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"RECHERCHES

SUR LA

Théorie des déformations des systémes élastiques

PAR

B. MAYOR, Professeur.

Introduction.

Dans I’étude géométrique des systemes envisagés par
la Statique graphique et la! Résistance des matériaux,
le principe des travaux virtuels et les théorémes de
Maxwell conduisent naturellement a un complexe quadra-
tique qui joue, dans I’espace, un role identique a celui de
Pellipse d’élasticité des systémes plans. Mais, ainsi que je
I’ai montré dans une note trés condenséel, il est encore
possible, a I'aide de ces mémes principes, de mettre en
évidence des élements géométriques qui n’avaient été
signalés ni dans le cas du plan ni dans celui de ’espace.
Ces éléments accompagnent en quelque sorte 1ellipse
d’élasticité ou le complexe correspondant et s’évanouis-
sent précisément dans tous les cas ou l'on avait pu,
jusqu’ici, faire intervenir utilement ces derniers. Dans
ces conditions, il est a présumer qu’ils pourront jouer un
role trés étendu dans la théorie des déformations en
¢élargissant, dans une grande mesure, le champ des appli-

! Comptes rendus des séances de I’Académie des sciences, 15 avril 1912,
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cations de l'ellipse d’élasticité. C’est pourquoi, tout en
laissant provisoirement de coté le cas des systémes a
trois dimensions qui exige des développements analy-
tiques importants, je me propose d’étudier ici les pro-
prietés de ces éléments dont je n’avais pu que signaler
I’existence dans la note déja citée.

J’utiliserai systématiquement, dans ce but, des coor-
données trilinéaires d’un type particulier, dont 1’origine
mécanique est évidente et dont j’ai déja indiqué une
application!. Il est toutefois indispensable que je revienne,
pour les compléter, sur la définition et les propriétés de
ces coordonnées, qui paraissent devoir jouer un grand
role dans toute question ou il est nécessaire de considérer
simultanément les propriétés descriptives et les propriétés
métriques des figures de la géométrie plane.

' Bulletin technique de la Suisse Romande @ 10 décembre 1911,
10 février 1912 et 10 décembre 1912.
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CHAPITRE PREMIER

Coordonnées d’un vecteur et d’une masse.

1. Coordonnées d’'un vecteur. — Considérons, dans un
plan, trois axes u, v, w, c’est-a-dire trois droites sur cha-
cune desquelles un sens de parcours. positif ait été choisi
une fois pour toutes. Supposons, de plus, que ces droiles
ne passent pas par un méme point, mais forment un
triangle qui sera dit le triangle de référence.

Un vecteur quelconque P étant donné dans le plan
de ce triangle, supposons qu’on le décompose en trois
composantes admettant respectivement les droites u, v
et w pour lignes d’action ; convenons ensuite de désigner
par X, Y et Z les intensités des composantes obtenues,
chacune d’elles étant affectée du signe plus ou du signe
moins, suivant que son sens concorde ou ne concorde
pas avec le sens de parcours positif choisi sur 1’axe cor-
respondant. Comme la décomposition d’un vecteur sui-
vant trois directions non concourantes est toujours pos-
sible d’une maniére et d’une seule, a tout vecteur P cor-
respond ainsi un systéme de valeurs, et un seul, des quan-
tités X, Y et Z. Réciproquement d’ailleurs, a tout systeme
de valeurs de ces mémes quantités correspond un vecteur
P et un seul. En conséquence, les quantités X, Y et Z
seront dites les coordonnées du vecteur P relativement
au triangle de référence choisi.

2. Coordonnées homogénes d’une droite. — Le résultat
qui précéde peut étre interprété d’une maniére un peu
différente. .

Tout d’abord, si I'on déplace le vecteur P sur sa ligne
d’action sans changer son intensité ni son sens, ses coor-
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données ne subissent aucune modification. D’autre part,
si ’on multiplie par un nombre arbitraire p I'intensité de
- P, ses coordonnées se trouvent multipliées par le méme
facteur. D’apres cela, les quantités X, Y, Z peuvent étre
considérées comme les coordonnées homogénes de la droite
qui se confond avec la ligne d’action de P. ‘

Considérées a ce point de vue, les quantités X, Y et Z
forment bien un systeme particulier de coordonnées tri-
linéaires : elles sont en effet proportionnelles aux distances
qui séparent les sommets du triangle de référence de la
droite considérée, les facteurs de proportionnalité étant
respectivement égaux aux inverses des hauteurs de ce
triangle.

Ajoutons encore qu’il ne résulte aucune ambiguité du
double sens que I’on peut attribuer a ces coordonnées si,
du moins, on a soin de spécifier dans chaque cas la nature
de ’¢element auquel elles se rapportent.

3. Les coordonnées qu’on vient de définir ]oulssent de
propriétés évidentes, mais essentielles.

Considérons, en premier lieu, des Vecteurs Pis Pis P
...P,., €én nombre quelconque, et désignons, d’'une maniére
générale, par X;, Y,, Z; les coordonnées de P,. Le théo-
reme des moments montre alors immédiatement que les
coordonnées X, Y, Z de la résultante de ces vecteurs
sont données par les formules :

X —3X,,
1
Y:§Yi:
1
Z—37Z.
1

Considérons ensuite deux droites quelconques 1 et I,
admettant respectivement pour coordonnées homogenes -
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X Yy, Zy, et X,, Y,, Zs. 1l résulte de la propriété qui
précede que les formules :

X=X, 4+p X,
Y:lYi“I“MY?s
Z = L7+ p Z,,

définissent, quelles que soient les valeurs attribuées a

A et u, une nouvelle droite qui passe par le point de ren-

contre de [, et de [;. De plus, 1l est visible qu’en donnant
A

au rapport m toutes les valeurs possibles, la droite cor-

respondante engendre complétement le faisceau déter-

miné par li et ls .

4. Intensité d’'un veeteur. — Pour obtenir I'intensité
d’un vecteur P défini par ses coordonnées X, Y, Z, admet~
tons une fois pour toutes que I'on ait fixé les sens positifs.
sur les axes u, v et w, de maniére que les sens de rotation
qui en résultent soient tous positifs pour un point situé
a lintérieur du triangle de référence. SiI’on désigne alors
par A, B, et C les angles de ce triangle, on voit immédia-
tement que les projections du vecteur P sur ’axe u et sur
un axe perpendiculaire a ce dernier ont respectivement
pour expressions

X —YcosC— ZcosB
et YsinC — Zsin B

On aura done, pour exprimer le carré de U'intensité de
P, la formule

P2 — (X —Y cos C—Z cos B)? 4 (Y sin C— Z sin B)?,
ou, en tenant compte du fait que la somme des angleS-
du triangle de référence est egale a deux droits,

P?=X?4|Y?4+722—2YZcos A—2ZXcosB—2XY cosC.
Il convient de remarquer qu’en posant, comme de cou-
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tume, i=y/ —1, la formule precedente peut étre mise
sous la forme suivante

P (X e b Y e=t — Z) (X =B 4 Y er — 2)

Les points circulaires du plan peuvent étre regardés
comme les enveloppes des lignes d’action des vecteurs
dont les intensités sont nulles, mais dont les coordonnées
conservent des valeurs finies. Ils seront donc représentés;
en coordonnées-lignes, par I’équation

X24-Y24 72— 2YZcos A —27ZX cosB —2XYcosC=0
qui, d’ailleurs, se décompose dans les deux suivantes

XeB L Yeirt —~7Z =0,
XeB L Yer—7Z=0.

5. Coordonnées d’'une masse ponetuelle. — Aux coor-
-données de vecteurs ou de droites qui viennent d’étre
-définies,‘corrésmndent dualistiquement des coordonnées
ponctuelles dont I'origine mécanique est tout aussi simple.

Considérons, en effet, une masse de nature arbitraire
et d’intensité m, concentrée en un point que nous désigne-
rons également par m et qui peut étre quelconque dans
le plan du triangle de référence. Convenons ensuite de
~designer par x, y et z les moments statiques de cette
masse relativement aux axes u, v, w, ces moments stati-
~ques étant affectés du signe qui résulte de la convention
suivante : dans le cas ou le sens positif fixé sur I’axe
-envisagé donne lieu & un sens de rotation positif par
rapport au point m, le signe du moment statique est le
méme que celui de la masse considérée ; lorsque, au
-contraire, ce sens de rotation devient négatif, le signe
-du moment statique est 'inverse de celui de la masse.

A toute masse ponctuelle correspond ainsi un systéme
-de valeurs et un seul des quantités x, y et z. Réciproque-
ment, & tout systéme de valeurs de ces quantités on peut
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faire correspondre une masse ponctuelle m, dont I'inten-
sité et la position sont déterminées sans ambiguité. D’une
part, en effet, les distances du point m aux cotés du
triangle de référence sont entre elles dans les mémes
rapports que les quantiteés x, y et z, et I'on sait que ces
rapports suffisent pour déterminer la position de ce point.
D’autre part, enfin, la position de ce point étant déter-
minée, 'une quelconque des quantités x, y ou z permet
ensuite de déterminer 'intensité de la masse. En consé-
quence, les quantilés x, y, z seront dites les coordonnées
de la masse m.

On peut remarquer tout de suite que 'intensité d’une
masse s’exprime linéairement en fonclion de ses coor-
données.

Prenons, en effet, comme sens positifs sur les axes
u, v, w ceux qui ont été fixés au paragraphe précédent.
Sil’on désigne alors par a, b, ¢ les cotés et par S la surface
du triangle de référence, on obtient immediatement, pour
intensité d’une masse m de coordonnées x, y, z, I'ex-
pression

1
m:—z-—g(ax+ by + cz).

En désignant par R le rayon du cercle circonscrit au
triangle de référence et en posant une fois pour toutes
S
R’
la formule obtenue peut étre mise sous la forme

H =

m=—I—}I—-(xsinA—{—ysinB + z sin ().

6. Comme dans le cas d’un vecteur, les coordonnées
d’'une masse sont susceptibles d’une deuxiéme interpré-
tation.

S1 I’on multiplie, en eifet, par un facteur arbitraire une
50182 5
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masse sans changer son point de concentration, ses coor-
données sont évidemment multipliées par le méme fac-
teur. On en conclut que les quantités x, y, z peuvent étre
regardées comme: les coordonnées homogénes du point
de concentration de la masse correspondante, ce qui
d’ailleurs est évident.

D’autre part, les propriétés de ces nouvelles coordon-
nées sont entierement analogues a celles qui caractérisent
les coordonnées d’un vecteur.

Considérons, en effet, un systéme de masses mi, ms,
...M;, ...m, en nombre quelconque, et désignons, d’une
maniére générale, par x,, U, z; les coordonnées de 1 masse
m,. Il résulte alors immédiatement de la théorie des
moments statiques que les coordonnées x, vy, z de la
masse résultante du systéme sont données par les for-

mules suivantes :

n
$IE$£,

1

n
y__—_Zyl.,

1

n
z:Ez,.

En désignant ensuite par xi1, yi1, z1 et xe, ys, z2 les coor-
données homogeénes de deux points quelconques m: et me,
on vérifie sans aucune peine que les formules

T=A2, + nz,,
y=~=445 +uy,
z=2Az; + u zy,

définissent, quels que soient 4 et u, un point de la droite
qui réunit mi et me, Il est visible, de plus, qu’'en donnant

A ;
au rapport—; des valeurs convenables, on peut obtenir

tous les points de la droite considérée.
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7. Moment relatif d’'une masse et d’'un veeteur. — Con-
sidérons simultanément une masse m et un vecteur P dont
la ligne d’action sera toujours assimilée a un axe ayant
le sens méme du vecteur. Convenons ensuite de désigner
sous le nom de moment relatif de ces deux éléments, le
produit de I'intensité du vecteur par le moment statique
de la masse relativement a la ligne d’action de P, ce
moment statique étant pris avec le signe qui résulte de
la convention faite précédemment. On peut remarquer
que ce moment relatif, que nous désignerons indifférem-
ment par 'une ou I'autre des notations

(P,m) ou (m,P),

n’est pas autre chose que le moment relatif de deux vec-
teurs dont I'un se confond avec P, tandis que I'autre est
normal au plan du triangle de référence, passe par le
point m et posséde une intensité égale a celle de la masse m.

Proposons-nous de déterminer la valeur de ce moment
relatif en fonction des coordonnées X, Y, Z du vecteur
el des coordonnées z, y, z de la masse.

Observons a cet effet qu’en vertu d’un théoréme bien
connu, la somme des moments relatifs d'un nombre quel-
conque de vecteurs par rapport 4 une méme masse est
égale au moment relatif de cette masse et de la résul-
tante des vecteurs considérés. Et comme X, Y, Z sont
précisément les composantes du vecteur P suivant les
axes u, v, w, le moment relatif cherché a évidemment

pour valeur
P,m)y =X+ Yy+ 7Zz

8. Des conséquences essentielles découlent de la for-
mule qu’on vient d’établir.

Le moment relatif d’un vecteur et d’'une masse s’an-
nule lorsque la masse est située sur la ligne d’action du
vecteur. Il ne s’annule méme que dans ce cas, si, du
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moins, on suppose, comme nous le ferons dans la suite,
que les intensités de la masse et du vecteur sont diffé-
rentes de zéro. En conséquence, la relation

X+ Yy+2z=0
exprime la condition nécessaire et suffisante pour que la
masse m soit concentrée en un point de la ligne d’action
du vecteur P.

D’aprés cela, lorsqu'on regarde X, Y, Z comme les
coordonnées homogeénes d’une droite et z, y, z comme les
coordonnées homogenes d'un point, I’équation précé-
dente exprime que ce point et cette droite sont unis. Dés
lors, si 'on convient de regarder X, Y, Z comme des va-
riables, cette équation représente le point admettant =z,
y, z pour coordonnées ponctuelles ; elle représente, au
contraire, la droite ayant X, Y, Z pour coordonnees—
lignes, lorsque z, y ,2 sont les variables.

9. Masses eycliques. — La formule qui donne le carré
de l'intensité d’un vecteur est, actuellement, susceptible
d’une interprétation importante.

Il résulte, en effet, du paragraphe 4 que les points
cycliques du plan sont caractenses en coordonnées-lignes,
par les équations

XeB|L Yer—7Z=0,
XeB 4+ Yer—-Z=0,

de sorte que les coordonnées homogenes de ces points
sont respectivement proportionnelles aux quantités

eiB’ e—iA’ —_1

¢—B, e, — 1,

Considérons alors deux masses u’ et u”, admettant res-
pectivement pour coordonnées

r

o “¢’B, b = e.—iAs 7 = —1,
x”, B“iB, yrr — BEA,_ P :__1
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Elles sont évidemment concentrées aux points cycli-
ques et, pour cette raison, seront appelées les masses
cycliques. De plus, si 'on calcule, par exemple, 'inten-

sité de la masse 1’ a I'aide de la formule du paragraphe 3,
on obtient

uw = -—I{—Id (e’B sin A + e~*4sinB — sin C)
ou, apres des transformations évidentes,
W o= % [sin (A + B) — sin CJ,

c’est-a-dire

| w =0,

puisque la somme des angles du triangle de référence
est egale a deux droits.

Un calcul analogue montre que la masse u” s’annule
aussi, de sorte que les intensités des masses cycliques
sont nulles toutes deux.

Or, en tenant compte des notations qui viennent d’étre
fixées, 1'une des formules qui donne le carré de l'inten-
sité d'un vecteur P (§4) peut étre mise sous la forme

PP=Xa2 +Yy + Zz)X2' +Yy' + 27),

et comme les parenthéses du second membre représentent
les moments relatifs du vecteur P par rapport aux deux
masses cycliques, on peut énoncer le théoréme suivant :

Le produil des moments relatifs d’un méme vecteur par
rapport aur deuxr masses cycliques est égal au carré de
Uintensité de ce vecteur.

10. Coordonnées d’'un couple. — Un couple de vecteurs
peut étre assimilé 4 un vecteur nul ayant pour ligne
d’action la droite de l'infini du plan, le moment de ce
vecteur par rapport a un point quelconque du plan étant
précisément égal au moment du couple. Proposons-nous
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alors de déterminer les coordonnées d’'un couple de
moment M. |

1l suffit, dans ce but, de remarquer que le moment
relatif du vecteur équivalent au couple et d’une masse
quelconque m est égal au produit de 'intensité de cette
masse par le moment du couple. On aura donc, en dési-
gnant par X, Y, Z les coordonnées du couple et par
z, Yy, z celles de m,

Xz+Yy+2Zz=Mm,
ou, en remplacant m par sa valeur (§)),

Xz +Yy+2Zz :% (@sin A + gsin B + zsin C).

Cette relation devant étre vérifiée quelles que soient les
valeurs de z, y, z, on aura nécessairement

sin A
X=M——,
sin B
Y=M=g,
| sin C
Z =M T

Ces formules résolvent le probleme proposé. Elles mon-
trent, de plus, que les coordonnées de la droite de I'infini
sont proportionnelles a sin A, sinB, sin C, de sorte que cette
droite est représentée, en coordonnées-points, par 1’équa-
tion

xsin A + ysinB 4 zsin C = 0.

11. Produit ponctuel de deux vecteurs. — Considérons
deux vecteurs P et P’ dont les lignes d’action se rencon-
trent en un point m que nous supposerons tout d’abord
a distance finie. Nous désignerons alors, sous le nom de
produit ponctuel de P par P’ et nous représenterons par

le symbole
(P,P)
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une masse concentrée au point m et dont l'intensité est
égale, en valeur absolue, 4 l'aire du parallélogramme
qu'on peut construire sur ces deux vecteurs apres qu'on
les a déplacés sur leurs lignes d’action de maniére que
chacun d’eux admette pour origine le point m. De plus,
cette masse sera considérée comme positive dans le cas
~ou le sens de rotation de P par rapport a4 un point situé a
Pintérieur du parallélogramme précédent sera lui-méme
positif, tandis qu’elle sera négative dans le cas contraire.

Il est essentiel de remarquer que cette notion de pro-
duit ponctuel n’est pas identique a celle du produit
vectoriel telle qu’elle est définie dans 1'édition francaise
de I’ Encyclopédie des sciences mathémaliques!. La premiere
fait intervenir, en effet, une masse ponctuelle liée a un
point parfaitement détermine, ce qui n’est pas le cas
de la deuxieme.

Il résulte, de la définition méme du produit ponctuel,
que le produit de P par P’ est égal, mais de signe con-
traire, au produit de P’ par P : |

(P, P') = — (P, P).

En particulier, le produit ponctuel d’un vecteur par
lui-méme est égal & zéro :

(P, P) = O.

Si, d’autre part, on désigne par « ’angle form¢ par les
deux vecteurs, 'intensité de la masse m qui représente
le produit ponctuel est donnée, en valeur absolue, par
la formule

m = P P’ sin e.

Par conséquent, lorsque les deux vecteurs P et P’
sont paralléles, leur produit ponctuel est représenté par
une masse nulle rejetée a I'infini.

! Tome IV, volume 2, fascicule 1.
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Revenant au cas général de deux vecteurs quelconques,
considérons un axe & qui coincide avec la ligne d’action
de P, le sens positif choisi sur cet axe étant d’ailleurs
arbitraire. Soit § I’abscisse du point mmesurée sur cet axe,
a partir d'une origine fixe quelconque O, et désignons en-
core par M’ le moment de P’ par rapport a O et par P¢
I'intensité du vecteur P prise avec le signe plus lorsque ce
vecteur a méme sens que I’axe envisagé. On vérifie alors,
sans aucune difficulté, que I’on a, en tenant compte des
signes,

mé¢ = P M.

Imaginons alors que ’on décompose P’ en un nombre
quelconque de vecteurs composants P1’, P:’, ..P/, ..P,]
formant un systéme que nous désignerons par S’ pour
abréger le langage, puis formons les produits ponctuels
de P avec chacun des vecteurs de ce systéme. Le produit
ponctuel de P par P, est représenté par une masse m;
concentrée en un point de I’axe O¥ dont I’abscisse vérifie

1’équation
m.‘ £ = PE M/,

dans laquelle M, représente le moment de P,” par rap-
port a O. Par suite

n n
Em & = Pg 2 M/,
1 1
et comme, en vertu du théoréme des moments,
n
M’ p=— 2 Mi'
1
on aura neécessairement,

Sm; & = mé.
i

Cette équation devant étre vérifiée quelle que soit
I'origine choisie sur la ligne d’action de P, on en conclut
que le produit ponctuel (P,P’) s’obtient en composant
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les produits partiels (P,P,”) comme des masses ordi-
naires. |

On démontrerait d’'une maniére analogue que, pour
déterminer (P,P’), il suffit encore, aprés avoir remplacé
P par un systéme équivalent quelconque S constitué par
les vecteurs Pi, Pq, ...P;, ...P,, de former tous les produits
partiels (P;,P’), puis de les composer comme des masses
ordinaires. Par suite, il est bien évident qu’on arrive
encore au meéme résultat lorsqu’apreés avoir remplacé
simultanément P et P’ par les systémes S et S’ on forme
tous les produits partiels tels que (P;,P,") et qu’on les com-
pose comme des masses.

Il est facile, en tenant compte de ces résultats, de de-
terminer les coordonnées du prodult ponctuel de deux
vecteurs quelconques.

Désignons, en effet, par X, Y, Z et par X', Y, Z' les
coordonnées ou composantes des vecteurs P et P’ par
rapport au triangle de référence précédemment choisi,
et remarquons que X, Y, Z forment un systéme équivalent
a P, tandis que X', Y, Z’ forment un systéme équivalent
a P’. De la sorte, on est conduit a former les produits de
chacune des composantes de P avec chacune des compo-
santes de P’.

Or, on a évidemment
X, X)=,Y)=(12") = 0.
D’autre part,
(Y,Z') =Y Z sin A,
(Z, Y) = — ZY' sinA.
D’ailleurs, les masses qui représentent ces deux der-
niers produits sont concentrées toutes deux au sommet A

du triangle de référence et peuvent étre remplacees par
une masse unique ayant

YZ' — ZY')sin A
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pour intensité. Les coordonnées x,, y;, z; de cette masse
auront donc pour valeurs, en désignant par h la hauteur
du triangle qui correspond au sommet A,

1= hsinA(YZ' —ZY))
y = 0, |
B =1)

Mais on reconnait facilement que le produit h sin A
est précisément égal a la quantité H introduite préce-
demment (§5) et les formules précédentes peuvent
s’écrire :

rnn = HXZ —7ZY'),
751 0,
&, = O,

Un calcul semblable au précédent montrerait que les
produits (Z, X') et (X, Z') donnent lieu a une nouvelle
masse ayant

X2 = O, '
y = H(Z X" - X Z"),
2 = O

pour coordonnées ; et quenfin (X,Y’) et (X',Y) donnent
une masse ayant pour coordonnées

a:3=0,
ya-——'O,
zz = HXY — X' Y).

En conséquence, les coordonnées du produit ponctuel
(P, P’) sont données par les formules suivantes

xr=HXZ — 25",
y=HZ X" — X Z"),
z=HXY — YX)),
qui doivent étre considérées comme fondamentales.
Comme application de ces formules, cherchons la con-
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dition de parall¢lisme de deux vecteurs et, par suite, de
deux droites.
L’intensité du produit (P, P’) est par définition
P P sin «,
mais elle est aussi donnée par la formule

m = —I}T(xsinA—kysinB-i—zsinC).

- On aura donc en égalant ces deux expressions, aprés

avoir remplacé dans la seconde z, y, z par les valeurs

obtenues

PP'sina—=sinA(YZ —ZY')+sinB(Z X' —XZ')
+sinC (XY —Y X).

Par suite, la condition de parallélisme des vecteurs
P et P’ ou des droites correspondantes est exprimée par
la relation

SnANZ —ZY)+ sinB(ZX'— XZ)
+sinC(XY —YX)=0

ou, ce qui revient au méme,

sin A sin B sin C

X Y Z |=0
X' Y’ 7
12. Produit vectoriel de deux masses. — Au produit

ponctuel de deux vecteurs on peut faire correspondre
dualistiquement une notion nouvelle que nous définirons
de la maniére suivante : |

Considérons deux masses m et m’ situées a une distance
r I'une de ’autre. Nous appellerons produit vectoriel de
m par m' et nous représenterons par le symbole

[m, m’]
un vecteur P ayant la droite de jonction de m et de m’
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pour ligne d’action, et pour intensité le produit
mm'r. '

- De plus, nous admettrons que ce vecteur a pour sens

celui qui va de m vers m’ lorsque le produit algébrique

m m' est positif, tandis qu’il aura le sens de m’ vers m

dans le cas contraire.

Il résulte de cette définition que le produit vectoriel
de m par m’ est égal et directement opposé au produit
de m’ par m. En particulier, le produit vectoriel d’une
masse par elle-méme est donc nul : '

[m, m]=0.
- Des considérations élémentaires montrent immédia-
tement que la projection du produit vectoriel de m par m’
sur un axe quelconque & passant par m est égale, en
valeur absolue, au produit de m par le moment statique
de m’ relativement a un axe perpendiculaire a &, mais
passant encore par m. A I'aide de ce résultat et en pro-
cédant exactement comme dans le cas du produit ponc-
tuel, on démontre bien simplement que si I’on désigne
par x, y, z et ', y’, z' les coordonnées de m et de m’
relativement au triangle A, B, C, les coordonnées X, Y, Z
du produit ponctuel de ces masses sont données par les

formules
1 ’ '
X = q (y z —zy ),
Y=% (za:" —xz’),
7 —2(zy — '
qui doivent aussi étre considérées comme essentielles.

13. Lorsqu’on remplace dans les formules précédentes
les coordonnées des masses m et m’ par celles des masses
cycliques, définies au paragraphe 9, on obtient, aprés
des réductions évidentes, ‘ |
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Xzzis";{A-

Y:QISHII_IB,
. sin C

L=21 T

Il résulte immeédiatement de la que le produit vectoriel
des masses cycliques se réduit a un couple dont le moment
est egal a 2 1.

Ajoutons encore qu'on déduirait facilement, des mémes
formules, I'expression du carré de la distance qui sépare
deux points définis par leurs coordonnées homogenes.

14. Produit sealaire de deux veecteurs. — Rappelons
qu'on désigne sous le nom de produit scalaire ou de
produit intérieur de deux vecteurs P et P’ le nombre
reel T deéfini par le produit de la longueur de P, par la
longueur de P’ et par le cosinus de I'angle « des deux
vecteurs :

T =P P’cos «.

On démontre alors immeédiatement que le produit
scalaire de P par P’ est égal a la somme algébrique des
produits scalaires de P par des vecteurs formant un
systéme équivalent a P’. En raisonnant comme dans les
deux cas précédents, on établit sans difficulté la formule
suivante, dans laquelle X, Y, Z et X', Y', Z' représen-
tent encore les coordonnées de P et de P/,

T=XX —Y cos C —Z cos B)
4+ Y((Y — Z'cos A — X’ cos ()
+ Z(Z — X' 'cos B — Y’ cos A),

ou aussl |
T=X (X —=Ycos C— Z cosB)

+ Y (Y—Zcos A — X cos ()
+ Z'(Z — X cos B — Y cos A).
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Si d’ailleurs on pose, pour simplifier 1’écriture,

R = -%- (X”—I—Y’—[—Zz——2 YZcosA—27Z X cosB—2XY cos C)

et

% (X’2+Y’2+ Z't —2Y'Z'cosA—2Z'X' cosB—-2X'Y’ cosC),

on verifie facilement que I'on a encore
o Q' > Q' > Q'

T=X3x +Yyy t 257"

- et, aussi,

, 08 ; b 2 , 08

T — X X —|— Y — -|- Z 37
Il résulte immédiatement de ces formules que la con-
dition de perpendicularité de deux vecteurs, ou de deux
droites définies par leurs coordonnées homogénes, peut

étre mise sous I'une ou 'autre des formes suivantes :
29’ d
Xig + Y5 +257=0,

et
" . g 0 .Q
X 3gx+Yg+23,=0

D’autre part, si ’on désigne, comme nous I’avons déja
fait, par z’, y', 2’ et 27, y", z" les coordonnées des masses
cycliques, la quantité 2 qui représente la moitié du carré
de l'intensité de P peut, d’aprés le paragraphe 9, étre
mise sous la forme

(Xx + Yy ZZYyX2" + Yy +27).

Remplagant alors 2 par cette valeur dans la derniere -
des expressions données pour T, on obtient, apres des
réductions évidentes. '

=Xz + Yy 4+ 22X 2 + Y y + 77
+ (X _ﬂ.’:” + Y!J” + err) (Xf ' + Y yr + 7’ zf)
Cette formule, qui généralise celle du paragraphe 9,
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s'interpréte aisément, puisque les diverses parentheses
du second membre représentent les moments relatifs des
vecteurs P et P’ par rapport a chacune des masses cy-
cliques.

15. Coordonnées d’un déplacement. — La théorie des
coordonnées d’'une masse trouve une application immé-
diate et essentielle pour la suite dans I’étude du déplace-
ment infiniment petit d’'une figure plane de forme inva-
riable.

Considérons, en effet, une pareille figure et admettons
qu’elle subisse, dans son plan, un déplacement arbitraire,
mais infiniment petit. On sait qu'un tel déplacement
peut toujours étre obtenu en faisant tourner la figure
d'un angle infiniment petit @ autour d'un point que nous
désignerons également par o et qu’on appelle le cenfre
de rotation. De plus, il est naturel de faire correspondre
a ce déplacement une masse fictive concentrée au centre
de rotation, l'intensité de cette masse étant précisément
egale a l'angle o, qui doit alors étre regardé comme
positif dans le cas ou la rotation correspondante s’opére
dans le sens positif, et comme négatif dans le cas con-
traire. Dans ces conditions, la projection du déplacement
d’un point quelconque de la figure sur un axe passant
par la position initiale de ce point est égale, en grandeur
et signe, au moment statique de cette masse fictive rela-
tivement a ’axe considéré. Cette projection dépend donc
uniquement de I'axe envisagé et non du point particulier
de la figure qu’on a choisi sur cet axe ; pour cette raison,
il est indifférent de I'appeler le déplacement du point
ou de la figure suivant cet axe.

Ces principes rappelés, admettons que l'on ait choisi,
dans le plan de la figure mobile, un triangle de reéfe-
rence qui, cela est bien entendu, ne participe pas aux
déplacements que peut prendre cette figure.
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La masse fictive qui correspond a I'un quelconque des
déplacements de la figure, masse que nous désignerons
sous le nom de rotation, peut alors étre définie analyti-
quement a ’aide de ses coordonnées z, y, z relativement
a ce triangle. Par suite, les quantités z, y, z peuvent étre
regardées comme les coordonnées du déplacement lui-
méme. Au reste, ces coordonnées ont une signification
géomeétrique simple : I'une quelconque d’entre elles est
égale, en effet, au déplacement que subit la figure suivant
I’axe correspondant.

On sait, d’autre part, que les rotations se composent
entre elles comme des masses ordinaires. Si donc la figure
subit, successivement ou simultanément, des rotations
en nombre quelconque, les coordonnées du déplacement
résultant sont données par les formules

n
x:zmi’
«1
n.
y:zy',
1
"
L = EZ,;,

ou l'on a désigné par x,, y;, z, les coordonnées de 1'une
quelconque des rotations composantes.
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CHAPITRE II

Coniques d’élasticité de deux sections d’une poutre a
fibre moyenne plane.

16. Considérons tout d’abord, et dans le seul but de
fixer les idées, une poutre a fibre moyenne plane assu-
jettie a des liaisons arbitraires, et désignons par S’ et &
deux sections déterminées mais quelconques de cette
poutre.

Une force arbitraire I étant appliquée en un point
invariablement lié a la section S’ par exemple, ce que
nous exprimerons en disant que F agit dans cette section,
proposons-nous en premier lieu d’étudier le déplacement
subi par S’.

A cet effet, désignons par X, Y, Z les coordonnées de F
relativement a un systéme de trois axes u, v, w formant
un triangle de référence et, pour simplifier les notations
qui vont étre fixées, convenons de faire correspondre
respectivement les indices 1, 2 el 3 & ces axes u, v, w. En
vertu d’une hypothése fondamentale de la résistance des
matériaux, le déplacement subi par S" peut toujours
&tre assimilé a une rotation w”, dont les coordonnées,
relativement au triangle de référence seront désignées
par 2’, y" et z’. Si d’ailleurs on désigne d’une maniére
générale par a,” le déplacement que subit, suivant I'axe k,
un point quelconque de cet axe lorsqu’il est supposé
invariablement lié a la section §” et qu'une force unité
agissant dans S’ est appliquée dans la direction positive
de I'axe i, le principe de la superposition des effets des
forces montre immédiatement que l'on a

50-182 6
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¥ =dy X+ dy Y+ d'yZ,
() §=duX+daY+dnZ
' =d" 3 X 4+ d' Y + d's Z.
Inversément, si I’on suppose ensuite la force F (X,Y,Z)'
appliquée dans S’, la section S’ subit un nouveau dépla-
cement assimilable encore 4 une rotation o'. Il est visible,
de plus, qu’on aura, en désignant par 2',y’, z’ les coordon-
nées de cette rotation,
r=ad, X+dy¥Y+ adyZ
(2) Y = ad'p X+ ad'p Y+ a'sz_Zs
Z=dppX+duY + dgZ
Dans ces nouvelles formules, un coefficient tel que a’,,
représente le déplacement que subit suivant I’axe i un
point quelconque de cet axe lorsqu’on le suppose inva-
riablement lié &4 S’ et qu'une force unité, agissant dans S’,
est appliquée suivant la direction positive de I'axe k.
Or, le théoréeme de Maxwell sur la réciprocité des
déplacements montre immédiatement que 'on a, quels
que soient les indices i et k,

|

(3) a',-k = a”;”-.
Si donc on pose, en premier lieu,
4) a'in + d'ie =2 Ay

a sy — a'sm= 2By

ou, ce qui revient au méme,
(5) a'sx = A + B
' = A — Ba

ona
(6) A = Ay,
Bik = e Bkia
ce qui entraine, en particulier,
B; = 0.

- En posant encore
(7) Y=Ap X+ Ap Y + A Z,
z=A13X+A23Y+A332,
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et
¢ =By X+ By Y + By Z,

il résulte immédiatement des relations (5) que les for-
mules (1) et (2), qui définissent les rotations o’ et "

peuvent étre mises respectivement sous les formes sui-
vantes :

!

X =x+§:
9) y =y +n9,
2 =z 4+,
et
r=x — &,
(10) y =y—n,
2 =2z—=t.

Or, les quantités x, y, z peuvent étre envisagées comme
les coordonnées d’une nouvelle rotation o qui, en raison
de propriétés que nous indiquerons plus loin, peut étre
qualifiée de rofation principale. On peut d’ailleurs re-
marquer immédiatement que cette rotation ne change
pas lorsque, sans changer la force F, on intervertit les
roles des deux sections S’ et S”. Dans cette hypothese,
en effet, les coefficients a';x et a’; sont permutés, mais
cette permutation ne produit aucun effet sur les coeffi-
cients A;. et, par suite, sur les quantités x, y, z.

D’autre part, les quantités & » { peuvent également
étre envisagées comme les coordonnées d’une deuxiéme
rotation ¢ qui sera dite la rotation auziliaire. Comme la
permutation dont il vient d’éfre question transforme
B en — By, on voit que les coordonnées de cette
rotation ne font que changer de signe lorsque, sans chan-
ger F, on intervertit les roles de S’ et de S”. En d’autres
termes, a la suite de cette inversion, le sens de la rotation
auxiliaire est changé, mais elle s’effectue toujours autour
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du méme point et conserve la méme valeur absolue.

En tenant compte des définitions qui préceédent, les
formules (9) et (10) donnent alors lieu a des interpré-
tations essentielles : | |

En premier lieu, il résulte des relations (9) que la
rotation ' subie par S, lorsque F agit dans S’, est la
résultante de la rotation principale w et de la rotation
auxiliaire qui correspondent a F. Au contraire, lorsque
F agit dans S’, les formules (10) montrent que la rotation
0" de S” s’obtient en composant la méme rotation prin-
cipale avec une nouvelle rotation auxiliaire qui ne différe
de la précédente que par le changement de son sens.
En d’autres termes, on a symboliquement

(0") = (o) + (0),
(0") = (0) — (0).

Dans ces conditions, le déplacement que subit I'une
quelconque des sections S’ ou S’, dans le cas ol une
force F est appliquée dans I'autre, dépend d’une maniére
trés simple de la rotation principale et de la rotation
auxiliaire qui correspondent a cette force. D’ailleurs,
comme nous allons le montrer, la rotation principale
dépend elle-méme d’une conique dont le role est analogue
a celui de l'ellipse d’¢élasticité, tandis que la rotation
auxiliaire conduit précisément a I’élément nouveau auquel
nous avons deja fait allusion.

17. Premiére conique d’élasticité d’'un ensemble de deux
seetions. — Pour obtenir cette conique, cherchons 1’en-
veloppe des lignes d’action des forces qui passent par la
rotation principale correspondante. Il suffit d’exprimer
que le moment relatif de F et de w est égal a zéro :

. Xz +Yy+Zz=0.
Or, si 'on remplace, dans cette relation, z, y, z, par les
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valeurs données par les formules (7), on obtient, pulsque
Aft = Ak%s '

(1) A, X2+ AL Y24+ ApZ?24 2A, XY +2A5YZ
’ +2A;,ZX =0

Mais si ’on envisage les quantités X, Y et Zc comme les
coordonnées homogénes de la ligne d’action de F, cette
équation représente une conique qui sera dite la premiére
conique d’élaslicité relatlve a I’ensemble des deux sections
S" et S,

D’autre part, les coordonnées du pole de la ligne
d’action de F relativement a cette conique sont respec-
tivement proportionnelles aux quantités

AnX +An Y 4 Ay Z
A, X + Ap Y + Ay Z,
A X 4+ A Y+ Ap Z

c’est-a-dire aux coordonnées de w; de sorte qu'on peut
énoncer le théoréme suivant :

Le poinl autour duquel s’opére la rotation prln(:lpale
coincide avec le péle de la ligne d’action de la force relati-
vement a la premiére conique d’élasticité.

Pour déterminer ensuite l'intensité de la rotation prin-
cipale, remplacons, dans la formule du paragraphe 5,
qui donne l'intensité d’une masse quelconque, les coor-
données de cette masse par celles de . On obtient immé-
diatement ’ '

w=X% +YY +7Z2z,
ou I'on a posé, pour simplifier,

xo - % (All Sil'l A “|_ A.12 SiII B _|_ A.13 Sin C),
Yo == % (Azl sin A 4+ A,, sin B + Ay sin C),

20

_I_ll (Asl sin A + A, sin B + Ay sin C)'. |
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Mais les quantités x,, y,, z, peuvent étre envisagées
comme les coordonnées d’'une masse ou d’une rotation,
que nous désignerons par w,, et qui est complétement
indépendante de la force F. Dans ces conditions, la for-
mule obtenue s’interpréte immédiatement et conduit au
théoréme suivant :

L’intensité de la rotation principale est égale au moment
relatif de la force correspondante et de la rotation fixe wo.
- D’autre part, il résulte des formules (7) que o, est la
rotation principale qui correspond a une force admettant
pour coordonnées

sin A
X i H ’
' sin B

sin C
7 = T

Or, cette force se réduit a un couple de moment unité,
de sorte que la rotation w, s’opére autour du centre de la
premiére conique d’élasticite.

18. Vecteur auxiliaire d’un ensemble de deux sections. —
Si ’on tient compte de la relation (6),

Ba‘k == Bh”

les formules (8) qui définissent la rotation auxiliaire 6
peuvent étre mises sous la forme suivante :

§ = YBy — Z By,
y = Z Bg — X Bs,
= XBjz — Y Bg.
Si donc on pose

3
I

H P,

H Q,
B21 == H R,

ve)
&
1
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on aura
&

H(YR—-ZQ),
7=H(ZP —XR),
=H(XQ —YP).

Mais les qfantités P, Q, R peuvent étre envisagées
comme les coordonnées d’un vecteur qui dépend essen-
tiellement de I’ensemble des deux sections S’ et S” et qui
pour cette raison sera dit le vecteur auxiliaire relatif a ces
sections. De plus, nous le désignerons toujours par la
lettre G. La comparaison des formules obtenues avec
celles du paragraphe 11, qui donnent les coordonnées du
produit ponctuel de deux vecteurs, permet alors d’énoncer
le théoréme suivant, qui doit étre considéré comme
essentiel :

La rotation aucxiliaire qui correspond a une force quel-
conque F se confond avec le produit ponctuel de celie force
par le vecteur auxiliaire G. |

En d’autres termes, et en tenant compte des notations
fixées, on a, en grandeur et en position,

6 = (F, G).

Il résulte en particulier de 1a que la rotation auxiliaire
s’opéere autour du point de rencontre de la ligne d’action
de la force I et de la ligne d’action du vecteur G. Cette
rotation est donc toujours située sur une droite fixe et
ne peut, comme la rotation principale, prendre des posi-
tions quelconques dans le plan.

D’autre part, la rotation auxiliaire s’annule lorsque la
ligne d’action de F se confond avec celle de G. Par suite,
les deux rotations désignées par »’ et par «” deviennent
identiques et s’opérent autour du pole g de la ligne
d’action de G par rapport a la premiére conique d’élas-
ticité. )

‘On peut encore remarquer que, lorsqu’on intervertit
les roles des deux sections S’ et S”, les coordonnées du

(12) ‘
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vecteur G ne font que changer de signe. Si donc ces deux
sections coincident, ce vecteur s’évanouit de méme que
la rotation auxiliaire. La rotation principale subsiste
seule et la premiére conique d’élasticité se confond avec
la conjuguée de 'ellipse d’élasticité de la-section consi-
déree.

19. Inversion des formules fondamentales. — Les déve-

loppements qui précedent permettent de déterminer
géométriquement la rotation subie par 'une quelconque
des sections S’ ou S”’ dans le cas ou une force donnée est
appliquée dans I’autre. Le probléme inverse, qui a pour
objet la recherche de la force qu’il est nécessaire d’appli-
quer a I'une de ces sections.pour produire une rotation
donnée de l'autre, est tout aussi important et conduit,
comme nous le verrons, a des propriétés dualistiques inté-
ressantes. Sa solution dépend des équations fondamen-
tales (1) et (2) qu’il suffirait de résoudre par rapport aux
quantités X, Y, Z en tenant compte des relations de réci-
procité exprimées par les formules (3). Mais, auparavant,
il est préférable de changer quelque peu les notations
utilisées jusqu’ici. '

Tout d’abord, une force quelconque sera désignée
dorénavant par F’ ou par F’, suivant qu’elle agira dans
la section S’ ou dans la section S’, les coordonnées de F’
étant alors représentées par X', Y', Z’ et celles de F “par
X", Y, Z". Quant a la rotation produite par I'une ou
I’autre de ces forces, on la désignera indifféremment par w,
ce qui ne peut donner lieu a aucune ambiguité, car il
reste entendu qu’a une force F’ correspond une rotation
de S” et a une force F” une rotation de S’ ; enfin, les
coordonnées de o seront désignées par z, y et z.

En tenant compte de ces modifications et des relations .
(3), les formules (1) et (2) peuvent alors étre mises res-
pectivement sous les formes suivantes :
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r=a, X' + a, Y + a3 Z,
y=ay X' + ay' Y + ay' 7',
2= a5 X' + a5 Y 4 a5’ 7',
et '
rT=a, X' + ay Y + a;, 77,
y=ap X" + a' Y' + a3’ 7',
z=ay X" + a3 Y' + a5 7.

Or, les tableaux des coefficients de ces deux groupes.
de formules ne différent I'un de I’autre que par le chan-
gement des lignes horizontales en colonnes et récipro-
quement. Si donc on résout le premier groupe par rapport
a X', Y, Z' et le second par rapport a X", Y’, Z", on
obtient des solutions pour lesquelles le méme fait se
reproduit et qui sont nécessairement de la forme suivante :.

X'=byx + byy+ by z,

(13) Y’ by T + by y + b z,
Z' = bzx + by y + by z,

et
X” = bn:L' —|"' b12y "‘l" b13 Z,
(14) Y = by + bpy + by z,
2" = by + by y + by z.
Si done, par analogie avec les transformations opérées
au paragraphe 16, on pose, en premier lieu,
(15) bix + bri =2 au,
b - bki = 2 ﬂik ’
ou, ce qui revient au méme,
bix = otix + Pins
bri = ap — Birs
on a nécessairement .
(16) Cip == Qi y
Bir = — Buis

ce qui entraine, en particulier,
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Bu=0
En posant ensuite
X=ay T+ any + a5 Z
(17) Y —=apT + anl + agpZ,
et |
Xi=f%+ Pfuly+ Baz
(18) Y, =%+ fu Y+ Puz,
Zx_"ﬁlax'l'ﬂaay"‘ Bas 25
on voit immeédiatement que les formules (13) et (14)
peuvent étre mises sous les formes suivantes :

X' =X + X,
(19) | Y=Y+ Y,
' =7+ 17,
et
X=X — X,
(20) Y =Y — Y,
7" =7 —Y,.

Or, les quantites X, Y, Z peuvent étre envisagées
comme les coordonnées d’une nouvelle force F qui, en
raison des analogies qu’elle présente avec la rotation
principale sera dite la force principale. Cette force ne
.change pas lorsque la rotation w reste la méme et qu'on
intervertit les roles des sections S’ et S” ; car, dans cette
hypothése, les coefficients a;; et a); sont permutés, ce
qui ne donne lieu a aucun changement, puisqu’ils sont
-egaux.

D’autre part, les quantités X;, Y,, Z, peuvent aussi
€tre envisagées comme les ¢oordonnées d’une deuxiéme
force F; qui sera dite la force auriliaire. Comme la per-
mutation dont on vient de parler transforme g;; en — g,
les coordonnées de cette force changent de signe lorsque,
sans changer w, on intervertit les roles de S’ et de S’
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En d’autres termes, cette inversion change le sens de la
force auxiliaire sans changer ni l'intensité ni la ligne
d’action de cette force.

En tenant compte de ces résultats, les formules (19)
et (20) donnent alors lieu aux interprétations suivantes :

En premier lieu, les relations (19) montrent que la
force F' qui doit étre appliquée dans S’ pour que S
subisse une rotation donnée » est la résultante de la
force principale F et de la force auxiliaire qui correspon-
dent a4 w. D’aprés les équations (20), en revanche, la
force F” a appliquer dans S" pour que S’ subisse la méme
rotation w, s’obtient en composant la méme force prin-
cipale F avec une force auxiliaire qui ne différe de I,
que par le sens. En d’autres termes, on a symboliquement

(F) = (F) + (Fy,
(F) = (F) — (F.

20. Deuxiéme conique d’élasticité d'un ensemble de
deux sections. — Pour obtenir cette deuxieme conique,
cherchons le lieu des centres de rotation o qui sont
situés sur les forces principales correspondantes. En
employant une méthode dualistique de celle qui a été
suivie au paragraphe (17), on .obtient immédiatement
pour I'équation de ce lieu, en coordonnées ponctuelles,

2+ oY + 032° + 200y + 205y z+ 20522 = O.
Ce lieu est donc encore une conique, qui sera dite la
deuriéme conique d’élasticité relative a l’ensemble des
deux sections S’ et S”.
Les coordonnées de la polaire, par rapport a cette
conique, du centre de rotation w étant alors proportion-
nelles aux quantités '

oy & + oy Y + g 2,
amﬁ)—|—amy—|— a322,
013 X+ 0 I + 03 2,
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- c’est-a-dire aux coordonnées de F, on peut énoncer le
~ théoréme suivant :

La ligne d’action de la force principale coincide avec la
polaire de la rotation w par rapport a la deuxiéme conique
d’élasticité.

Si 'on désigne ensuite par z,, y,', z,, les coordonnées
de la rotation «," pour laquelle la force principale corres-
‘pondante se réduit a un couple de moment-unité, on aura

sin A , , ,
H =0y Xy + 0y Yy + Qg %,

sin B ; ; y
H = Oy Ty + Oy Yo + Oz %o,

Sin C 7 . f !
= ‘s + on Yo + @ 2 -

Mais on déduit bien facilement de 13, en tenant compte
des formules (17) et du fait que e = au;

é(az sin A+ysinB+zsinC) =Xz’ +Yy' +Zz'.

Par suite, le moment relatif de la force principale et de
la rotation w," est précisément égal a l'intensité de la
rotation correspondante. Comme la ligne d’action de la
force principale qui correspond a une rotation donnée
est connue, en vertu du théoréme énoncé plus haut, la
propriété qu’'on vient d’obtenir permet alors de déter-
miner I'intensité et le sens de cette force principale. Il
est évident, d’ailleurs, que le point autour duquel s’opére
la rotation -, coincide avec le centre de la deuxiéme
conique d’élasticité.

21. Masse auxiliaire d’'un ensemble de deux sections. —
Si I'on tient compte de la relation

Bir = — Bui,
les formules (18) qui définissent la force auxiliaire pren-
nent la forme
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Xy =faly — Pz

Y, =fnz —fa2 _

2y = f® — Ba y.
Mais, en posant '

P32 — _I—I')I
P %’
1821 =I_{‘_I

elles deviennent

Or, les quantités p, ¢ et r peuvent étre envisagées
comme les coordonnées d’une masse fixe qui sera dite
la masse auxiliaire relative a I'ensemble des deux sections
S’ et S". Dans ces conditions, les formules obtenues per-
mettent d’énoncer le théoréme suivant,qui est évidem-
ment le corrélatif de celui du paragraphe 18 :

La force auxiliaire qui correspond & une rolation quel-
conque se confond avec le produit vectoriel de cette rotation
par la masse auzxiliaire.

Il résulte en particulier de la que la force auxiliaire
passe par un point fixe, qui est le point de concentration
de la masse auxiliaire et par le point autour duquel
s’opére la rotation donnée. Enfin, il résulte encore des
propriétés du produit vectoriel que, lorsque la rotation
s’opére autour du point de concentration de la masse
auxiliaire, la force auxiliaire s’annule.

On doit encore remarquer que dans le cas ou l'on
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intervertit les réles des deux sections S’ et S’, les coor-
données de la masse auxiliaire ne font que changer de
signes. Si donc ces deux sections coincident, cette masse
s’évanouit, de méme que la force auxiliaire. La force
principale subsiste donc seule et la deuxiéme conique
d’élasticité se confond, comme la premiere, avec la con-
juguée de l'ellipse d’élasticité de la section considérée.
En d’autres termes, dans ce cas particulier, les deux

coniques d’élasticité se confondent.

22. Forme eanonique des équations fondamentales. —
Pour mettre en évidence les relations de position qui
existent entre les deux coniques d’élasticité, ainsi qu’entre
le vecteur et la masse auxiliaires, il est utile de réduire les.
équations fondamentales a la forme la plus simple pos-
sible. On y parvient en choisissant les axes qui définissent
le triangle de référence de maniére que u se confonde avec
la ligne d’action du vecteur G, tandis que v et w coincident
avec les tangentes de la premiére conique d’élasticité
qui passent par les points réels ou imaginaires ou elle est
coupée par 'axe u. Dans ces conditions, le sommet du
triangle de référence, qui est opposé a cet axe, se confond
avec le point désigné précédemment par g, et 'équation
de la premiére conique d’élasticité prend la forme plus
simple

A X2+ 2A3YZ =0

On a donc nécessairement, pour ces nouveaux axes
‘Age — Ass — A1z — As1 = 0O,
de sorte que les formules (7) deviennent

x=A11X,
y= As Z,
Z=A23 Y.

D’autre part, puisque G coincide avec u, on a néces-

. sairement
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PD=R=0,
d’ou
Biz = Bz = O,
et les formules (8) deviennent
£=20
1y = Z Basas,
{ = — Y Bs:.

Mais alors il résulte immédiatement de la et des for-
mules (9) et (10), qui sont équivalentes aux formules fon-
damentales (1) et (2), que ces derniéres se simplifient et
prennent respectivement les formes suivantes :

gl - O X,
y” — (A2 — Baz) Z,
2/ = (Ass + Bs2) Y,

= An X,
y' — (Ass + Bse) Z,
LA — (Azs — Bsz) Z.
En résolvant ces deux groupes d’équations par rapport
a X, Y, Z, on obtient, en tenant compte du changement
de notations indiqué au paragraphe 19,

et

1
X' —= — X,
Ay
1
e Ass + Bas: %
- 1
7 2= Ass — Bs O’
et
1
A vl
. 1
¥ ~ Ass — Bse %
Z' .

— Ass + Bs: Y-
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- On déduit alors facilement de 1a que, dans le nouveau
systéme d’axes, les formules (17) et (18) qui définissent
la force principale et la force auxiliaire prennent respec-
tivement les formes suivantes :

1
X = —A_-.l_l. X,
| 1 1
¥ = 2 (Ags + Bs: T Aszs — Bsz) i
=% fa=t 1
2 \A:s + Ba + Ass — Base s
et
Xi=0
1 1 1
Y= 2 (Aza 4 Bs:  Ass — Bes) ?
7 1. 1 . 1 )
T 2 A —+ Bs:  Ass — Bse g

Il résulte en premier lieu de ces formules que 1'équation
de la deuxiéme conique d’élasticité se réduit a

—:{:—2-—]— ! +- ! ) z =0
A1 Ass + Bs: ' Aszs — Bas y2=29

de sorte que, comme la premiere, elle est tahgente aux
axes v et w, aux points ou ils sont rencontrés par u.

D’autre part, les coordonnées de la masse auxiliaire
-ont pour valeurs

= —I_—I ~——————1 1 =o0,r—o, )
- P= Ass —I— Bs: Az; — Bas: 4= o
et cette masse est concentrée au point ¢. En consequence

Les poles de la ligne d’action du vecleur auxiliaire par
rapport aux deux coniques d’élasticilté se confondent avec le
point de concentration de la masse auxiliaire.

Il convient d’ajouter que, comme cela résultera de la
suite, les deux coniques d’élasticité sont imaginaires. Ce
fait n’améne aucun inconvénient dans les applications,
‘puisqu’on pourra toujours introduire les coniques con-
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juguées qui deviennent réelles, a condition de remplacer
les notions de poles et de polaires par celles d’antipoles
et d’antipolaires. |

Enfin, il est encore nécessaire d’ajouter que tous les
résultats obtenus s’appliquent sans modifications a la
plupart des systémes articulés plans qu’on rencontre dans
la pratique de I'art de l'ingénieur. Si 'on envisage, par
exemple, le cas d’un arc triangulé relié a un tablier supé-
rieur par I'intermédiaire de palées également triangulées,
il est clair que I'attache de 'une des palées et du tablier
ne peut plus étre assimilée a un nceud ordinaire. Ses di-
mensions sont en général finies et il est bien plus exact
de la considérer comme une piece rigide sur laquelle
viennent s’articuler quelques-unes des barres du systéme.
Une telle piéce peut jouer le role de I'une des sections S
ou Y, et I'on est conduit de la sorte a envisager des sys-
témes constitués par un certain nombre de piéces infi-
niment rigides et de forme arbitraire sur lesquelles vien-
nent s’attacher, par l'intermédiaire d’articulations, les
barres proprement dites. Dans la suite de pareils systemes
seront désignés sous le nom de systémes articulés com-
plexes, les pieces rigides étant encore qualifiées de nceuds.
On peut d’ailleurs remarquer que, dans le cas o les cen-
tres des articulations qui se trouvent sur un méme noeud
coincident et que cette condition est remplie pour tous
les nceuds du systéme, celui-ci se réduit & un systéme
articulé ordinaire.

D’autre part, le principe des travaux virtuels et toutes
les conséquences qui en découlent sont applicables aux
svstemes complexes. Pour qu’ils soient statiquement dé-
terminés, il faut donc et il suffit qu’ils soient librement
dilatables au sens défini par Maurice Lévy. Cela exige,
en parliculier, que l'on ait

m <+ a = 3 n,
m désignant le nombre des barres, a celui des liaisons
50-182 * 7
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simples et n celui des nceuds. 11 est remarquable, de plus,
que le calcul des tensions puisse s’effectuer dans ce cas
par les procédés qu’on doit appliquer aux systémes ordi-
naires a trols dimensions, aprés qu’'on les a représentés
dualistiquement sur le plan de I’épure et qu’ils ont été
réduits a leur figure fondamentale .

! Yoir : B. Mayor, Slatique graphique des systémes de [’espace,
Chapitre VI. .
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CHAPITRE IIL

Masses et vecteurs adjoints dans les systémes articulés

comple xes.

23. L.a premiere conique d’élasticité et le vecteur auxi-
liaire définis au chapitre précédent ont d’étroites rela-
tions avec un élément qui doit étre envisagé comme une
extension de celul qu’on désigne fréquemment sous le
nom de poids élastique, mais qu’il nous a paru préférable
pour des raisons que la suite fera clairement compren-
dre, d’appeler masse adjointe. A coté de cet élément, on
peut encore en introduire un deuxiéme qui n’a pas encore
été signalé, quoiqu’il se trouve relié au premier par le
principe de dualité et que son role soit tout aussi impor-
tant. Ces éléments interviennent dans la théorie des
poutres a fibre moyenne plane comme dans celle des
systémes articulés complexes ; mais pour les définir nous
envisagerons tout d’abord ce dernier cas, qui ne demande
que des calculs élémentaires.

Convenons alors de désigner par S’ et S” deux nceuds
quelconques d’un systéme articulé complexe et remar-
quons que la rotation subie par I'un quelconque de ces
nceuds, lorsqu’une force F (X, Y, Z) est appliquée dans
I'autre, est encore donnée par les formules (1) ou (2) du
chapitre précédent, suivant que la force est appliquée a
S ou a . Or, les coefficients a’; et a’,; qui figuren! dans
ces formules et représentent les déplacements produits
par des forces-unités agissant suivant les axes u, v, w du
triangle de référence peuvent étre mis sous des formes
trés simples. .

Admettons, en effet, que 'on ait attribué a toutes les
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barres du systeme des numéros d’ordre, les divers éléments
qui peuvent dépendre d’une méme barre étant alors carac-
térisés par un indice égal a son numéro d’ordre. C’est
ainsi que nous désignerons par [, £,, E, la longueur, la
section et le module d’élasticité de la barre dont le numéro
d’ordre est précisément égal a i. Nous poserons, en outre,
pour simplifier I'écriture -
l;
(1) “= wa |

Désignons ensuite par U/, V), W, les tensions pro-
duites dans cette méme barre par des forces appliquées
au nceud S’ et admettant respectivement pour coor-

donneées

A= 1y Y= Uy LA=1,
X=0,Y=1, Z=0,
X=0,Y¥Y=0,7Z=1.

Enfin, représentons par U/, V), W/ les tensions
produites par ces mémes forces lorsqu’on les suppose

appliquées au noeud S"
Il résulte immédiatement d’une formule classique de

la thécrie des déformations que les divers déplacements
a', et a’, ont les valeurs suivantes :
’ 7 4
a'y an_Ey2U U/,
a.ff22 "' 2 V Vt”,

A 90 — =
g — Mgy = & fi* Wy Wy s
a'yp=d'y =Zp2V,/ U/,
(2) o= =3I u2 W, V/,
gy ==l gy =2 fE U W'y
ady=dadp=3p2V/' U/,
A=A =3Ipu2 W/ V/
arls =d g — = uf U’ w/,

le signe I représentant une somme qui doit étre étendue
a toutes les barres du systeme.
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Si I'ep pose enfin :

' . ' ' ' ' '

(3) a, — W, Ui ’ bt’ — U, Vl‘ s G = \V‘ 4
" " "o " _ 1t 1

a, = u, Ui 5 b; — u; V,- sy C; = u; Wi s

et si Yon remplace les coefficients par les valeurs obte-

nues, les formules (1) et (2) du chapitre 1I prennent, aprés
des transformations évidentes, les formes suivantes :

:Cr — E a,-'(X a,-” + Y biﬂ + Z Ci”),
(4) y’ — E bi"(X ai” + Y bl'” + Z Ci”)s
Zr — ‘\: Cg’(X (1‘-” ‘I‘ Y b'-” + Z Ci”),
et
F=Za X '+ Y b + Z&
G) yY=3bXa +Yb + Z¢),
' =Zc'Xa' +Y b + Zc),

qui vont donner lieu & des interpretations essentielles.

24. Définition des masses adjointes. — Les quantités
a’, b/, ¢,/ peuvent étre envisagées comme les coordonnées
d’'une masse m," qui dépend essentiellement de la barre I:
et du nceud S’ et qui, pour cette raison, sera désignée sous
le nom de masse adjointe de la barre [; par rapport au
uceud S’. De méme, les quantités a,”, b, ¢” seront aussi
regardées comme les coordonnées d’'une masse m,” qui
sera dite la masse adjointe de /; par rapport au nceud S’.
Cemme les formules (4) ou (5) sont applicables a tous les
nceuds du systéme, a chaque barre correspondent ainsi
autant de masses qu’ill y a de nceuds, et, réciproquement,
a chaque nceud correspondent autant de masses qu’il y
a de barres. Si d’ailleurs on est parvenu, par un procédé
quelconque, a déterminer toutes ces masses, le calcul du
systéme ne présente plus aucune difficulté et I'on peut
déterminer, & l'aide de procédés trés simples, non seu-
lement la déformation qu’il subit sous I'action de forces
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quelconques, mais encore les tensions engendrées dans
toutes les barres. -

- Il résulte, en effet, du principe de la superposition des
effets des forces que I'on peut se borner a4 envisager le
cas ou le systéeme est sollicité par une force unique F
(X, Y, Z), appliquée, par exemple, au nceud S’. La
rotation @ ‘subie par un nceud quelconque S’ est alors
donnée par les formules (4) : mais les quantités

v =a Xa +Yb" +7Zc)
gy, = b/ Xa' + Y b + Z ¢)
= o/ (Ya! + Y + 7 ¢

peuvent étre envisagées comme les coordonnées d’une
rotation partielle o,, qui s’opéere évidemment autour du
point de concentration de la masse m," et dont l'intensité
est égale au produit de m,’ par le moment relatif de F
et de m,”. Cette rotation partielle peut donc étre obtenue
trés simplement lorsqu’on connait les masses m,” et m,” et,
comme elle dépend essentiellement de la barre [, on
peut 'appeler la rotation partielle due a cette barre. Dans
ces conditions, la forme méme des formules (4) permet
d’énoncer le théoreme suivant :

La rotation subie par le neeud S’ s’obtient en composant
les rotations partielles, dues aux différentes barres du sys-
téme, comme des masses ordinaires.

En d’autres termes, on a symboliquement

o =30 =22 m (F, m,-”)

Il convient de noter ici que la détermination de la
rotation o, par le procédé qui découle de ces propriétés,
généralise la construction classique du centre du second
degré de Culmann et la comprend comme cas particu-
lier L. Si I’'on suppose, en effet, que le noeud S” se confonde
avec S’, on voit immédiatement que le point autour duquel

! Voir en particulier I’Edition francaise dc I’Ecyclopédie des sciences
mathématiques, tome VI, volume 2, fascicule 1, page 163.
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s’opere la rotation o’ se confond avec le centre du second
degré, par rapport a la ligne d’action de F, d’'un systéme
de masses concentrées aux mémes points que les masses
m,’ et dont les intensités sont respectivement égales a m,"2.

Cette remarque faite reprenons I'étude du cas général
ou les nceuds S’ et S” sont quelconques et remarquons
qu'en vertu du principe de la superposition des effets
des forces et de la définition des quantités U/, V", W/,
la tension produite dans I, par la force F appliquée a S’
est donnée par I'expression

T, = XU’ ' +YV/' +ZW/

ou, en tenant compte des formules (3),

1 (X a,-” _I_ Y bi” - Z bfrf) — _l (F. m,'”)

1" u;

[

6) T, =

En conséquence : La lension produile dans une barre
quelconque par une force appliquée en un nceud déterminé
est proportionnelle au moment relatif de cette force et de la
masse adjointe qui correspond a celte barre et a ce nceud. Si
dong, en particulier, la force F passe par le point de con-
centration de la masse, la tension s’annule dans la barre
correspondantc.

Dans le cas des systémes librement dilatables, cette
derniére propriété conduit a une conséquence essentielle.

Admettons, en effet, que la force F soit appliquée au
nceud S” d’un systeme librement dilatable et qu’elle passe
par le point m,”, de mamiére que la tension s’annule dans ..
Appliquons alors le principe d¢s travaux virtuels en choi-
sissant la déformation virtuelle du systéme, de maniére
que la barre [, s’¢llonge d’'une quantité infiniment petite,
les autres barres du systéme conservant des longueurs
invariables. La somme des travaux des forces intérieures
s’annule, puisqu’elle se réduit au travail de la tension
produite dans ;. Il en est donc de méme du travail de la
force extérieure F, ce qui exige que la rotation virtuelle
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de S” s’opére autour d’'un point de cette force. Et comme
ce résultat subsiste quelle que soit la force F, pourvu
qu’elle passe par m,", on en doit conclure que cette rotation
s’opére autour de m,”. Dans ces conditions, on peut énoncer
la proposition suivante, qui réduit la recherche des masses
adjointes a de pures considérations cinématiques:

Lorsqu’une seule barre d’un systéme librement dilatable
s’allonge infiniment peu, les nceuds de ce systéme pivotent
autour des poinis de concentration des masses adjointes
correspondantes.

En partant des équations (4), on pourrait encore mon-
trer trés simplement que de plus, les rotations subies par
les noeuds sont proportionnelles aux masses adjointes
correspondantes.

25. Masse polaire d’un vecteur ou d’une foree. — Pour
mettre en évidence les relations qui existent entre les
masses adjointes et la premiére conique d’élasticité d'un
ensemble de deux nceuds, 1) est nécessaire d’élargir, dans
un sens auquel il a été déja fait allusion au paragraphe
précédent, la théorie du systéme antipolaire d’un ensem-
ble de masses. Cette extension entraine quelques modi-
fications dans la terminologie adoptée jusqu’ici, modifi-
cations que la suite justifiera complétement.

Considérons simultanément deux systémes M’ et M’
constitués chacun par un méme nombre de masses ponc-
tuelles entre lesquelles se trouve établie une dépendance
telle qu'a chaque masse du premier systéme en corres-
ponde une et une seule du second et réciproquement.
On peut remarquer tout de suite que les systémes cons-
titués par les masses adjointes qui correspondent a deux
noeuds quelconques S et S” satisfont précisément a ces
conditions. Le nombre des masses de chaque systéme est
égal, en effet, a celui des barres ; de plus, deux masses
telles que m,” et m,” sont relatives a la méme barre [; et
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doivent étre considérées comme se correspondant I'une
a l'autre. Nous supposerons donc, ce qui ne diminuera
en rien la généralité des définitions qui suivent, que le
systéme M’ est formé par ’ensemble des masses m,” rela-
tives au nceud S', et le systéme M’ par I’ensemble des
masses m,” relatives a S”. De plus, nous conviendrons de
dire, pour rappeler les liaisons établies entre ces masses,
que les systémes M’ et M” sont associés. |

Soit alors P (X, Y, Z) un vecteur quelconque. Trans-
formons les masses du systéme M’ en remplacant chaque
masse telle que m,” par une masse nouvelle concentrée au
méme point et dont I'intensité soit égale a la moitié du
produit de m,” par le moment relatif de P et de m,”. De
méme, transformons les masses de M’ en remplagant
chaque masse tclle que m,” par une masse nouvelle con-
centrée au méme point et dont l'intensité soit égale a la
moiti¢ du produit de m,” par le moment relatif de P et
de m,". Si V'on compose enfin toutes ces masses nouvelles
d’apres les régles ordinaires, on obtient une masse ponc-
tuelle resultante qui sera dite la masse polaire de P par
rapport aux systémes associés M’ et M".

Il résulte de cette définition méme, et des notations
adoptées, que les coordonnées x, y et z de celtte masse
polaire m sont données par les formules

r= 1 Sa/(Xa"+Yb"+7Zc")+ ——21—2?(1{’ Xa'+Yb/'+7Zc'),

2
y:—;—3b,-’(Xa,—”—I—Yb,-”—l—ZC,-")ﬁ--%—Eb,v”(x a,-’ +Y b,-’—|—ZCt"),
1

2= Se/(Xa"+Yb!"+Ze/)+ -lizc,."(x a;+Y b'+7Zc/),

Or, si 'on envisage la conique représentée, en coor-
données tangentielles, par Véquation

@) S(a/ X+b'Y+e¢ Z) (@ X+b'Y+e' Z)=0

ces formules montrent que la masse polaire m est concen-
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trée au pole de la ligne d’action du vecteur P par rapport
a cette conique, ce qui justifie la terminologie introduite.
Cette conique sera dite la conique direcirice de I'ensemble
des systémes M’ et M".

Sil’on désigne ensuite par ,, Y., 2, les coordonnées
de la masse polaire m, quicorrespond a un couple de
moment-unité, on obtient, apres des réductions évidentes,

1
T=5w=a m' +52a" m/,

2

2

Yo-— "‘21‘ b’ m’ + %E b/ m,/,
1
2

~ C,-’ mi”+ _%_ b Cih' mc"'
D’autre part, Uintensité de la masse polaire m du
vecteur P a pour expression |
7 o 7 1 " r
=5 I/ (Xa/+Y b/ +7¢) + = Im! (X, +Y b/ +Ze;),

ou, en tenant compte des formules précédentes,
m—= Xz, + Yy, + Zz,

En d’autres termes : U'infensité de la masse polaire d’un
vecteur est égale au moment relatif de ce vecteur et de la
masse polaire qui correspond a un couple de moment unité.

D’autre part, la théorie des moments quadratiques
peut étre immédiatement étendue aux systémes associés.

Soit, en effet, P, (X; Y; Z,) un deuxiéme vecteur arbi-
traire. Si 'on calcule a 'aide des formules (7) le moment
relatif de m et de P1, on obtient

1 r ! ! 4 r "
1 4 /4 I r ! ! !
+_2_v(ai’X1+bi Yi+c¢' Z) (' X+ b"Y + ¢’ Z).

Cette expression est symétrique par rapport aux vec-
teurs P et Pi; elle doit €tre envisagée comme générali-
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sant la notion de moment centrifuge d’un systéme de
masses et nous la désignerons simplement sous le nom
de moment quadratique des systémes associés par rapport
aux deux vecteurs P et Pi. Dans le cas particulier ou P;
se confond avec P, ce moment quadratique se réduit a
P,m =@ X+b'Y+e¢'Z)y(@"X+b"Y+c"2Z)
el généralise la notion de moment d’inertie. _

Les théorémes généraux de la théorie des moments
d’inertie s’étendent immédiatement aux cas des systémes
associés. En particulier, il résulte de la définition méme
qu'on vient de donner que le moment quadratique s’an-
nule lorsque les lignes d’action des deux vecteurs sont con-
~juguées par rappoert a la conique direcirice. De la découlent
toute une série de corollaires identiques a ceux que
I'on rencontre dans la théorie ordinaire et qu’il est inutile
d’énoncer.

Sans insister longuement sur cette extension, il con-
vient toutefois de signaler une propriété que possédent
les masses cycliques el qui se rattache directement a
ce qui précede. Ces masses peuvent eétre regardées
comme formant deux systémes associés et, si l'on
calcule leur moment quadratique par rapport a deux
vecteurs (uelconques, on est conduit, en tenant compte
des résultats obtenus au paragraphe 15, au théoréme
suivant ;

Le moment quadratique des masses cycliques par rapport
a deux vecteurs quelconques est égal au produit scalaire de
ces deux vecleurs.

‘Un dernier cas particulier a noter est celui ou toute
masse mi” de M’ est concentrée au méme point que sa
correspondante m,” de M". On retrouve alors les resultats
de la théorie relative a un systéme unique, a condition
d’attribuer a la masse de ce systéme unique qui cor-
respond & deux masses primitivement associées telles
que m, et m;, une intensité égale au produit m,/ m,’.
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26. Relations entre la rotation principale, la rotation
auxiliaire et les masses adjointes. Il est maintenant bien
facile de déterminer la rotation principale « qui cor-
respond a2 un ensemble de deux nceuds S’ et S’. En
désignant comme nous l'avons déja fait par z, y et z les
coordonnees de cette rotation, on a, en vertu des formules
(9) et (10) du paragraphe 16

i — _;_ (xl + xrr) ,
1 ’ "
y=5U +y,
. _!-_ Zf + Z”)

r =5 ( ;

Or si ’on remplace les quantités ', y’, z’' et 2’, y’, °
par les valeurs obtenues au paragraphe 23 et qui sont
données par les formules (4) et (3), on retrouve exacte-
ment les formules (7) qui définissent la masse polaire d'un
vecteur ou d’une force. Dans ces conditions, on peut
énoncer le théoréme suivant :

La rotation principale relative a un systéme de deur
neeuds se confond avec la masse polaire de la force corres-
pondante par rapport aux systémes associés formés par les
masses adjointes de ces neeuds.

De ce théoréme et du fait que la rotation principale
s’opére autour du pole de la force par rapport a la pre-
miére conique d’élastique, résulte encore la propriété sui-
vante : _

La premiére conique d’élasticité relative @ un ensemble
de deux nceuds se confond avec la conique direcirice des .
systémes associés constitués par les masses adjointes de ces
neeuds.

D’autre part, il résulte encore des formules (9) et (10)
qu'on vient de rappeler que les coordonnées &, n, { de la
rotation auxilliaire 6, ont pour expressions
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. 1. .

—

1 ' '
/ _—"2“(9 —y),
t-._l . ”ﬂ
g-—'2*(4 -‘*.4).

En remplacant encore les quantités 2/, y’, z’ et 2", y’,
z” par leurs valeurs, on obtient, apres des simplifications
évidentes

2 :':_ — Ys(alf bi-’f . a!,” bil‘) . ZE(C!’ aiff . Cl” ail) ,
’.‘ _ Z.\:(b,’ C,;” . b,'” C,") L XE(a,-, bz-” L arri bi’) ,
(=XZc'a —¢"a’)y —YZ(/' ¢ -b"¢').
Mais en désignant par 2 P,, 2 Q,, 2 R, les coordonnées

du produit vectoriel de la masse m," par la masse m,’,
on a (§ 12)

o

o

2 P;‘ S (bir Ci” L b,-” Cz’)s

2 Qg: ﬁ (C"f a,-” o Ci” air) ,

. = - 1H (a; b — a] b))

et les formules précédentes peuvent s’écrire
t=H((XZR —Z2Q),
n=H(ZXZP, — XZR),
¢ =H(XZ3Q,—YZP).
IEn posant encore
P—=>P,, Q=3Q, R= >R,
on aura finalement
t=HXR-Z2Q),
y=H (ZP — XR),
(=HXQ —YP).
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Mais ce résultat indique que la rotation auxiliaire se
confond avec le produit ponctuel de la force F par le
vecteur résultant admettant P, Q, R, comme coordon-
nées. Ce vecteur résultant par suite, se confond avec le
vecteur auxillaire G relatif a ’ensemble des deux noeuds
S’ et S”. On peut donc énoncer la regle suivante :

Pour obtenir le vecteur auxiliaire relatif a deux nceuds
S’ et S, il suffit de former les produits vectoriels de cha-
que masse adjointe @ S’ par la masse correspondante de
S”, puis de déterminer le vecteur résultant de tous ces pro-
duits. Ce vecteur résultant est alors égal au double du vec-
teur auxiliaire G.

(A suivre.)
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