Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 39 (1903)

Heft: 147

Artikel: Note sur la formule barométrique de Laplace

Autor: Maillard, L.

DOI: https://doi.org/10.5169/seals-267024

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

NOTE

SUR LA FORMULE BAROMÉTRIQUE DE LAPLACE

PAR

L. MAILLARD

La formule de Laplace (1804)

$$Z = 18336^{m} \left[1 + 0,002 \left(t_1 + t_2 \right) \right]. lg \frac{h_1}{h_2}^{1}$$

permet de calculer la différence d'altitude Z de deux lieux, connaissant les hauteurs barométriques h_1 et h_2 (en millimètres) et les températures t_1 et t_2 (en degrés centigrades). Sous la forme

II
$$lg h_2 = lg h_1 - \frac{Z}{18,3 [1 + 0,002 (t_1 + t_2)]},$$

elle permet de calculer les pressions h_2 à la station supérieure, connaissant h_1 , Z (en kilomètres), t_1 et t_2 . Réduite à son terme principal, elle devient

$$Z = 18336^{m} lg \frac{h_1}{h_2},$$

ďoù

$$lg h_2 = lg h_1 - \frac{\mathbf{Z}}{18,3} \cdot$$

¹ Les autres facteurs de la formule barométrique complète sont laissés en dehors de la présente étude.

Si dans

$$Z = C. lg \frac{h_1}{h_2}$$

on prend C = 18404, on obtient la formule de Halley (1685).

Pour $h_1 = 760$ mm. et $t_1 = 0$, les formules II et IV donnent les valeurs suivantes :

		II		IV	
SiZ =	et $t_2 =$	$h_2 \equiv$	01	u h ₂ =	
o km.	$\mathbf{o}_{\mathbf{o}}$	760 mm.		760 mm.	
5	-25	392	405		
10	-50	188	216		
15	– 60	89	115		
20	-75	39	(39,8)	6 I	
3o	— 120	5,3	(5,4)	17	
40	 2 00	0,17	(0, 19)	5	
5o	-250	0,002	(0,003)	1,4	
6o	-272	0,00004	(0,00006)	0,4	
7º	-	<u> </u>		0,11	
8o	1 			0,03	
90		-		0,0009	

Les chiffres entre parenthèses ont été obtenus en appliquant la formule II légèrement modifiée en vue du calcul numérique par M. Hergesell. (Rapport de la Commission aéronautique internationale, Conférence de Strasbourg, 1898.)

Même si l'on suppose un décroissement beaucoup moins rapide de la température, les valeurs de h_2 données par II ne sont plus comparables à celles que donne IV. Le facteur

vi
$$1 + 0.002 (t_1 + t_2)$$

finit par modifier le terme principal de la formule tellement que celle-ci ne peut plus être appliquée avec sécurité. A cause de ce facteur, les pressions trouvées sont beaucoup trop faibles, en regard de la hauteur de l'atmosphère. On sait, en effet, que les météores deviennent visibles par incandescence jusqu'à des altitudes supérieures à 200 km., et sans insister trop sur une observation d'étoile filante à 780 km. (von Niessl, 5 septembre 1868), ni sur des observations nombreuses d'aurores boréales à 770, 860, 900, 1660 km., on peut en tout cas adopter les déterminations soigneusement faites au cours de l'expédition danoise en Islande (1899-1900): M. Paulsen a trouvé que les aurores boréales, fréquentes surtout entre 100 et 200 km., atteignent parfois la hauteur de 400 km., ce qui reporte au delà, probablement bien au delà de ce chiffre, la limite sensible de l'atmosphère terrestre.

Dès lors, il semble que les valeurs des pressions données par IV sont elles-mêmes insuffisantes; ces valeurs sont du même ordre de grandeur que celles indiquées par M. Hann, et que M. Arrhénius estime trop faibles. (Lehrbuch der kosmischen Physik.)

Quoi qu'il en soit, d'autres motifs tendent à prouver que la formule I est moins exacte que III, à mesure que la température diminue. Ainsi, en relevant dans le Bulletin nº i de la Commission aéronautique internationale les résultats de l'ascension d'un ballon-sonde lancé à Trappes, nous constatons entre les altitudes données par la formule I et les altitudes obtenues par visées directes des différences qui, jusqu'à 8 km., conservent un caractère accidentel (provenant de que l'air n'était pas en équilibre; on a noté un vent inférieur W.-S.-W. de 5 m. par seconde), ensuite progressent constamment à une allure inquiétante pour atteindre 1128 m. sur 13500 m. Et cependant, pour l'application de la formule, suivant la méthode indiquée par M. Teisserenc de Bort, on a considéré l'atmosphère comme partagée en tranches successives, avec une tranche nouvelle chaque fois que la température subit une variation

un peu forte. Sans doute, il y a lieu de tenir compte de diverses causes d'erreur, notamment de l'influence des courants atmosphériques sur la pression, et de l'inertie des enregistreurs; du reste, on n'a pas pu utiliser, dans le calcul, les autres facteurs correctifs de la formule barométrique complète. Mais, d'autre part, les retards d'équilibre des baromètres à mercure et les retards d'élasticité des anéroïdes sont connus par des expériences de laboratoire, et les résultats des lectures sont corrigés, tant pour les pressions que pour les températures. Au surplus, l'ascension en question a duré deux heures trente six minutes; les pressions et les températures notées simultanément par deux enregistreurs sont très peu différentes, et passent par des séries de valeurs presque identiques à la montée et à la descente. Enfin, les mesures trigonométriques sont faites au moyen de théodolithes placés aux extrémités d'une base exactement mesurée, les opérateurs étant munis de chronomètres et reliés par le téléphone; avec toutes ces précautions, l'erreur des hauteurs observées ne dépasse pas 5 m.

Voici les résultats, savoir :

- A₁, les différences Z₄ Z₁; somme des erreurs : 8447^m;
 moyenne des erreurs : 402^m2.
- A₂, les différences Z₄ Z₂; somme des erreurs : 1660^m;

 moyenne des erreurs : 79 m.
- Δ_3 , les différences $Z_4 Z_3$; somme des erreurs : 9^m ; moyenne des erreurs : 0^m4 .

Z_1	Z 2	$Z\mathfrak{z}$	\mathbf{Z}_{4}	\mathcal{A}_1	\mathcal{J}_2	$\mathcal{\Delta}_3$
171	171	171	171	O	o	— 0
812	789	795	810	2	2 I	15
1396	1359	1370	1430	35	71	6 o
2049	1999	2017	2075	26	76	58
2755	2697	2721	2820	65	1 2 3	99
344 i	3379	3411	356o	119	181	149
4197	4043	4183	4260	$6\overset{\circ}{3}$	217	77
4983	4951	4998	5000	17	49	2
5721	5720	5775	5730	9	10	— 45
6369	6848	6470	6460	91	5_{2}	- 10
7088	7186	7255	7165	77	<u> </u>	— 90
7814	7991	8068	788o	66	-111	—ı88
8466	8730	8815	8670	204	<u>60</u>	—145
9082	9442	9534	9530	448	88	4
*		10 138	10 160	26.22		
9589	10040			571	120	22 26
10 162	10725	10829	10865	703	140	36
10710	11388	11496	11500	790	112	4
11112	11878	11994	12020	908	142	26
11498	12351	12471	12450	952	99	<u> </u>
11782	12699	12823	12840	1058	141	17
12 080	13 064	13 192	13 200	1120	136	8
13392	13446	13577	13520	1128	74	— 57

Si l'on compare seulement les dix dernières valeurs dans chaque colonne, on a

pour \mathcal{L}_1 : somme des erreurs: 7882 m. moyenne des erreurs: 788^m2 m.

pour A_2 : somme des erreurs: 992 m. moyenne des erreurs: 99^m2 m.

pour ∠₃: somme des erreurs: — 114 m. moyenne des erreurs: — 11^m4 m.

Le tableau montre que \mathcal{L}_2 et \mathcal{L}_3 ne dépassent pas l'ordre de grandeur des erreurs probables, \mathcal{L}_3 donnant d'ailleurs visiblement les meilleurs résultats.

Sur les pressions à de très grandes hauteurs, nous savons assez peu de chose. Rappelons cependant une conférence faite en 1902 devant la Société chimique de Paris par M. Ramsay, sur les nouveaux gaz de l'atmosphère. On sait que MM. Berthelot, Paulsen, Sykera ont signalé la remarquable coïncidence des lignes dans les spectres de l'aurore boréale et du crypton. M. Ramsay a constaté que la ligne verte du crypton reste visible quand la pression de ce gaz n'est plus que de ommoooo35. Appliquant la formule III, il trouve Z = 135 km., chiffre un peu bas, mais qui correspond « assez bien » à la réalité. Appliquons la correction VI pour $t_1 = o$; il yient

Si
$$t_2 = -150^{\circ}$$
, $Z = 107 \text{ km}$.
 -200 , 92
 -250 , 76 ,

et ces valeurs sont incontestablement trop faibles.

Il serait fort utile que l'ingénieuse méthode de M. Ramsay fût généralisée et étendue à d'autres gaz de l'atmosphère, ce qui fournirait des indications importantes, d'une part, sur les pressions à de grandes hauteurs, de l'autre, sur le degré d'exactitude des formules III ou V.

A présent, comment expliquer que, des formules I et III, la plus complète donne, dans les trois cas étudiés ci dessus, les résultats les moins exacts?

En examinant l'exposé de Laplace (Mécanique céleste, 2^e partie, livre X, chapitre IV), on s'aperçoit d'abord que le facteur VI est introduit par un procédé empirique; t n'est pas dès lors considéré comme une fonction de Z, mais comme une constante, qu'on égale arbitrairement à la moyenne des températures locales t_1 et t_2 . Laplace a soin de faire cette restriction : « les intégrales ne s'étendent jamais qu'à un intervalle peu considérable relativement à

la hauteur entière de l'atmosphère. » Mais, cela posé, il considère un volume d'air invariable à zéro de température, et il admet que chaque degré d'accroissement dans sa température accroît également sa force élastique ou sa pression. Or, si l'on peut considérer la masse de l'atmosphère comme invariable (à très peu près) en est-il bien de même de son volume? Puis, la théorie qui convient au régime des gaz parfaits en vases clos, a-t-on le droit de l'appliquer sans autre à l'atmosphère entière? Si oui, la pression barométrique varierait systématiquement dans le même sens que les températures locales, ce qui est contraire aux observations météréologiques : les maxima diurnes se placent entre 9 et 10 h. du matin et du soir; les minima vers 4 h., matin et soir; — quant à la période annuelle, elle présente en hiver un minimum sur les océans, relativement chauds, un maximum sur les continents, relativement froids; en été, c'est l'inverse. D'après les remarques de Kæmtz, l'air chaud, moins dense que l'air froid, exerce des pressions faibles. En Europe, les basses pressions correspondent le plus souvent aux vents du sud-ouest, les hautes aux vents du nord-est, etc. En Australie, les vents chauds et secs diminuent la pression; à l'embouchure de la Plata, les vents d'ouest, froids et pluvieux, l'augmentent.

Il semble donc que si les lois de Mariotte et de Boyle Gay-Lussac peuvent s'appliquer, à une première approximation, aux pressions, densités et températures locales de l'air, elles ne sauraient être étendues à l'atmosphère entière. La formule barométrique est d'ailleurs basée sur l'hypothèse d'un équilibre statique de l'air, tandis qu'en réalité on a seulement le droit de dire que l'atmosphère est constamment à la recherche de son équilibre. Et, précisément, l'équation d'équilibre

$$\frac{dp}{p} = -\frac{c \cdot g \, \mathbf{R}^2}{\mathbf{I} + \alpha t} \cdot \frac{dz}{(\mathbf{R} + z)^2}$$

exige que pour z = a on ait, quel que soit t:

$$p = constante$$
.

Prenons, par exemple, la mesure de la hauteur du Mont-Blanc. L'Annuaire du Bureau des Longitudes (1903, page 229) donne la correction

$$0,002 a (t_1 + t_2) = 100^{m}, 4.$$

Supposons que les lectures, faites vers 4 h. du soir, sont répétées vers 4 h. du matin; que les pressions barométriques ont alors les mêmes valeurs respectives, ou simplement que ces valeurs ont varié sans que leur rápport $\frac{h_1}{h_2}$ soit modifié; mais qu'en revanche, on ait $t_1 = 8^{\circ}$ et $t_2 = -18^{\circ}$ (au lieu de 19°3 et -7° 6); la correction est alors de -85° 8. Différence des deux résultats: 186° 2!

Les mesures de la hauteur du Grand-St-Bernard présentent de mème, sur une altitude de 2070 m., des variations de 2093 à 2053 = 40 m. d'amplitude.

Concluons. Les pressions p_1 et p_2 sont respectivement égales aux poids de deux colonnes d'air, et ces deux colonnes étant supposées en équilibre, leurs poids ne varient pas d'une manière sensible avec les températures locales t_1 et t_2 . En prenant

$$Z = C. lg \frac{h_1}{h_2}$$

(où C devrait être déterminé de nouveau), on obtiendra des valeurs de Z suffisamment exactes, à la condition expresse que h_1 et h_2 soient des moyennes de pressions normales pour les deux lieux considérés. Certains indices donnent à penser que C augmente avec Z; pour fixer ce

point important, il serait désirable que, lors des ascensions de ballons-sondes, les mesures barométriques fussent autant que possible accompagnées de mesures trigonométriques.

Dans le cas probable où ${\bf C}$ serait un paramètre variable avec t, on poserait

$$C = c (I - \beta t),$$

c et β étant deux constantes à déterminer par des séries d'observations.