih — o. ik 2 Bu

ou, ce qui revient au même,
(5) a'ik'— Aih + Bik,

a ik Aik — B*-*

on a
(6) Aik Ah

B,-* — B*,-,

ce qui entraîne, en particulier,
Bu O.

En posant encore
X An 2\. + Agi x + -1V31 Là9

(7) y Au X + A.B Y + AM Z,
z Ajg X + A23 Y + A33 Z.,
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et
S Bu X + Ba Y + B,! Z,

(8) t] Bu X + Bœ Y + Bs, Z,
C Ba X + B^ Y -r Bjs Z,

il résulte immédiatement des relations (5) que les
formules (1) et (2), qui définissent les rotations w' et m"

peuvent être mises respectivement sous les formes
suivantes :

x' x +
(9) y' y + v >

z' =z + C,
et

x" x — £

(10) y"=y-v,
Z" Z - f

Or, les quantités x, j/, z peuvent être envisagées comme
les coordonnées d'une nouvelle rotation w qui, en raison
de propriétés que nous indiquerons plus loin, peut être
qualifiée de rotation principale. On peut d'ailleurs
remarquer immédiatement que cette rotation ne change
pas lorsque, sans changer la force F, on intervertit les
rôles des deux sections S' et S". Dans cette hypothèse,
en effet, les coefficients a'« et d'ik sont permutés, mais
cette permutation ne produit aucun effet sur les coefficients

Ai* et, par suite, sur les quantités x, y, z.
D'autre part, les quantités § r; Ç peuvent également

être envisagées comme les coordonnées d'une deuxième
rotation d qui sera dite la rotation auxiliaire. Comme la
permutation dont il vient d'être question transforme
B« en — B«, on voit que les coordonnées de cette
rotation ne font que changer de signe lorsque, sans changer

F, on intervertit les rôles de S' et de S". En d'autres
termes, à la suite de cette inversion, le sens de la rotation
auxiliaire est changé, mais elle s'effectue toujours autour
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du même point et conserve la même valeur absolue.
En tenant compte des définitions qui précèdent, les

formules (9) et (10) donnent alors lieu à des interprétations

essentielles :

En premier lieu, il résulte des relations (9) que la
rotation m' subie par S', lorsque F agit dans S", est la
résultante de la rotation principale w et de la rotation
auxiliaire qui correspondent à F. Au contraire, lorsque
F agit dans S', les formules (10) montrent que la rotation
to" de S" s'obtient en composant la même rotation
principale avec une nouvelle rotation auxiliaire qui ne diffère
de la précédente que par le changement de son sens.
En d'autres termes, on a symboliquement

(«') (w) + (fl),
(«') <«) -(e).

Dans ces conditions, le déplacement que subit l'une
quelconque des sections S' ou S", dans le cas où une
force F est appliquée dans l'autre, dépend d'une manière
très simple de la rotation principale et de la rotation
auxiliaire qui correspondent à cette force. D'ailleurs,
comme nous allons le montrer, la rotation principale
dépend elle-même d'une conique dont le rôle est analogue
à celui de l'ellipse d'élasticité, tandis que la rotation
auxiliaire conduit précisément à l'élément nouveau auquel
nous avons déjà fait allusion.

17. Première conique d'élasticité d'un ensemble de deux
sections. — Pour obtenir cette conique, cherchons
l'enveloppe des lignes d'action des forces qui passent par la
rotation principale correspondante. Il suffit d'exprimer
que le moment relatif de F et de w est égal à zéro :

Xx + Yy + Zz=0.
Or, si l'on remplace, dans cette relation, x, y, z, par les
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valeurs données par les formules (7), on obtient, puisque
**-ik :== A-ki,

(11) Au X« + An Y2 + A33 Z2 + 2A12XY + 2 A23 YZ
+ 2A31ZX 0

Mais si l'on envisage les quantités X, Y et Z comme les
coordonnées homogènes de la ligne d'action de F, cette
équation représente une conique qui sera dite la première
conique d'élasticité relative à l'ensemble des deux sections
S' et S".

D'autre part, les coordonnées du pôle de la ligne
d'action de F relativement à cette conique sont
respectivement proportionnelles aux quantités

Au X + A21 Y + A31 Z,
Aj2 A. + A22 I + A32 L.,

Aa X + A23 x -(- A33 Ih,

c'est-à-dire aux coordonnées de m; de sorte qu'on peut
énoncer le théorème suivant :

Le point autour duquel s'opère la rotation principale
coïncide avec le pôle de la ligne d'action de la force
relativement à la première conique d'élasticité.

Pour déterminer ensuite l'intensité de la rotation
principale, remplaçons, dans la formule du paragraphe 5,

qui donne l'intensité d'une masse quelconque, les
coordonnées de cette masse par celles de m. On obtient
immédiatement

ta X Xo + Y y0 + Z z0

où l'on a posé, pour simplifier,

x0 n Au sin A + A12 sin B + A13 sin C j,

y0 — (A21 sin A + Aa2 sin B + A» sin CJ,

Zo p A31 sin A + A32 sin B + A^ sin C
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Mais les quantités x„, y0, z0 peuvent être envisagées
comme les coordonnées d'une masse ou d'une rotation,
que nous désignerons par ta,, et qui est complètement
indépendante de la force F. Dans ces conditions, la
formule obtenue s'interprète immédiatement et conduit au
théorème suivant :

L'intensité de la rotation principale est égale au moment
relatif de la force correspondante et de la rotation fixe »0.

D'autre part, il résulte des formules (7) que ta0 est la
rotation principale qui correspond à une force admettant
pour coordonnées

sin AX H
sin B

H
sin C

H
Or, cette force se réduit à un couple de moment unité,

de sorte que la rotation w0 s'opère autour du centre de la
première conique d'élasticité.

18. Vecteur auxiliaire d'un ensemble de deux sections. —

Si l'on tient compte de la relation (6),

B,t — B4l,

les formules (8) qui définissent la rotation auxiliaire 6

peuvent être mises sous la forme suivante :

£ Y B2i — Z Bis,
Tj Z B32 — X Bai,
C X B13 — Y B^.

Si donc on pose

B32 H P,
Bu H Q,
B21 HR,
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on aura
§ H (Y R - Z Q),

(12) iî H(ZP -XR),
C H (X Q - Y P).

Mais les qiîantités P, Q, R peuvent être envisagées
comme les coordonnées d'un vecteur qui dépend
essentiellement de l'ensemble des deux sections S' et S" et qui
pour cette raison sera dit le vecteur auxiliaire relatif à ces
sections. De plus, nous le désignerons toujours par la
lettre G. La comparaison des formules obtenues avec
celles du paragraphe 11, qui donnent les coordonnées du
produit ponctuel de deux vecteurs, permet alors d'énoncer
le théorème suivant, qui doit être considéré comme
essentiel :

La rotation auxiliaire qui correspond à une force
quelconque F se confond avec le produit ponctuel de cette force

par le vecteur auxiliaire G.

En d'autres termes, et en tenant compte des notations
fixées, on a, en grandeur et en position,

e (F, G).

Il résulte en particulier de là que la rotation auxiliaire
s'opère autour du point de rencontre de la ligne d'action
de la force F et de la ligne d'action du vecteur G. Cette
rotation est donc toujours située sur une droite fixe et
ne peut, comme la rotation principale, prendre des
positions quelconques dans le plan.

D'autre part, la rotation auxiliaire s'annule lorsque la
ligne d'action de F se confond avec celle de G. Par suite,
les deux rotations désignées par <»' et par ta" deviennent
identiques et s'opèrent autour du pôle g de la ligne
d'action de G par rapport à la première conique d'élasticité.

On peut encore remarquer que, lorsqu'on intervertit
les rôles des deux sections S' et S", les coordonnées du
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vecteur G ne font que changer de signe. Si donc ces deux
sections coïncident, ce vecteur s'évanouit de même que
la rotation auxiliaire. La rotation principale subsiste
seule et la première conique d'élasticité se confond avec
la conjuguée de l'ellipse d'élasticité de la section
considérée.

19. Inversion des formules fondamentales. — Les
développements qui précèdent permettent de déterminer
géométriquement la rotation subie par l'une quelconque
des sections S' ou S" dans le cas où une force donnée est
appliquée dans l'autre. Le problème inverse, qui a pour
objet la recherche de la force qu'il est nécessaire d'appliquer

à l'une de ces sections pour produire une rotation
donnée de l'autre, est tout aussi important et conduit,
comme nous le verrons, à des propriétés dualistiques
intéressantes. Sa solution dépend des équations fondamentales

(1) et (2) qu'il suffirait de résoudre par rapport aux
quantités X, Y, Z en tenant compte des relations de

réciprocité exprimées par les formules (3). Mais, auparavant,
il est préférable de changer quelque peu les notations
utilisées jusqu'ici.

Tout d'abord, une force quelconque sera désignée
dorénavant par F' ou par F", suivant qu'elle agira dans
la section S' ou dans la section S", les coordonnées de F'
étant alors représentées par X', Y', Z' et celles de F "par
X", Y", Z". Quant à la rotation produite par l'une ou
l'autre de ces forces, on la désignera indifféremment par ta,

ce qui ne peut donner lieu à aucune ambiguïté, car il
reste entendu qu'à une force F' correspond une rotation
de S" et à une force F" une rotation de S' ; enfin, les
coordonnées de w seront désignées par x, y et z.

En tenant compte de ces modifications et des relations
(3), les formules (1) et (2) peuvent alors être mises
respectivement sous les formes suivantes :
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x an' X' + < Y' + a13' Z',
y an' X' + a22' Y' + Ö23' Z',
z=a31'X' + a32'Y' + a*,' Z',

et
x au' X" + a21' Y" + a31' Z",
y a12' X" + a22' Y" + a32' Z",
z aj X" + a23' Y" + Ö33' Z".

Or, les tableaux des coefficients de ces deux groupes
de'formules ne diffèrent l'un de l'autre que par le
changement des lignes horizontales en colonnes et
réciproquement. Si donc on résout le premier groupe par rapport
à X', Y', Z' et le second par rapport à X", Y", Z", on
obtient des solutions pour lesquelles le même fait se

reproduit et qui sont nécessairement de la forme suivante :

(13)

et

(14)

Si donc, par analogie avec les transformations opérées-
au paragraphe 16, on pose, en premier lieu,

(15) bik + bki — 2 aa,
b — bki 2 ßik,

ou, ce qui revient au même,

bik aik + ßik,
bki «»* ßik 3

on a nécessairement •
(16) ciik — a.hi,

ßik — — ßki,

ce qui entraîne, en particulier,

X' 6n x + 621 y + 631 z,
Y' 612x + b^ y + 6^ z,
Z' 6i3 x + 633 y + 633 z,

X" 6U x + 612 y + 613 z,
Y" 621 x + 622 y + 623 z,
Z" 631 x + 632 y + 633 z.
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ß» O.

En posant ensuite

X «u x + «a y + or» Z,
(17) Y «12 x + «a y + «gjZ,

Z «ja X + «23 y + ftgjZ,
ct

XI /îux + ßny + ßsxZ,
(18) Y1 /î12x + /922y + /9wz,

Zi=-/S13x + ß^y + /î» z,
on voit immédiatement que les formules (13) et (14)
peuvent être mises sous les formes suivantes :

X' X + xlt
: (19) Y' Y + YX,

Z' Z + Zx,
et

X" X - xlt
(20) Y" - Y - Ylf

Z" - Z - Yx.
Or, les quantités X, Y, Z peuvent être envisagées

comme les coordonnées d'une nouvelle force F qui, en
raison des analogies qu'elle présente avec la rotation
principale sera dite la force principale. Cette force ne
change pas lorsque la rotation w reste la même et qu'on
intervertit les rôles des sections S' et S" ; car, dans cette
hypothèse, les coefficients aik et au sont permutés, ce

qui ne donne lieu à aucun changement, puisqu'ils sont
égaux.

D'autre part, les quantités Xls Ylt Zx peuvent aussi
être envisagées comme les coordonnées d'une deuxième
force Fi qui sera dite la force auxiliaire. Comme la
permutation dont on vient de parler transforme ßik en — ßih,
les coordonnées de cette force changent de signe lorsque,
sans changer w, on intervertit les rôles de S' et de S"«
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En d'autres termes, cette inversion change le sens de la
force auxiliaire sans changer ni l'intensité ni la ligne
d'action de cette force.

En tenant compte de ces résultats, les formules (19)
et (20) donnent alors lieu aux interprétations suivantes :

En premier lieu, les relations (19) montrent que la
force F' qui doit être appliquée dans S' pour que S"

subisse une rotation donnée w est la résultante de la
force principale F et de la force auxiliaire qui correspondent

à ta. D'après les équations (20), en revanche, la
force F" à appliquer dans S" pour que S' subisse la même
rotation ta, s'obtient en composant la même force
principale F avec une force auxiliaire qui ne diffère de Fx

que par le sens. En d'autres termes, on a symboliquement

(F') (F) + (F,),
(F") (F) - (F,).

20. Deuxième conique d'élasticité d'un ensemble de

deux sections. — Pour obtenir cette deuxième conique,
cherchons le lieu des centres de rotation ta qui sont
situés sur les forces principales correspondantes. En
employant une méthode dualistique de celle qui a été
suivie au paragraphe (17), on obtient immédiatement
pour l'équation de ce lieu, en coordonnées ponctuelles,

«ux2 + «ggi/2 + a^z2 + 2dnxy + 2criäyz + 2a31zx =s O.

Ce lieu est donc encore une conique, qui sera dite la
deuxième conique d'élasticité relative à l'ensemble des

deux sections S' et S".

Les coordonnées de la polaire, par rapport à cette
conique, du centre de rotation w étant alors proportionnelles

aux quantités
«11 X + «21 y + «31 z,
Ct12 X + a^ y + «32 Z,

«13 X + «ja y + «33 Z,
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c'est-à-dire aux coordonnées de F, on peut énoncer le
théorème suivant :

La ligne d'action de la force principale coïncide avec la
polaire de la rotation ta par rapport à la deuxième conique
d'élasticité.

Si l'on désigne ensuite par x0', y0', z0' les coordonnées
de la rotation &>„' pour laquelle la force principale
correspondante se réduit à un couple de moment-unité, on aura

sin A
_— «U Xq + «21 i/o + «31 ZqH

sin B
H

sin C

— — «J2 x0 + «22 y0 + «32 z0

«13 ¦*-<> T «23 y« T «33 ZqH
Mais on déduit bien facilement de là, en tenant compte

des formules (17) et du fait que aik aki

sf, (x sin A + y sin B + z sin C) X x0' + Y y0' + Z z0'.

Par suite, le moment relatif de la force principale et de
la rotation w0' est précisément égal à l'intensité de la
rotation correspondante. Comme la ligne d'action de la
force principale qui correspond à une rotation donnée
est connue, en vertu du théorème énoncé plus haut, la
propriété qu'on vient d'obtenir permet alors de
déterminer l'intensité et le sens de cette force principale. Il
est évident, d'ailleurs, que le point autour duquel s'opère
la rotation «0' coïncide avec le centre de la deuxième
conique d'élasticité.

21. Masse auxiliaire d'un ensemble de deux sections. —
Si l'on tient compte de la relation

ßik — ßki,
les formules (18) qui définissent la force auxiliaire prennent

la forme
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Xi ßii y — ß13 z,

* 1 ß$L z ßil x,
Zi i?« x - ßa y.

Mais, en posant

elles deviennent

fl — P
P32 tt'
R — 1
ßxz- W
ßiX TT'

xi h (yr - zq),

Y^^zp-- x r),

Z, g (x q - y p)-

Or, les quantités p, q et r peuvent être envisagées
comme les coordonnées d'une masse fixe qui sera dite
la masse auxiliaire relative à l'ensemble des deux sections
S' et S". Dans ces conditions, les formules obtenues
permettent d'énoncer le théorème suivant.qui est évidemment

le corrélatif de celui du paragraphe 18 :

La force auxiliaire qui correspond à une rotation
quelconque se confond avec le produit vectoriel de cette rotation

par la masse auxiliaire.
Il résulte en particulier de là que la force auxiliaire

passe par un point fixe, qui est le point de concentration
de la masse auxiliaire et par le point autour duquel
s'opère la rotation donnée. Enfin, il résulte encore des

propriétés du produit vectoriel que, lorsque la rotation
s'opère autour du point de concentration de la masse
auxiliaire, la force auxiliaire s'annule.

On doit encore remarquer que dans le cas où l'on
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intervertit les rôles des deux sections S' et S", les
coordonnées de la masse auxiliaire ne font que changer de
signes. Si donc ces deux sections coïncident, cette masse
s'évanouit, de même que la force auxiliaire. La force
principale subsiste donc seule et la deuxième conique
d'élasticité se confond, comme la première, avec la
conjuguée de l'ellipse d'élasticité de la section considérée.
En d'autres termes, dans ce cas particulier, les deux
coniques d'élasticité se confondent.

22. Forme canonique des équations fondamentales. —

Pour mettre en évidence les relations de position qui
existent entre les deux coniques d'élasticité, ainsi qu'entre
le vecteur et la masse auxiliaires, il est utile de réduire les

équations fondamentales à la forme la plus simple
possible. On y parvient en choisissant les axes qui définissent
le triangle de référence de manière que u se confonde avec
la ligne d'action du vecteur G, tandis que v et w coïncident
avec les tangentes de la première conique d'élasticité
qui passent par les points réels ou imaginaires où elle est

coupée par l'axe u. Dans ces conditions, le sommet du
triangle de référence, qui est opposé à cet axe, se confond
avec le point désigné précédemment par g, et l'équation
de la première conique d'élasticité prend la forme plus-
simple

An X2 + 2A!SYZ 0
On a donc nécessairement, pour ces nouveaux axes

A22 A33 A12 A31 O,

de sorte que les formules (7) deviennent

x Au X,
y Ass Z,
z A23 Y.

D'autre part, puisque G coïncide avec u, on a
nécessairement
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Q R O,
d'où

Bi3 B21 O,

et les formules (8) deviennent

£ 0
t; Z B32,
C - Y B32.

Mais alors il résulte immédiatement de là et des
formules (9) et (10), qui sont équivalentes aux formules
fondamentales (1) et (2), que ces dernières se simplifient et
prennent respectivement les formes suivantes :

x" Au X,
y" — (A23 - B32) Z,
z" (AS3 -+ B32) Y,

et
x' Au X,
y' (A23 + B32) Z
z' (A28 - B32) Z.

En résolvant ces deux groupes d'équations par rapport
à X, Y, Z, on obtient, en tenant compte du changement
de notations indiqué au paragraphe 19,

Y' X—z,
A23 -f- Bs2

rj,
1

et
A23 — B3

Au

Y" z,As3 — B32

A23 + B32
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On déduit alors facilement de là que, dans le nouveau
système d'axes, les formules (17) et (18) qui définissent
la force principale et la force auxiliaire prennent
respectivement les formes suivantes :

X -r— x,Au

Y 1 *
+ î z,2 \Aî3 + B32 A23 — B32/

2 \A23 + B32 A23 — B3

et
Xi 0

Y.=i2 \A23 -|- B32 A23 — B3

y _ _ J_ / 1 1 \
2 \AM + B32 A28 - B32/ y'

Il résulte en premier lieu de ces formules que l'équation
de la deuxième conique d'élasticité se réduit à

Au "T" \A.3 + B32 +" A23 - B32/
V z — °>

de sorte que, comme la première, elle est tangente aux
axes v et w, aux points où ils sont rencontrés par u.

D'autre part, les coordonnées de la masse auxiliaire
ont pour valeurs

H / 1 1

P~ 2 U2" + B32 A23 - B32/ ' q ~ °' r ~ °'

¦et cette masse est concentrée au point g. En conséquence :

Les pôles de la ligne d'action du vecteur auxiliaire par
rapport aux deux coniques d'élasticité se confondent avec le

point de concentration de la masse auxiliaire.
Il convient d'ajouter que, comme cela résultera de la

suite, les deux coniques d'élasticité sont imaginaires. Ce

fait n'amène aucun inconvénient dans les applications,
puisqu'on pourra toujours introduire les coniques con-
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juguées qui deviennent réelles, à condition de remplacer
les notions de pôles et de polaires par celles d'antipôles
et d'antipolaires.

Enfin, il est encore nécessaire d'ajouter que tous les

résultats obtenus s'appliquent sans modifications à la
plupart des systèmes articulés plans qu'on rencontre dans
la pratique de l'art de l'ingénieur. Si l'on envisage, par
exemple, le cas d'un arc triangulé relié à un tablier supérieur

par l'intermédiaire de palées également triangulées,
il est clair que l'attache de l'une des palées et du tablier
ne peut plus être assimilée à un nœud ordinaire. Ses

dimensions sont en général finies et il est bien plus exact
de la considérer comme une pièce rigide sur laquelle
viennent s'articuler quelques-unes des barres du système.
Une telle pièce peut jouer le rôle de l'une des sections S'

ou S", et l'on est conduit de la sorte à envisager des
systèmes constitués par un certain nombre de pièces
infiniment rigides et de forme arbitraire sur lesquelles viennent

s'attacher, par l'intermédiaire d'articulations, les
barres proprement dites. Dans la suite de pareils systèmes
seront désignés sous le nom de systèmes articulés
complexes, les pièces rigides étant encore qualifiées de nœuds.
On peut d'ailleurs remarquer que, dans le cas où les centres

des articulations qui se trouvent sur un même nœud
coïncident et que cette condition est remplie pour tous
les nœuds du système, celui-ci se réduit à un système
articulé ordinaire.

D'autre part, le principe des travaux virtuels et toutes
les conséquences qui en découlent sont applicables aux
systèmes complexes. Pour qu'ils soient statiquement
déterminés, il faut donc et il suffit qu'ils soient librement
dilatables au sens défini par Maurice Lévy. Cela exige,
en particulier, que l'on ait

m + a 3 n,
m désignant le nombre des barres, a celui des liaisons

50-182 7
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simples et n celui des nœuds. Il est remarquable, de plus,
que le calcul des tensions puisse s'effectuer dans ce cas

par les procédés qu'on doit appliquer aux systèmes
ordinaires à trois dimensions, après qu'on les a représentés
dualistiquement sur le plan de l'épure et qu'ils ont été
réduits à leur figure fondamentale 1.

1 Voir : B. Mayor, Statique graphique des systèmes de l'espace,

Chapitre VI.
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CHAPITRE III.

Masses et vecteurs adjoints dans les systèmes articulés

complexes.

23. La première conique d'élasticité et le vecteur auxiliaire

définis au chapitre précédent ont d'étroites
relations avec un élément qui doit être envisagé comme une
extension de celui qu'on désigne fréquemment sous le

nom de poids élastique, mais qu'il nous a paru préférable
pour des raisons que la suite fera clairement comprendre,

d'appeler masse adjointe. A côté de cet élément, on
peut encore en introduire un deuxième qui n'a pas encore
été signalé, quoiqu'il se trouve relié au premier par le

principe de dualité et que son rôle soit tout aussi important.

Ces éléments interviennent dans la théorie des

poutres à fibre moyenne plane comme dans celle des

systèmes articulés complexes ; mais pour les définir nous
envisagerons tout d'abord ce dernier cas, qui ne demande

que des calculs élémentaires.
Convenons alors de désigner par S' et S" deux nœuds

quelconques d'un système articulé complexe et remarquons

que la rotation subie par l'un quelconque de ces

nœuds, lorsqu'une force F (X, Y, Z) est appliquée dans

l'autre, est encore donnée par les formules (1) ou (2) du

chapitre précédent, suivant que la force est appliquée à

S' ou à S". Or, les coefficients a',t et a"« qui figurai1 dans
ces formules et représentent les déplacements produits
par des forces-unités agissant suivant les axes u, v, w du

triangle de référence peuvent être mis sous des formes
très simples.

Admettons, en effet, que l'on ait attribué à toutes les
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barres du système des numéros d'ordre, les divers éléments
qui peuvent dépendre d'une même barre étant alors
caractérisés par un indice égal à son numéro d'ordre. C'est
ainsi que nous désignerons par /,-, ììt, E, la longueur, la
section et le module d'élasticité de la barre dont le numéro
d'ordre est précisément égal à i. Nous poserons, en outre,
pour simplifier l'écriture

(1) l<?
E,ß,

Désignons ensuite par U/, V/, W/ les tensions
produites dans cette même barre par des forces appliquées
au nœud S' et admettant respectivement pour
coordonnées

X= 1, Y=0, Z=0,
X=0, Y= 1, Z= 0.

X=0, Y=0, Z= 1.

Enfin, représentons par U,", V,", W," les tensions
produites par ces mêmes forces lorsqu'on les suppose
appliquées au nœud S"

Il résulte immédiatement d'une formule classique de
la théorie des déformations que les divers déplacements
a'n et d'it ont les valeurs suivantes :

a'u a"n 2y2 U/ U,",
a'22 a"22 2 y? V/ V,",
a'33=a"33 ^/f,2W/W1.",
a'12 a"21 2 y2 V,' U,",
a'„ a"32 2 y? W/ V,",

a'31=d\3=2y2\\' W,",
a'21= a"12 2 y,2 V," U/,
a'32=a"23 ^,«,2W,"V/,

(2;

13 a"sl 2y?\Jt"Wi',
le signe 2 représentant une somme qui doit être étendue
à toutes les barres du système.
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Si l'on pose enfin :

(3) a/ /,, U/, 6/ yt V/, c,. y/ W/,
a," y, U/', 6/' fu Y,", c, y{" W/',

et si l'on remplace les coefficients par les valeurs obtenues,

les formules (1) et (2) du chapitre II prennent, après
des transformations évidentes, !es formes suivantes :

x' 2 a/(X a," + Y 6," + Z r/'),
(4) y' 2 6/(X a," + Y 6," + Z c,"),

z' 2 c/(X a," + Y 6." + Z c/'),

et

x" 2 a,"(X a/ + Y 6/ + Z c/),
(5) y" ^ 6/'(X a/ + Y 6,' + Z c,'),

z" 2 c"(X a,' + Y 6/ + Z c/),

qui vont donner lieu à des interprétations essentielles.

24. Définition des masses adjointes. — Les quantités
a/, 6/, c/ peuvent être envisagées comme les coordonnées
d'une masse m/ qui dépend essentiellement de la barre h

et du nœud S' et qui, pour cette raison, sera désignée sous
le nom de masse adjointe de la barre /, par rapport au
uœud S'. De même, les quantités a", b", c," seront aussi

regardées comme les coordonnées d'une masse m," qui
sera dite la masse adjointe de /, par rapport au nœud S".

Comme les formules (4) ou (5) sont applicables à tous les
nœuds du système, à chaque barre correspondent ainsi
autant de masses qu'il y a de nœuds, et, réciproquement,
à chaque nœud correspondent autant de masses qu'il y
a de barres. Si d'ailleurs on est parvenu, par un procédé
quelconque, à déterminer toutes ces masses, le calcul du
système ne présente plus aucune difficulté et l'on peut
déterminer, à l'aide de procédés très simples, non
seulement la déformation qu'il subit sous l'action de forces



102 B. MAYOR

quelconques, mais encore les tensions engendrées dans
toutes les barres.

• Il résulte, en effet, du principe de la superposition des
effets des forces que l'on peut se borner à envisager le
cas où le système est sollicité par une force unique F
(X, Y, Z), appliquée, par exemple, au nœud S". La
rotation m 'subie par un nœud quelconque S' est alors
donnée par les formules (4) : mais les quantités

x/ a/ (X a," + Y 6," -h Z c,")

y/ 6/ (X a," + Y 6," + Z c/')
z/ c/ (Y a," + Y b," + Z c,")

peuvent être envisagées comme les coordonnées d'une
rotation partielle »,', qui s'opère évidemment autour du
point de concentration de la masse m/ et dont l'intensité
est égale au produit de m/ par le moment relatif de F
et de m". Cette rotation partielle peut donc être obtenue
très simplement lorsqu'on connaît les masses m/ et m," et,
comme elle dépend essentiellement de la barre /,, on
peut l'appeler la rotation partielle due à cette barre. Dans
ces conditions, la forme même des formules (4) permet
d'énoncer le théorème suivant :

La rotation subie par le nœud S' s'obtient en composant
les rotations partielles, dues aux différentes barres du
système, comme des masses ordinaires.

En d'autres termes, on a symboliquement

„,' 2 oi/ I m/ (F, m.")

Il convient de noter ici que la détermination de la
rotation ta', par le procédé qui découle de ces propriétés,
généralise la construction classique du centre du second

deyré de Culmann et la comprend comme cas particulier
1. Si l'on suppose, en effet, que le nœud S" se confonde

avec S', on voit immédiatement que le point autour duquel
1 Voir en particulier l'Edition française dc l'Ecyclopédie des sciences

mathématiques, tome VI, volume 2, fascicule 1, page 163.
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s'opère la rotation ta' se confond avec le centre du second

degré, par rapport à la ligne d'action de F, d'un système
de masses concentrées aux mêmes points que les masses
m/ et dont les intensités sont respectivement égales à m/2.

Cette remarque faite reprenons l'étude du cas général
où les nœuds S' et S" sont quelconques et remarquons
qu'en vertu du principe de la superposition des effets
des forces et de la définition des quantités U,", V,", W,",
la tension produite dans /, par la force F appliquée à S"

est donnée par l'expression

T,- X U," + Y V," + Z W/'

ou, en tenant compte des formules (3),

(6) T — (X a," + Y 6," 4- Z 6,") — (F. m")
l'i fu

En conséquence : La tension produite dans une barre

quelconque par une force appliquée en un nœud déterminé
est proportionnelle au moment relatif de cette force et de la
masse adjointe qui correspond à cette barre et à ce nœud. Si

donc, en particulier, la force F passe par le point de
concentration de la masse, la tension s'annule dans la barre
correspondante.

Dans le cas des systèmes librement dilatables, cette
dernière propriété conduit à une conséquence essentielle.

Admettons, en effet, que la force F soit appliquée au
nœud S" d'un système librement dilatable et qu'elle passe

par le point m", de manière que la tension s'annule dans /,-.

Appliquons alors le principe des travaux virtuels en
choisissant la déformation virtuelle du système, de manière

que la barre /, s'îllonge d'une quantité infiniment petite,
les autres barres du système conservant des longueurs
invariables. La somme des travaux des forces intérieures
s'annule, puisqu'elle se réduit au travail de la tension

produite dans /,. Il en est donc de même du travail de la
force extérieure F, ce qui exige que la rotation virtuelle
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de S" s'opère autour d'un point de cette force. Et comme
ce résultat subsiste quelle que soit la force F, pourvu
qu'elle passe par m", on en doit conclure que cette rotation
s'opère autour de m,". Dans ces conditions, on peut énoncer
la proposition suivante, qui réduit la recherche des masses
adjointes à de pures considérations cinématiques :

Lorsqu'une seule barre d'un système librement dilatable
s'allonge infiniment peu, les nœuds de ce système pivotent
autour des points de concentration des masses adjointes
correspondantes.

En partant des équations (4), on pourrait encore montrer

très simplement que de plus, les rotations subies par
les nœuds sont proportionnelles aux masses adjointes
correspondantes.

25. Masse polaire d'un vecteur ou d'une force. — Pour
mettre en évidence les relations qui existent entre les

masses adjointes et la première conique d'élasticité d'un
ensemble de deux nœuds, i) est nécessaire d'élargir, dans

un sens auquel il a été déjà fait allusion au paragraphe
précédent, la théorie du système antipolaire d'un ensemble

de masses. Cette extension entraîne quelques
modifications dans la terminologie adoptée jusqu'ici, modifications

que la suite justifiera complètement.
Considérons simultanément deux systèmes M' et M"

constitués chacun par un même nombre de masses
ponctuelles entre lesquelles se trouve établie une dépendance
telle qu'à chaque masse du premier système en corresponde

une et une seule du second et réciproquement.
On peut remarquer tout de suite que les systèmes
constitués par les masses adjointes qui correspondent à deux
nœuds quelconques S' et S" satisfont précisément à ces
conditions. Le nombre des masses de chaque système est
égal, en effet, à celui des barres ; de plus, deux masses
telles que m/ et m" sont relatives à la même barre Z, et
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doivent être considérées comme se correspondant l'une
à l'autre. Nous supposerons donc, ce qui ne diminuera
en rien la généralité des définitions qui suivent, que le

système M' est formé par l'ensemble des masses m/
relatives au nœud S', et le système M" par l'ensemble des

masses m," relatives à S". De plus, nous conviendrons de

dire, pour rappeler les liaisons établies entre ces masses,

que les systèmes M' et M" sont associés.

Soit alors P (X, Y, Z) un vecteur quelconque.
Transformons les masses du système M' en remplaçant chaque
masse telle que m/ par une masse nouvelle concentrée au
même point et dont l'intensité soit égale à la moitié du
produit de m/ par le moment relatif de P et de m". De
même, transformons les masses de M" en remplaçant
chaque masse telle que m," par une masse nouvelle
concentrée au même point et dont l'intensité soit égale à la
moitié du produit de m" par le moment relatif de P et
de m/. Si l'on compose enfin toutes ces masses nouvelles
d'après les règles ordinaires, on obtient une masse
ponctuelle résultante qui sera dite la masse polaire de P par
rapport aux systèmes associés M' et M".

Il résulte de cette définition même, et des notations
adoptées, que les coordonnées x, y et z de cette masse
polaire m sont données par les formules

x-12a/(Xa,"+Y 6/' + Zc,") + ±2a? (X a/ + Y 6/ + Z c,'),

(7) y=^Zbl'(Xai"+Yb;'+Zci'')+±2bi"(Xai'+Ybt'+Zc<'),

z=l^c/(Xa1"+Y6/' + Zc,")+l^c,"(X a/ + Y 6/+Zc/),

Or, si l'on envisage la conique représentée, en
coordonnées fangentielles, par l'équation
(8) ^ (a/ X + 6/ Y + c/ Z) (a," X + 6," Y + c," Z) O

ces formules montrent que la masse polaire m est concen-
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trée au pôle de la ligne d'action du vecteur P par rapport
à cette conique, ce qui justifie la terminologie introduite.
Cette conique sera dite la conique directrice de l'ensemble
des systèmes M' et M".

Si l'on désigne ensuite par x0, y0, z„ les coordonnées
de la masse polaire m0 qui correspond à un couple de

moment-unité, on obtient, après des réductions évidentes,

x0 — -rj 2 a/ m" + -k- 2 a" m/,

y0 l2b/ m(' + Ì2 6," m/,

z0 -^2 c/ m" + 2
2 c'" m¦''•

D'autre part, l'intensité de la masse polaire m du
vecteur P a pour expression

m =^2mi'(Xai"+Yb; + Zc,'')+^2mi"(Xat'+Yb/ + Zci'),

ou, en tenant compte des formules précédentes,

m — Xx„ + Yy0 + Zz0

En d'autres termes : l'intensité de la masse polaire d'un
vecteur est égale au moment relatif de ce vecteur et de la
masse polaire qui correspond à un couple de moment unité.

D'autre part, la théorie des moments quadratiques
peut être immédiatement étendue aux systèmes associés.

Soit, en effet, Px (X1 Yj^ Zx) un deuxième vecteur
arbitraire. Si l'on calcule à l'aide des formules (7) le moment
relatif de m et de Pi, on obtient

(Plf m) =^2(ai' X1+6/ Y1+c/Z1)(a/'X+6/'Y+G"Z) +

+ ±2 (a," Xj + 6," Y, + c," Z,) (a,' X + 6/ Y + c/ Z).

Cette expression est symétrique par rapport aux
vecteurs P et Pi ; elle doit être envisagée comme generali-
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sant la notion de moment centrifuge d'un système de

masses et nous la désignerons simplement sous le nom
de moment quadratique des systèmes associés par rapport
aux deux vecteurs P et Pi. Dans le cas particulier où Pi
se confond avec P, ce moment quadratique se réduit à

(P, m) 2 (a/ X + 6,' Y + c/ Z) (a," X + 6," Y + c," Z)
et généralise la notion de moment d'inertie.

Les théorèmes généraux de la théorie des moments
d'inertie s'étendent immédiatement aux cas des systèmes
associés. En particulier, il résulte de la définition même

qu'on vient de donner que le moment quadratique s'annule

lorsque les lignes d'action des deux vecteurs sont
conjuguées par rapport à la conique directrice. De la découlent
toute une série de corollaires identiques à ceux que
l'on rencontre dans la théorie ordinaire et qu'il est inutile
d'énoncer.

Sans insister longuement sur cette extension, il
convient toutefois de signaler une propriété que possèdent
les masses cycliques et qui se rattache directement à

ce qui précède. Ces masses peuvent être regardées
comme formant deux systèmes associés et, si l'on
calcule leur moment quadratique par rapport à deux
vecteurs quelconques, on est conduit, en tenant compte
des résultats obtenus au paragraphe 15, au théorème
suivant ;

Le moment quadratique des masses cycliques par rapport
à deux vecteurs quelconques est égal au produit scalaire de

ces deux vecteurs.

Un dernier cas particulier à noter est celui où toute
masse mi" de M' est concentrée au même point que sa

correspondante m/ de M". On retrouve alors les résultats
de la théorie relative à un système unique, à condition
d'attribuer à la masse de ce système unique qui
correspond à deux masses primitivement associées telles

que m/ et m,", une intensité égale au produit m/ m,".
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26. Relations entre la rotation principale, la rotation
auxiliaire et les masses adjointes. Il est maintenant bien
facile de déterminer la rotation principale w qui
correspond à un ensemble de deux nœuds S' et S". En
désignant comme nous l'avons déjà fait par x, y et z les

coordonnées de cette rotation, on a, en vertu des formules
(9) et (10) du paragraphe 16

X ~£T ^X -J- & j

y ^(y'+y)">

z ± (z' + z").

Or si l'on remplace les quantités x', y', z' et x", y", z"

par les valeurs obtenues au paragraphe 23 et qui sont
données par les formules (4) et (5), on retrouve exactement

les formules (7) qui définissent la masse polaire d'un
vecteur ou d'une force. Dans ces conditions, on peut
énoncer le théorème suivant :

La rotation principale relative à un système de deux
nœuds se confond avec la masse polaire de la force
correspondante par rapport aux systèmes associés formés par les

masses adjointes de ces nœuds.
De ce théorème et du fait que la rotation principale

s'opère autour du pôle de la force par rapport à la
première conique d'élastique, résulte encore la propriété
suivante :

La première conique d'élasticité relative à un ensemble
de deux nœuds se confond avec la conique directrice des

systèmes associés constitués par les masses adjointes de ces

nœuds.

D'autre part, il résulte encore des formules (9) et (10)
qu'on vient de rappeler que les coordonnées i", i], £ de la
rotation auxilliaire 0, ont pour expressions
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ç -jr ^X X J

1 n'/ ^ (y - y -

<,

2
(z - z).

En remplaçant encore les quantités x', y', z' et x", y",
z" par leurs valeurs, on obtient, après des simplifications
évidentes

2 i" Y2 (a/ b," - a," 6/) - Z2(c/ a," - c," a/),
2 Z2(6/ c/' - b," c/) - X2(a/ b," - a", 6,'),

2 C X2(c/ a," - cj'a/) - Y2(b/ c," - 6," c/).
Mais en désignant par 2 P,, 2 Q,-, 2 R, les coordonnées

du produit vectoriel de la masse m,' par la masse m,",

on a (§ 12)

2P,= i(6/c,."-6,"c/),

2Q,.= i(c,'a/-ct."a/),

2 R, L (a/ 6/' - a," 6,')

et les formules précédentes peuvent s'écrire

£=H(Y2Ri-Z2Qi),
t] H(Z2Pi-X2Bl),
C U(X2Qi-Y2Pi).

En posant encore

P J2P,-, Q 2Q,, R 2R,,
on aura finalement

| H(YR-ZQ),
ry= H(ZP-XR),
£ H(XQ- YP).
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Mais ce résultat indique que la rotation auxiliaire se

confond avec le produit ponctuel de la force F par le
vecteur résultant admettant P, Q, R, comme coordonnées.

Ce vecteur résultant par suite, se confond avec le
vecteur auxiliaire G relatif à l'ensemble des deux nœuds
S' et S". On peut donc énoncer la règle suivante :

Pour obtenir le vecteur xiuxiliaire relatif à deux nœuds
S' et S", il suffit de former les produits vectoriels de chaque

masse adjointe à S' par la masse correspondante de

S", puis de déterminer le vecteur résultant de tous ces
produits. Ce vecteur résultant est alors égal au double du
vecteur auxiliaire G.

(A suivre.)
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