Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 38 (1902)

Heft: 145

Artikel: Action de la tension et du rayonnement électriques sur le cohéreur

Autor: Ketterer, A.

DOI: https://doi.org/10.5169/seals-266767

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 27.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Action de la tension et du rayonnement électriques sur le cohéreur

PAR

A. KETTERER.

(Planches XXXIX-XLI.)

L'intermittence de conductibilité des substances conductrices discontinues est un champ de recherches nouveau sur lequel l'importance des applications pratiques et la probabilité de découvertes ultérieures ont attiré une foule de chercheurs. La plupart ont cédé davantage à la préoccupation d'augmenter le fonds des faits nouveaux qu'au besoin de mesures méthodiques qui seules permettront d'établir une théorie satisfaisante des faits connus.

La complexité des phénomènes en question semble devoir ajourner la sanction définitive de l'une quelconque des explications tentées jusqu'au jour où suffisamment de travaux auront dégagé avec assez de clarté les facteurs qui jouent les rôles prépondérants dans ce domaine. L'intérêt qui s'attache à une connaissance plus approfondie et plus rigoureuse de ces phénomènes rend les recherches quantitatives désirables.

Le présent travail est un essai de contribution à cette élaboration.

Avant de rendre compte des mesures que j'ai entreprises et d'en présenter les résultats, je rappellerai brièvement ce qu'on sait aujourd'hui du sujet qui fait l'objet de la présente étude.

I. Le cohéreur ou radioconducteur.

1. Résumé historique de sa découverte. — La résistance énorme qu'offrent au passage du courant électrique les métaux sous forme de poudre avait engagé Varley ¹, déjà en 1870, à tirer parti de cette propriété, depuis longtemps connue, dans la construction d'un parafoudre pour appareils télégraphiques. Il constata qu'après une forte décharge la poudre métallique perdait sa propriété isolante. Cette particularité, qui semblait alors ne pas mériter beaucoup d'intérèt, devait, étudiée systématiquement vingt ans plus tard, contribuer à la suppression des conducteurs métalliques en télégraphie.

En 1884 le professeur Calzecchi-Onesti² découvrait à nouveau la diminution de résistance de la limaille métallique sous l'action soit de courants induits, soit même de simples vibrations sonores. Il constatait de plus que la conductibilité ainsi acquise par la limaille contenue dans un tube de matière isolante disparaissait par faible rotation du tube autour de son axe. Ces expériences passèrent alors presque inaperçues.

C'est à M. Ed. Branly 3 que revient le grand mérite d'avoir attiré très vivement l'attention sur ces phénomènes par une série de très belles expériences. En 1890, à l'occasion de recherches sur le phénomène nouvellement découvert de la déperdition de l'électricité négative sous l'action des radiations très réfrangibles de la lumière, M. Branly constatait incidemment des variations de résistance que rien n'expliquait. « En éclairant par la lumière des décharges une lame de verre argentée, intercalée dans l'une

¹ Varley, British Association, Liverpool 1870.

² Calzecchi-Onesti, Nuovo Cimento, t. XVI, p. 58; t. XVII, p. 38, 1884.

³ Edouard Branly, Comptes-rendus de l'Académie des sciences, t. CXI, p. 785, 1890, et Bulletin des séances de la Société française de physique, avril 1891.

des branches du pont de Wheatstone, j'observais des variations persistantes et notablement supérieures à celles de mes essais antérieurs. Je reconnus que la variation de conductibilité avait encore lieu lorsque l'étincelle des décharges venait à éclater sans éclairer la couche métallique. Je me proposais d'opérer sur des dépôts électrolytiques variés. L'impatience de l'attente me suggéra l'idée d'appliquer sur des lames de verre une couche de poudre de cuivre porphyrisé et de la fixer, en la frottant avec un brunissoir d'agathe. Tant que la compression ne lui avait pas donné un demi-poli, cette couche de particules extrêmement fines opposait au passage du courant une résistance énorme. Une plaque d'ébonite, enduite de cuivre porphyrisé, faisant partie d'un circuit de pile et offrant une résistance égale à quelques millions d'ohms, devenait subitement très conductrice quand une étincelle éclatait à quelques mètres de distance. Il suffisait maintenant de quelques centaines d'ohms pour lui faire équilibre dans le pont de Wheatstone. La variation de conductibilité observée sur l'ébonite cuivrée étant bien supérieure aux variations du verre platiné, je m'attachai à en changer les conditions. Je reconnus qu'on pouvait remplacer l'ébonite cuivrée par une petite colonne de cuivre porphyrisé serrée dans un tube isolant et comprise entre deux électrodes de laiton qui établissaient la communication avec le reste du circuit. Enfin une limaille quelconque se comportait comme le cuivre » 1.

Les tubes à limaille étaient découverts. Une observation fortuite, bien conduite, venait d'ouvrir un chapitre entièrement neuf de la conductibilité électrique.

Lorsque MM. Le Royer et van Berchem² eurent découvert que ces tubes à limaille pouvaient être substitués très

¹ Edouard Branly, Revue des questions scientifiques, avril 1898.

² Archives des sciences physiques et naturelles de Genève, avril 1894.

avantageusement au résonateur de Hertz pour la manifestation des oscillations électriques, M. Branly, pour rappeler cette propriété remarquable, donna à ses tubes à limaille le nom de radioconducteurs.

Vers la même époque (1890) des phénomènes du même genre que ceux étudiés par M. Branly, furent observés par le professeur M. Olivier Lodge ¹ qui constatait que la mauvaise conductibilité provenant du contact imparfait de conducteurs était améliorée considérablement par une toute petite étincelle éclatant entre eux. Ayant répété les expériences de M. Branly et interprété le phénomène de l'augmentation de conductibilité de la limaille comme le résultat d'une cohérence venant à se produire entre les particules, M. Lodge ² proposa pour les tubes à limaille le nom de coherer, aujourd'hui plus généralement employé que l'expression synonyme de radioconducteur.

Il convient d'ajouter que le cohéreur n'a acquis toute son importance et que son étude expérimentale n'a été poursuivie avec autant d'activité que depuis son application par M. *Marconi* à la télégraphie sans fil.

2. Mode de fonctionnement. — La propriété essentielle du cohéreur est la chute de résistance énorme qu'il présente sous diverses influences électriques. Si un circuit renfermant une pile et un galvanomètre est fermé sur le cohéreur, aucune déviation sensible du galvanomètre n'est appréciable; la résistance est pratiquement infinie : le cohéreur se comporte comme un isolateur. Si, dans ces conditions, on communique aux extrémités du cohéreur une différence de potentiel ou que dans son voisinage éclate une étincelle, ou se décharge un condensateur, le courant direct ou induit qui traverse la limaille fait tomber subitement sa

¹ O. Lodge, Journal Inst. Electr. Eng., t. XIX, p. 352; 1889.

² O. Lodge, On the sudden acquisition of conducting power by a series of discrete metallic particles, « Phil. Mag., » janvier 1894.

résistance de plusieurs millions à quelques dizaines d'ohms. La conductibilité ainsi établie est persistante.

Une circonstance physique extraordinairement efficace pour la supprimer est l'action mécanique du *choc*. En l'absence de précautions spéciales pour la protection du cohéreur contre les trépidations, le moindre ébranlement du cohéreur ou de son support le ramène à la résistance initiale. Par l'action combinée d'étincelles et de chocs, il était à prévoir que l'intermittence de conductibilité de la limaille fournirait la possibilité d'ouvrir et de fermer un circuit à distance, sans l'intermédiaire d'aucun conducteur métallique. L'application du cohéreur à la télégraphie sans fil n'est que la réalisation de dispositifs appropriés à l'obtention de ces effets.

3. Forme et constitution. — D'une façon générale, les substances qui présentent, sous les diverses influences électriques mentionnées, les variations de conductibilité en question se présentent sous forme de corps bons conducteurs, interrompus par un milieu isolant. M. Branly a substitué à l'isolant habituel, c'est-à-dire à l'air entourant les particules conductrices, un isolant liquide et même solide, soit qu'il mélange les limailles métalliques à une poudre isolante, fleur de soufre, poudre de lycopode, etc., qu'il les emprisonne dans une masse résineuse durcissant à froid, qu'il les fixe sur des lames de verre, des plaques d'ébonite, ou qu'il les baigne dans l'huile de colza ou l'essence de térébenthine¹.

Ni la ténuité, ni le morcellement des particules conductrices ne sont des conditions indispensables au fonctionnement du cohéreur. Généralement, pour plus de régularité d'action, les conducteurs sont employés sous forme de

¹ Bulletin des séances dv la Société française de physique, avril 1891. — Compte rendus, t. CXII, p. 90, 12 janvier 1891; t. CXVIII, p. 148, 12 février 1894.

particules, les métaux sous celle de limailles. Cependant M. Branly a constitué des radioconducteurs avec des billes d'acier de 5 cm. de diamètre ou des piles de disques en fer et en aluminium de 4 cm. de diamètre 1. M. Drude s'est servi de petites vis en fer, M. Bose de spirales plates disposées parallèlement; M. Rollo Applevard a réalisé des cohéreurs liquides sous forme de chaînes de sphéroïdes de mercure et d'huile de paraffine ou simplement d'eau et d'huile de paraffine 2. M. Tommasina a substitué aux métaux la poudre de charbon. D'après M. Jagadis Chunder Bose 3, qui a entrepris une étude systématique de la cohérence des différentes limailles métalliques, le fer, le nickel, le cobalt, le bismuth et l'antimoine fournissent les cohéreurs les plus sensibles. Ceux d'étain, d'aluminium, de plomb seraient inférieurs quoique sensibles encore, ceux de cuivre, de platine, d'or, de zinc, de manganèse et de cadmium seraient médiocres, ceux d'argent variables. Depuis l'application des cohéreurs à la télégraphie sans fil, des recherches sans nombre ont été faites en vue de la meilleure limaille à employer. Si le nickel paraît le plus avantageux, aucun métal cependant ne s'est imposé à l'exclusion des autres.

4. Sensibilité. — Des règles pratiques que l'usage fréquent des cohéreurs a dégagées pour leur construction, il semble résulter qu'avec la nature du métal l'espace occupé par la limaille joue un rôle important. La sensibilité serait d'autant plus grande que l'espace rempli est plus petit.

Diverses dispositions spéciales ont été adoptées pour agir efficacement sur la sensibilité. On l'a accrue en tritu-

¹ Comptes rendus, t. CXX, 13 mars 1899.

² Rollo Appleyard, Cohéreurs liquides.

³ Jagadis Chunder Bose, Study of the cohering action of different metals, « Phil. Mag. », LXV, 1899.

rant la limaille avec une gouttelette de mercure et en amalgamant légèrement les faces intérieures des électrodes. M. Tissot a augmenté la durée d'emploi de ses radioconducteurs à limaille d'acier, de nickel ou de cobalt, tout en accroissant notablement leur sensibilité, de façon à obtenir une sécurité complète pour la réception des signaux, en soumettant ces cohéreurs à l'action d'un champ magnétique dirigé suivant leur axe 1.

MM. Blondel et Dobkovitsch² obtiennent le même résultat sans aimant avec n'importe quelle limaille sensible en introduisant, à l'abri de l'air humide, entre les électrodes, une plus ou moins grande quantité de la limaille contenue dans un réservoir coudé, ce qui a pour effet d'augmenter la pression entre limaille et électrodes et permet ainsi de régler l'appareil. M. Slaby emploie des cohéreurs où les mêmes avantages sont obtenus sans adjonction de réservoir, par l'artifice ingénieux de plans d'électrodes non parallèles, la simple rotation du tube réglant ainsi la sensibilité.

Une question très controversée est celle de l'utilité d'une légère trace d'oxydation à la surface des électrodes. Il semble résulter des expériences de M. Dorn que ce sont les couches superficielles mauvaises conductrices qui opposent le plus grand obstacle au passage du courant³. Dans l'hypothèse que la diminution de résistance observée dans les circonstances mentionnées pourrait s'expliquer par la destruction de cette couche mauvaise conductrice d'oxyde sur la limaille, M. Aschkinass a recherché si cet effet pourrait s'obtenir encore avec des métaux non altérables⁴. Contrairement aux expériences ultérieures de M. Bose, les

¹ Comptes rendus, t. CXXX, 20 avril 1900.

² Comptes rendus, t. CXXX, 23 avril 1900.

³ E. Dorn, Wiedemann's Annalen, t. LXVI, p. 146, 1899.

⁴ E. Aschkinass, Wied. Annalen, t. LXVI, nos 9 et 10, 1898.

limailles d'argent et de platine sont restées indifférentes à l'action des décharges, mais il obtint un bon cohéreur avec de la limaille de cuivre dont la surface venait d'être bien purifiée par immersion dans l'alcool méthylique après chauffage au rouge. M. Branly, d'autre part, a tiré bon parti de limailles d'or et de platine 1; M. Tommasina de poudre de charbon². M. Bose a obtenu un fonctionnement plus constant en recouvrant ses spirales en fil d'argent d'un dépôt électrolytique de cobalt 3. M. Tissot a construit, pour ses expériences de télégraphie sans fil, d'excellents tubes pour lesquels la limaille magnétique était obtenue aussi peu oxydée que possible et immédiatement enfermée dans des tubes scellés et bien secs où, par surcroît de précaution, on enferme dans une ampoule latérale quelques fragments de carbure de calcium⁴. Dans de pareilles conditions, la circonstance que les électrodes et la limaille sont oxydables ne paraît devoir jouer qu'un rôle restreint dans le phénomène. Et cependant M. Blondel démontre l'influence de la couche superficielle en produisant un voile de sulfure d'argent d'épaisseur croissante à la surface des particules et en constatant qu'il existe une épaisseur de voile donnant le maximum de sensibilité 5. Il conclut à la nécessité d'une légère oxydabilité superficielle des limailles et des électrodes pour la bonne marche d'un cohéreur pratique.

5. Anomalies de cohérence. — Les variations de conductibilité ne se présentent pas toujours dans le sens d'une diminution de la résistance électrique. Certaines substances, sous les mêmes influences que celles qui affectent le cohéreur, éprouvent un accroissement de résistance. M. Branly

¹ Comptes rendus, t. CXVII, p. 1206, 1898.

² Tommasina, L'Ellettricità, 21 aprile 1900.

³ Jagadis Chunder Bose. Article cité.

⁴ E. Tissot, Eclairage électrique, t. XXIII, nº 22.

⁵ E. Blondel, Eclairage électrique, 22 août 1898.

avait déjà signalé le peroxyde de plomb comme présentant cette anomalie ¹. M. Aschkinass trouva qu'il en est de même du sulfure de cuivre ² et M. Bose des métaux alcalins, particulièrement du potassium ³.

Un phénomène inverse de celui du cohéreur a été nettement établi par M. Neugschwender 4. Un dépôt d'argent sur verre, introduit dans le circuit d'une pile, agit comme un isolant, surtout si par un trait fin on établit une solution de continuité sur le dépôt d'argent. Si l'on souffle sur la fente ou qu'on place dans son voisinage de l'eau ou quelque électrolyte liquide, le dépôt de vapeur qui s'y produit établit la conductibilité : le galvanomètre dévie. Une étincelle éclatant dans le voisinage rompt la conductibilité : le galvanomètre revient au zéro. Les ondes cessant, la conductibilité reparaît. Un nouveau détecteur d'ondes peut ainsi être constitué par disparition d'une conductibilité entretenue par une cuve d'eau. M. Beler Schaffer 5 en emplovant cet anticohéreur avec un dispositif perfectionné a obtenu des signaux télégraphiques à 60 km. M. Aschkinass avait également observé des accroissements de résistance sous l'influence d'oscillations électriques quand le contact de deux fils de cuivre est établi par une goutte d'eau⁶. Un tube de verre contenant des grains de limaille de cuivre humectés par quelques gouttes d'eau, ne présente qu'une faible résistance normale et devient très résistant sous l'action des décharges pour reprendre sa con-

¹ E. Branly, Bulletin des séances de la Société française de physique, avril 1891.

² E. Aschkinass, Theoretisches und Experimentelles über den Cohärer, «Wied. Annalen», n° 9 et 10, 1898.

³ Jagadis Chunder Bose. Article cité.

⁴ A. Neugschwender, Eine neue Methode elektrische Wellen nachzuweisen, « Wiedemann's Annalen », t. LXVIII, n° 2, 1899.

⁵ Beler Schaffer, Wiedemann's Annalen, t. LXXVIII, p. 92, 1899.

⁶ E. Aschkinass, Ueber die Wirkung elektrischer Schwingungen auf benetzte Contakte metallischer Leiter. « Wied. Ann. », n° 4, 1899.

ductibilité dès que ces décharges cessent. On ne peut donc réaliser le phénomène ordinaire du cohéreur avec des limailles humides.

- 6. Décohésion spontanée. L'inconvénient, dans la télégraphie sans fil, de la nécessité d'un frappeur pour ramener le tube à limaille à la résistance, a poussé à la recherche de cohéreurs pour lesquels la suppression de conductibilité serait plus facilement réalisable. Une élévation de température produit aussi le retour à la résistance, mais cette ressource n'a pu être mise à profit. On n'a tiré également qu'un mauvais parti du remplacement du frappeur par un électro-aimant qui, aimanté dès que le cohéreur est actionné, attire la limaille et la décohère. En se servant de la poudre de charbon des microphones des stations téléphoniques suisses et de dispositifs nouveaux, M. Tommasina a réussi à construire un cohéreur décohérant spontanément, sans choc 1. M. Bose avait déjà mentionné 2 que les métaux des terres alcalines et surtout le potassium possèdent la propriété malheureusement passagère de recouvrer spontanément leur résistance initiale après l'action des ondes.
- 7. Théories proposées. Dès le début, M. Branly a tenté de donner une interprétation des phénomènes du cohéreur 3. Frappé du fait que les variations de conductibilité se réalisent même pour des mélanges solidifiés, il exclut la possibilité d'un déplacement ou d'une orientation de particules et pense que c'est à la substance intermédiaire qu'il convient d'attribuer le rôle principal. « Pour expliquer la persistance de la conductibilité après que l'action électrique

¹ Th. Tommasina, Sur l'auto-décohération du charbon, « Comptes rendus », t. CXXX nº 14, 2 avril 1900.

² Jagadis Chunder Bose, On a self-recovering coherer, « Phil. Mag. », 1. LXV, 1899.

³ E. Branly, Bulletin des séances de la Société française de physique, avril 1891.

a cessé, on pourrait supposer que les minces couches isolantes, intercalées entre les grains conducteurs, sont perforées par le passage de très petites étincelles dont le trajet se tapisse de matière conductrice entraînée 1. » « Si c'est l'isolant lui-même qui est modifié, les phénomènes observés caractérisent la conductibilité de couches minces isolantes. Cette modification de l'isolant serait analogue à une déformation élastique qui ne s'appliquerait qu'à des couches isolantes très minces, cesserait de se produire pour une certaine épaisseur et disparaîtrait par le choc ou la chaleur². » Dans ce cas, on devrait accroître la sensibilité d'un tube à limaille en v faisant le vide; or le vide ne paraît offrir d'autre avantage que celui de préserver la limaille de l'oxydation et le cohéreur d'une sensibilité variable avec le temps. Pour cette raison, M. Branly est plutôt porté à attribuer un rôle passif à l'isolant et à faire intervenir l'éther ambiant. « Dans cette hypothèse, chaque grain métallique serait entouré d'une gaine d'éther condensé. Lorsque l'intervalle des grains est extrêmement réduit, comme dans le cas d'un métal conducteur aggloméré par fusion ou compression, ces gaines se touchent et même se pénètrent, et c'est cette pénétration qui entraînerait la conductibilité électrique. Si ces grains métalliques sont écartés sans l'être cependant notablement, les enveloppes d'éther condensé ne se touchent plus, mais sous diverses influences électriques elles se renflent et viennent en contact intime. Le choc et la chaleur les font se rétracter. » « On pourrait ainsi regarder comme démontré qu'il n'est pas nécessaire que les particules d'un conducteur soient en contact pour livrer passage à un courant électrique, même faible: la distance pour laquelle la conductibilité persistante s'établit dépend d'un

¹ E. Branly, Bulletin des séances de la Société française de physique, avril 1891.

² E. Branly, Revue des questions scientifiques, avril 1898.

rayon d'activité que l'énergie d'effets électriques antérieurs augmente considérablement 1. »

Dans ce même ordre d'idées, MM. Blondel et Ferrié « supposent que lorsque deux surfaces conductrices sont rapprochées de telle sorte qu'une mince couche de diélectrique soit comprise entre les points les plus voisins, si l'on porte les conducteurs à des potentiels différents, il se produit un condensateur dont le diélectrique crèvera si la différence de potentiel devient trop élevée. Si on rapproche encore les deux conducteurs, on peut admettre que le diélectrique est refoulé en dehors des points des surfaces les plus voisins, produisant ainsi une petite gaine vide entre les deux conducteurs. En établissant alors une différence de potentiel, il se produira une effluve conductrice dans le chenal vide. Si la différence de potentiel augmente, il arrivera un moment où une étincelle disruptive se produira comme dans le premier cas 2. » Ce deuxième cas s'appliquerait aux cohéreurs décohérents.

Contrairement à ces vues, M. Lodge ³ admet que sous les différentes influences électriques qui déterminent la conductibilité, les particules métalliques se polarisent, prennent une cohésion qui assure la conductibilité et que le choc ou la chaleur détruisent. MM. Arons ⁴, van Gulik ⁵, Malagoli ⁶, en observant au microscope de vives étincelles

¹ E. Branly, Comptes rendus de l'Académie des sciences, t. CXVIII, 12 février 1894.

² Capitaine Ferrié, Communication au Congrès international d'électricité, Paris 1900.

³ O. Lodge, On the sudden acquisition of conducting-power by a series of discrete metallic particules, « Phil. Mag. », janvier 1894.

⁴ M. Arons, Microscopische Beobachtungen von Wechselcontacten, « Wiedmann's Annalen, » n° 3, 1898.

⁵ D. van Gulik, Ursache der von Branly entdekten Widerstandsänderungen, « Wiedmann's Annalen », n° 9 et 10, 1898.

⁶ Malagoli, L'Elettricità, nº 9, 9 septembre 1899.

et des mouvements violents de particules métalliques sous l'action des oscillations électriques, M. Tommasina ¹, en obtenant des chaînettes de particules adhérentes et M. Appleyard ², des déformations de globules liquides, semblent confirmer la théorie de M. Lodge. Cet établissement de liaisons conductrices, par arrachement de particules aux surfaces en regard, paraît à M. Branly pouvoir n'être qu'un phénomène additionnel, particulier aux actions puissantes et ne pas rendre compte de l'action sur les agglomérés solides à gangue isolante : la dénomination de cohéreur reste la traduction d'une interprétation encore incertaine.

II. Principe des mesures et disposition des appareils.

L'observation sur le cohéreur des diverses actions électriques se réduit à la mesure d'une variation de résistance. L'état initial d'énorme résistance du cohéreur étant fixé, la cause dont l'effet doit être observé est mise en action et la nouvelle résistance du cohéreur, déterminée par cette action, est mesurée. La méthode qui se prêtait le mieux à ces deux mesures successives de résistance est celle qui repose sur la détermination simultanée de l'intensité et de la différence de potentiel, avec application de la loi d'Ohm.

Pour cela j'ai disposé mes appareils comme suit :

Dans un circuit comprenant un élément Daniell E, une résistance comme r et un galvanomètre sensible G_1 (Fig. 1), j'intercale le cohéreur C dont la résistance r_1 est à déterminer. Aux extrémités A et B du cohéreur, j'établis une dérivation comprenant un galvanomètre sensible G_2 et une résistance connue r_2 . Dans ces conditions, la résistance

¹ Th. Tommasina, Comptes rendus de l'Académie des sciences, 1899.

² Rollo Appleyard, Cohéreurs liquides.

cherchée r_1 s'obtient aisément dès que sont connues l'intensité i_1 du courant traversant le cohéreur et la différence de potentiel Δp aux points A et B: $r_1 = \frac{\Delta p}{i_1}$. $r_2 = \frac{\Delta p}{i_1}$

La différence du potentiel Δp aux extrémités A et B du cohéreur s'obtient indirectement par détermination de i_2 et connaissance de r_2 :

$$\Delta \rho = i_2 r_2$$
.

L'intensité i_1 du courant traversant le cohéreur est donnée par la détermination, au moyen des galvanomètres G_1 et G_2 , des intensités i et i_2 avec application au point B d'un des lemmes de Kirchhoff :

$$\begin{split} \boldsymbol{\Sigma}\left(i\right) &= \mathbf{0} \\ i - i_1 - i_2 &= \mathbf{0} \\ i_1 &= i - i_2 \,. \end{split}$$

En application de la loi d'Ohm, la résistance cherchée est donc :

$$r_1 = \frac{\Delta p}{i_1}.$$

Pour ces mesures j'ai employé comme source d'électricité un élément Daniell avec lames de cuivre et de zinc plongeant dans des solutions de sulfate de cuivre et sulfate de zinc de densité $\varrho=1.15$. Cet élément de force électromotrice $e=1^{\circ}.101$ a fourni un courant très constant durant plusieurs heures.

Je me suis servi de deux galvanomètres Desprez et d'Arsonval. Il importe d'employer des galvanomètres de sensibilité semblable avec les constantes correspondant aux déviations observées. Pour une comparaison rigoureuse des résultats, il est nécessaire de tenir compte des variations qui peuvent survenir avec le temps dans la f. é. m. de la pile et dans la constante de torsion des fils d'argent des galvanomètres.

Les cohéreurs dont j'ai fait usage étaient à limaille de nickel avec électrodes distantes de 1 à 1.5 mm.

1. Détermination des constantes des galvanomètres.

Galvanomètre G_1 . L'intensité i' du courant fourni par l'élément de f. é. m. $e = 1^{\circ}.101$, à travers un circuit comprenant une résistance $r' = 303000^{\circ}$, un galvanomètre G_1 de résistance $g' = 200^{\circ}$ avec un shunt en dérivation de $s' = 600^{\circ}$, est égale à

$$= \frac{e\left(g' + s'\right)}{r'\left(g' + s'\right) + g's'} = \frac{1.101\left(200 + 600\right)}{303000\left(200 + 600\right) + 200 \times 600} = 3^{\text{a}}.6318 \times 10^{-6}.$$

La déviation produite par ce courant dans le galvanomètre G_1 est $d'=345^{\rm mm}5$ qui, ramenée à la tangente, se réduit à $\delta'=341^{\rm mm}6$.

D'où :

$$C_1 = \frac{i'}{\delta^1} = \frac{3.63818 \times 10^{-6}}{341.6} = 1^{\text{a}}.063 \times 10^{-8} \text{ pour } 1^{\text{mm}} \text{ de déviation.}$$

Constante du galvanomètre $G_1 = c_1 = 1^a.063 \times 10^{-8}$.

Pour la mesure de la résistance finale, considérablement plus faible, je modifie ce circuit en prenant $r'' = 103000^{\circ}$ et un shunt $s'' = 100^{\circ}$. L'intensité i'' du courant traversant alors le galvanomètre vaut :

$$=\frac{e\left(g'+s''\right)}{r''\left(g'+s''\right)+g's''}=\frac{1.101\left(200-100\right)}{103000\left(200+100\right)+200\times100}=1^{3}.068\times10^{-6}.$$

La déviation produite $d'' = 454^{\text{mm}}8$, réduite à la tangente, vaut $\delta'' = 446^{\text{mm}}6$.

D'où :

$$C_2 = \frac{i''}{\delta''} = \frac{1.068 \times 10^{-6}}{446.0} = 2^a.395 \times 10^{-8} \text{ pour } 1^{mm} \text{ de déviation.}$$

Constante du galvanomètre $G_1 = c_2 = 2^a.395 \times 10^{-8}$.

Galvanomètre G_2 . La même f. é. m. $e = 1^{v}$.101 dans un circuit comprenant une résistance $r''' = 303000^{\Omega}$, le galvanomètre G_2 de résistance $g'' = 200^{\Omega}$ et un shunt $s''' = 400^{\Omega}$ produit un courant d'intensité

$$i^{\prime\prime\prime\prime} = \frac{e\left(g^{\prime\prime} + s^{\prime\prime\prime}\right)}{r^{\prime\prime\prime\prime}\left(g^{\prime\prime} + s^{\prime\prime\prime}\right) + g^{\prime\prime}s^{\prime\prime\prime}} = \frac{1.101\left(200 + 400\right)}{303000\left(200 + 400\right) + 200 \times 400} = 3^{a}.632 \times 10^{a}$$

La déviation produite $d''' = 146^{\text{mm}}$ o, réduite à la tangente, vaut $\delta''' = 145^{\text{mm}}65$.

D'où:

$$C_3 = \frac{i^{\prime\prime\prime\prime}}{\delta^{\prime\prime\prime\prime}} = \frac{3.632 \times 10^{-6}}{145.65} = 2^a.493 \times 10^{-8} \text{ pour } 1^{mm} \text{ de déviation.}$$

Constante du galvanomètre $G_2 = c_3 = 2^a.493 \times 10^{-8}$.

2. Résistance du cohéreur à l'état normal. — Les constantes des appareils déterminées, je réalise la disposition décrite ci-dessus et représentée par la figure 1, en prenant

$$r = 300000^{\Omega}$$
 $r_2 = 3000^{\Omega}$
 $s = 600^{\Omega}$ $s_2 = 400^{\Omega}$

La résistance initiale cherchée est égale à $r_1 = \frac{\varDelta p}{\iota_1}$ i_1 étant donné par la différence $i-i_2$ et $\varDelta p$ par i_2 r_2 .

Les déviations des galvanomètres, prises au même instant, donnent :

En G_1 : $d_1 \equiv 345^{\rm mm}4$, soit après réduction à la tangente, $\delta_1 = 341^{\rm mm}5$;

En G_2 : $d_2 \equiv 145^{\rm mm}95$, soit après réduction à la tangente, $\delta_2 \equiv 145^{\rm mm}6$.

Il convient de remarquer que si cette grandeur devait jouer un rôle important et par conséquent être mesurée avec exactitude, la méthode ci-dessus ne fournirait des résultats précis qu'avec des galvanomètres de sensibilité supérieure à celle des appareils que j'ai employés. En effet, dans la lecture des déviations, une erreur d'observation de omm, supposée prise par défaut pour i ($d_1 = 345$ mm3) et par excès pour i_2 ($d_2 = 146^{\text{mm}}$ o5) donnerait $r_1 = \infty$. Cette même erreur prise par excès pour i ($d_1 = 345^{\text{mm}}5$) et par défaut pour i_2 ($d_2 = 145^{\text{mm}}85$) donnerait $r = 5 \times 10^{62}$ environ. Dans la détermination des résistances initiales du cohéreur les déviations galvanométriques donnant les intensités i et i₂ n'ont généralement différé que de quantités de l'ordre de grandeur des erreurs d'observation. Dans ces conditions, cette détermination n'est qu'approchée. Elle est suffisante cependant, puisqu'il suffit, pour les besoins de mes recherches, que cette résistance initiale soit au-dessus d'une limite, si cette limite est fixée suffisamment haut. Cette circonstance m'a permis de procéder plus simplement encore. En supprimant la dérivation, le circuit ne comprend

plus que l'élément Daniell, la résistance r, le galvanomètre et le cohéreur à l'état résistant. Si, dans ces conditions, en fermant le circuit, on observe dans le galvanomètre des déviations inférieures à 2 mm par exemple, l'intensité du courant est alors

$$i < 2 \times 1.063 \times 10^{-8}$$
 donc $< 2^{a}.126 \times 10^{-8}$ ampères,
d'où $r > \frac{1.101}{2.126 \times 10^{-8}}$ donc $> 51.8 \times 10^{6}$ ohms.

Il suffit donc que la déviation obtenue dans le galvanomètre demeure inférieure à 2 mm pour que la résistance initiale du cohéreur soit supérieure à 50 mégohms.

3. Résistance du cohéreur à l'état cohéré. — L'énorme résistance initiale du cohéreur constatée, avant de faire agir sur lui l'action à étudier, je modifie le circuit de façon que les déviations qui se produiront dans le galvanomètre deviennent nettement sensibles pour de petites valeurs de la résistance du cohéreur. A cet effet

au lieu de
$$r=300000^{\it Q}$$
 je prends $r'=100000^{\it Q}$ en laissant $r_2=3000^{\it Q}$ » de $s=600^{\it Q}$ » $s'=100^{\it Q}$ » $s_2=400^{\it Q}$

Dans ces conditions, si, par exemple, on communique aux extrémités A et B du cohéreur, isolé du circuit, une différence de potentiel de 100 volts, la résistance tombe subitement et; en rétablissant le cohéreur dans le circuit, on constate :

En G_1 une déviation ${d'}_1=465^{\rm mm}4$ soit, réduite à la tangente, ${\delta'}_1=456^{\rm mm}o$;

En G_2 une déviation $d'_2 = 15^{\text{mm}}25$ soit, réduite à la tangente, $\delta'_2 = 15^{\text{m}}25$.

La résistance du cohéreur est alors
$$r'_1=\frac{\varDelta p}{i_1}$$
, où $\varDelta p=i_2\;r_2\,,\qquad i_1=i-i_2\,.$

Une erreur d'observation de $0^{mm}1$ dans la lecture des déviations, prise par défaut pour i et par excès pour i_2 , donnerait à r'_1 une valeur de 113.1 ohms. Cette résistance est donc mesurée par cette méthode avec une précision de ± 0.1 ohm, amplement suffisante pour les besoins de mes recherches.

Un léger choc ramène le cohéreur à une résistance du même ordre de grandeur que la résistance initiale.

L'expérience a montré que l'intensité du courant qui traverse le cohéreur dans cet état de faible résistance et la différence de potentiel à ses extrémités, sont des valeurs qui ne peuvent atteindre certaines grandeurs sans préjudice pour le bon fonctionnement prolongé de l'appareil. L'introduction dans le circuit de la résistance élevée qui y figure a pour raison de mettre le cohéreur à l'abri de ce que M. Blondel a appelé la tension critique de cohérence, c'est-à-dire la tension qui, appliquée continuellement au tube à limaille cohéré, l'empêche de se décohérer facilement.

III. Action de la tension électrique sur le cohéreur.

En soumettant le cohéreur à l'action d'une différence de potentiel appliquée à ses extrémités, on constate que sa résistance diminue considérablement. Je me suis proposé de rechercher si cette chute de résistance et la tension qui la produit sont en relation déterminée. Avant de présenter les résultats des mesures entreprises pour répondre à cette question, je rendrai compte de quelques recherches préliminaires qui établissent les conditions dans lesquelles doivent être faites les mesures.

A. Du degré de constance dans l'action de la tension sur le cohéreur.

Une même différence de potentiel appliquée aux extrémités d'un cohéreur produit-elle une chute de résistance constante? La réponse à cette question a une importance en ce sens que d'elle dépend la possibilité de relier ces deux grandeurs par une expression mathématique définie.

Dans toutes les mesures qui suivront, la résistance initiale du cohéreur sera, après chaque chute de résistance, amenée par le choc à être de l'ordre de grandeur de 50 mégohms, et l'effet de la cause étudiée sera indiqué simplement par la résistance finale à laquelle tombe chaque fois le cohéreur.

Trois cohéreurs différents ont été soumis à la recherche de la constance d'effet d'une même différence de potentiel.

Variations dans la résistance finale produite par une même différence de potentiel.

Tension appliquée.	Résistance finale.							
$Jp = 200^{\circ}$:	Cohéreur 1 $r'_{1} = 1623$ $r''_{1} = 17.0$ $r'''_{1} = 18.4$	Cohéreur II $r'_{2} = 31^{2}9$ $r''_{2} = 32.7$ $r'''_{2} = 33.3$	Cohéreur III $r'_{3} = 2823$ $r''_{3} = 31.0$ $r'''_{3} = 28.3^{*}$					
Δr^{r} .	$r_{1}^{v_{1}} = 17.0$ $r_{1}^{v_{1}} = 17.2$ maximum: $2^{2}1$ $(11.4^{6}/_{0})$	$\frac{r^{\text{tv}}_{2} = 32.7}{r^{\text{v}}_{2} = 31.9}$ $\frac{1^{2}4}{(4.2^{-0}/_{0})}$	$rac{r^{lpha_{3}}}{r^{lpha_{3}}}=rac{29.7}{28.5} \ rac{r^{lpha_{3}}}{(8.7^{-0}/_{0})}$					

Tension app	liquée.	Résistance finale.	
$\Delta p = 150^{\circ}$:	Cohéreur I $r'_{1} = 21^{2}3$ $r''_{1} = 22.7$ $r'''_{1} = 25.6$ $r''_{1} = 21.9$ $r'_{1} = 22.1$ $Ir' \text{ maximum}: 4^{2}3$ $(16.8^{6}/_{0})$	Cohéreur II $r'_{2} = 52^{2}4$ $r''_{2} = 55.3$ $r'''_{2} = 51.7$ $r''_{2} = 50.1$ $r''_{2} = 53.3$ $ 5^{2}2$ $(9.4^{6}/_{0})$	Cohéreur III $r'_{3} = 50^{2}9$ $r''_{3} = 48.1$ $r'''_{3} = 46.0$ $r''_{3} = 44.0$ $r''_{3} = 47.8$ $\cdots \qquad 6^{2}9$ $(13.7^{6}/_{0})$
$\Delta p = 20^{\circ}$:	$r'_{1} = 102^{2}8$ $r''_{1} = 110.6$ $r'''_{1} = 119.1$ $r^{\text{IV}}_{1} = 131.2$ $r^{\text{V}}_{1} = 124.5$ $4r' \text{ maximum} : 28^{2}4$ $(21.7^{-0}/_{0})$	$r'_{2} = 452^{2}4$ $r''_{2} = 457.4$ $r'''_{2} = 534.7$ $r^{17}_{2} = 582.9$ $r^{7}_{2} = 451.4$ $131^{2}5$ $(22.5^{6}/_{0})$	$r''_{3} = 175.1$ $r'''_{3} = 121.3$
$\Delta p = 10^{\circ}$:	$r'_{1} = 139^{2}1$ $r''_{1} = 112.5$ $r'''_{1} = 164.8$ $r^{10}_{1} = 170.2$ $r'_{1} = 171.8$ $r''_{1} = 171.8$ $r''_{1} = 171.8$ $r''_{1} = 171.8$	$r_{2}^{r_{2}} = 776.5$	$r'''_3 = 604.2$

Résumé des variations de résistance maximales :

L'action sur un même cohéreur pour une même diffé-

rence de potentiel n'est donc pas constante. Les écarts sont d'autant plus forts que cette différence de potentiel est plus faible.

Les principales causes de ces écarts m'ont paru être :

- 1º La constitution des cohéreurs ;
- 2º La source d'électricité employée;
- 3º Les états de service antérieurs du cohéreur ;
- 4º L'état initial de résistance;
- 5º Des causes accidentelles.
- 1. Constitution du cohéreur. Ne faisant pas porter mon étude sur la constitution du cohéreur, je me borne ici à mentionner cette influence en remarquant que certains cohéreurs présentent de très petits écarts pour une grande tension et d'assez forts pour une faible sans règle apparente.
- 2. Source d'électricité employée. L'expérience m'a révélé que le choix de la source d'électricité à employer pour la tension est loin d'être indifférent. Une différence de potentiel $\Delta p = 2^{v}.2$, prise aux électrodes de deux éléments Daniell en série et appliquée au cohéreur, est sans effet sur sa résistance. Une différence de potentiel de mème valeur, fournie par une cellule d'accumulateur, agit au contraire. En appliquant successivement les différences de potentiel fournies par 4, 6, 8, 10, 15, 20 éléments Daniell, la résistance du cohéreur ne varie pas, alors qu'une différence de potentiel de mème grandeur ou inférieure, donnée par l'accumulateur, produit invariablement la variation de résistance.

Le tableau suivant résume les résultats de mes recherches sur ce point :

Tension		Résistance finale.
Fournie par	Fournie par	
les éléments Daniell :	l'accumulateur	
$Dp_1 = 2^{v}.2$		$r'_1 = 50 \times 10^{6\Omega} \mathrm{env}.$
	$\Delta p_2 = 2^{\mathrm{v}}$	$r'_{2} = 759^{2}$
$\Delta p_3 = 4^{v}.4$		$r'_{3} = 50 \times 20^{6} \mathrm{env}$.
$\Delta p_4 = 6^{\rm v}.6$	* * * * * *	$r'_4 = "$
$\Delta p_5 = 11^{\circ}.0$		$r'_5 = $ »
1 0	$\mathcal{I}p_6 = 2^{\mathrm{v}}$	$r'_{6} = 685^{\Omega}$
$\Delta p_7 = 22^{v}.0$		$r'_7 = 50 \times 10^6 \mathrm{env}$.
$\mathcal{I}p_{8} = 22^{v}.0$		
pendant 10, 20, 30 secondes		$r'_{s} = "$
	$\mathcal{I}\rho_9=2^{\mathrm{v}}$	$r'_{9} = 593^{\Omega}$
$\mathcal{I}p_{10} = 22^{v}.0$		
10, 20, 30 fois de suite		$r'_{10} = 50 \times 10^6 \mathrm{env}.$
	$\mathcal{I}p_{11} = 2^{v}$	$r'_{11} = 611^{Q}$
$\Delta p_{12} = 2^{y}.2$		
10 batteries parallèles		
de 2 éléments en série		$r'_{12} = 50 \times 10^6 \mathrm{env}$.
		$r'_{13} = 519^{\Omega}$
$\mathcal{I}p_{14} = 4^{\text{v}} \cdot 4$	<i>I</i> 13	\mathcal{J}
5 batteries parallèles		
de 4 éléments en série		$r'_{14} = 50 \times 10^{62} \mathrm{env}.$
		$r'_{15} = 508^{\Omega}$
$\mathcal{I}p_{15} = 5^{\text{v}}.5$	1	13
4 batteries parallèles		
de 5 éléments en série		$r'_{16} = 50 \times 10^{62} \mathrm{env}.$
de a ciementa en actie		$r_{16} = 50 \wedge 10^{-2} \text{ cm}$.

On voit qu'en laissant la tension des piles agir pendant 5, 10, 20, 30 secondes, la cohérence ne se produit pas davantage. Cette tension reste encore inefficace quand on l'introduit rapidement 10, 20, 30 fois en succession.

Les deux sources différant essentiellement par la résistance intérieure, celle de l'accumulateur étant environ 0^{Ω} . 005 et celle de l'élément Daniell 1 à 2^{Ω} , on rapprocherait leur mode d'action en diminuant la résistance inté-

rieure de la pile par association des éléments en quantité ou par couplage mixte. J'ai réduit ainsi cette résistance intérieure à $\frac{1}{10}$, $\frac{1}{20}$ de sa valeur et, quelques cas isolés exceptés, cette modification, dans ces limites, s'est révélée encore insuffisante. L'absence de cohérence par la tension de piles primaires subsistant malgré cette atténuation, la différence du mode d'action de ces deux tensions d'égale grandeur est ainsi nettement établie et l'importance du rôle de la poussée mise en évidence.

- 3. Etats de service antérieurs. Les conditions dans lesquelles un cohéreur a fonctionné influent considérablement sur sa marche ultérieure. Cela ressort des constatations suivantes :
- a) Un cohéreur soumis à l'action d'une différence de potentiel déterminée, $\mathcal{A}\rho=50^{\circ}$ p. ex., ne présente pas, pour sa résistance finale, les mêmes valeurs selon que cette action a été précédée de celle d'une tension supérieure $(\mathcal{A}\rho=70^{\circ})$ ou inférieure $(\mathcal{A}\rho=30^{\circ})$.

Action d'une différence de potentiel $4\rho = 5$ ov

après l'a	ction antérieure	après l'action antérieure
de	$\Delta p \equiv 3$ ov	$\det \mathcal{I}_P = 70^{\circ}$
Cohéreur	$H: r'_1 = 235^{\Omega}$	$r''_1 = 127^{\Omega}$
))	III: $r'_2 = 162$	$r''_2 = 85$
))	III: $r'_3 = 119$	$r''_{8} = 95$
))	$\Pi: r'_4 = 168$	$r''_4 = 154$
))	$I: r'_{5} = 94$	$r''_{5} = 80$
))	II: $r'_6 = 256$	$r''_6 = 173$
))	$H: r'_7 = 308$	$r''_7 = 196$
))	$H: r'_8 = 259$	$r''_{8} = 172$

On remarque que les valeurs r'_1 , r'_2 , r'_3 , etc., sont toujours supérieures aux valeurs correspondantes r''_1 , r''_2 ,

 r''_3 , etc. Donc, si la différence de potentiel $\Delta p = 50^{\circ}$ est appliquée au cohéreur après que celui-ci a subi l'action d'une tension inférieure ($\Delta p = 30^{\circ}$), les valeurs de la résistance finale du cohéreur restent constamment plus fortes que celles obtenues avec la même tension ($\Delta p = 50^{\circ}$), mais après l'action préalable d'une tension supérieure ($\Delta p = 70^{\circ}$).

Une autre différence de potentiel donne des résultats analogues:

Action d'une différence de potentiel dp = 100v

après l'a	ction antérieure	après l'action antérieure
de	$\mathcal{I}_p = 70^{\circ}$	de $\Delta p = 150^{\circ}$
Cohéreur	$\Pi: r'_1 = 127^{\Omega}$	$r''_{1} = 78^{\Omega}$
))	III: $r'_2 = 47$	$r''_{2} = 46$
))	III: $r'_3 = 5_2$	$r''_{\ 3} = 43$
))	$H: r'_4 = 93$	$r''_{-4} = 76$
))	$1: r'_5 = 54$	$r''_{5} = 44$
))	$\Pi : r'_{6} = 125$	$r''_{6} = 9\overline{5}$
))	$\Pi: r'_7 = 145$	$r''_7 = 85$
))	$\Pi : r'_8 = 162$	$r''_{8} = 87$

La chute de résistance produite par une différence de potentiel déterminée est donc dépendante de la cause agissante immédiatement antérieure.

On a souvent signalé l'analogie des phénomènes que présente le cohéreur avec les phénomènes magnétiques. L'influence d'une action antérieure sur les suivantes rappelle, et nous verrons au cours de cette étude souvent reparaître, quelque chose d'analogue au magnétisme rémanent.

b) L'influence de l'action antérieure subie par le cohéreur est encore nettement visible quand on considère la succession des variations de la résistance finale du cohéreur sous l'action d'une différence de potentiel employée après une tension d'effet différent.

Ainsi avec $\Delta p = 20^{\circ}$, on trouve successivement:

Après l'action antérieure	Après l'action antérieure
de $\Delta p = 10^{\circ}$	$de \mathcal{L}p = 3o^{\circ}$
$r'_1 = 624^{\Omega}$	$r'_2 = 1562$
$r''_1 = 483$	$r''_2 = 156$
$r'''_1 = 247$	$r'''_2 = 257$
$r^{\text{IV}}_{1} = 249$	$r^{\text{iv}}_2 = 296$

On voit qu'après une action antérieure plus faible $(\varDelta p = 10^{\circ})$, la différence de potentiel $\varDelta p = 20^{\circ}$ produit sur le cohéreur des résistances qui vont en diminuant à chaque application, les premières valeurs étant trop fortes. Après une action antérieure plus efficace $(\varDelta p = 30^{\circ})$, les premières valeurs obtenues pour la résistance avec $\varDelta p = 20^{\circ}$ sont au contraire trop faibles et vont en augmentant.

Même résultat avec $\Delta p = 50^{\circ}$:

Après l'action antérieure	Après l'action antérieure
$de \Delta p = 3o^{v}$:	de $\Delta p = 70^{\circ}$:
$r'_1 = 629^{\mathcal{Q}}$	$r'_{2} = 109^{Q}$
$r''_1 = 546$	$r''_{2} = 120$
$r'''_1 = 498$	$r'''_2 = 136$
$r^{\text{iv}}_{1} = 425$	$r^{\text{rv}}_{2} = 240$

De même encore avec $\Delta p = 150^{\circ}$:

Après l'action antérieure	Après l'action antérieure
de $\mathcal{A}_p = 100^{\circ}$	$de \mathcal{A}p = 200^{\circ}$
$r'_1 = 58.1^{2}$	$r'_2 = 35.4^{\circ}$
$r''_1 = 53.1$	$r''_{2} = 39.0$
$r'''_1 = 41.2$	$r'''_{2} = 43.9$
$r^{\text{rv}}_{1} = 39.6$	$r^{\text{iv}}_{2} = 51.8$

Ainsi, dans la mesure des effets d'une même cause d'action sur le cohéreur, les premières valeurs obtenues pour sa résistance sont plus grandes que les suivantes, si l'action en jeu est plus efficace que la précédente, et plus petites que les suivantes, si cette action est plus faible que celle qui agissait antérieurement. c) C'est à cet ordre de phénomènes qu'il faut rattacher ce que M. Branly a appelé la sensibilisation par un premier effet. Un cohéreur, insensible à l'action d'une certaine différence de potentiel trop faible, peut, après avoir subi l'effet d'une tension plus forte, se cohérer sous l'action qui était auparavant sans effet sur lui.

Par exemple, un cohéreur qui accuse une résistance invariable de l'ordre de grandeur $r=50\times 10^6$ ohms sous l'action successive de $\mathcal{A}p=2^v$, $\mathcal{A}p=4^v$, $\mathcal{A}p=6^v$, $\mathcal{A}p=10^v$, $\mathcal{A}p=15^v$, $\mathcal{A}p=20^v$, et qu'une tension $\mathcal{A}p=30^v$ fait tomber subitement à $r'=543^{\circ}2$, devient momentanément sensible à l'action de $\mathcal{A}p=2^v$. Cette faible tension devient bientôt de nouveau inefficace et ne recommence à agir que lorsqu'une action supérieure a rendu le cohéreur plus impressionnable.

Un autre cohéreur présente la marche suivante :

	Action inefficace.						Actio	on efficace.					
Pour	$\mathcal{I}p =$	$2^{v},$	4°,	6^{v} ,	8°,	το ^γ ,	I	$5^{\rm v}$, 2	O'	$5, 30^{\circ}$	Pour	$\Delta p = 40^{\circ}$
		•	•	•))	$\mathcal{I}p = 2^{v}$
))	$\mathcal{I}p =$	2",	4°					•		•))	$\Delta p = 6^{\circ}$
))	$\Delta p =$	21,	4°,	6°,	8°.				•	•	•))	$\Delta p = 10^{\circ}$
))	$\Delta p =$	2 ^v ,	4°,	$6^{\rm v}$	8°,	10,		•	•		:•:))	$\Delta p = 15^{\circ}$
				•	•	•))	$\mathcal{J}p = 2^{v}$

Ce n'est qu'au début de l'emploi d'un cohéreur que ce phénomène est nettement observable; après un usage prolongé, la sensibilité persiste généralement pour une faible tension comme $\Delta p = 2^v$.

L'ensemble de ces phénomènes établit indiscutablement l'influence des états de service antérieurs du cohéreur.

4. Résistance initiale du cohéreur. — Du fait que l'irrégularité d'action pour une même cause se produit encore quand l'action s'est répétée suffisamment pour que l'influence étudiée plus haut puisse être envisagée comme né-

¹ E. Branly, Revue des questions scientifiques, avril 1898.

gligeable, il faut conclure que d'autres influences perturbatrices sont encore en jeu.

On conçoit que dans un phénomène où l'arrangement et l'orientation des particules matérielles paraissent jouer un rôle prépondérant, une action tendant à modifier les positions relatives, les distances et les points de contact de ces particules, doit ne pas être indifférente. L'examen de l'action mécanique du *choc* s'impose donc. L'efficacité de cette action pour décohérer le tube à limaille témoigne de la modification profonde qu'elle établit. Mais la diversité de résistance qui doit résulter dans l'état initial du cohéreur de l'intensité variable avec laquelle ce choc peut être appliqué, ne serait-elle pas l'une de ces influences perturbatrices ?

Examiné à ce sujet, un cohéreur sur lequel le choc a été produit avec des intensités variées, mais aussi uniformément que possible pour une même intensité, a donné:

```
Avec \Delta p = 100^{\circ}: Avec \Delta p = 30^{\circ}:
A la suite d'un choc violent : r'_1 = 67.3^{\Omega} r'_2 = 113.4^{\Omega}
                                               r''_{1} = 65.2 r''_{2} = 117.0

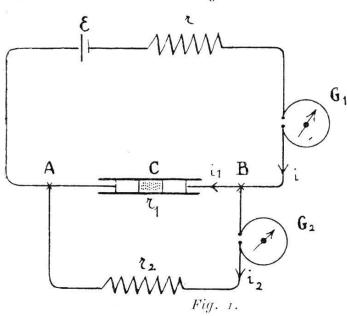
r'''_{1} = 51.0 r'''_{2} = 112.2
                                               r^{\text{IV}}_{1} = 54.6 r^{\text{IV}}_{2} = 116.8
                                               r_1 = 61.6
                                                                   r_{0} = 121.0
A la suite d'un choc modéré: r'_1 = 49.6^{\circ}
                                                                    r'_{2} = 85.1^{2}
                                               r''_{1} = 55.0 r''_{2} = 79.4

r'''_{1} = 51.4 r'''_{2} = 76.5
                                               r^{\text{IV}}_1 = 49.8 \quad r^{\text{IV}}_2 = 76.7
                                                                    r^{v_2} = 79.4
                                               r^{v_1} = 49.6
A la suite d'un choc faible : r'_1 = 43.9^{\circ}
                                                                   r'_{2} = 73.32
                                               r''_{1} = 36.6 r''_{2} = 63.8

r'''_{1} = 36.6 r'''_{2} = 67.3
                                               r_{1}^{\text{iv}} = 39.6
                                                                   r^{\text{iv}}_{2} = 67.9
                                               r_1^{v} = 38.0 \quad r_2^{v} = 66.2
```

Des différences aussi considérables ne sont toutefois produites que pour des états initiaux si différents que le passage du courant à travers la résistance qu'ils offrent provoque des différences manifestes dans les déviations galvanométriques. Ce ne serait pas donner une représentation des faits conforme à la réalité si je m'abstenais de remarquer que cette influence est loin d'être toujours aussi nettement visible que ci-dessus. C'est que si, en règle générale, un choc violent décohère plus facilement le tube qu'un faible, il arrive cependant parfois que pour ramener le tube à la résistance, un léger effleurement se trouve plus efficace qu'un fort choc. Si l'on considère que souvent, le tube étant décohéré par un premier choc, un second, en l'absence de toute action électrique, peut rétablir la conductibilité, on sera sans doute porté à attribuer la cause de l'anomalie mentionnée à l'effet désavantageux des trépidations qui succèdent à un fort choc.

5. Causes accidentelles. — Le caractère capricieux du fonctionnement du cohéreur m'a paru à plusieurs reprises trouver son explication dans l'action à distance de phénomènes simultanés. Les décharges électriques de l'atmosphère, les étincelles aux trolleys de tramways électriques, l'induction produite par l'ouverture ou la fermeture de courants puissants dans les locaux voisins, ont très souvent coïncidé avec des variations, autrement inexpliquées, dans la marche du cohéreur. Cette action perturbatrice paraît confirmée par la plus grande régularité des mesures entreprises le dimanche ou de nuit, dans des conditions où l'influence de ces causes accidentelles se trouvait atténuée.


De cette étude préliminaire des circonstances qui provoquent des différences d'effet dans l'action d'une même différence de potentiel, se dégagent les règles pratiques à observer pour la mesure des effets dont le cohéreur est le siège et le degré de rigueur à attendre de ces mesures. Pour obtenir des résultats comparables dans la recherche de l'action de la tension sur le cohéreur, il faut :

- a) dans l'établissement de la résistance du tube, produire le choc aussi uniformément que possible;
- b) prendre la tension à une source d'électricité de même nature ;
- c) éviter de faire suivre une action forte d'une action faible et vice-versa ;
- d) écarter les résultats des premières mesures, s'ils sont manifestement différents des suivants;
- e) opérer à l'abri de décharges violentes ou de courants inducteurs puissants.

La difficulté d'obtenir que toutes ces influences perturbatrices restent insensibles pendant des mesures qui durent plusieurs heures et l'impossibilité de tenir compte de causes accidentelles agissant à l'insu de l'observateur, font que l'action de la tension sur le cohéreur sera difficilement assez régulière pour trouver son expression sous une forme rigoureuse.

B. MESURE DE L'ACTION DE LA TENSION.

Je réalise la disposition d'appareils indiquée par la figure 1. Par le choc j'établis une résistance initiale du

cohéreur de l'ordre de grandeur de
50 mégohms, ce
que révèle, dans
la disposition des
appareils, une déviation dans le galvanomètre G₁ inférieure à 2 mm. Je
laisse agir un instant la différence
de potentiel dont

Action de tensions variées.

Pension	p	<i>q</i> ₂		. 7	1,	d _t	7
(6)		65.5mm	1098.4 × 10 ⁻⁸⁹	162.0×10^{-80}	936.4×10^{-88}	5.07×10^{-3}	542.02
9	6.664	5.65	7.8601	148.6	950.1 4.653	4.653	
01	656.0	48.5	6.8601	120.7	978.2	3.789	386.7
20	426.4	30.0	6.6601	2.4.7	1025.2	2.338	
30	456.8	21.5	8.0011	53.5	1047.3	1,674	$\tilde{c}.9\tilde{c}_1$
);; ;;	657.2	16.2	8.1011	40.3	5.1901	1.262	1.00.1
0/	457.3		1102.0	27.1	6.4701	678.0	0.67
100	7.29		1102.3	18.1	1084.2	0.568	52.5
000	9.254	 	1102.8	13.2	9.6801	0.413	37.9
200	6.754	3.2	1103.5	8.0		0.256	23.0

d est la moyenne obtenue, d'un nombre suffisant de mesures, pour la déviation galvanométrique en G₁ après corrections dues à la polarisation de la pile et à la réduction de l'angle à sa tangente.

 d_2 est la moyenne des mèmes mesures pour la déviation galvanométrique en \mathcal{G}_2 . $i=d\times c_1=d\times 2.4$ = l'intensité du courant dans le circuit principal.

 $c_2 = d_2 \times c_2 = d_2 \times 2,49 = 1$ Intensité du courant dérivé comprenant le galvanomètre G_2 . $i_1 = i - i_2 = \text{Fintensité}$ du courant dans le circuit dérivé comprenant le cohéreur.

 $I_p = i_2 \times r_2 = 1$ a différence du potentiel aux extrémités du cohéreur.

 $r=rac{Jp}{t_1}=1$ a résistance du cohéreur après l'action de la tension.

l'action est à l'étude et je mesure la résistance du cohéreur qui en résulte. Par un choc je ramène ensuite le cohéreur à des conditions aussi analogues que possible à celles qui existaient avant l'introduction de la tension et je répète les mesures des effets de chaque tension assez souvent pour obtenir une movenne valable.

Pour donner une idée plus complète de la façon dont se comportent le cohéreur et les appareils pendant ces recherches, j'ai présenté à la page précédente, pour une série de tensions, le détail des mesures.

La durée de ces observations a été, en moyenne, de cinq heures, la différence de température entre la fin et le commencement de 21°7 — 21°5 = 0°2. Il convient donc, comme cela a été fait ci-dessus et dans la suite, de tenir compte de la modification survenue avec le temps dans la pile. Par contre les corrections à apporter du fait de l'augmentation de température représenteraient des valeurs inférieures à l'ordre de grandeur des erreurs d'observation.

Avant de tirer des conclusions des résultats présentés dans le tableau ci-dessus, il convient d'examiner si ce résultat est toujours le même pour un même cohéreur, s'il subsiste pour un cohéreur différent, c'est-à-dire s'il existe une relation déterminée entre la tension appliquée et la résistance finale du tube à limaille et si cette relation est une propriété caractéristique de l'appareil.

En observant minutieusement les précautions mentionnées plus haut et — pour mettre l'appareil autant que possible à l'abri des perturbations causées par les états de service antérieurs — en ne recherchant les effets de tensions croissantes qu'après avoir soumis le cohéreur à l'action d'une série, toujours la même, de tensions décroissantes, j'obtiens les résultats suivants, le cohéreur étant toujours amené à une résistance initiale supérieure à 50 mégohms et les nombres ci-dessous mentionnés représentant les ré-

sistances auxquelles l'action étudiée fait tomber le cohéreur. Chaque nombre est la moyenne de 5 à 6 observations.

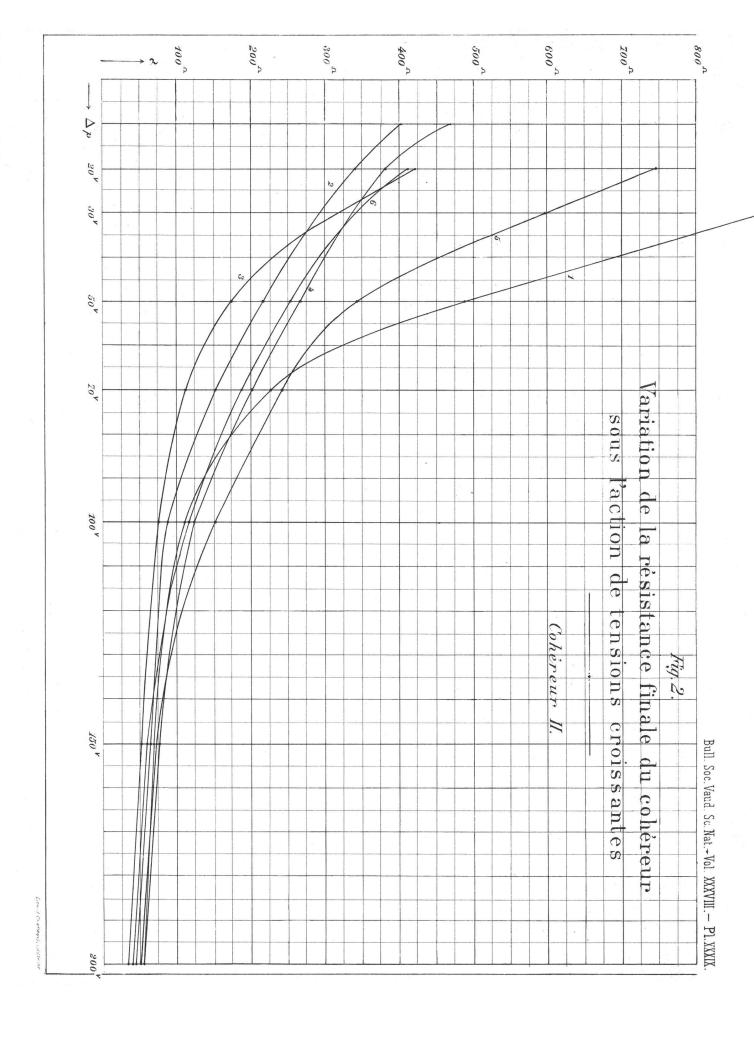
Action de tensions croissantes sur un même cohéreur.

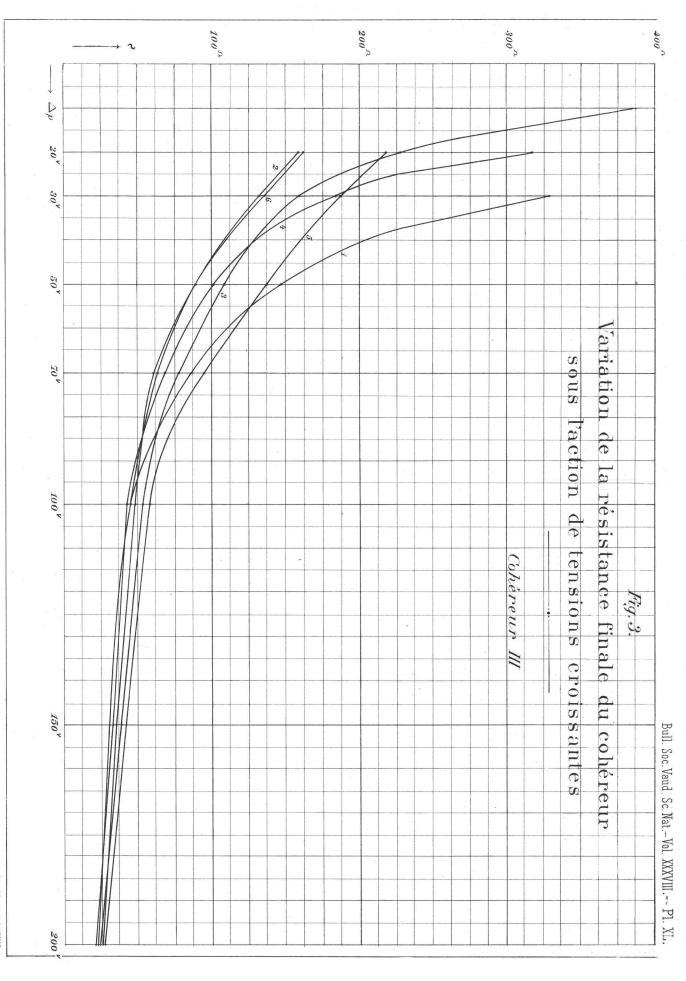
Tension.	Résistance finale du cohéreur.								
10,		4022	-	-468^{Ω}	<i>9</i>				
20	4 5 - 10 - 10	336	4212	381	745^{Ω}	413^{Ω}			
30	$890^{\mathcal{Q}}$	302	33o	339	596	354			
50	488	218	175	268	345	255			
70	229	152	111	204	244	189			
100	111	87	75	124	152	114			
150	69	64	51	75	7 I	62			
200	54	45	35	54	51	40			

Pour établir avec sûreté que cette diminution de résistance finale est bien l'effet de tensions croissantes et dissiper toute incertitude sur le rôle possible d'autres facteurs et, en particulier, sur la part qui pourrait revenir au phénomène de la sensibilisation par un premier effet, j'ai soumis le cohéreur à l'action de tensions décroissantes.

Actions de tensions décroissantes sur un même cohéreur.

Tension.	Résistance finale du cohéreur.						
2 00 ^(*)	47^{Ω}	$33^{\underline{\varrho}}$	$\widetilde{5}_{1}^{\Omega}$	45^{Ω}	39^{2}		
150	63	47	64	57	59		
100	83	93	95	87	95		
70	107	118	127	135	137		
50	125	150	171	200	175		
3σ	171	196	225	327	236		
20	236	236	289	483	299		
10	376	303		-	-		


Ces résultats confirment et précisent les précédents. Il en résulte que, si l'on établit aux extrémités d'un cohéreur une différence de potentiel, la résistance du cohéreur se modifie considérablement et tombe, dans les limites des expériences, à une valeur d'autant plus petite que la tension appliquée est plus grande.


Les résultats obtenus ne permettent pas de préciser la forme du rapport inverse ainsi établi entre ces deux grandeurs. Malgré les précautions prises pour opérer dans des conditions rigoureusement pareilles, l'action de la tension sur un même cohéreur, tout en provoquant invariablement pour des tensions de plus en plus grandes des résistances du cohéreur de plus en plus petites, a affecté dans chacune des séries décroissantes de ces résistances des valeurs différentes, empêchant de donner du phénomène une représentation analytique définie.

Si peu concordantes toutefois que soient les courbes qui figurent ces résultats (fig. 2, pl. XXXIX et 3, XL), la plupart des particularités établies dans l'étude préliminaire y trouvent leur expression. L'allure générale de ces courbes, présentant toutes une convexité vers l'origine et paraissant se rapprocher asymptotiquement de l'axe des tensions, établit le résultat principal de la diminution de résistance du cohéreur avec l'augmentation de tension, en signalant les variations souvent considérables survenant pour de petites différences de tension au commencement d'une série.

L'écartement et l'enchevêtrement des courbes à leur début, leur rapprochement vers la fin montrent l'inconstance d'action aux basses tensions et la régularité plus grande des effets de différences de potentiel élevées.

Une autre particularité apparaît avec netteté quand on considère, dans l'ordre de succession des observations, les effets obtenus par une série de tensions *croissantes* suivie de la série des mêmes tensions *décroissantes*. Les valeurs trouvées pour la résistance du cohéreur après l'action d'une même différence de potentiel ne sont pas les mêmes dans les deux séries : la courbe ascendante ne repasse pas par les points de la courbe descendante et reste constamment

Action de la tension sur différents cohéreurs.

		Action de	de la tension sur differents cohereurs.	sur ann	erents con	ereurs	•		50	
Tension.	Cohéreur	eur 1	Résista	Résistance finale.	de.	Со	Cohéreur III			
	30 et 31 août	3 et 4 septembre	mbre		20 aouit		22 août		28 août	
10^{V}						38	387^{2} 5.	541 2		781°
20	28^{11} 20^{2}	58^{2}	<i>7</i> √8 *	530^{2}	5^{291}	228	-	319	2812	191
30	101 211	107	75	329	† 136	09*		185	186	133
50	95 80	77	63	148	68	110		101	137	90
70	29 22	26	50	87		7		89	96	62
100	55 44	39	35	45	97	, J.C	53	43	63	84
150	$39 \leftarrow 31$	27 \	77	$3_{\rm I}$	30	ಌ	38	33	45 +	34
200	27 20	81	21	22	23	6	23	22	27	25
Tension.				Col	Cohéreur II					
	16 août	1	26 aoùt		1 septembre	e)	6 septembre	embre	7 septembre	nbre
IO^{V}	-376°	5 ^{20†} 5	1		- 3897			١,	I	
20	— _{*236}	336	, 124 z	2362	381 28	39	245	[*] 483	413	299
30	890^{2}	292		961	339 - 225	JŽ.	596	327	354	236
.c	221 884	218	175 15		171 892	1 2	345	200	255	175
70	229 107	152			204 12	7	744	135	189	137
100		87	75	¢.	<u> 5</u> 6	1 5	152	87	711	95
150	$69 \uparrow 63$	† 9 ↑	21 ↑ 1 <u>6</u> 1	7	→	7.	71 ←	57	62 1	59
200	24 42	<u>6</u>	35 33	3	2 79	51	5°	45	07	39

au-dessous d'elle. Les résistances du cohéreur produites par une série de tensions croissantes (indiquée sur le tableau et la fig. 4, pl. XLI, par des flèches descendantes) demeurent supérieures à celles de la série des mêmes tensions décroissantes (flèche ascendante).

La figure 4 illustre par trois paires de courbes (une paire pour chaque, cohéreur), prises parmi beaucoup d'analogues, cet effet qu'on pourrait considérer comme un phénomène d'accommodation moléculaire et qui rappelle le phénomène d'hystéresis en aimantation.

Cette analogie pouvait conduire à penser que, comme un cycle d'aimantation ne prend une forme définie qu'après plusieurs applications de ce cycle, de même des séries de mesures répétées conduiraient peut-être, pour l'action de la tension sur la résistance du cohéreur, à une courbe finale d'expression analytique mieux définie. Le tableau de la page précédente, donnant les résultats des mesures répétées sur trois cohéreurs différents et la succession des courbes qui représentent ces mesures (fig. 2 et 3) montrent que ces tentatives n'ont pas abouti.

Le tableau qui précède fait voir qu'une même différence de potentiel appliquée aux extrémités d'un cohéreur ne produit ni pour des appareils différents, ni même pour un même cohéreur, des valeurs constantes de la résistance finale du tube. Par contre, il met en lumière la chute de résistance finale du cohéreur à des valeurs de plus en plus petites sous l'action de tensions croissantes.

IV. Action du rayonnement électrique.

Si l'on fait éclater une étincelle dans le voisinage d'un cohéreur, il présente le mème phénomène caractéristique de variation de résistance que lorsqu'on lui communique une différence de potentiel. Pour rechercher comment la résistance du cohéreur varie avec les facteurs qui déterminent l'étincelle, j'ai disposé en regard du circuit déjà mentionné, comprenant le cohéreur et deux galvanomètres, et destiné à la mesure de la résistance, un autre circuit indépendant avec force électromotrice, résistance et self-induction. A chaque ouverture de ce circuit, il se forme un extracourant qui donne lieu à une étincelle, variable selon l'intensité du courant et la self-induction.

A. Conditions physiques influant sur les expériences.

Les conditions déjà mentionnées dans l'étude précédente comme ayant une influence sur la régularité et la constance des opérations, conservent toute leur importance dans les recherches présentes. Il convient d'insister sur quelques particularités qui jouent dans l'étude du rayonnement un rôle dont il importe de tenir compte.

1. Efficacité différente de l'étincelle selon la nature des substances entre lesquelles elle a lieu. — La difficulté de rendre efficace une étincelle éclatant entre deux goutte-lettes de mercure et l'excellence d'action constatée après le contact fortuit de deux fils de cuivre fermant accidentel-lement le circuit, m'ont suggéré l'idée d'entreprendre une étude systématique de l'action de l'étincelle suivant la nature des métaux entre lesquels elle jaillit.

A cet effet, j'ai mesuré la résistance finale à laquelle faisaient tomber le cohéreur des étincelles éclatant par suppression du contact en croisement de tiges métalliques de diamètres égaux. Pour ne pas rendre illusoires les résultats auxquels on parvient, il importe d'accorder beaucoup d'attention à l'état des surfaces métalliques destinées au contact. Pour une même substance, en effet, l'action s'est révélée manifestement différente suivant que la surface était fraîche ou oxydée et même selon la qualité fine ou grossière du papier d'émeri employé au nettoyage. Aux parties en contact, la production de l'étincelle occasionne un dépôt d'oxyde qu'il est nécessaire de faire disparaître

pour que l'étincelle suivante se produise dans des conditions de surface analogues. Ces précautions prises, la différence d'action des étincelles suivant la substance des électrodes entre lesquelles elles furent produites s'est présentée comme suit :

Subst. des é	elec	ctr	odes	Résis	tance finale du col	néreur.
Cuivre .		•		2 juillet 107 $^{ ilde{Q}}$	3 juillet $108^{\it Q}$	4 juillet 10 $6^{\it Q}$
Maillechor				108	110	109
Zinc			•	195	184	187
Laiton .		•		149	141	138
Charbon.				270	$2\overline{5}2$	262
Mercure.				Action irrégulière	Pas d'action	Pas d'action
Zinc amal	ga	m	ıé.))))
				It = 22% - 21%	$1t = 22^08 - 22^0$	$\Delta t = 22^{\circ} - 21^{\circ}$

On pourrait être porté à attribuer l'action remarquablement mauvaise du mercure au fait qu'il a été examiné le dernier et qu'il s'agit peut-être d'une modification dans le fonctionnement du cohéreur, indépendante de la cause agissante. Des mesures alternées avec zinc et zinc amalgamé, entreprises une semaine plus tard, mettent hors de doute l'action inefficace de l'étincelle au mercure en confirmant les résultats ci-dessus:

es	Résistance du cohéreur.
	$_{1}8_{1}^{\it Q}$
	Pas d'action.
•	$199^{\mathcal{Q}}$
	Pas d'action.
	17 $4^{\it \Omega}$
•	Pas d'action.
	es

Des mesures qui précèdent, il résulte que l'efficacité des étincelles sur le cohéreur varie selon la nature des électrodes entre lesquelles elles sont produites. 2. Influence de la distance. — La distance de l'étincelle au cohéreur n'est pas indifférente. Toutes choses égales d'ailleurs, la distance seule variant, les effets du rayonnement ont été les suivants :

	Distance de l'étincelle au cohéreur.	Résistanee finale du cohéreur.
	I ^m 2	Ω^{Ω}
	2.4	123
	4.8	204
Cohéreur II	$1^{\mathrm{m}}2$	$98^{\it Q}$
<i>!</i> *	2.4	123
į	4.8	158
/	I ^m 2	$86^{\it Q}$
	2.4	119
	4.8	147
Cohéreur III {	1 ^m 2	103^{Q}
	2.4	121
	4.8	139

Quelque soin qu'il ait été mis à opérer dans des conditions rigoureusement pareilles, il n'a pas été possible d'obtenir pour des différences de distance constantes des différences de résistance finale constantes aussi, de sorte qu'on ne peut conclure qu'à une action d'autant meilleure que la distance est plus petite, sans relier ces deux grandeurs par un rapport mieux défini.

- 3 Influence de la durée de contact. Après qu'aura été mis en lumière le rôle de l'intensité du courant traversant le circuit où est produite l'étincelle, je montrerai que la durée du contact des électrodes peut ne pas être négligeable dans l'effet de l'étincelle.
- 4. Du degré de constance dans l'action du rayonnement.

 En cherchant à éviter aussi soigneusement que possible toutes les influences perturbatrices mentionnées ci-dessus de façon à réaliser la plus grande constance dans l'action

d'une étincelle produite avec la même intensité de courant et la même self-induction, j'ai obtenu pour des séries de dix étincelles successives éclatant après une même durée de contact entre électrodes de cuivre, à une distance de 1^{m5} du cohéreur:

	Cohéreur I	*
$i = 1^{a}.0$	$i = 0^{a}.8$	$i = 0^{a}.6$
$L = o^{H} \cdot o_{1}375$	$L = o^H \cdot H$	$L = o^H \cdot II$
$r'_1 = 236^{2}$	$r'_1 = 76^{\Omega}$	$r'_1 = 120^{\Omega}$
$r''_1 = 175$	$r''_{1} = 87$	$r''_{1} = 131$
$r'''_1 = 143$	$r'''_{1} = 94$	$r'''_{1} = 120$
$r^{\text{rv}}_{1} = 148$	$r^{\text{iv}}_{1} = 87$	$r^{\text{IV}}_{1} = 126$
$r_1^{i_1} = 164$	$\stackrel{1}{=}87$) = 120
$r_{1}^{v_{1}} = 135$	=87	» = 120
$r^{\text{vn}}_{1} = 165$	=87	= 120
$r_{\text{vm}_1} = 136$	=87	» = 120
$r^{\text{IX}}_{1} = 184$	=87	» = 109
$r_{1}^{x} = 168$	$r_{1}^{x} = 79$	$r^{x}_{1} = 120$
$\Delta r' \max = 101$	$\Delta r' \max = 15$	$\sqrt{r' \max} = 23$
$46^{-0}/_{0}$	$15.9^{-0}/_{0}$	$16.8^{-0}/_{0}$
8	Cohéreur II	
$t=0^{a}.8$	$i = 0^{a}.8$	$i = 0^{a}.6$
$i = 0^{a}.8$ $L = 0^{H}.11$	$i = 0^{a}.8$ $L = 0^{H}II$	$i = 0^{a}.6$ $L = 0^{H}.50$
$L = o^H$, 11	$\Gamma = o_H \iota \iota$	$L = o^H.59$
$\frac{L = 0^{H}. 11}{r'_{1} = 120^{\Omega}}$	$\frac{L = 0^{\mathrm{H}} \mathrm{II}}{r'_{1} = \mathrm{I20}^{\Omega}}$	$\frac{L = 0^{H}.59}{r'_{1} = 164^{Q}}$
$\frac{L = 0^{H}.11}{r'_{1} = 120^{\Omega}}$ $r''_{1} = 131$	$\frac{L = 0^{H} I I}{r'_{1} = 120^{\Omega}}$ $r''_{1} = 109$	$ \frac{L = 0^{H}.59}{r'_{1} = 164^{Q}} $ $ r''_{1} = 175 $
$\frac{L = 0^{H}.11}{r'_{1} = 120^{2}}$ $r''_{1} = 131$ $r'''_{1} = 98$	$ \frac{L = 0^{H} I I}{r'_{1} = 120^{2}} $ $ r''_{1} = 109 $ $ r'''_{1} = 98 $	$\frac{L = 0^{H}.59}{r'_{1} = 164^{Q}}$ $r''_{1} = 175$ $r'''_{1} = 199$
$\frac{L = 0^{H}. 11}{r'_{1} = 120^{Q}}$ $r''_{1} = 131$ $r'''_{1} = 98$ $r''_{1} = 104$	$ \frac{L = 0^{H} I I}{r'_{1} = 120^{Q}} $ $ r''_{1} = 109 $ $ r'''_{1} = 98 $ $ r^{iv}_{1} = 114 $	$ \frac{L = 0^{H}.59}{r'_{1} = 164^{Q}} $ $ r''_{1} = 175 $ $ r'''_{1} = 199 $ $ r''_{1} = 188 $
$ \frac{L = 0^{H}, 11}{r'_{1} = 120^{Q}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r''_{1} = 104 $ $ r''_{1} = 98 $	$ \frac{L = 0^{H} I I}{r'_{1} = 120^{Q}} $ $ r''_{1} = 109 $ $ r'''_{1} = 98 $ $ r^{IV}_{1} = 114 $ $ y = 104 $	$ \frac{L = 0^{H}.59}{r'_{1} = 164^{Q}} $ $ r''_{1} = 175 $ $ r'''_{1} = 199 $ $ r''_{1} = 188 $ $ y = 239 $
$ \frac{L = 0^{H}.11}{r'_{1} = 120^{2}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r''_{1} = 104 $ $ r''_{1} = 98 $ $ r''_{1} = 98 $ $ r''_{1} = 98 $	$ \frac{L = 0^{H} I I}{r'_{1} = 120^{Q}} $ $ r''_{1} = 109 $ $ r'''_{1} = 98 $ $ r^{IV}_{1} = 114 $ $ y = 104 $ $ y = 109 $	$\frac{L = 0^{H}.59}{r'_{1} = 164^{Q}}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $y = 239$ $y = 283$
$ \frac{L = 0^{H}. 11}{r'_{1} = 120^{2}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r''_{1} = 104 $ $ r''_{1} = 98 $	$L = 0^{H} I I$ $r'_{1} = 120^{Q}$ $r''_{1} = 109$ $r'''_{1} = 98$ $r^{IV}_{1} = 114$ $y = 104$ $y = 109$ $y = 109$	$L = 0^{H}.59$ $r'_{1} = 164^{Q}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $0 = 239$ $0 = 283$ $0 = 203$
$ \frac{L = 0^{H}. 11}{r'_{1} = 120^{Q}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r^{W}_{1} = 104 $ $ r^{W}_{1} = 98 $	$L = 0^{H} I I$ $r'_{1} = 120^{Q}$ $r''_{1} = 109$ $r'''_{1} = 98$ $r^{iv}_{1} = 114$ $y = 104$ $y = 109$ $y = 109$ $y = 109$	$L = 0^{H}.59$ $r'_{1} = 164^{Q}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $\Rightarrow = 239$ $\Rightarrow = 283$ $\Rightarrow = 203$ $\Rightarrow = 221$
$ \frac{L = 0^{H}. 11}{r'_{1} = 120^{2}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r''_{1} = 104 $ $ r^{x}_{1} = 98 $ $ r''_{1} = 98 $ $ r''_{1} = 98 $ $ r'''_{1} = 98 $ $ r'''_{1} = 98 $ $ r''''_{1} = 98 $ $ r'''_{1} = 98 $	$L = 0^{H} I I$ $r'_{1} = 120^{Q}$ $r''_{1} = 109$ $r'''_{1} = 98$ $r^{IV}_{1} = 114$ $0 = 104$ $0 = 109$ $0 = 109$ $0 = 120$	$L = 0^{H}.59$ $r'_{1} = 164^{Q}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $0 = 239$ $0 = 283$ $0 = 203$ $0 = 221$ $0 = 199$
$L = 0^{H}. 11$ $r'_{1} = 120^{Q}$ $r''_{1} = 131$ $r'''_{1} = 98$ $r''_{1} = 104$ $r''_{1} = 98$ $r''_{1} = 98$ $r''_{1} = 98$ $r'''_{1} = 109$	$L = 0^{H} I I$ $r'_{1} = 120^{Q}$ $r''_{1} = 109$ $r'''_{1} = 98$ $r^{IV}_{1} = 114$ $0 = 104$ $0 = 109$ $0 = 109$ $0 = 120$ $0 = 120$ $0 = 120$ $0 = 120$ $0 = 120$ $0 = 120$ $0 = 120$ $0 = 120$	$L = 0^{H}.59$ $r'_{1} = 164^{Q}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $0 = 239$ $0 = 283$ $0 = 203$ $0 = 221$ $0 = 199$ $0 = 236$
$ \frac{L = 0^{H}. 11}{r'_{1} = 120^{2}} $ $ r''_{1} = 131 $ $ r'''_{1} = 98 $ $ r''_{1} = 104 $ $ r^{x}_{1} = 98 $ $ r''_{1} = 98 $ $ r''_{1} = 98 $ $ r'''_{1} = 98 $ $ r'''_{1} = 98 $ $ r''''_{1} = 98 $ $ r'''_{1} = 98 $	$L = 0^{H} I I$ $r'_{1} = 120^{Q}$ $r''_{1} = 109$ $r'''_{1} = 98$ $r^{IV}_{1} = 114$ $0 = 104$ $0 = 109$ $0 = 109$ $0 = 120$	$L = 0^{H}.59$ $r'_{1} = 164^{Q}$ $r''_{1} = 175$ $r'''_{1} = 199$ $r''_{1} = 188$ $0 = 239$ $0 = 283$ $0 = 203$ $0 = 221$ $0 = 199$

La constance de l'action est donc loin d'être réalisée : elle l'est d'autant plus que l'effet est meilleur.

B. MESURE DE L'ACTION DE LA SELF-INDUCTION.

Dans le circuit où se produit l'étincelle, je fais varier la self-induction en laissant constante l'intensité du courant. Pour cela j'introduis dans le circuit un nombre approprié de bobines d'induction, de coefficient d'induction $L = 0^{\circ}$ 055 et d'après les indications d'un ampèremètre intercalé, je règle l'intensité du courant de façon à la maintenir constante. J'obtiens ainsi :

Cohéreur I

		20 mars	22 mars	23 mars	1er avril	2 avril
L		$i = 1^{a}.0$	$i=1^{a}.0$	$i=1^{\mathrm{a}}.0$	$i = 1^{a}.0$	$i=1^{a}.0$
о^н. от 375	$r'_1 =$	158^{2}	173^{2}	$\overline{158^{2}}$	$25\mathrm{I}^{\mathcal{Q}}$	$177^{\mathcal{Q}}$
$0^{H}.0275$	$r'_{2} =$	115	117	107	135	121
60.055	$r'_3 =$	84	84	79	77	7 5
OH . I I	$r'_4 =$	49	51	43	<u>49</u>	<u>49</u>
$0^{H} \cdot 165$	$r'_5 =$	$\overline{58}$	$\overline{67}$	63	79	$\overline{75}$
0^{H} . 22	$r'_{6} =$	82	82	82	98	80
\mathbf{o}^{H} . 33	$r'_7 =$	91	90	84	100	84
o ^H . 44	$r'_{ m s} =$	103	98	87	100	90

On voit donc qu'avec une intensité de courant constante une augmentation de la self-induction agit sur l'étincelle de telle façon que l'influence de ce e-cı sur le cohéreur provoque une résistance finale qui passe par un minimum pour une certaine valeur bien déterminée de la self-induction.

Un autre cohéreur dans les mêmes conditions donne des résultats analogues :

			Cohéreur	П		
L		$i = 1^a.0$	$i = 1^a.0$	$i = 1^{a}.0$	$i = 1^{a}.0$	Variation dans Taction
o ^{II} .01375	$r'_{1} =$	261^{Ω}	$\overline{3302}$	$279^{\mathcal{Q}}$	3252	$\frac{1}{20.9^{-0}/_{0}}$
0.0275	$r'_{2} =$	204	208	193	220	$13.1^{-0}/_{0}$
0.055	$r'_3 =$	78	7 I	87	107	$18.7^{-0}/_{0}$
0.11	$r'_4 =$	49	53	50	52	$7.5^{\circ}/_{\circ}$
0.165	$r'_5 =$	$\overline{69}$	77	$\overline{68}$	$\overline{78}$	11.5 $^{0}/_{0}$
0.22	$r'_6 =$	80	82	79	95	$16.8^{-0}/_{0}$
0.33	$r'_7 =$	138	95	93	120	$32.2^{-0}/_{0}$
0.44	$r'_{8} =$	222	150	150	177	$32.8^{\circ}/_{\circ}$

Ces résultats, comme les précédents, accusent un minimum de résistance du cohéreur pour une self-induction bien déterminée (oți 11), la même que pour le cohéreur précédent. Au point de vue de la constance de l'action, les mesures qui précèdent confirment la règle établie d'une variation minimale pour l'action la plus efficace. On remarque que dans chaque série la résistance du cohéreur affecte des valeurs différentes pour l'action de l'étincelle produite avec une même self-induction. L'action du rayonnement sur le cohéreur ne peut ainsi être représentée par une courbe d'expression analytique définie.

Pour ne laisser subsister aucun doute sur la véritable cause de la variation dans la résistance finale du cohéreur et faire voir qu'elle doit bien être attribuée à une qualité différente de l'étincelle produite par la variation de la self-induction et non à une modification possible dans le fonctionnement du cohéreur, j'ai entrepris quelques séries de mesures en n'apportant aucune modification dans la composition du circuit, l'intensité du courant et la self-induction demeurant donc constantes et l'étincelle produite, par conséquent, ayant toujours même qualité. Les résistances finales indiquées sont, comme précédemment, des moyennes tirées de plusieurs mesures. Dans les conditions pré-

sentes, sous l'action d'une étincelle de même qualité, ces résistances devraient être égales.

Cohéreur I

L	$\overset{29}{i}=1^{\mathrm{a}}.2$	L	$i \stackrel{\text{30 juin}}{=} 0^{\text{a}}.8$
o ^H .o55	$r'_1 = 109^{2}$	о ^Н . 1 I	$r'_1 = 77^{\Omega}$
0.055	$r'_2 = 109$	0.11	$r'_{2} = 80$
0.055	$r'_{3} = 109$	0.11	$r'_{3} = 81$
0.055	$r'_4 = 104$	0.11	$r'_{4} = 85$
0.055	$r'_{5} = 104$	0.11	$r'_{5} = 78$
0.055	$r'_{6} = 104$	0.11	$r'_{6} = 88$
0.055	$r'_7 = 107$	0.11	$r'_7 = 84$
2	$t = 22^{\circ} - 21^{\circ}.5$		$\Delta t = 23^{\circ}.5 - 21^{\circ}$

Cohéreur II

	6 juillet		7 juillet
L	$i=1^{a}.2$	L	$i = 0^{a}.6$
		TI	
O_{H} . 11	$r'_1 = 112^{\mathcal{Q}}$	$\mathrm{o^H}$, $\mathrm{o}55$	$r'_1 = 104^{\Omega}$
O.II	$r'_{2} = 118$	0.055	$r'_2 = 99$
0.11	$r'_3 =$ 125	0.055	$r'_3 = 103$
0.11	$r'_4 = 128$	0.055	$r'_{4} = 101$
0.11	$r'_5 = 123$	0.055	$r'_{5} = 101$
0.11	$r'_{6} = 118$	0.055	$r'_{6} = 105$
0.11	$r'_7 = 112$	0.055	$r'_7 = 108$
_	$At = 22^{0} - 21^{0}.5$	$\overline{\Delta t}$	$=22^{\circ}.8-21^{\circ}.8$

On voit donc que dans les mêmes conditions de durée des expériences et avec des variations de température analogues, les résultats se présentent nettement différents des précédents. Nulle part n'apparaît la chute régulière à un minimum suivie d'un relèvement graduel. Donc le résultat précédent est bien l'effet d'une variation de la self-induction.

En recherchant si l'apparition d'un maximum d'action se manifeste aussi pour d'autres intensités de courant, j'ai été conduit aux résultats suivants :

Action de la self-induction selon diverses intensités de courant.

		Col	néreur II			
L	i =	25 mai O ^a .15	26 mai O ^a .3	14 mai I ^a •O	13 mai $1^{\mathbf{a}}.5$	19 mai 2 ^a .O
о ^н .о1375	$r'_1 =$	640 ²	202 Ω	$\overline{3252}$	$\overline{570^{2}}$?
0.0275	$r'_2 =$	504	161	220	38o	$147^{\mathcal{Q}}$
0.055	$r'_3 =$	388	149	107	125	156
0.11	$r'_4 =$	165	138	52	134	176
0.165	$r'_5 =$	ı 53	123	$\overline{78}$	189	222
0.22	$r'_6 =$	128	142	95	193	239
0.33	$r'_7 =$	153	163	120	204	320
0.44	$r'_{8} =$	165	202	177	255	290

Chaque série converge vers un minimum de résistance et l'on remarque que ce minimum se produit avec une self-induction d'autant plus élevée que l'intensité du courant est plus faible.

Un autre cohéreur, soumis aux mêmes observations, a donné:

		Сс	ohéreur I	H			
L	i =	6 aoùt O ^a .3	7 août O ^a .8	7 aoùt I ^a .I	8 août 1 ^a .5	8 aoùt 2^a• O	8 août 2 ^a .5
о ^н .01375	$r'_1 =$	6432	300^{Ω}	1642	$\overline{150^{\Omega}}$	135^{Q}	882
0.055	$r'_2 =$	543	236	115	115	84	131
0.11	$r'_3 =$	346	173	86	66	122	
0.22	$r'_4 =$	257	108	66	111	-	
0.44	$r'_{5} =$	223	80	87	·		-
0.59	$r'_6 =$	151	?				

Ainsi un minimum de résistance finale du cohéreur apparaît ici aussi et, comme précédemment, pour une selfinduction d'autant plus faible que l'intensité est plus forte, mais, pour une intensité donnée, ce maximum d'action ne correspond pas à la même self-induction que pour le cohéreur II. Le dernier appareil a présenté la particularité qu'au delà du maximum d'action l'effet obtenu pour des self-inductions supérieures était non seulement moins bon comme pour l'appareil précédent, mais cessait même tout à fait de se produire. La self-induction qui, pour une intensité donnée, communiquera à un cohéreur, par l'effet de l'étincelle, la plus faible résistance paraît pouvoir être déterminée par une expression représentant le maximum d'action et qui affecterait la forme d'un produit dont l'intensité et la self-induction seraient les facteurs. Toutefois cette tentative aboutit à des résultats contradictoires pour les deux cohéreurs. On ne paraît être en droit de conclure, à la suite de ces mesures, qu'à l'existence d'une self-induction déterminée, variable selon l'appareil et qui, pour une intensité donnée, agit le plus efficacement.

C. Influence de la capacité.

Il n'est pas sans intérêt de rechercher quel serait l'effet de l'introduction d'une capacité dans le circuit destiné à produire l'étincelle, avec une intensité et une self-induction déterminées. J'intercale donc un condensateur dans le circuit et je compare les effets sur la résistance du cohéreur d'étincelles produites dans ces conditions variées :

504

Action de la capacité.

	$C = o \qquad : \dots \ r'_1 = 34^{2}$	$C = o^{MF} \cdot 96 : \dots r'_2 = 57$	$G = 1.92 : \dots r'_3 = 75$	$C = 2.88 : \dots r'_4 = 81$
Cohéreur 1	avant l'introduction d'un condensateur	•	de 2 condensateurs $C = 1.92$:	de 3 condensateurs
	l'introductio	~	•	a
	avant	\mid après	^	a
	Воше	1 - 1 - 1 - 1 - 1 - 1 - 1		

Cohéreur II

$$i = 1^{a}.o$$

$$i = 1^{a}.o$$

$$C = 0^{ar}.96 : r'_{2} = 133$$

$$C = 0^{ar}.96 : r'_{2} = 169$$

$$C = 1.92 : r'_{3} = 169$$

$$C = 2.88^{\circ} : r'_{1} = 199$$

$$C = 2.88^{\circ} : r'_{1} = 199$$

)u encore :

$$\begin{array}{c}
C = 0 & C = 1^{MF}.92 \\
i = 0^{a}.5 : r'_{1} = 210^{2} & 253^{2} \\
i = 0^{a}.8 : r'_{2} = 74 & 222 \\
i = 1^{a}.1 : r'_{3} = 59 & 187 \\
i = 1.5 : r'_{4} = 80 & ?
\end{array}$$

$$\begin{pmatrix}
i = 0^{a}.8 : r'_{1} = 90^{2} & \text{C=}_{0}^{\text{nr}}.96 \\
i = 0^{a}.8 : r'_{1} = 90^{2} & \text{Pas d'effet} \\
i = 1.0 : r'_{2} = 66 & 404^{2} \\
i = 1.5 : r'_{3} = 70 & 39^{3} \\
i = 2.0 : r'_{4} = 8_{2} & 28_{2}
\end{pmatrix}$$

L'effet d'une étincelle produite avec capacité dans le circuit est donc une résistance finale du cohéreur plus grande, donc une action moindre.

Ces résultats étaient à prévoir si l'influence de la self-induction est celle qui a été établie plus haut. On sait, en effet, que pendant la période variable de l'établissement du courant dans un circuit, la capacité et la self-induction jouent des rôles opposés, le phénomène de condensation équivalant à une diminution et l'induction produisant un accroissement de la résistance apparente du circuit. Les résultats obtenus par l'introduction d'une capacité dans le circuit peuvent être envisagés comme une confirmation de l'influence attribuée plus haut à la self-induction.

D. Mesure de l'action de l'intensité.

En laissant constante la self-induction dans le circuit où se produit l'étincelle et en faisant varier l'intensité du courant, j'ai obtenu :

Pour des étincelles produites avec des intensités de courant croissantes, la résistance finale du cohéreur diminue d'abord pour augmenter ensuite : il y a donc un maximum d'action pour une intensité déterminée. Ceci a été confirmé en variant l'intensité avec d'autres self-inductions maintenues constantes :

Action de l'intensité du courant selon diverses self-inductions.

			Cohéreur II			
i	L =	27 juin 0 ^H • 01375	21 juin 0 ^H . 055	22 juin O ^H • I I	23 juin 0 ¹¹ · 44	24 j $^{ m H}$. 59
$0^a.15$	$r'_1 =$	$290^{\mathcal{Q}}$	171 ²	282^{Ω}	115^{Q}	$_{1682}$
0.3	$r'_2 =$	260	168	204	100	168
0.5	$r'_3 =$	227	166	188	$\underline{69}$	168
0.8	$r'_4 =$	193	162	98	88	179
Ι.Ι	$r'_5 =$	166	144	66	105	198
1.5	$r'_6 =$	131	107	80	138	208
2.0	$r'_7 =$	124	127	100	165	225
2.5	$r'_{ m s} =$	120	133	129	197	262
3.3	$r'_9 =$		152	196		284
4.1	$r'_{10} = $	No. of Concession, Name of	174	236	***	(

Un maximum d'action se produit avec une intensité de courant d'autant plus grande que la self-induction est plus faible : vérification de ce qui avait été établi pour l'action de la self-induction.

Pour un autre cohéreur :

Action de l'intensité du courant selon diverses self-inductions.

			Concr	our im			
i		24 juillet ¹ .01375	25 juillet $^{ m H} \cdot 055$	27 juillet OH. II		2 aoùt 0 ¹¹ • 44	3 août 0 ^H . 59
oa. 1	$5 r'_1 =$	1442 [©]	786^{2}	2002	$\overline{38_1}^{\varrho}$	$\overline{562^{2}}$	1882
0.3	$r'_2 =$	83o	466	165	257	300	174
0.5	$r'_{3} =$	560	417	132	193	162	112
0.8	$r'_{\perp} =$	383	377	111	67	<u>97</u>	153
Ι.Ι	$r'_{5} =$	347	355	76	64	122	(1000-000 0)
1.5	$r'_6 =$	343	268	69	94	-	_
2.0	$r'_7 =$	308	200	$\overline{95}$			
2.5	$r'_{ m s} =$	307	249				V/
3.0	$r'_9 =$	$\overline{339}$	298		-		
4.0	$r'_{10} =$	339					

Donc même résultat : une résistance minimale du cohéreur obtenue par l'étincelle produite avec une intensité de courant d'autant plus grande que la self-induction du circuit est plus petite.

On trouve une confirmation de cette influence de l'intensité du courant sur l'efficacité de l'étincelle si, dans les tableaux donnant l'action de la self-induction selon diverses intensités (page 310), on porte l'attention sur la variation des valeurs des minima de résistance du cohéreur dans es diverses séries.

On trouve la résistance minimale

pour le	cohére	ur II :	por	ır le co	héreur	Ш:
$r'_{6} = 128$	pour	$i = 0^{a}.15$	$r'_{6} =$	1512	pour	$i = 0^{\circ}.3$
$r'_{5} = 123$))	$i = 0^{a}.3$	$r'_{5} =$	80))	$i = o^{a}.8$
$r'_1 = 52$))	$i = 1^{a}.0$	$r'_{1} =$	66))	$i = 1^{a}$. I
$r'_3 = 1\overline{25}$))	$i = 1^{a}.5$	$r'_3 =$	66))	$i = 1^{a}.5$
$r'_2 = 147$))	$i = 2^{a}.0$	$r'_{ _2} =$	84))	$i = 2^{a}, 0$
			$r'_1 =$	88))	$i = 2^{a}.5$

On constate que ces minima de la résistance du cohéreur, avec des intensités croissantes, diminuent pour augmenter ensuite. Ces tableaux (page 310) des résultats de mesures destinées à mettre en évidence l'action de la self-induction révélaient déjà l'influence de l'intensité du courant sur l'efficacité de l'étincelle.

On pourrait de même présenter comme une preuve de l'influence de la self-induction sur la qualité de l'étincelle agissant sur le cohéreur le fait que, dans le tableau donnant l'action de l'intensité selon diverses self-inductions, les minima de résistance du cohéreur passent par un minimum avec des self-inductions croissantes. Ainsi

Les mesures portées dans les quatre tableaux (pages 310, 313 et 314) dont sont extraits ces minima se vérifient donc mutuellement.

L'exactitude des mesures et la légitimité des conclusions qui en ont été déduites ressortent encore des valeurs combinées trouvées pour l'intensité de courant et la self-induction produisant dans chaque série l'étincelle qui donne au cohéreur la résistance minimale.

Maximum d'action de l'étincelle

éclatant à 1^{m5} du cohéreur II:

l'intensité du courant étant à déterminer pour

la self-induction étant à déterminer pour

u	ne intensit	é de courant do	nnée :		une self-in	duction o	lonnée :	5 11 (C) (S) (S)
	i		L		L			i
Ave	c oa.15	on trouve	0 ^H • 22	Avec	о ^н . 59	on	trouve	$0^{a}.15$
))	0.3))	0.165))	0.44))	0.5
))	1.0))	0.11))	0.11))	I . I
))	1.5))	0.055))	0.055))	ı.5
))	$_{2,0}$))	0.0275))	0.01375))	2.5

éclatant à 1^m5 du cohéreur III:

	i		$\underline{\mathbf{L}}$	_	L		i
Avec	$o^{a}.3$ on	trouve	$0^{\mathrm{H}} \cdot \overline{59}$	Avec	$0.^{\mathrm{H}}.59$	on trouve	oa.5
))	0.8))	0.44))	0.44))	0.8
))	1.1))	0.22))	0.22))	I . I
))	1.5))	0.11))	0.11))	1.5
))	2.0))	0.055	((0.055))	2.0
))	2.5))	0.01375))	0.01375))	2.5

La concordance, approchée pour le cohéreur II, est presque complète pour le cohéreur III.

E. Preuve, par l'examem de l'effet de la durée de contact, de l'influence de l'intensité du courant sur l'efficacité de l'étincelle.

A plusieurs reprises au cours des observations des effets de l'étincelle sur le cohéreur la question d'une influence possible de la durée du contact des électrodes s'était posée. Des mesures à ce sujet avaient donné:

500000	The state of the s		~		
	Résistance finale du cohéreur		Durée du contact		Eléments du circuit.
\mathcal{Q}	$r'_1 = 188^{\mathcal{Q}}$		$t = 3^{s}$	($i = 2^{a} \cdot 0$
	$r'_2 = 183$		$t = \frac{1}{5}^{s}$		$L = 0^{H} \cdot 055$ $r = 2^{Q}$
Ω	$r'_1 = 135^{\mathcal{Q}}$		$t=3^{\rm s}$		$i = 1^{a} \cdot 2$
\mathcal{Q}	$r'_{2}=$ 12 $6^{\it Q}$		$t = \frac{1}{5}^{s}$		$L = 0^{H} \cdot 055$ $r = 2^{Q}$
\mathcal{Q}	$r'_1 = 158^{\Omega}$,′	i = 0a 6
	$r'_2 = 164$		$t = 1^{s}$	Ì	$L = 0^{H} \cdot 055$
	$r'_{\rm g} = 160$	• •	$t=\frac{15}{5}$		$r = 2^{Q}$
		•	2me série		
	Résistance finale du cohéreur	•	Durée du contact		Eléments du circuit
5	$rac{{ m du~coh\'ereur}}{{r'}_1=348^{oldsymbol{arrho}}}$		Durée du contact $t=3^{\mathrm{s}}$,	du circuit
Q	$rac{{ m du~coh\'ereur}}{{r'}_1=348^{oldsymbol{arrho}}}$		Durée du contact $t=3^{\mathrm{s}}$		
Q	du cohére ur		$t=3^{ m s}$ $t=rac{1}{5}^{ m s}$)	$i = 1^{a}.5$
	$r'_{1}=348^{\it 2}$ $r'_{2}=137$ $r'_{3}=289$ $r'_{1}=273^{\it 2}$		$t=3^{ m s}$ $t=3^{ m s}$ $t=3^{ m s}$ $t=3^{ m s}$)	$i=1^{\mathrm{a}.5}$ $\mathrm{L}=0^{\mathrm{H}}.59$ $r=2^{\mathcal{Q}}$
	du cohéreur $r'_1=348^{\it Q}$ $r'_2=137$ $r'_3=289$		$t=3^{ m s}$ $t=3^{ m s}$ $t=3^{ m s}$ $t=3^{ m s}$		$i = 1^{a}.5$ $L = 0^{H}.59$ $r = 2^{D}$ $i = 1^{a}.0$ $L = 0^{H}.59$
Ω	du cohéreur $r'_1 = 348^{\mathcal{Q}}$ $r'_2 = 137$ $r'_3 = 289$ $r'_1 = 273^{\mathcal{Q}}$ $r'_2 = 148$ $r'_3 = 235$		Durée du contact $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$		$i = 1^{a}.5$ $L = 0^{H}.59$ $r = 2^{2}$ $i = 1^{a}.0$ $L = 0^{H}.59$ $r = 2^{2}$
Ω	du cohéreur $r'_1 = 348^{\mathcal{Q}}$ $r'_2 = 137$ $r'_3 = 289$ $r'_1 = 273^{\mathcal{Q}}$ $r'_2 = 148$ $r'_3 = 235$		Durée du contact $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$		$i = 1^{a}.5$ $L = 0^{H}.59$ $r = 2^{D}$ $i = 1^{a}.0$ $L = 0^{H}.59$ $r = 2^{D}$
Ω	du cohéreur $r'_1 = 348^{\mathcal{Q}}$ $r'_2 = 137$ $r'_3 = 289$ $r'_1 = 273^{\mathcal{Q}}$ $r'_2 = 148$ $r'_3 = 235$		Durée du contact $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$ $t=\frac{\mathrm{I}^{\mathrm{s}}}{5}$ $t=3^{\mathrm{s}}$		$i = 1^{a}.5$ $L = 0^{H}.59$ $r = 2^{D}$ $i = 1^{a}.0$ $L = 0^{H}.59$
	$r'_1 = 135^2$ $r'_2 = 126^2$		$t = 3^{s}$ $t = \frac{1^{s}}{5}$ $t = 3^{s}$ $t = 1^{s}$		$r = 2^{\Omega}$ $i = 1^{a} \cdot 2$ $L = 0^{H} \cdot 055$ $r = 2^{\Omega}$ $i = 0^{a} \cdot 6$ $L = 0^{H} \cdot 055$

Ces résultats sont en apparence contradictoires, une influence paraissant manifeste dans la seconde série et se trouvant nulle dans la première.

Voyons d'un peu plus près les conditions dans lesquelles les phénomènes se produisent. L'étincelle éclate entre les électrodes à l'ouverture d'un circuit comprenant force électromotrice, résistance et self-induction. Il importe de bien fixer la valeur des grandeurs en action à ce moment. L'intensité dépend du développement atteint par le courant au moment de la rupture. On a donc à examiner d'abord comment s'établit le courant pour déterminer la valeur de son intensité à un moment donné. On sait que dans un circuit tel que celui auquel on a affaire :

$$i = \frac{E - L \frac{di}{dt}}{R}$$
 ou $E = Ri + L \frac{di}{dt}$.

On tire de cette équation différentielle la valeur de i à un instant quelconque t, si i=o pour t=o:

$$i = \frac{E}{R} \left[\mathbf{I} - e^{-\frac{R}{L}t} \right].$$

Dans le temps d'établissement du courant l'intensité normale $\frac{E}{R}=I$ doit être diminuée de la valeur de l'intensité

de l'extra-courant de fermeture $Ie^{-\frac{R}{L^{\ell}}}$, quantité importante aux premiers instants en raison de la petite valeur de l'exposant négatif. Cette action retardatrice dans l'établissement du courant se fait-elle sentir également dans les deux séries de mesures ? Il faut comparer les valeurs du terme

$$e^{-\frac{R}{L}t}$$
 dans les deux cas.

La résistance est la même dans les deux circuits, soit $r = 2^{Q}$ environ.

Le coefficient de self-induction, par contre, est considérablement différent. Dans le circuit se trouvait intercalé, lors des mesures de la première série, une bobine de fil de cuivre d'un coefficient d'induction

$$L_1 = o^H \cdot o55$$
.

La constante de temps était donc

$$\frac{\mathrm{R}}{\mathrm{L_1}} = \frac{2 \times 10^9}{0.055 \times 10^9} = 36 \ .$$
Pour $t = \frac{1^8}{5}$... $e^{-\frac{\mathrm{R}}{\mathrm{L_1}}t} = e^{-7.2} = 10^{-3}$ environ
$$e^{-\frac{\mathrm{R}}{\mathrm{L_1}}t} = e^{-36} = 10^{-13} \quad \text{``}$$

$$e^{-\frac{\mathrm{R}}{\mathrm{L_1}}t} = e^{-108} = 10^{-46} \quad \text{``}$$

Ainsi dans la première série de mesures, avec la bobine de $L_1 = o^H \cdot o55$, l'intensité du courant au moment de la rupture, donc au bout de $^1/_5$ seconde, ne différait de sa valeur normale que de $^1/_{1000}$ environ. Une différence d'intensité de cet ordre de grandeur ne produisant pas sur le cohéreur de différence de résistance observable, une durée de contact de $^1/_5$ ou 3 secondes, ne doit pas être sensible : c'est le résultat des mesures de la première série ; les différences accusées pour la résistance finale du cohéreur étant comprises dans les limites des écarts pour une même action.

Dans la seconde série de mesures, le circuit comprenait, à la place de la précédente, une grande bobine de fil de fer de résistance égale à la précédente mais de coefficient d'induction $L_2 = o^H \cdot 59$.

La constante de temps valait donc :

$$\frac{R}{L_2} = \frac{2 \times 10^9}{0.59 \times 10^9} = 3.4.$$
Pour $t = \frac{1^8}{5}$... $e^{-\frac{R}{L_2}t} = e^{-0.7} = \frac{1}{2}$ environ

$$t = 1^8 \dots e^{-\frac{R}{L_2}t} = e^{-3.4} = \frac{1}{30}$$

$$t = 3^8 \dots e^{-\frac{R}{L_2}t} = e^{-10.2} = \frac{1}{26700}$$

Donc dans la seconde série de mesures, avec la bobine de L₂ = 0^H.59, au moment de la production de l'étincelle, c'est-à-dire à l'ouverture du circuit, au bout de ¹/₅ seconde, le courant n'était parvenu qu'à la moitié, après une seconde au trentième et après 3 secondes à très peu près à la valeur complète de l'intensité normale.

Si l'intensité du courant a une influence sur l'efficacité de l'étincelle, il ne devait pas être indifférent que le contact des électrodes ait lieu pendant $^{1}/_{5}$, 1 ou 3 secondes, les valeurs de l'intensité étant notablement différentes dans les trois cas. Si, en outre, le maximum d'effet a lieu audessous de $i=o^{a}.5$ pour $L=o^{H}.59$ comme cela a été établi dans des conditions pareilles, les intensités $i=1^{a}5$ $i=1^{a}0$ et $i=o^{a}6$ se rapprochant de cette valeur sous l'influence retardatrice de l'extra-courant de fermeture, l'effet sur le cohéreur doit être meilleur pour de courts contacts que pour de longs, ce que vérifie complètement l'expérience dans la seconde série.

Cette influence de la durée du contact des électrodes, dans certains cas déterminés, constitue ainsi une preuve de plus de l'action de l'intensité du courant dans les effets du rayonnement sur le cohéreur.

V. Conclusions.

L'étude entreprise de l'action de la tension et du rayonnement électriques sur le cohéreur témoigne de la complexité des phénomènes observés. Elle a mis en lumière quelques-unes des causes de cette complexité. La plupart résultent de l'extrême sensibilité du cohéreur qu'impressionnent les causes perturbatrices dont l'action parasite masque et déforme les effets de la cause particulière étudiée.

L'étude préliminaire du degré de constance dans l'action d'une cause sur le cohéreur a dégagé les conclusions suivantes :

- 1. L'effet observé sur un cohéreur pour l'action d'une même cause, tension ou rayonnement, n'est pas rigoureusement constant. Les écarts sont d'autant plus grands que la cause étudiée est moins efficace.
- 2. La chute de résistance du cohéreur produite par une cause déterminée est dépendante de la cause agissante immédiatement précédente.

Cette influence des états de service antérieurs du cohéreur se révèle dans l'action de la tension par les particularités suivantes établies par les mesures :

- a) Un cohéreur, insensible à l'action d'une certaine différence de potentiel trop faible, peut, après avoir subi l'effet d'une tension plus forte, se cohérer sous l'action qui était auparavant sans effet sur lui.
- b) Dans la mesure des effets d'une même différence de potentiel appliquée au cohéreur, les premières valeurs obtenues pour sa résistance finale sont généralement plus grandes que les suivantes si la cause en action est plus efficace que la précédente et plus petites que les suivantes si cette cause en jeu est plus faible que celle qui agissait antérieurement.
- c) Les résistances finales du cohéreur produites par une série de tensions croissantes sont constamment supérieures à celles de la série des mêmes tensions décroissantes.

Action de la tension électrique sur le cohéreur.

- 1. Le cohéreur est sensible à l'action d'une différence de potentiel communiquée à ses extrémités. Sous cette action, la résistance du cohéreur tombe, dans la limite des expériences, à une valeur d'autant plus petite que la tension appliquée est plus forte.
- 2. L'action de la tension sur le cohéreur est liée à la poussée comme l'établit la différence du mode d'action de deux tensions d'égale valeur mais fournies l'une par des piles primaires, l'autre par des accumulateurs.

Action du rayonnement électrique sur le cohéreur.

- 1. Pour une intensité de courant constante des valeurs croissantes de la self-induction d'un circuit agissent sur l'étincelle éclatant à la rupture de ce circuit de façon que l'influence de celle-ci sur le cohéreur provoque des résistances finales passant par un minimum pour une valeur déterminée de la self-induction.
- 2. La valeur de la self-induction produisant des étincelles d'efficacité maximale est d'autant plus grande que l'intensité du courant est plus faible.
- 3. Sous l'action d'étincelles produites avec une selfinduction constante et des intensités de courant croissantes, la résistance finale du cohéreur devient minimale pour une valeur déterminée de l'intensité du courant.
- 4. Cette valeur de l'intensité du courant produisant des étincelles d'action maximale est d'autant plus forte que la self-induction du circuit est plus petite.
- 5. L'action de l'étincelle est d'autant meilleure que sa distance au cohéreur est plus courte.
- 6. L'efficacité des étincelles varie, toutes choses égales d'ailleurs, selon la nature des électrodes entre lesquelles elles éclatent.
- 7. Sous certaines conditions de composition du circuit, la constante de temps peut prendre une valeur telle que la durée du contact des électrodes lors de la production de l'étincelle peut devenir sensible dans l'action du rayonnement sur le cohéreur.

L'impossibilité d'une détermination quantitative des effets de causes perturbatrices pouvant agir sur le cohéreur à l'insu de l'observateur soustrait ces phénomènes à une représentation mathématique rigoureuse.