Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 48 (1912)

Heft: 177

Artikel: Nouvelle étude expérimentale sur le géotropisme et essai d'une théorie

mathématique de ce phénomène

Autor: Maillefer, Arthur

Kapitel: Réaction géotropique des plantes d'avoine placées horizontalement

pendant toute la durée de l'expérience

DOI: https://doi.org/10.5169/seals-269358

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

moins pendant la première demi-heure d'expérience; plus tard interviennent d'autres causes d'erreur (voir le stéréogramme fig. 8, page 457).

La variabilité de h due au géotropisme vient se superposer à la variabilité due à la nutation et contribuer à augmenter les erreurs probables; celles-ci malgré tout obéissent à la loi de Gauss.

Quoique cette étude de la nutation et de son influence sur l'interprétation des expériences sur le géotropisme soit loin d'être complète, elle a cependant donné un résultat, en démontrant que dans les conditions de mes expériences sur le géotropisme, les erreurs dues à la nutation se laissent traiter comme les erreurs fortuites et non systématiques.

Réaction géotropique des plantes d'avoine placées horizontalement pendant toute la durée (le l'expérience.

Dans mon travail de 1910¹, j'ai montré qu'une plante d'avoine placée horizontalement effectue une courbure vers le bas d'abord, puis vers le haut, que la courbe représentant ce phénomène est assez exactement une parabole de la forme

$$h = at + bt^2$$

où h est le déplacement de l'extrémité de la plante et a et b sont des quantités variables avec la température de l'expérience et la longueur de la plante; j'ai montré que a est une mesure de la courbure vers le bas et que b est de la nature d'une accélération qui mesure la capacité géotropique de la plante, j'ai énoncé la loi : La vitesse de la courbure géotropique est proportionnelle au temps pendant lequel la pesanteur a agi sur la plante.

Dans le calcul de a et de b, je n'avais pas tenu compte du poids² des valeurs de h moyen; c'est pourquoi j'ai

¹ Bull. Soc. vaud. Sc. nat. p. xLvi, p. 235 et 415.

² Voir page 419.

TABLEAU VIII. — Déviation // de l'extrêmité d'une plante d'avoine placée à 90° de sa position normale et abservée au eathétomètre dans cette position.

•	Longi im nə	15 15 16 17 17 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19
uə a	qməT ərut ərgəb	
	09	1,1,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1
	73	0,000 0,
	20	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
	45	0,000 0,
MINUTES	40	• 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	35	0,000 0,
PS EN	30	0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,0
TEMPS	25	0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
2	50	- 0.0 - 0.0
	73	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	01	0,000 0,000
) yo	0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,0 0 0,
sorè	ownN	604 606 607 606 607 605 611 623 624 610 610 610 610 620 621 620 632 632 632 633 634 648 660 660 673 673 673 673 673 673 674 675 676 677 677 678 678 678 679 670 670 670 670 670 670 670 670 670 670

,											_										-	2							_	_		
ngueur millim.	•	21	21	21	22	23	30	36	38	42	13	14	16	18	21	22	24	25	56	28	31	39	14	14	14	14	15	16	16	17	17	17
empéra- ture en egrés C.	1	25	25	25	25	25	52	22	25	52	26	56	56	56	56	26	26	56	56	5 6	56	56	27	27	27	27	27	27	27	27	27	27
l l	00	2,8	3,1	1,4	0,7	3,8	2,1	4,4	1,65	1,9	2,75	0,95	.8	1,35	3,15	2,5	3,0	1,45	3,35	2,6	2,4	1,45	2,3	1,9	1,3	2,8	2,0	2,2	-0.05	1,7	3,1	2,0
75	66	2,2	2,7	1,2	4,0	3,2	1,5	3,9	1,25	1,7	2,4	0,75	9,0	1,0	2,8	1,8	2,4	0,95	2,7	2,1	2,1	1,0	1,9	1,5	1,1	2,45	1,8	2,1	-0,1	1,3	2,65	1,7
9	OC.	1,45	2,3	, с «	0,0	2,75	1,2	3,6	0,95	1,4	1,95	0,65	0,5	8,0	2,15	1,45	1,7	0,55	2,15	1,5	1,7	0,55	1,6	1,3	0,8	2,15	1,45	1,8	-0,5	8,0	2,35	1,5
75	£	0.95	1,75	0,0	0,0	2,3	0,85	3,1	0,65	0,8	1,5	0,55	0,35	0,55	1,65	1,1	1,2	0,35	1,55	1,15	1,35	0,5	1,3	6,0	0,65	1,7	1,2	1,4	-0.25	0,4	2,0	, 1,2
MINUTES	40	0,3	1,35	0,35	0,00	1,85	0,5	2,5	9,0	0,35	1,1	0,45	0,2	0,3	1,2	0,8	0,5	0,15	1,15	8,0	1,1	-0,5	1,15	0,65	0,5	1,3	1,0	1,25	-0,3	0,0	1,55	6,0
	00	-0.05	0.95) C		1,5	0,3	2,15	0,45		8,0	0,35	0,1	0,2	0,0	0,5	0,25	0,1	0,75	9,0	8,0	-0.3	8,0	0,5	0,35	0,95	0,75	1,0	-0.35	-0.45	0,95	0,55
PS EN	90	-0.3	0,5	0.0	 	1.0	0,05	1,7	0,2	-0,5	0,3	0,35	0.05	0,1	0,0	0.25	0,1	-0.15	0,3	0,35	0,4	-0,5	9,0	0,3	0.25	0,7	0,5	0.8	-0,4	-0.65	0,55	0,35
TEMPS	62	-0.4	0,3	0,1	- 0,F	0,0		1,1	0,05	-0.9	0,1	0,25	-0.05	0,0	0,4	0,2	0,1	-0.25	0,0	0,1	0,15	8,0-	0,35	0,1	0,2	0,5	0,25	9.0	-0,3	2 ,0 —	0,35	0,1
ΨG	20	-0.3	0,1		0,0	0,3	6,0-	8,0	0,1	-1,15	-0,1	0,25	_0,1	0,0	0,2	0,05	0,1	<u></u>	-0,5	0,1	0,05	-0.9	0,05	0,0	0,2	0,2	0,15	0.4	-0,25	-0.6	0,05	-0,1
7.	19	0.5	0,1	0,0		0,2	-0.25	0,5	0,1	-1,1	9.0	0,15	-0.1	-0.1	0,1	0,0	0,05	-0.15	-0.25	0,15	0,1	9,0-	-0.05	-0.15	0,1	0,1	0,05	0.3	0,5	-0,45	0,0	-0,15
5	9	-0.2	0,05		0,0	0,1	-0,5	0,15	-0.05	1,1		0,1	0.1	.0-	0,1	0,0	0,0	-0,05	0,0	0,1	0,0	7.0-	0,0	-0,1	0,02	0,2	0,05	0.5	-0,05	-0,5	-0.05	-0,1
1:	e	-0.2	0.0		0.0	0,05	-0,3	-0,5	-0.25	-1,0	-0.1	0,05	0,1	0,0	0,1	0,0	0,0	0,05	-0.1	-0.1	-0,1	8.0-	0,02	0,0	0,0	0,0	0.05	0.1	-0,05	0,0	0,0	-0,1
so.iəuin	N	613	637	618	633	630	634	615	617	631	089	641	640	642	639	629	657	662	656	664	663	647	684	969	269	869	889	653	654	644	650	629

8 1 1 1 1 1 1 1 2 2 2 2 2 4 4 4 4 4 5 5 5 5 5 5 5 5 8 8 8 8 8 6 0 6 1 2 2 2 2 4 4 4 4 4 5 5 5 5 5 5 5 5 6 8 8 8 8 8 8 8 8 8 8 8	36 36
222222222222222222222222222222222222222	58 28 28
- 1 1 4 0 1 8 4 4 4 4 4 4 8 8 8 4 4 6 6 6 6 6 6 6 6	1,0
1,1,0,0,1,0,1,0,1,0,1,0,0,1,0,1,0,0,1,0,0,1,0,0,1,0	1,55 0,6
- 1, 1, 0, 0, 0, 1, 1, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,	1,2 0,3
	0,0 0,0
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,5 - 0,35
0,000 0,	0,25
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	0,2 -0,7
0,000	_0,15 _0,6
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	_0,35 _0,5
0,00,00,00,00,00,00,00,00,00,00,00,00,0	0,3 0,55
5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
682 682 682 683 685 693 667 668 673 673 666 666 666 666 666 667 667 668 673 673 673 674	676 679

repris les calculs des résultats d'expériences afin d'obtenir les valeurs de a et de b les plus probables.

Afin de voir si, avec mon appareil modifié, j'obtenais des résultats analogues à ceux de 1910, j'ai fait une nouvelle série de 100 expériences dont je donne les protocoles ci-dessous (tableau VII). Ces expériences viennent compléter heureusement la première série en ce sens qu'elles ont été faites à des températures comprises entre 24° et 28° C, tandis que les précédentes avaient été faites entre 15° et 24°. Cette série, portant les n° 601 à 700, a été commencée le 11 juillet 1911 et terminée le 1° août.

L'arrangement du tableau VII est un peu différent de celui de mon précédent travail; j'ai donné toutes les expériences à la suite les unes des autres en les classant d'après la température et dans chacune des températures d'après la longueur de la plante.

Les températures ont été lues toutes les 5 minutes au ¹/₁₀ de degré près; puis la température moyenne a été calculée; la température donnée dans le tableau est exprimée par le nombre entier de degrés le plus voisin de cette moyenne; par exemple, 17° signifie que la moyenne est comprise entre 16°,5 et 17°,5.

Dans mon Etude sur la réaction géotropique, les tableaux donnaient la valeur

$$x = \frac{10 \ h}{I}$$

où l est la longueur de la plante en millimètres; x est donc la déviation de l'extrémité de la plante ramenée à ce qu'elle serait si la plante avait 10 mm. J'ai trouvé plus simple de donner directement la déviation h observée et d'effectuer les calculs sur ces chiffres et de transformer les résultats seuls.

Les expériences ont été groupées pour les calculs en comprenant dans une catégorie toutes celles faites à la même température avec des plantes de même longueur; pour

50000000	Long im nə	15	20	. 25	15	20
era- e en és C.		15 n = 15	15 n = 16	$\begin{vmatrix} 15 \\ \mathbf{n} = 12 \end{vmatrix}$	18 n = 35	18 n = 30
	09	$\begin{array}{c} 0,399 \\ \pm 0,049 \\ 0,427 \\ \pm 0,069 \end{array}$	$\begin{array}{c} 0.414 \\ \pm 0.049 \\ 0.472 \\ \pm 0.069 \end{array}$	$\begin{array}{c} 0,733 \\ \pm 0,101 \\ 0,269 \\ \pm 0,142 \end{array}$	$\begin{array}{c c} 0,518\\ \pm 0,041\\ 0,668\\ \pm 0,059 \\ \text{n} \end{array}$	$\begin{array}{c} 0,608\\ \pm 0,053\\ 0,771\\ \pm 0,075 \text{n}\end{array}$
	55	$^{0,342}_{\pm 0,042}_{0,306}_{\pm 0,059}$	$egin{array}{c} 0,336 \ \pm 0,040 \ 0,404 \ \pm 0,057 \end{array}$	$\begin{array}{c} 0,688 \\ \pm 0,095 \\ 0,129 \\ \pm 0,134 \end{array}$	$0,464 \\ \pm 0,037 \\ 0,480 \\ \pm 0,052$	$0,560 \\ \pm 0,049 \\ 0,567 \\ \pm 0,069$
	20	$\begin{array}{c} 0,303 \\ \pm 0,037 \\ 0,185 \\ \pm 0,052 \end{array}$	$\begin{array}{c} 0,258 \\ \pm 0,031 \\ 0,278 \\ \pm 0,044 \end{array}$	$egin{array}{c} 0,588 \ \pm 0,081 \ 0,017 \ \pm 0,115 \ \end{array}$	$\begin{array}{c} 0,428 \\ \pm 0,035 \\ 0,335 \\ \pm 0,049 \end{array}$	$0,492 \pm 0,043 \ 0,389 \pm 0,060$
	45	$\begin{array}{c} 0,246 \\ \pm 0,031 \\ 0,105 \\ \pm 0,043 \end{array}$	$\begin{array}{c} 0,244 \\ \pm 0,029 \\ 0,179 \\ \pm 0,041 \end{array}$	$0.570 \\ \pm 0.078 \\ - 0.071 \\ \pm 0.111$	$^{0,374}_{\pm0,030}$ $^{0,203}_{\pm0,042}$	$0.412\ \pm 0.036\ \pm 0.050$
MINUTES	40	$\begin{array}{c} 0,183 \\ \pm 0,022 \\ 0,034 \\ \pm 0,031 \end{array}$	$^{0,250}_{\pm0,030}_{0,134}_{\pm0,042}$	0,503 ±0,069 - 0,108 ±0,098	$\begin{array}{c} 0,338 \\ \pm 0,028 \\ 0,119 \\ \pm 0,038 \end{array}$	$0.348 \\ \pm 0.030 \\ 0.087 \\ \pm 0.043$
	35	$\begin{array}{c} 0,173 \\ \pm 0,021 \\ 0,022 \\ \pm 0,030 \end{array}$	$\begin{array}{c} 0,250 \\ \pm 0,030 \\ 0,086 \\ \pm 0,042 \end{array}$	0,503 ±0,069 -0,122 ±0,098	$0,299 \\ \pm 0,023 \\ 0,051 \\ \pm 0,034$	0,334 ±0,029 –0,033 ±0,041
PS EN	30	$\begin{array}{c} 0,153 \\ \pm 0,018 \\ 0,016 \\ \pm 0,027 \end{array}$	$\begin{array}{c} 0,230 \\ \pm 0,027 \\ 0,086 \\ \pm 0,039 \end{array}$	$egin{array}{c} 0,393 \\ \pm 0,054 \\ - 0,156 \\ \pm 0,076 \end{array}$	$\begin{array}{c} 0,243 \\ \pm 0,019 \\ 0,012 \\ \pm 0,027 \end{array}$	$egin{array}{c} 0,312 \\ \pm 0,027 \\ - m{0,033} \\ \pm 0,038 \end{array}$
TEMPS	25	$\begin{array}{c} 0,125 \\ \pm 0,015 \\ 0,015 \\ \pm 0,022 \end{array}$	$\begin{array}{c} 0,212 \\ \pm 0,025 \\ 0,070 \\ \pm 0,035 \end{array}$	0,325 ±0,044 -0,170 ±0,062	$\begin{array}{c} 0.242 \\ \pm 0.019 \\ - \textbf{0.006} \\ \pm 0.027 \end{array}$	$0,256 \\ \pm 0,022 \\ - 0,069 \\ \pm 0,031$
	50	$\begin{array}{c} 0,092 \\ \pm 0,011 \\ 0,005 \\ \pm 0,016 \end{array}$	$\begin{array}{c} 0.180 \\ \pm 0.021 \\ 0.056 \\ \pm 0.030 \end{array}$	$\begin{array}{c} 0.277 \\ \pm 0.038 \\ - 0.160 \\ \pm 0.054 \end{array}$	$\begin{array}{c} 0,215\\ \pm 0,017\\ -\textbf{0,029}\\ \pm 0,024 \end{array}$	0.218 ± 0.019 $ 0.078$ ± 0.027
	15	0,086 ±0,011 - 0,010 ±0,015	$\begin{array}{c} 0.164 \\ \pm 0.019 \\ 0.032 \\ \pm 0.027 \end{array}$	$\begin{array}{c} 0,223 \\ \pm 0,030 \\ - \textbf{0,154} \\ \pm 0,043 \end{array}$	$0.180 \\ \pm 0.014 \\ - 0.029 \\ \pm 0.021$	$\begin{array}{c} 0,158 \\ \pm 0,014 \\ - 0,080 \\ \pm 0,019 \end{array}$
	10	0,064 ±0,008 -0,022 ±0,011	$\begin{array}{c} 0,130 \\ \pm 0,015 \\ 0,026 \\ \pm 0,023 \end{array}$	0,233 $\pm 0,032$ - 0,123 $\pm 0,045$	$\begin{array}{c} 0,192 \\ \pm 0,015 \\ - 0,030 \\ \pm 0,022 \end{array}$	$egin{array}{c} 0,126 \\ \pm 0,010 \\ - 0,065 \\ \pm 0,015 \end{array}$
	ro	0,033 ±0,004 -0,010 ±0,006	$\begin{array}{c} 0.124 \\ \pm 0.014 \\ 0.000 \\ \pm 0.021 \end{array}$	0,133 ±0,018 -0,100 ±0,025	0,124 ±0,008 - 0,027 ±0,013	0,092 ±0,008 - 0,060 ±0,011
		s Es h moyen Eh	5 E3 h moyen Eh	s Es h moyen Eh	5 . E5 h moyen Eh	s Es h moyen Eh

Tableau VIII (suite).

	rgno.I lim nə	25	15	.20	25	15	20 1-300
uə :	Temp fure degré	$\begin{vmatrix} 18 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	$\begin{vmatrix} 21 \\ n = 12 \end{vmatrix}$	$\begin{vmatrix} 21 \\ n = 13 \end{vmatrix}$	$\begin{vmatrix} 21\\ 21\\ \mathbf{n} = 24 \end{vmatrix}$	24 $n = 12$	$\begin{vmatrix} 24 \\ \text{Exp.} \end{vmatrix}$ $\mathbf{n} = 18$
8	60	$^{0,583}_{\pm 0,071}$ $^{1,105}_{\pm 0,101}$	$\begin{array}{c} 0.243 \\ \pm 0.033 \\ 0.897 \\ \pm 0.047 \\ \text{n} \end{array}$	$0.770 \\ \pm 0.102 \\ 1.548 \\ \pm 0.144$	$^{1,118}_{\pm 0,109}$ $^{1,840}_{\pm 0,153}$	$\begin{array}{c c} 0,570 \\ \pm 0,078 \\ 1,858 \\ \pm 0,111 \\ \parallel n \end{array}$	$\begin{array}{c} 0.598 \\ \pm 0.067 \\ 2.059 \\ \pm 0.095 \\ \text{n} \end{array}$
	55	$\begin{array}{c c} 0,483 \\ \pm 0,059 \\ 0,757 \\ \pm 0,084 \end{array}$	$\begin{array}{c} 0.231 \\ \pm 0.032 \\ 0.655 \\ \pm 0.045 \end{array}$	$\begin{array}{c} 0.586 \\ \pm 0.077 \\ 1,223 \\ \pm 0.110 \end{array}$	$\begin{array}{c} 0,993 \\ \pm 0,096 \\ 1,456 \\ \pm 0,136 \end{array}$	$egin{array}{c} 0,502 \ \pm 0,069 \ 1,542 \ \pm 0,098 \ \end{array}$	$egin{array}{c} 0,566 \ \pm 0,063 \ 1,730 \ \pm 0,091 \ \end{array}$
	20	$\begin{array}{c} 0,430 \\ \pm 0,053 \\ 0,458 \\ \pm 0,075 \end{array}$	$egin{array}{c} 0,203 \ \pm 0,028 \ 0,449 \ \pm 0,039 \ \end{array}$	$\begin{array}{c} 0.544 \\ \pm 0.072 \\ 0.938 \\ \pm 0.101 \end{array}$	$egin{array}{c} 0,815 \ \pm 0,079 \ 1,048 \ \pm 0,112 \ \end{array}$	$egin{array}{c} 0,415 \ \pm 0,057 \ 1,217 \ \pm 0,081 \ \end{array}$	$egin{array}{c} 0,508 \ \pm 0,057 \ 1,331 \ \pm 0,081 \ \end{array}$
	45	$\begin{array}{c} 0,410 \\ \pm 0,050 \\ 0,217 \\ \pm 0,071 \end{array}$	$^{0,186}_{\pm 0,026}$ $^{0,262}_{\pm 0,035}$	$^{0,456}_{\pm 0,060}_{0,694}_{\pm 0,086}$	$^{0,705}_{\pm 0,068}$ $^{0,643}_{\pm 0,096}$	$\begin{array}{c} 0,381 \\ \pm 0,044 \\ 0,088 \\ \pm 0,062 \end{array}$	$0.472\ \pm 0.053\ 0.933\ \pm 0.075$
MINUTES	40	$\begin{array}{c} 0,358 \\ \pm 0,044 \\ 0,065 \\ \pm 0,062 \end{array}$	$egin{array}{c} 0,156 \\ \pm 0,022 \\ 0,095 \\ \pm 0,031 \end{array}$	$0.358 \\ \pm 0.048 \\ 0.437 \\ \pm 0.067$	$0.530 \\ \pm 0.052 \\ 0.338 \\ \pm 0.073$	$\begin{array}{c} 0,236 \\ \pm 0,032 \\ 0,633 \\ \pm 0,046 \end{array}$	$\begin{array}{c} 0,440 \\ \pm 0,049 \\ 0,603 \\ \pm 0,070 \end{array}$
	35	$\begin{array}{c} 0,335 \\ \pm 0,041 \\ - \textbf{0,005} \\ \pm 0,058 \end{array}$	$\begin{array}{c} 0,117\\ \pm 0,016\\ -\textbf{0,035}\\ \pm 0,023 \end{array}$	$\begin{array}{c} 0,272 \\ \pm 0,036 \\ 0,238 \\ \pm 0,051 \end{array}$	$egin{array}{c} 0,425 \ \pm 0,041 \ 0,098 \ \pm 0,058 \ \end{array}$	$\begin{array}{c} 0,205\\ \pm 0,028\\ 0,396\\ \pm 0,040\\ \end{array}$	$\begin{array}{c} 0,366 \\ \pm 0,041 \\ 0,282 \\ \pm 0,059 \end{array}$
PS EN	30	$\begin{array}{c} 0,288 \\ \pm 0,036 \\ - \textbf{0,093} \\ \pm 0,050 \end{array}$	$\begin{array}{c} 0,144 \\ \pm 0,020 \\ - 0,101 \\ \pm 0,027 \end{array}$	$\begin{array}{c} 0,216 \\ \pm 0,029 \\ 0,103 \\ \pm 0,041 \end{array}$		$\begin{vmatrix} 0.146 \\ \pm 0.020 \\ 0.217 \\ \pm 0.028 \end{vmatrix}$	$\begin{array}{c} 0,306\\ \pm 0,035\\ 0,033\\ \pm 0,049\end{array}$
TEMPS	25	$\begin{array}{c} 0,250 \\ \pm 0,031 \\ - \textbf{0,088} \\ \pm 0,044 \end{array}$	$\begin{array}{c} 0,150 \\ \pm 0,021 \\ - 0,130 \\ \pm 0,029 \end{array}$	$\begin{array}{c} 0.178 \\ \pm 0.024 \\ 0.034 \\ \pm 0.034 \end{array}$	$0,303$ $\pm 0,029$ $-$ 0,123 $\pm 0,041$	$\begin{vmatrix} 0,134 \\ \pm 0,018 \\ 0,087 \\ \pm 0,026 \end{vmatrix}$	$\begin{array}{c} 0.252 \\ \pm 0.028 \\ - \textbf{0.114} \\ \pm 0.040 \end{array}$
	50	$egin{array}{c} 0,193 \ \pm 0,024 \ - 0,082 \ \pm 0,033 \end{array}$	$\begin{array}{c} 0,155 \\ \pm 0,022 \\ - 0,138 \\ \pm 0,030 \end{array}$	$egin{pmatrix} 0,160\ \pm0,021\ -0,014\ \pm0,030 \end{bmatrix}$	$egin{array}{c} 0,268 \\ \pm 0,026 \\ - 0,135 \\ \pm 0,037 \end{array}$	$\begin{array}{c} 0,116 \\ \pm 0,016 \\ 0,004 \\ \pm 0,023 \end{array}$	0.182 ± 0.020 $- 0.186$ ± 0.029
	15	$egin{array}{c} 0,170 \\ \pm 0,021 \\ - 0,070 \\ \pm 0,030 \end{array}$	$\begin{array}{c} 0,150 \\ \pm 0,021 \\ - 0,141 \\ \pm 0,029 \end{array}$	$\begin{array}{c} 0,128 \\ \pm 0,017 \\ - 0,045 \\ \pm 0,024 \end{array}$	$egin{array}{c} 0,198 \\ \pm 0,019 \\ - 0,141 \\ \pm 0,028 \end{array}$	0,098 ±0,013 - 0,017 ±0,019	$\begin{array}{c} 0,162 \\ \pm 0,018 \\ - 0.200 \\ \pm 0,025 \end{array}$
	10	$egin{array}{c} 0,120 \\ \pm 0,013 \\ - 0,058 \\ \pm 0,021 \end{array}$	0,096 ± 0,013 - 0,084 ± 0,019	$\begin{array}{c} 0,072\\ \pm 0,010\\ -\textbf{0.062}\\ \pm 0,014\\ \end{array}$	$\begin{array}{c} 0,150 \\ \pm 0,015 \\ - 0,126 \\ \pm 0,021 \end{array}$	$\begin{array}{c} 0,110 \\ \pm 0,015 \\ - 0,037 \\ \pm 0,023 \end{array}$	0.148 ± 0.016 $- 0.193$ ± 0.024
) io	$egin{pmatrix} 0,075 \\ \pm 0,009 \\ - 0,052 \\ \pm 0,013 \end{bmatrix}$. 0,077 ±0,011 - 0,056 ±0,015	0,060 ±0,006 -0,035 ±0,011	$\begin{array}{c} 0.115 \\ \pm 0.012 \\ - 0.099 \\ \pm 0.015 \end{array}$	0,077 ±0,011 –0,00 4	$0.082 \pm 0.009 - 0.127 \pm 0.013$
		5 E3 h moyen Eh	s Es h moyen Eh	5 E3 h moyen Eh	s Es h moyen Eh	s Es h moyen Eh	Es h moyen Eh

				•	
20 601-700. 	25	30	15	20	25
24 xp. = 1	24 $n = 17$	24 $n = 13$. 27 n = 13	$\begin{vmatrix} 27 \\ 1 \end{vmatrix} = 16$	$\begin{vmatrix} 27 \\ n = 20 \end{vmatrix}$
$\begin{array}{c c} 1,004 & 24 \\ \pm 0,128 & \text{Exp.} \\ 1,918 \\ \pm 0,181 & \text{in} = 1 \end{array}$	$\begin{array}{c c} 0,862 \\ \pm 0,100 \\ 2,529 \\ \pm 0,141 \\ \text{In} \end{array}$	$egin{array}{c} 1,647 \ \pm 0,218 \ 1,645 \ \pm 0,308 \ \mathrm{n} \end{array}$	$egin{array}{c} 0,861 \\ \pm 0,114 \\ 1,835 \\ \pm 0,161 \\ \end{array}$	$\begin{array}{c} 0.841 \\ \pm 0.100 \\ 2.206 \\ \pm 0.142 \\ \text{ln} \end{array}$	$\begin{array}{c} 0.822 \\ \pm 0.088 \\ 2.305 \\ \pm 0.124 \\ \text{ln} \end{array}$
$egin{array}{c} 0.866 \ \pm 0.110 \ 1.543 \ \pm 0.156 \ \end{array}$	$\pm 0,747 \ \pm 0,087 \ 2,129 \ \pm 0,123$	$egin{array}{c} 1,518 \\ \pm 0,201 \\ 1,391 \\ \pm 0,284 \\ \hline \end{array}$	$egin{array}{c} 0,774 \ \pm 0,102 \ 1,550 \ \pm 0,145 \ \end{array}$	$^{0,786}_{\pm 0,094}$ $^{1,831}_{\pm 0,133}$	$egin{array}{c} 0,752 \\ \pm 0,080 \\ 1,902 \\ \pm 0,113 \end{array}$
$\begin{array}{c} 0.768 \\ \pm 0.098 \\ 1.164 \\ \pm 0.138 \end{array}$	$egin{array}{c} 0,690 \ \pm 0,080 \ 1,703 \ \pm 0,113 \ \end{array}$	$egin{array}{c} 1,323 \ \pm 0,175 \ 1,073 \ \pm 0,248 \ \end{array}$	$egin{array}{c} 0,704 \ \pm 0,093 \ 1,281 \ \pm 0,132 \ \end{array}$	$\begin{array}{c} 0,701 \\ \pm 0,084 \\ 1,509 \\ \pm 0,118 \end{array}$	$egin{array}{c} 0,633 \\ \pm 0,068 \\ 1,487 \\ \pm 0,095 \end{array}$
$\begin{array}{c} 0.687 \\ \pm 0.088 \\ 0.811 \\ \pm 0.124 \end{array}$	$\begin{array}{c} 0,640 \\ \pm 0,074 \\ 1,309 \\ \pm 0,105 \end{array}$	$egin{array}{c} 1,137 \ \pm 0,150 \ 0,785 \ \pm 0,213 \ \end{array}$	$egin{array}{c} 0,604 \\ \pm 0,080 \\ 0,992 \\ \pm 0,113 \end{array}$	$\begin{array}{c} 0,633 \\ \pm 0,075 \\ 1,166 \\ \pm 0,107 \end{array}$	51010
$\begin{array}{c} 0,626 \\ \pm 0,080 \\ 0,507 \\ \pm 0,113 \end{array}$	$0.528 \\ \pm 0.061 \\ 0.893 \\ \pm 0.087$	$egin{array}{c} 0,960 \\ \pm 0,127 \\ 0,504 \\ \pm 0,180 \end{array}$	$egin{array}{c} 0,533 \ \pm 0,071 \ 0,750 \ \pm 0,100 \ \end{array}$	$\begin{array}{c} 0,551 \\ \pm 0,066 \\ 0,862 \\ \pm 0,093 \end{array}$	$ \begin{array}{c c} 0,440 & 0,510 \\ \pm 0,047 & \pm 0,055 \\ 0,770 & 1,100 \\ \pm 0,066 & \pm 0,78 \end{array} $
$egin{array}{c} 0.577 \\ \pm 0.073 \\ 0.239 \\ \pm 0.104 \end{array}$	$\begin{array}{c} 0,450 \\ \pm 0,052 \\ 0,537 \\ \pm 0,074 \end{array}$	$^{0,717}_{\pm 0,096}$ $^{0,248}_{\pm 0,135}$	$\begin{array}{c} 0.458 \\ \pm 0.061 \\ 0.485 \\ \pm 0.086 \end{array}$	$\begin{array}{c} 0,452 \\ \pm 0,054 \\ 0,603 \\ \pm 0,076 \end{array}$	$\begin{array}{c} 0.379 \\ \pm 0.040 \\ 0.470 \\ \pm 0.057 \end{array}$
$\begin{array}{c} 0.508 \\ \pm 0.065 \\ 0.057 \\ \pm 0.092 \end{array}$	$\begin{array}{c} 0,375 \\ \pm 0,044 \\ 0,253 \\ \pm 0,061 \end{array}$	$\begin{array}{c} 0.576 \\ \pm 0.077 \\ 0.025 \\ \pm 0.108 \end{array}$	$0.398 \\ \pm 0.053 \\ 0.285 \\ \pm 0.074$	$\begin{array}{c} 0,370 \\ \pm 0,044 \\ 0,387 \\ \pm 0,062 \end{array}$	$egin{array}{c} 0,305 \\ \pm 0,033 \\ 0,212 \\ \pm 0,046 \\ \hline \end{array}$
0.428 ± 0.055 - 0.064 ± 0.077	$^{0,320}_{\pm0,042}$ $^{0,010}_{0,010}$ $^{\pm0,052}$	$0,366 \pm 0,049 - 0,134 \pm 0,069$	$\begin{array}{c} 0.328 \\ \pm 0.043 \\ 0.135 \\ \pm 0.061 \end{array}$	$0.339 \\ \pm 0.040 \\ 0.216 \\ \pm 0.057$	$egin{array}{c} 0,232 \\ \pm 0,025 \\ 0,047 \\ \pm 0,035 \\ \hline \end{array}$
$\begin{array}{c} \textbf{0,352} \\ \pm \textbf{0,045} \\ -\textbf{0,111} \\ \pm \textbf{0,064} \end{array}$	$\begin{array}{c} 0,293 \\ \pm 0,037 \\ - 0,099 \\ \pm 0,047 \end{array}$	$0,297 \\ \pm 0,039 \\ - 0,175 \\ \pm 0,056$	$^{0,245}_{\pm 0,032}_{0,012}_{\pm 0,046}$	$\begin{array}{c} 0,245 \\ \pm 0,029 \\ 0,125 \\ \pm 0,041 \end{array}$	$\begin{array}{c c} 0,186 & 0,222 \\ \pm 0,028 \pm 0,024 \\ -\textbf{0,072} & -\textbf{0,035} \\ \pm 0,020 \pm 0,033 \end{array}$
0,295 ± 0,038 - 0,132 ± 0,053	0,233 ±0,027 - 0,106 ±0,038	0,234 $\pm 0,031$ - 0,196 $\pm 0,043$	$egin{array}{c} 0,185 \\ \pm 0,024 \\ - 0,046 \\ \pm 0,035 \end{array}$	$\begin{array}{c} 0,167 \\ \pm 0,020 \\ 0,075 \\ \pm 0,028 \end{array}$	$egin{array}{c} 0,186 \\ \pm 0,028 \\ - 0,072 \\ \pm 0,020 \end{array}$
0,210 ±0,027 - 0,135 ±0,038	0,200 ±0,023 - 0,118 ±0,033	0,093 ±0,012 - 0,185 ±0,017	$egin{array}{c} 0,126 \\ \pm 0,017 \\ - 0,015 \\ \pm 0,024 \end{array}$	$^{0,122}_{\pm 0,015}_{0,028}_{\pm 0,021}$	$\begin{array}{c} 0,155 \\ \pm 0,017 \\ - \textbf{0,097} \\ \pm 0,023 \end{array}$
$\begin{bmatrix} 0,122\\ \pm 0,016\\ - 0,068\\ \pm 0,022 \end{bmatrix}$.0,130 ±0,015 - 0,098 ±0,021	$\begin{array}{c} 0.072 \\ \pm 0.010 \\ - 0.173 \\ \pm 0.013 \end{array}$	$ \begin{vmatrix} 0.061 \\ \pm 0.008 \\ - 0.007 \\ \pm 0.011 \end{vmatrix} $	$ \begin{vmatrix} 0.090 \\ \pm 0.011 \\ -0.025 \\ \pm 0.015 \end{vmatrix} $	$\begin{array}{c} 0,096 \\ \pm 0,010 \\ - 0,112 \\ \pm 0,014 \end{array}$
s Es h moyen Eh	s Es h moyen Eh	s Es h moyen Eh	a Es h moyen Eh	s Es h moyen Eh	s Es h moyen Eh

avoir des moyennes d'un nombre un peu grand d'expériences, les groupes de températures vont de 3 en 3 degrés et ceux de longueurs de 5 en 5 millimètres. Par exemple, la catégorie 24°, 25 mm. comprend toutes les expériences faites entre 22°,5 et 25°,5 avec des plantes de 22,5 mm. à 27,5 mm. de longueur.

Dans chacune de ces catégories température-longueur, j'ai calculé la déviation moyenne h et l'index de variabilité σ des valeurs de h ainsi que les erreurs probables de h et de σ . Les résultats de ces calculs sont consignés dans le tableau VIII; j'ai indiqué dans la colonne des températures le nombre n d'expériences comprises dans la catégorie. Je n'ai effectué les calculs que pour les catégories comprenant au moins 10 expériences; les valeurs négatives de h moyen sont imprimées en caractères gras.

Dans le graphique suivant (fig. 7), j'ai porté en ordonnées, pour chacun des intervalles de temps les index de variabilité σ ; de part et d'autre de la courbe des σ , j'ai dessiné une ligne distante, en chaque point, du double de l'erreur probable de σ , ce qui permet d'apprécier le degré d'exactitude. Je rappelle qu'il y a 4,5 chances contre 1 que la vraie valeur de σ est bien comprise entre + 2E et - 2E.

On voit nettement l'augmentation de la variabilité avec la température ainsi qu'avec la longueur de la plante. En comparant ces courbes avec celles des mêmes caté-

En comparant ces courbes avec celles des mêmes catégories température-longueur lorsque la plante était observée en position verticale (fig. 4), c'est-à-dire sans être soumise au géotropisme, on voit que les index de variabilité sont beaucoup plus grands, ce qui indique qu'en plus de la variabilité due à la nutation et aux erreurs accidentelles, intervient la variabilité de la sensibilité géotropique et de la faculté de réagir.

Pour rendre plus apparente cette augmentation de la variabilité et pour permettre de comparer la variabilité de

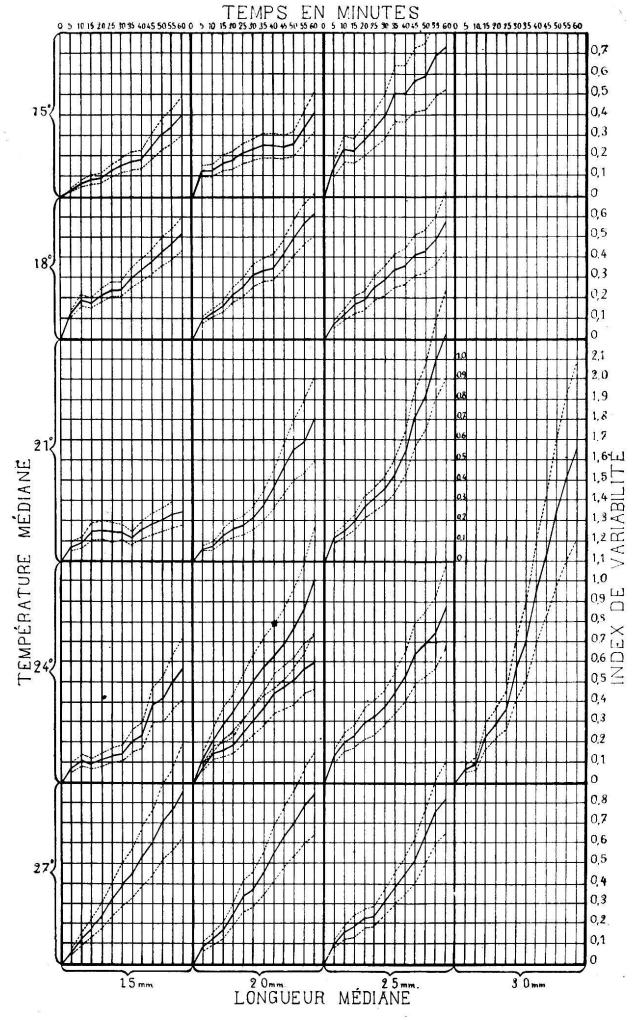


Fig. 7.

h des plantes observées en position horizontale avec celle des plantes verticales, j'ai établi le tableau IX des fréquences des déviations en réunissant les 400 expériences; dans le tableau IX les fréquences sont rapportées à 400 expériences tandis que le tableau V donne les fréquences en 0/0; ceci pour gagner de la place en évitant les décimales; pour comparer les deux séries, il suffit de diviser les chiffres du tableau IX par 4.

Le stéréogramme (fig. 8) représente la répartition des déviations aux différents moments. On voit à première vue que les polygones de variation sont tous plus étalés que leurs homologues de la figure 5, preuve de la plus grande variabilité des déviations.

Ce stéréogramme montre en outre d'une façon très nette que les plantes commencent par se courber vers le bas puis qu'au bout d'un certain temps elles se redressent et se courbent vers le haut; en effet, le polygone correspondant à 5 minutes, s'il a son sommet sur la déviation zéro, est cependant fortement asymétrique vers les déviations négatives; ce qui indique que h moyen est négatif; l'asymétrie vers les déviations négatives se remarque pour les temps 5, 10, 15 et 20 minutes; les polygones suivants sont asymétriques du côté des déviations positives; ce qui indique que la courbure se fait vers le haut.

On voit également qu'un certain nombre de plantes, au bout de 5 minutes, se sont courbées vers le haut; d'autres n'ont effectué aucun mouvement; ces faits s'expliquent tout simplement parce que pour ces plantes la nutation se faisait en sens inverse de la courbure vers le bas; pour les fortes déviations vers le bas, la nutation se faisait probablement dans le même sens que la courbure due à la pesanteur.

Même remarque, si l'on examine le polygone de variation au bout de 60 minutes ; un certain nombre de plantes sont encore courbées vers le bas ou bien, après s'être cour-

Déviations			2		TEM	PS EN	MINU	JTES				
en millimètres	5	10	15	20	25	30	35	40	45	50	55	60
en millimètres 5,4 5,3 5,2 5,1 5,0 4,9 4,8 4,7 4,6 4,5 4,4 4,3 4,2 4,1 4,0 3,9 3,8 3,7 3,6 3,5 3,4 3,3 3,2 3,1 3,0 2,9 2,8 2,7 2,6 2,5 2,4 2,3 2,2 2,1 1,0 0,9 0,8 0,7 1,6 1,5 1,4 1,3 1,2 1,1 1,0 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,1 0 -0,1 -0,2 -0,3 -0,4 -0,5 -0,6 -0,7 -0,8 -0,9 -1,1 -1,2 -1,3 -1,4 -1,5 -1,6 -1,7 -1,8 -1,9 -2,0 -1,1 -1,2 -1,3 -1,4 -1,5 -1,6 -1,7 -1,8 -1,9 -2,0 -2,1 -2,2 -2,4 -2,5 -2,6 -2,6 -2,6 -2,6 -2,7 -2,6 -2,7 -2,8 -2,8 -2,8 -2,8 -2,8 -2,8 -2,8 -2,8	2 4 36 157 92 62 24 10 6 3 1 1	10 1 3 12 51 120 90 39 39 22 10 4 2 2 1 1	3 2 9 25 51 101 68 52 28 24 15 11 2 2	20 1 1 1 5 11 14 27 55 84 67 42 11 18 17 7 8 2 1 1 2 1	25 1 1 3 10 5 17 22 40 59 69 52 21 10 10 8 4 3 1 1	1 1 1 1 1 4 2 7 8 12 14 27 31 46 47 49 50 26 15 16 11 9 7 6 1 1 1	1 1 1 2 2 4 1 2 4 1 1 1 5 2 3 3 3 5 4 4 3 9 3 4 1 1 1 1 1 1 1	1 1 1 1 2 1 4 3 1 3 8 5 9 18 8 17 25 20 26 23 33 41 31 28 23 14 16 12 7 4 3 2 1 1 1 1	1 1 2 3 1 2 1 4 2 2 3 3 6 6 7 5 12 15 14 14 19 12 12 24 24 27 22 24 21 22 24 21 21 21 21 21 21 21 21 21 21 21 21 21	1 2 2 2 2 1 1 1 2 2 2 4 1 3 4 6 5 5 9 10 11 17 12 15 12 10 9 10 11 17 25 18 25 26 27 21 21 21 21 21 21 21 21 21 21	55 1 2 1 1 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 2 1 3 1 1 2 3 1 4 7 7 9 13 9 10 10 10 16 10 10 11 10 11 11 11 12 13 14 16 17 18 18 19 10 10 10 10 10 10 10 10 10 10

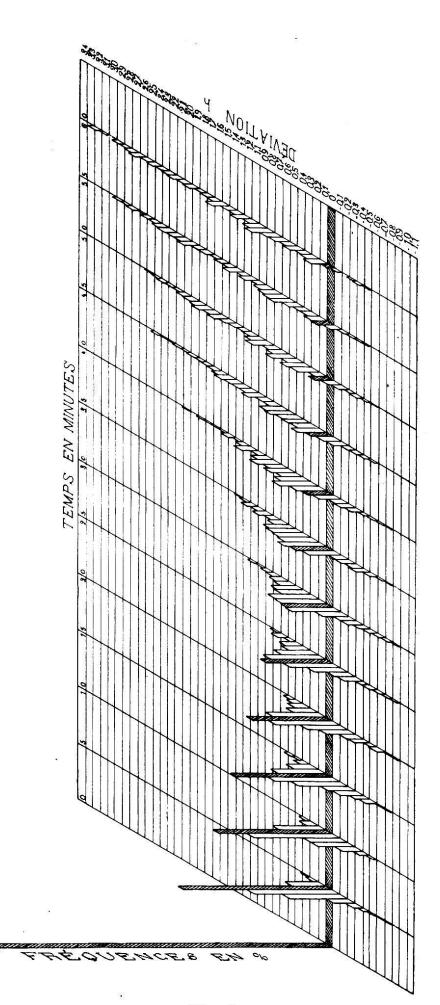


Fig. 8.

bées vers le haut, se sont dirigées ensuite en sens inverse, parce que le mouvement de nutation contrariait le mouvement géotropique.

Le même stéréogramme montre pourquoi je n'ai pas fait mes expériences durant plus d'une heure; la variabilité au bout de ce temps est si grande qu'à moins de faire des milliers d'expériences, l'erreur probable est trop grande pour que les valeurs moyennes aient encore une signification. L'irrégularité des derniers polygones est déjà un indice qu'il est inutile de poursuivre plus loin. Du reste, au bout d'une heure, la courbure est déjà trop forte pour qu'on ait le droit de considérer la plante comme placée horizontalement; l'effet de la pesanteur tend donc à diminorizontalement; l'enet de la pesanteur tend donc a diminuer, et, par suite du peu de certitude qui règne sur la question de savoir quelle région est surtout le siège de la sensibilité géotropique et des différences qui existent entre les positions des différentes plantes, il n'est pas possible de faire une correction tenant compte de la diminution de l'action du géotropisme. Au reste, vu l'erreur probable considérable, le poids de la moyenne de h au bout d'une heure est de 7 à 150 fois plus petite que le poids de la moyenne de h au bout de 60 minutes; (plus la température et par conséquent la vitesse de courbure sont grandes, plus il y a de différence entre le poids des valeurs moyennes de h) si bien que lorsque la température permet une courbure rapide, les moyennes de h au bout de 45, 50, 55et 60 minutes ne jouent qu'un rôle très minime dans le calcul des constantes a et b.

Reportons-nous au tableau VIII; nous y voyons que la valeur de h moyen commence dans toutes les catégories sauf une (15° C, 20 mm.) par être négative; au bout de 5 minutes, par exemple, la valeur de h moyen est

- 1 fois nulle;
- 2 fois négative et plus petite que l'erreur probable ;
- 14 fois négative et plus grande que l'erreur probable;

par conséquent, il n'y a pas de doute possible; les plantes effectuent un mouvement vers le bas; le déplacement de l'extrémité varie entre 0 mm. et 0,2 mm; c'est donc un déplacement faible, mais certain. La figure 9 où j'ai représenté les courbes de la déviation moyenne de toutes les catégories comprenant au moins 10 expériences montre nettement la courbure vers le bas.

Examinons maintenant la courbure des plantes vers le haut; on peut constater (fig. 9) que toutes les courbes sont nettement concaves du côté de l'axe des y (ou des déviations); par conséquent, il n'y a pas de doute possible, la courbure va en s'accélérant; aucune de ces courbes ne présentant de point particulier (brisure), il n'y a aucune raison pour admettre que la courbure ne commence qu'au bout d'un certain temps (temps de réaction); il est donc logique d'admettre que la courbure vers le haut commence immédiatement mais que ce phénomène est superposé à un autre qui tend à produire une courbure vers le bas; l'équation qui semble le mieux convenir à ces courbes de la déviation moyenne h est

$$h = at + bt^2$$

c'est-à-dire l'équation d'une parabole 1.

J'ai calculé les valeurs de a et de b pour toutes les catégories température-longueur en tenant compte du poids des valeurs moyennes de h. Les deux tableaux X et XI, donnent les valeurs de a et de b; dans chaque catégorie de longueur, j'ai placé sur la ligne supérieure les chiffres fournis par les expériences nos 1 à 300 et sur la ligne inférieure ceux des nos 601 à 700.

¹ Voir dans Etude sur la réaction géotropique les paragraphes suivants: Signification géométrique et physiologique des valeurs a et b, (page 245); Conséquences mathématiques de l'équation $h = at + bt^2$, (page 253).

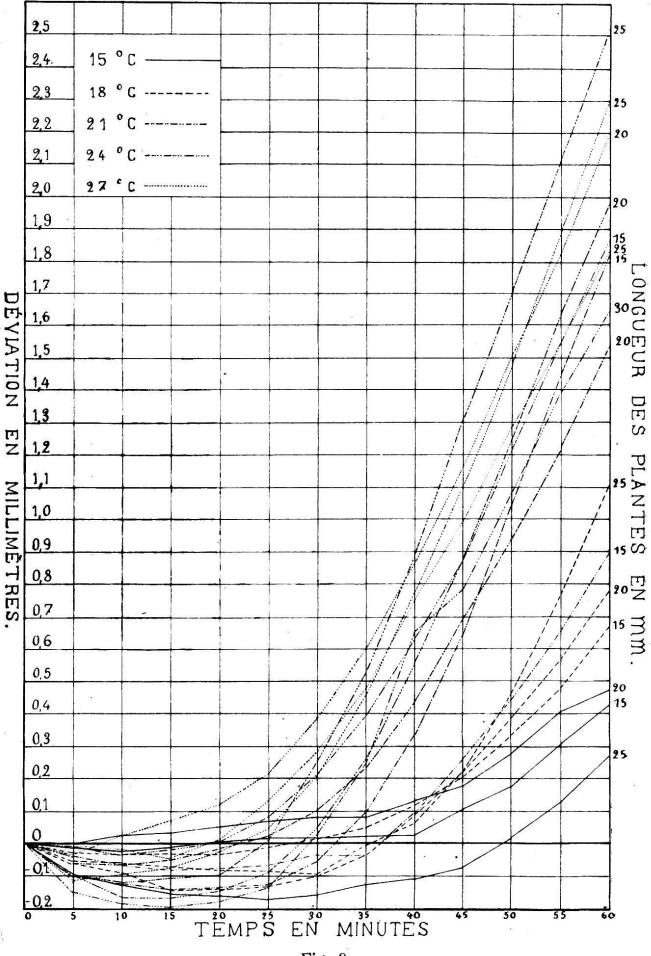


Fig. 9.

TABLEAU	X. –	- Valeur	de la	constan	te a	en	tenant	compte
	du	poids d	les dév	viations 1	noye	nne	es.	

LONGUEUR médiane	TEMPÉRATURE MÉDIANE										
en millimètres	15 degrés	18 degrés	21 degrés	24 degrés	27 degrés						
15	-0,0030	-0,0078	-0,0194	- 0,0138	-0,0093						
20	-0,0003	-0,0127	-0,0130	-0.0314 -0.0233	- 0,0069						
25	0,0153	-0,0157	-0,0242	-0,0266	-0,0225						
30				-0,0308							

TABLEAU XI. — Valeur de la constante b en tenant compte du poids des déviations moyennes,

LONGUEUR médiane		TEMPÉRATURE MÉDIANE									
en millimètres	15 degrés	18 degrés	21 degrés	24 degrés	27 degrés						
15	0,00012	0,00029	0,00055	0,00073	0,00067						
20	0,00011	0,00040	0,00062	0,00114 0,00091	0,00072						
25	0,00031	0,00051	0,00085	0,00116	0.00103						
30				0,00104							

On remarquera que ces tableaux comprennent un nombre plus petit de catégories température-longueur que ceux de 1910; cela tient à ce que je n'ai calculé a et b que pour les seules catégories comprenant au moins 10 expériences, tandis que dans mon Etude sur la réaction géotropique je l'avais fait pour toutes les catégories où j'avais une expérience. Je crois qu'il vaut mieux se restreindre aux valeurs les plus probables; les déductions qu'on pourra tirer des chiffres seront plus sûres.

On constate que a est toujours négatif, ce qui confirme

ce que j'ai dit plus haut de la certitude de la courbure vers le bas; a est en effet égal à la tangente trigonométrique de l'angle que fait la tangente à la courbe passant par l'origine; a négatif indique que la courbe descend puisqu'on ne considère que les temps positifs; plus a est grand en valeur absolue plus la courbe descendra rapidement.

La quantité b est toujours positive; elle représente l'accélération de la courbure vers le haut.

Pour pouvoir comparer les valeurs de a et de b des différentes catégories entre elles, il faut les rapporter à des plantes de même longueur; comme dans mon Etude sur la réaction géotropique j'ai effectué la correction en ramenant a et b à la longueur de 10 mm. par les formules

$$a' = \frac{100 \ a}{l^2}$$
 $b' = \frac{100 \ b}{l^2}$

où *l* est la longueur.

TABLEAU XII. — Valeur de $a' = \frac{100 \ a}{I^2}$

LONGUEUR médiane	, TEMPÉRATURE MÉDIANE									
en millimètres	15 degrés	18 degrés	21 degrés	24 degrés	27 degrés					
15	-0,0013	-0,0035	-0,0086	-0,0061	-0,0041					
20	-0,0001	-0,0032	-0,0033	-0,0079 $-0,0058$	-0,0017					
25	-0,0024	-0,0025	-0,0039	-0,0043	-0,0036					
30			-0,0034							

On voit les valeurs de a' augmenter, dans chaque catégorie de longueur, avec la température jusqu'à 24°, puis diminuer nettement; on pourrait croire qu'il y a une température optimum entre 24° et 27°; mais remarquons que les expériences à 27° font toutes parties de la seconde sé-

rie d'expériences (n° 601 à 700), que dans la catégorie 24° 20 mm., le chiffre fourni par la seconde série est plus petit que celui de la première série; il semble donc que la série donne des chiffres plus faibles que la première; j'attribue ce fait à la sécheresse de l'air; en effet les expériences n° 601 à 700 ont été faites entre le 11 juillet et le 1° août 1911, époque mémorable pour sa sécheresse et sa chaleur. a' ne montre pas de tendance régulière à varier avec la longueur de la plante.

TABLEAU XIII. — Valeur de $b'=rac{100\ b}{l^2}$

LONGUEUR médiane	TEMPÉRATURE MÉDIANE										
en millimètres	15 degrés	18 degrés	21 degrés	24 degrés	27 degrés						
15	0,00004	0,00013	0,00018	0.00031	0,00031						
20	0,00003	0,00010	0,00015	$0,00027 \\ 0,00022$	0,00017						
25	0,00005	0,00006	0,00013	0,00018	0,00016						
30				0,00011							

Pour b', on constate également une augmentation de sa valeur avec la température et une légère chute à 27° ; ic encore, j'attribue le fait à la sécheresse. Dans la figure 9, où j'ai eu soin de représenter les courbes de la déviation moyenne de h pour chaque température par un trait différent, on voit nettement l'influence de la température sur la courbure et par conséquent sur b et b'. Dans le tableau XIII, on constate une assez notable diminution de b' avec la longueur des plantes; cela tient soit à ce que les coléoptiles en s'allongeant deviennent moins sensibles, soit à ce que les feuilles qui s'allongent dans la coléoptile retardent la courbure, soit à ce qu'une partie seule de la plante est en état de croissance et qu'en faisant la correc-

tion de b nous avons admis implicitement que toute la plante se courbait également.

On peut se demander si la variation de h en fonction du temps se fait bien suivant l'équation $h = -\alpha t + bt^2$; il est naturellement impossible de démontrer que c'est bien cette parabole qui est la vraie courbe; mais on peut démontrer que les écarts entre les valeurs observées et calculées de h ne dépassent pas les limites permises par la théorie des erreurs.

Pour effectuer cette démonstration, j'ai calculé les valeurs de h à l'aide de l'équation $h=-a\,t+bt^2$ et fait la différence entre les valeurs observées et calculées de h; la comparaison de cette différence avec l'erreur probable correspondante de h nous permettra de voir si une parabole de l'équation donnée est adéquate ou si nous aurions mieux fait de choisir un autre type de courbe.

Le tableau XIV donne les résultats de ces calculs; les valeurs négatives de $\delta = h \ calculé - h \ observé$ ont été imprimées en caractères gras afin qu'on puisse voir au premier coup d'œil sur le tableau la manière selon laquelle les différences δ positives et négatives se répartissent :

Si nous comptons dans le tableau XIV le nombre de fois où la différence δ entre les valeurs observées et calculées de h est plus petite en valeur absolue que l'erreur probable E h, nous arrivons au chiffre de 164 contre 40 où δ est plus grand que E h; il y a 201 cas contre 3 où δ est plus petit que E h et 204 cas contre 0 ou E h est plus petit que E h, où, en exprimant ces résultats autrement, il y a

4 cas contre 1 où
$$\delta < E h$$
.
67 » » 1 » $\delta < 2 E h$.
 ∞ » 1 » $\delta < 3 E h$.

alors qu'il n'y a que

1 chance control que h soit comprisentre $\pm E h$. 4,5 » » 1 » h » » $\pm 2 E h$. 21 » » $\pm 3 E h$.

ABLEAU NIV

Longueur en millim.		15		25	15	20
Tempéra- ture en degrés C.		15	15	15	18	18
	09	0,43 0,27 - 0,16 0,07	0,47 0,40 - 0,07 0,07	0,27 0,20 - 0,07 0,14	0,67 0,58 - 0,09 0,06	0,77 0,68 0,09 0,08
	55	0,31 0,22 0,09 0,06	0,40 0,34 - 0,06 0,06	0,13 0,10 - 0,03 0,13	0,48 0,46 - 0,02 0,05	0,57 0,51 - 0,06 0,07
	20	0,19 0,16 — 0,03 0,05	0,28 0,28 0,00 0,04	0,02 0,01 - 0,01 0,12	0,34 0,34 0,00 0,05	0,39 0,36 - 0,03
	45	0,11 0,12 0,01 0,04	0,18 0,24 0,06 0,06	$\begin{array}{c} -0.07 \\ -0.06 \\ 0.01 \\ 0.11 \end{array}$	0,20 0,24 0,04 0,04	0,22 0,24 0,02 0,05
MINUTES	7.0	0,03 0,08 0,05 0,03	0,13 0,17 0,04 0,04	$ \begin{array}{c} -0,11 \\ -0,11 \\ 0,00 \\ 0,10 \end{array} $	0,12 0,16 0,04 0,04	0,09 0,13 0,04 0,04
		0,02 0,03 0,03	0,09 0,13 0,04 0,04	0,12 0,15 0,03 0,03	0,05 0,09 0,04 0,03	$\begin{bmatrix} -0.03 \\ 0.04 \\ 0.01 \\ 0.04 \end{bmatrix}$
PS EN	30	0,02 0,00 0,00 0,03	0,09 0,10 0,01 0,04	-0,16 -0,20 - 0,04 0,08	0,01 0,03 0,02 0,03	$\begin{bmatrix} -0.03 \\ -0.02 \\ 0.01 \\ 0.04 \end{bmatrix}$
TEMPS	19. 53.	0,02 0,00 - 0,02 0,02	0,07 0,06 - 0,01 0,03	-0,17 -0,19 - 0,02 0,06	-0,01 -0,01 0,00 0,03	-0,07 -0,07 0,00 0,03
	50	0,01 -0,01 - 0,02 0,02	0,06 0,04 -0,02 0,03	-0,16 -0,18 -0,02 0,05	-0,03 -0,04 - 0,01 0,02	-0,08 -0,09 - 0,01 0,03
	5	-0,01 -0,02 - 0,01 0,02	0,03 0,02 -0,01 0,03	-0,15 -0,16 - 0,01 0,04	-0,03 -0,05 - 0,02 0,02	-0,08 -0,10 - 0,02 0,02
	10	$\begin{bmatrix} -0.02 \\ -0.02 \\ 0.00 \\ 0.01 \end{bmatrix}$	0,03 0,01 - 0,02 0,02	$\begin{array}{c} -0.12 \\ -0.12 \\ 0.00 \\ 0.05 \end{array}$	-0,03 -0,05 -0,02	0,07 0,09 0.02 0,02
	ณ	-0,01 -0,01 0,00	0,00	-0,10 -0,07 0,03	-0,03 -0,00 0,00	-0,06 -0,05 0,01 0,01
	- et et	n obs. n calc. s	h obs. h calc. δ	h obs. h calc. δ	h obs. h calc. δ	h obs. h calc. δ $\rm E_h$

_
(suile
<u> </u>
>
LABLEA
3
_

Longueur en millim,		25	15	20	24	15	20 iences I-700
Tempéra- ture en degrés C.		18	21	21	21	24	$egin{array}{c c} 24 & 20 \\ Expériences \\ n^{\circ} & 601.700 \end{array}$
	09	1,11 0,89 - 0,22 0,10	0,90 0,83 - 0,07 0,05	1,55 1,44 - 0,11 0,14	1,84 1,60 - 0,24 0,15	1,86 1,83 - 0,03 0,11	1,92 1,89 - 0,03 0,18
	55	0,76 0,67 - 0,09 0,08	0,66 0,61 - 0,05 0,04	1,22 1,15 - 0,07 0,11	1,46 1,24 - 0,22 0,14	1,54 1,47 - 0,07 0,10	1,54 1,48 - 0,06 0,16
	20	0,46 0,49 0,03 0,08	0,45 0,42 - 0,03 0,04	0,94 0,89 - 0,05 0,10	1,05 0,91 - 0,14 0,11	1,22 1,16 - 0,06 0,08	1,16 1,11 - 0,05 0,13
	45	0,22 0,32 0,10 0,07	0,26 0,24 - 0,02 0,04	0,69 0,66 0,03 0,09	0,64 0,63 — 0,01 0,10	0,89 0,88 — 0,01 0,06	0,81 0,80 - 0,01 0,12
MINUTES	40	0,07 0,19 0,12 0,06	0,10 0,12 0,02 0,03	0,44 0,47 0,03 0,07	0,34 0,39 0,05 0,07	0,63 0,63 0,00 0,05	0,51 . 0,53 0,02 0,11
TEMPS EN MINU	35	$-0.05 \\ 0.07 \\ 0.12 \\ 0.06$	-0.04 0.00 0.04 0.02	0,24 0,30 0,06 0,05	0,10 0,19 0,09 0,06	0,40 0,43 0,03 0,04	0,24 0,30 0,06 0,10
	30	$\begin{array}{c} -0.09 \\ -0.01 \\ 0.08 \\ 0.05 \end{array}$	$\begin{array}{c} -0.10 \\ -0.09 \\ 0.01 \\ 0.03 \end{array}$	0,10 0,16 0,06 0,04	-0,05 0,04 0,09 0,05	0,22 0,25 0,03 0,03	0,06 0,02 — 0,04 0,09
	25,	$\begin{array}{c c} -0.09 \\ -0.07 \\ 0.02 \\ 0.04 \end{array}$	-0,13 -0,14 - 0,01 0,03	0,03 0,06 0,03 0,03	$ \begin{array}{c} -0.12 \\ -0.08 \\ 0.04 \\ 0.04 \end{array} $	0,09 0,12 0,03 0,03	-0,06 -0,01 0,05 0,08
	20	-0,08 -0,11 - 0,03 0,03	-0,14 -0,17 - 0,03 0,03	$\begin{array}{c} -0.01 \\ -0.01 \\ 0.00 \\ 0.03 \end{array}$	-0,13 -0,14 - 0,01 0,04	0,00 0,02 0,02 0,02	$\begin{bmatrix} -0.11 \\ -0.10 \\ 0.01 \\ 0.06 \end{bmatrix}$
	15	-0,07 -0,12 - 0,05 0,03	-0,14 -0,17 - 0,03 0,03	-0,05 -0,06 - 0,01 0,02	-0,14 -0,17 - 0,03 0,03	$\begin{array}{c} -0.02 \\ -0.03 \\ -0.01 \\ 0.02 \end{array}$	$\begin{bmatrix} -0.13 \\ -0.14 \\ -0.01 \\ 0.05 \end{bmatrix}$
	10	-0,06 -0,11 - 0,05 0,02	-0,08 -0,14 - 0,06 0,02	-0,06 -0,07 - 0,01 0,01	-0,13 -0,16 - 0,03 0,02	-0,04 -0,06 - 0,02 0,02	$\begin{bmatrix} -0.14 \\ -0.14 \\ 0.00 \\ 0.04 \end{bmatrix}$
	73	-0,05 -0,07 -0,02 0,01	$\begin{vmatrix} -0.06 \\ -0.08 \\ -0.02 \\ 0.02 \end{vmatrix}$	$\begin{bmatrix} -0.04 \\ -0.05 \\ -0.01 \\ 0.01 \end{bmatrix}$	$\begin{bmatrix} -0,10\\ -0,10\\ 0,00\\ 0,02 \end{bmatrix}$	0,00 -0,05 - 0,05 0,02	$\begin{vmatrix} -0.07 \\ -0.09 \\ -0.02 \\ 0.02 \end{vmatrix}$
		<i>h</i> obs. <i>h</i> calc. д Ећ	h obs. h calc. h	h obs. h calc. δ	h obs. h calc. δ	h obs. h calc. s Eh	h obs. h calc. s Eh

24 20 Expériences n° 1-300	25	30	15	20	25
24 Expér n° 1	24	24	27	27	27
2,06	2,53	1,65	1,84	2,21	2,31
2,21	2,58	1,90	1,86	2,16	2,27
- 0,15	0,05	0,25	0,02	0,05	- 0,04
0,10	0,14	0,31	0,16	0,14	0,12
1,73	2,13	1,39	1,55	1,83	1,90
1,71	2,04	1,46	1,52	1,79	1,88
- 0,02	- 0,09	0,07	- 0,03	- 0,04	- 0,02
0,09	0,12	0,28	0,14	0,13	0,11
1,33	1,70 1,57 - 0,13 0,11	1,07	1,28	1,51	1,49
1,27		1,06	1,21	1,45	1,45
- 0,06		- 0,01	— 0,07	- 0,06	- 0,04
0,08		0,25	0,13	0,12	0,10
0,93	1,31	0,79	0,99	1,17	1,10
0,89	1,15	0,72	0,94	1,14	1,07
- 0,04	- 0,16	- 0,07	- 0,05	- 0,03	- 0,03
0,07	0,10	0,21	0,11	0,11	0,08
0,60	0,89	0,50	0,75	0,86	0,77
0,56	0,79	0,43	0,70	0,87	0,75
- 0,04	- 0,10	- 0,07	- 0,05	0,01	-0,02
0,07	0,09	0,18	0,10	0,09	0,07
0,28	0,54	0,25	0,49	0,60	0,47
0,29	0,49	0,20	0,50	0,63	0,48
0,01	- 0,05	- 0,05	0,01	0,03	0,01
0,06	0,07	0,14	0,09	0,08	0,06
0,13	0,25	0,03	0,29	0,39	0,21
0,08	0,25	-0,01	0,33	0,44	0,25
- 0,05	0,00	- 0,04	0,04	0,05	0,04
0,05	0,06	0,11	0,07	0,06	0,05
-0,11	0,01	$\begin{bmatrix} -0.13 \\ -0.12 \\ 0.01 \\ 0.07 \end{bmatrix}$	0,14	0,22	0,05
-0,08	0,06		0,18	0,28	0,08
0,03	0,05		0,04	0,06	0,03
0,04	0,05		0,06	0,06	0,04
$ \begin{array}{c} -0.19 \\ -0.17 \\ 0.02 \\ 0.03 \end{array} $	$\begin{array}{c} -0.10 \\ -0.07 \\ 0.03 \\ 0.05 \end{array}$	-0,18 -0,20 - 0,02 0,06	0,01 0,08 0,07 0,05	0,13 0,15 0,02 0,04	-0,03 -0,04 - 0,01 0,03
-0,20 -0,22 - 0,02 0,02	$\begin{bmatrix} -0.11 \\ -0.14 \\ -0.03 \\ 0.04 \end{bmatrix}$	-0,20 -0,23 - 0,03 0,04	$\begin{bmatrix} -0.05 \\ 0.01 \\ 0.06 \\ 0.04 \end{bmatrix}$	0,08 0,06 - 0,02 0,03	$\begin{bmatrix} -0.07 \\ -0.11 \\ -0.04 \end{bmatrix}$
-0,19 -0,20 - 0,01 0,02	$\begin{bmatrix} -0,12\\ -0,15\\ -\textbf{0,03}\\ 0,03 \end{bmatrix}$	$ \begin{array}{c} -0,19 \\ -0,20 \\ -0,01 \\ 0,02 \end{array} $	$\begin{bmatrix} -0.02 \\ -0.03 \\ -0.01 \\ 0.02 \end{bmatrix}$	0,03 0,00 - 0,03 0,02	$\begin{bmatrix} -0,10\\ -0,11\\ -0,01\\ 0,02 \end{bmatrix}$
$\begin{bmatrix} -0.13 \\ -0.13 \\ 0.00 \\ 0.01 \end{bmatrix}$	$\begin{vmatrix} -0,10\\ -0,10\\ 0,00\\ 0,02 \end{vmatrix}$	$\begin{vmatrix} -0.14 \\ -0.13 \\ 0.01 \\ 0.0$	$\begin{bmatrix} -0.01 \\ -0.03 \\ -0.02 \\ 0.01 \end{bmatrix}$	$\begin{vmatrix} -0.02 \\ -0.02 \\ 0.00 \\ 0.01 \end{vmatrix}$	$\begin{bmatrix} -0.11 \\ -0.09 \\ 0.02 \\ 0.01 \end{bmatrix}$
$\begin{bmatrix} h \text{ obs.} \\ h \text{ calc.} \\ \delta \\ E_{\text{li}} \end{bmatrix}$	 h obs. h calc. 8 Eh 	h obs. h calc. δ	h obs. h calc. s Eh	h obs. h calc. д Ев	h obs. h calc. δ

La concordance entre les courbes théoriques et les courbes expérimentales est donc remarquable; mais il nous reste à étudier la répartition des valeurs positives et négatives de δ afin de voir si ces différences sont peut-être systématiquement à la même place dans toutes les catégories température-longueur; en examinant le tableau XIV on voit que les valeurs négatives de δ (imprimées en caractères gras) semblent bien être placées surtout aux deux bords du tableau et être plus rares dans la partie centrale.

Pour élucider la question j'ai fait pour chaque intervalle de temps la somme $\Sigma \delta$ des différences δ de chacune des catégories température-longueur. Les valeurs de $\Sigma \delta$ sont données par le tableau XV; les chiffres de la seconde ligne expriment la valeur $\Sigma \delta$ divisée par le nombre des catégories (17) autrement dit la valeur moyenne de δ .

TEMPS EN MINUTES 5 10 25 15 20 30 Σ 3 -0.07-0,33-0.29-0.050,330.2723 -0,003 -0,004 -0,019-0,0170,019 0,016 TEMPS EN MINUTES 35 40 45 50 55 60 0,45 0,15 -0.22-0.64-0.95-0.800,026 -0.013-0.0470.009 -0.038-0.056

TABLEAU XV

On voit que δ , qui est théoriquement nul au temps zéro, diminue jusqu'à 10 minutes, puis augmente jusqu'à 35 min., où il est positif, pour diminuer ensuite jusqu'à 55 min. et augmenter de nouveau. Les variations de δ sont graduelles et semblent indiquer qu'un mouvement d'oscillation, peut être dù au choc qui se produit lorsqu'on place

la plante dans l'appareil, se superpose aux courbures dues à la pesanteur. Cette oscillation est du reste très faible (voir les valeurs de $\frac{\sum \delta}{n}$) et les écarts entre les valeurs observées de h et les valeurs calculées sont bien plus petits que l'erreur probable.

Nous pouvons donc conclure que la variation en fonction du temps de la déviation h de l'extrémité d'une plante d'avoine exposée horizontalement pendant toute la durée de l'expérience est très bien représentée par une parabole de la forme.

$$h = -at + bt^2$$

Le « temps de réaction ».

Lors de mes premières expériences sur la réaction géotropique, j'avais pris soin de noter le moment où la plante d'avoine placée horizontalement commençait à présenter une courbure visible à l'œil nu. Je faisais cet examen immédiatement après la visée au cathétomètre, c'est-à-dire toutes les 5 minutes. Le « temps de réaction » était ainsi déterminé à 5 minutes près.

Dans le tableau XVI, les colonnes donnent : la 1^{re} le numéro de l'expérience, ce qui permettra au lecteur de se reporter au protocole ; la 2^{me}, intitulée R, le \mathfrak{c} temps de réaction » en minutes ; la 3^{me}, $h_{\mathfrak{k}}$ la déviation du sommet de la plante, par rapport à sa position au début de l'expérience, au bout du temps R; la 4^{me} h_{\min} indique la déviation au point le plus bas atteint par la plante; la 5^{me} $h_{\mathfrak{k}} - h_{\min}$ la différence entre les chiffres des deux colonnes précédentes ; on verra plus loin l'intérêt de ces valeurs. Enfin les deux dernières colonnes donnent les températures en degrés C et la longueur des plantes en mm.

¹ Bull. Soc. vaud. Sc. nat., vol. XLVI, 1910, p. 416 et suiv.