
Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 37 (1901)

Heft: 139

Artikel: Courbes d'égale longueur

Autor: Amstein, H.

DOI: https://doi.org/10.5169/seals-266432

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 19.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-266432
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Bulletin de la Société Vaudoise des Sciences Naturelles

Vol. XXXVII. N" 139. 1901

COURBES D'ÉGALE LONGUEUR
PAR

H. AMSTEIN ys$
% "/y

*N^ ^9i miv^t
pi. i-iii.

Dans la théorie de la flexion d'une poutre prismatique
on considère celle des fibres dont la longueur n'est pas
modifiée par l'action des forces, c'est la fibre neutre. La
forme qu'elle affecte après la flexion est dite ligne e!/as-

tique. La fibre neutre et la ligne (Mastique sont des courbes

d'égeile longueur.
Il va sans dire qu'en géométrie on peut former autant

de courbes d'égale longueur qu'on veut. Il suffit, à cet
effet, d'introduire des facteurs de proportionnalité
convenables. Dans ce domaine la recherche des courbes d'égale
longueur ne présente aucun intérêt. Il n'en est pas de
même d'autres domaines. Comme l'étude des lignes
élastiques définies plus haut est très importante en mécanique,
il peut être intéressant, dans le domaine des représentations

conformes, d'étudier une question analogue.
Le problème dont s'occupe ce petit travail est donc le

suivant : Etant donnée une fonction monogene, quelle est
la courbe dont la longueur de chacun de ses éléments n'est

pas modifiée par la représentation conforme attachée à

cette fonction
Ce problème est de ceux que l'on rencontre tout

naturellement sur son chemin dès que l'on aborde l'étude des
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représentations conformes. Sa résolution n'offre aucune
difficulté, d'ailleurs elle est connue. Ce n'est donc pas ponila

méthode employée que nous offrons ces quelques pages
au lecteur, mais bien pour les résultats de détail obtenus.

Il peut, en effet, être utile de connaître des courbes qui,
entre deux points correspondants quelconques, ont la
même longueur, ou bien encore des courbes dont la

longueur peut, comme par exemple celle de la lemniscate, être
divisée en un certain nombre de parties égales.

Soit

(1) f J+ ir)=f(z,a,b,

une fonction monogène de la variable indépendante
z — X-\-iy et des paramètres constants a —a' A- ici",
b — b' + ib"

On sait que toute fonction de cette nature sert
d'intermédiaire à une représentation conforme.

En mettant en évidence la valeur absolue r et la déviation

cp de la dérivéef (s), l'équation

dÇ —f (z, a, b,...)dz reV dz

montre que le rapport des valeurs absolues de dt, et dz
est égal à r, ce qui peut s'écrire en adoptant la notation
généralement en usage

1*1-r
\dz\ -r-

Il suffit donc que r soit égal à l'unité pour que la
longueur de l'élément dz ne soit pas modifiée par la
représentation conforme £ —f(z, a, b,

On arrive au même résultat en introduisant les quan-
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tités conjugées de f, z, a, ù, que nous désignerons,

par l'indice 1, de sorte que

^s-z^—irj, z^ — .r — ig t^ — a' — /et", ^—b' — ib",

En effet l'équation (1) entraîne cette autre

0a) £i=/ï-i,"i, h, ¦¦¦)
et l'on a, en désignant encore par ils l'élément de la courbe

originale (z), et par da l'élément de la courbe image. (£),

dz. dz1 — (d.r -j- idg) (dx — ici;/) — d.r2 A- dy2= ds-,

d'Q. dÇx — (d'S + idrj) (d'i— idrf) ~ d'i2 + dr/2 der-,

et puisque

d£=.f'(z,a, b, ...)dz, rf£i =/' (zt, a^, bt, ...)dzx\

il vient

da2=f'(z,a, b, e/z.f'(z1,a1,/il,...)dz1

—f (z ,a,b,... )f (s1,a1,b1,...) ds2.

Ainsi, pour que da soit égal à eis. il suffit que l'on ait

(2) f'(z, a, b, ...)f(*lt (h, />,, 1.

Cette condition détermine la courbe (z). Pour trouver la
courbe correspondante (£), on peut ou bien chercher
directement l'image de la courbe (z), ce qui sera généralement
assez long, ou bien se servir de l'équation (2) appliquée à

la fonction inverse de/'(r, et, b, car de

— • ^- 1,dz dz1 '

il suit immédiatement

dz dz1_
d£ dC, -
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Ceci dit, nous allons passer en revue les représentations
conformes les plus élémentaires et les mieux connues, afin
de découvrir des courbes d'égale longueur.

I. (1) t rzr r + a, « — const.

Dans ce cas on a

-' — * — 1 /-' - 1

et, par conséquent,

i Ç, i — 1.

Gomme cette dernière relation est indépendante der,
on en conclut que les courbes (z) et (f) sont toujours
identiques. La formule (1) constitue, en effet, un simple
déplacement de l'origine avec maintien de la direction des

axes des coordonnées j; et y.

II. (1) £ — az, a rzz const.

r — ii, Ci «i-
La relation

£ f i 1

n'est satisfaite que si a est de la forme e7', où / est un
nombre réel. Dans ce cas il n'existe donc pas de courbes
d'égale longueur, à moins que le facteur a n'ait pour seul
effet une rotation autour de l'origine commune des plans
(z) et (£). La formule (1) peut, eu vérité, être considérée

comme le symbole de la similitude parfaite, avec l'origine
comme centre de similitude.
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m. (D £ ~eA>
yc + d

où

a a + in", ß z= ß' + iß", y — y' A- t'y", Ô — â' + id"

sont des constantes.
On sait que cette fonction l'ait correspondre à toute

circonférence (r) une circonférence (£), la droite étant considérée

comme un cas particulier de la circonférence. Elle
est le symbole de ce que Mœbius appelle une « Kreisver-
wandtschafl », ou encore, elle caractérise (avec une légère
modification), une transformation au moyen de rayons
vecteurs réciproques.

De (1) on tire

__
«à — fy _ «, à\ — A yt

fc --{yz + i)*' fe

l^(y1s1 +ô\)2
d'où

t, j., _ «g — ßr «i ^i — ft /i _fcl - (yr+dr)^ (Yl zx A-a.y-- '

ou bien

(2) (y* + J)« (y, ~, + ^)« zz {ad — ft") <«, «T, — ft yj
En posant pour simplifier l'écriture

«<r — ftv A' + /A",
où

A' (a' Ó" — ß' y') — («" J" — ß" y"),

A" («' ô" - ß' y") + (a" S'-ß" y'),

il vient

(«* — #)(«- d\-ßi7i) A'2+A"2.

Ensuite on trouve successivement
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(ys + â)(Yl z, +â,)= y7l zs, + y.óz, + yd\z + ôd1

{y'2 + y"2) (.r2 + g2) + (y' — /y") (â' + id" (.r— ,'g) +

+ (Y' + 'Y") (<*' — là") (.r + ig) A- ô'2 + e)"2 zz

(y'2+y"'2){'r2+g2)+^(y',y+y"ô").r+ l(y'cr—y"ô')g+â'2+â"2.

Ainsi la condition (2) fournit l'équation

[(/2+y"2)(.r-+//2)+2(y'()'+y"()").r+2(y'J"—y"d')y+ê'2+d"2}2=i\'2+A"z

qui est celle d'une coupbe du 4'' degré dégénérant en deux
circonférences, dont l'une est imaginaire.

Cette équation peut facilement être mise sous la forme
normale

r \t t tr v"\ -> f ' \" " \'\ -> \/ V ' ¦> 1 V " •>

y ô + y " V / Y " —ï " \ * " - + A -
•c+ -t/.-tt,— + .'/ + --7Vy'2 + y"2 J ¦ V' y"2 + /"'-' ; " /•-' + r'"2

où la seconde valeur de VA'- + A"2 a été rejetée.

La courbe (z) étant une circonférence, on sait d'avance

que son image (f) sera une courbe de même nature. Ponila

trouver, on résoudra l'équation (1) par rapport à z,
ce qui donne

c - —<£ + /*

n — «

En comparant cette formule avec (1), on reconnaît qu'il
suffit de remplacer dans l'équation précédente

./• par ï\ y par /; « par —ó, ó par — n

pour obtenir l'équation de la courbe ('Ç), à savoir

II, '/ t, \ / ft t t tl \ t / » I -> i K t,

¦c u y A- a y \- / a y —ce y \-_. V A - +A -

/- + /-/ V y -—I- y - / y - + y -
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Comme ces substitutions n'affectent pas les quantités A'
et A", on voit que les circonférences (z) et (£) ont le même

rayon ; ce sont bien des courbes d'égale longueur.

iv
'

c *n,

où n est un nombre constant réel quelconque, mais différent

de l'unité.
Dans ce cas on a

f zz nz»-l, C'i — n~in~l •

et la condition

donne
n2 (x2 Ar y2)"-1 — 1

ou
1

x2 Ary2 —

La courbe (z) est une circonférence de centre 0 et
1

de rayon —v— La courbe (f) sera également une circon-

n.u—i
1

férence de centre 0, mais de rayon On s'en con-
n

vainc immédiatement.

En effet, la formule
'i.

s.»

montre que, pour obtenir l'équation de cette courbe, il
suffit de remplacer dans l'équation précédente

x par |, y par rj et n par —
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ce qui donne

S* + r2 zz

ll>1—1

II est à remarquer que la correspondance entre les
courbes (z) et (f) est telle que le point £ parcourt n fois sa

circonférence, tandis que z décrit une seule fois la
circonférence (z).

Cns particulier. £ zz — z zz —

Les circonférences (z) et (J) se confondent ; leur rayon
est égal à l'unité. Les deux points correspondants parcourent

cette courbe en même temps, mais en sens inverse.

Observation. Il est évident que, les points z et £

restant en général distincts, les courbes (z) et (f) se confondront

toutes les fois que la fonction £ et la fonction inverse

z sont identiques. Plus loin nous rencontrerons encore un
exemple de ce genre.

V- (1) t=j(* + j
Nous rappelons, en passant, que cette fonction transforme

le système de circonférences concentriques avec
l'origine comme centre commun et le faisceau de rayons
correspondants respectivement en un système d'ellipses et
d'hyperboles homofocales aux foyers z ~ dz 1 •

De (1) il suit

r 4 (.-A), r,=i(.-i-
ensorte que la condition £' £\ zz 1 prend la forme

iU_.rLVl-4-ï=l,
4 *

- 1
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ou bien
Zgtg\ + ri+.^-l-O.

L'équation de la courbe (z) devient ainsi

3 (.r2 + g2)2 + 2 (.r2 — g2) — 1 zz 0,

ou, posant
./• zz /• cos (p, y — r sin q

en coordonnées polaires

3 r4- + 2 r2 cos 2 y — 1 zz 0

En résolvant cette équation soit par rapport à r, soit

par rapport à cos 2 y

i r zz y=-\/— «-s 2 y + v/3+cos*2sp, j

/ n
1 — 3 r*

cos 2y zz -Vf T'-Zi I

(fig. 1)

on obtient des formules qui se prêtent bien au calcul
numérique.

Etant connu un point r, ep de la courbe (z), on peut
déterminer le point correspondant de la courbe (f) à l'aide
des formules

Ç j (r + — cos (f, rt zz — (r — -j sin <p

que l'on obtient en posant dans l'équation (1) r zz re0?',

et en séparant ensuite la partie réelle de la partie imaginaire.

Il est d'ailleurs facile d'établir l'équation de cette courbe.
En résolvant l'équation (1) par rapport à r, il vient

z - f ± VV - 1,
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d'i

,' 1±
VÌ -1±!

\/p—l \/c2— 1 »

La condition z' z\ zz 1 donne ensuite

(t/F-^Tzc g) (y/cy~i dz ti _ i

relation à laquelle on peut donner la forme

±,- Vï\~ï- ± fi y/:*—1 - tfi •

En rendant rationnel et en simplifiant, on est conduit à

3 r1 t\ — 2 p ç\ (f - + c\ -f 2 r- -• — t*—:*! o,

ce qui fournit l'équation cherchée

3 (i2 + rfY — 4 ('e- A- if) d2 — r/2) A- 16 Pr/2 zz 0

Transformée en coordonnées polaires, à l'aide des
formules

i" zz q cos xp, rt zz q sin tp,

elle devient, après division par çA

Bqs — 4 p2 cos%ifj 4- 4 sin22t/izz 0.

En vue du calcul numérique, on en tire

q — y -|- y cos 2 «/' dz V 4 cos2 2 ti; — 3

— ?2 + 2\/l + <?4

cos 2 i/' zz
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Remarque. La présence du facteur commun q% accuse

l'origine comme un point quadruple de la courbe.

vi. (D r2 +1* i •

De cette équation on tire d'abord

puis

y/i-r2 \Zi-*\
La condition f f'x zz l devient

1 •

\/\— z2 \/\— z2

d'où il suit
Z2 Ar z\ zz 1

ou bien

•'- — .'/" Y •

La courbe (z) est donc une hyperbole equilatere qui, en

vertu de la symétrie de l'équation (1) relativement aux
variables z et £, se correspond à elle-même. La
correspondance est telle qu'au point œ, y correspond le point
£ zz x rj zz — y, ou encore le point £ zz — x r/ zz y.

VIL fzzlogjr.
Dans ce cas

b 1 » 1 ^ '

et la condition £' £'j zz 1 donne la circonférence

.X'2 + //" 1 •
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La courbe (£) se réduit à la droite £ zz 0, car de

rzcS z'—e:
il suit

z' z\ zz *c+e 1

f -{- £t zz 0 ou bien i" zz 0

Lorsque le point r parcourt le cercle des unités une
fois dans le sens positif, le point £ décrit la portion de
l'axe des rj qui va de ré zz 0 à rt zz -)- 2;t

Vili. £ zzare sin r.
Dans le cas actuel on a

1
w

1

t — —

\/l-z* \/ls\
La courbe (r) est une lemniscate particulière au

paramètre y 2 à savoir

(1) (.r2 + y2)2 — 2 (./•-' — y2) zz 0. (fig. 3)

Pour trouver l'image de cette courbe, on partira de

l'équation
C

¦ e — e

qui fournit

sin c z_*"
2/

e + e „,._<' + e

2 ' * i — 2

La condition r' r'j zz 1 prend la forme

x(«ir+70(e*+Ve) l,
eu bien

g/(c+ft) + -;<?+?» + ö«(c—&) + -«-(f-*) _ 4j
8/.C

(2) e2" + 72' + 2 cos 2? zz 4
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Posant pour un instant

e —u,
cette dernière équation devient

u A- — + 2cos2ïzz4,
u

ou
u2 Ar 2 (cos 2£ — 2) u + 1 0.

On en tire

c^'1 — u — (2 — cos 2i) zb \/(2— cos 2 i')2—1.

Finalement la courbe (f) est représentée par l'équation

ri—\r log [(2 — cos 2£) dz \/(2—cos2£)2—1 ]

OU

r/ zz zt y log [(2 — cos 2£) -f \/(2—cos2£)2 — 1 ] (fig. 4).

On remarquera que l'ordonnée », est une fonction périodique

de l'abscisse '£ ; la période est égale à n.
L'élément de cette courbe est donné par la formule

Or
dr, sin 2J
—— zz dz — -

* /(2— cos2£)2 — 1

et, par conséquent

j t /- sin2 2Ï~ / 1 — cos 2i"
'

,y

2V/ l-™ji dv (1 — cos 2?) (3— cos 2?)

2 d* \J<Ï d'i

)(3— cos2i') ^3 —cos2£ y/l + sin2?
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Afin de vérifier si, entre deux points correspondants,
les courbes (z) et (£) ont la même longueur, il est utile
d'exprimer les coordonnées x, y en fonction de £. A cet
effet on écrira

z^x+,y=jr(e -e -ÏI(e -e zz

.-^rrle" e7*—e ' ev\ zz — e'(cos | + i sin £) — e?/ (cos £¦— /sin £ zz

i/ —y v —n
e A- e e — p

zz sin l Ar i - cos £.
2 2

En comparant, dans les deux membres, les parties
réelles et les parties imaginaires, on obtient

(3)

S -r- £
x zz -— sin?.,

e — e
y— cos£.

Incidemment on pourra constater (ce qui d'ailleurs est

connu) qu'aux droites rj zz const, correspond un système
d'ellipses homofocales

y2

(n
—v\2 /v —V\

i

et aux droites £ zz const, un système d'hyperboles
homofocales

x2 y2 _ ì ^

sin2 £ cos2 £

Les foyers communs à toutes ces courbes sont les points
x zz dz 1 y zz 0.
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Dans le but de faire disparaître la variable i] des
formules (3), on modifie l'équation (2) de la manière suivante :

(2) e2' + 7--" zz 4 — 2 cos 2£

e"1 A- 2 + 7?" zz 6 — 2 cos 2£,

e2' — 2 + e2' zz 2 — 2 cos 2£,

d'où l'on lire

n —i
e A- e

v —ii
e

zz -= t /3 — cos 2£,
s/2 V

— zz -=Jl — cos 2£
v/2V

En introduisant ces valeurs dans les formules (3), ces
dernières prennent la forme

[ x -== sin £ y/3 — cos 2£ zz — -7(2 —cos 2£)2 —1,

(4)
1

1

(^¦jT00"*^1 --2cos 2£ — — sin 2£.

On en déduit

(2 _ cos 2£) sin 2£
aa; zz -, - a£, a»; rzz cos 2<? a£ ;

V(2 — cos2£)2 — 1

puis

ds /^T^zz. (*-™*W>*E>*L+ cos^ds\/ (2 — cos2£)2— 1

ZZ2,/ Lz£2!i! ^ - » * - s/2rf£

Y (3 —cos2£)(l-cos2£) ^3 — cos 2£ /fflûï»?"
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Ainsi on a bien ds zz da et les deux courbes sont
d'égale longueur. Il va sans dire que, s'il s'agissait de

calculer la longueur de la lemniscate (1), on préférerait
introduire des coordonnées polaires moyennant les
formules .r zz r cos qi, y zz r sin y On obtiendrait de cette
fai;on

sJZdif
r zz \'2 \/cos 2<y ds zz — ¦

y cos 2</

Ce rayon de courbure II de la courbe (ri est donné par
la formule

_ V'd.r2 + dy2
~ d.r d2 y — dy d2 x

son expression tirée des formules (4), est

di
3 sin £

tandis que le rayon de courbure P de la courbe (£) devient

v/-+(f)* ^
f/2?; siili"
7/f2

p
Le rapport -r-r- zz —3 est donc constant; celle circonstance

digne d'être remarquée se rencontrera encore
plusieurs fois dans la suite de ce travail.

IX. t zz arc Ig g

Cette fonction conduit aux mêmes courbes que la
précédente, à la seule différence près que les axes des ./• et
des y sont échangés entre eux (niais non les axes des £

et des i,
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x. (i) : z + ^-s-
o z"

Cette fonction permet de représenter d'une manière
conforme l'extérieur du cercle des unités sur l'extérieur de

l'astroïde particulière.

£s + % - [y
Dans ce cas on a

1 1

et la condition £' f'j zz 1 donne

*4 + z\ 1

d'où il suit que la courbe (ir) a pour équation

(2) (a.f + yi)i_8aî»yi l,
ou en coordonnées polaires, si l'on pose xz:r cos 9,
/y zz r sin 95

1

r4(l — 8sin2ycos2cp) zz r4(l —2sm22<p)zz r*cos4y=: -5- '

ou encore

(3) r= _i (fig. 5)
y/2 cos 4y

De cette équation on tire, cn désignant par S- l'angle
que fait la tangente en un point quelconque avec le rayon
vecteur et par « l'angle que fait cette même tangente avec
l'axe positif des x,

t» & r -Jr cotg 4çp,
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d'où
r, nil zz - — 4cp

TZ

«zz^ + yzz—— 3y;

l'élément de la courbe a pour expression

J*+ &)'* à\dg>/ */2 (cos 4y)!

et le rayon de courbure R devient

n __
ds

_
1

dci 3 v/"2~(cos itpf
Cette courbe a quatre asymptotes passant par l'origine

et faisant avec l'axe positif des x respectivement les angles

dz -3- - ± -5- • Elle est donc du genre hyperbole.
8 8

Posant dans l'équation (1) g — re1^ et en séparant les

parties réelles des parties imaginaires, il vient

£ — /- cos (f A- ——- cos 3ep
o v

f] zz r sm cp — — sm 3^

4 4
d'où pour r zz 1 l'astroïde £ zz — cos 3ep, r] zz — sin sçp ou (2)

En introduisant dans ces équations la valeur de r tirée
de 3 on obtient pour la courbe (£) la représentation
paramétrique

14 cos cp + cos lep
3 (2 cos 4^)4

w ;

v - * 4 sin y - sin 7y (fig> g)
\ (2 cos 4çp)*
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Cette courbe qui se compose de quatre branches, a les

mêmes asymptotes que la courbe (z) ; elle possède en

outre quatre points doubles situés sur les axes coordonnés
à la distance 1,20959 de l'origine; un de ces points correspond

à <p zz 14° 15' 38", 39. Pour trouver l'élément de

cette courbe, on formera

,J'r Slil UV Jdi — --= 2_ dep

y 2 (cos 4^)4

1 cos tlœ
«-/ " f/— h d(p

y 2 (cos 4(/>)ï

d'où l'on tire, comme cela devait être

da ds -^ d(f
4/ r>

y 2 (cos 4cp)i

On peut encore remarquer que pour cette courbe

7C

tg a zz cotg lly ou « zz — — \lep

et le rayon de courbure

Pzz
1 *

11 \J 2 (cos 4^)4

Ainsi, en deux points correspondants, les rayons de

courbure des courbes (z) et (£) sont dans un rapport
11

constant zz — •

xi. (i) : i(3* + ~
A l'égard de cette fonction qui sert d'intermédiaire à la

représentation conforme de l'extérieur du cercle des unités

sur l'extérieur de l'astroïde £5 + ip zz Ì on pourra cou-
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suiter mon travail intitulé : Un exemple de représentation
conforme, « Bulletin de la Société Vaudoise des Sciences
naturelles », vol. XI, 1878, pages 175 à 198.

Bien que cette fonction ne se distingue de la précédente
3

que par le facteur constant j les courbes (g) et (J) sont

très différentes de celles que nous venons de trouver.
Dans le cas actuel la courbe (z) a pour équation

7 (x2 + y2Y + 9 (2 x* — 12 x2 y2 + 2;/1) zz 9,

ou en coordonnées polaires x zz r cos cp, y zz r sin q

7 r8 _|_ 1 g ri cos iep zz 9 (fig. 7)

En vue du calcul numérique on en tire

(2) r zz -~é/— 9 cos 4y + \/8\ cos2 4y + 63

Son élément est donné par l'une des formules

12 rdeti 4 rdep
ds -

7 ri _|_ 9 cos 4-p \/ 9 cos2 4cf + 7

et son rayon de courbure par

24 /-5
Rzz 35rs_27

L'équation (2) étant satisfaite, il suffit pour obtenir les

coordonnées £, rt du point de la courbe (£) qui correspond

au point r, cp de la courbe (g), de poser z zz re1^

dans l'équation (1) et de comparer, dans les deux membres

les parties réelles et les parties imaginaires, ce qui
donne
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1 1
£ zz -r- (3 r cos cp -\ cos 3cp),

4 /

1 1

11 — 4
^3 r sin 9 ~ ~f>

su1 3y) * (%• 8)

Cette courbe présente quatre points doubles situés sur
les axes coordonnés à la distance 0,83662 de l'origine. (Un
de ces points répond à cp zz 18° 55' 20", 35). La construction

de la courbe est facilitée par la connaissance de

dìi
tg ß zz —p- et du rayon de courbure. On trouve

rs cos 5o> — 2 r4 cos œ + cos 3a>
t°' p ZZ ; ; ; — 1

rs sin 5ep — 2 r4 sin ep — sin Sep

et
24 r5Pzz

35 rs — 99

(Au point double correspondant à la valeur indiquée de

ep, Ig ß=± 1,73152).

XII. (I) Çzznz— pz",

où p est un nombre réel quelconque et n un nombre
entier positif.

Cette fonction résout le problème : Représenter d'une
manière conforme l'intérieur du cercle des unités sur
l'intérieur d'une épicycloïde. A p zz 1 correspond une épicy-
cloïde ordinaire et à p < 1 une épicycloïde allongée. *)

Dans ce cas

r zz n (1 —pzn-l), C\ n(i —pz,n-i),

*) Comparez mon travail intitulé : Notes sur les épicycloïdes et les hypocy-
cloîdes, envisayées au point de vue de la représentation conforme. Bulletin de
la Soc. vaud. des Sciences nat. Vol. XXVIII, 1892, p. 9.
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et la condition £' Ç\ zz 1 donne l'équation

n2 [1 —p (gn-i + g^-l) + p2 (Z ^)n_i] - 1

qu'on peut mettre sous la forme

p2 (Z gx)n-i—p (gn-l + Zin-i) - _ QÎ^ZL

ou, en introduisant z zz x -f- iy, z1 zz x — iy et en
posant

m (m — 1) (m — °1) (m — k A- 1)
— — - — un
1. 2. 3 k - ""•

p2(x2-\-y2)"—i—p [xn~l A- (n—1 \ xn—^yi—(n—l)2.r"—fy2—

— (n—1)3 /x"-4ysi+ + (n—\)kxn-k—iykilt+... + yn-ii'"-ri —

—p [xn~l—(n—1\ xn-%yi—(n—l)2 xn-*y2 + («—1)3 xn-*ys /+

+ (—\)k(n—ï)kXn-k-iyk ik + + (— \)n-lyn-lin-i-j —

_ n2 —1
~~ «2

"

En simplifiant, il vient

p2 (x*+y2)n—1— 2/3 [x"—1 — (n—1 )2 xn~sy2 + (n—1)4 a;-'-—5//4 +

+ (_ 1 )A („ _ 1 )nXn-n XJVk _...]-_ n±rl

ce que l'on peut écrire 1°) lorsque n est impair

/32 (.r2+//2)'1-» — 2/3 2 (— 1)* («—1 ^ä-*-'--2-1-1 y™ zz -,— >

x o

et 2°) lorsque n est pair

X=|(B—S) 2

/32 (,x2 + //2)»-i — 2/3 2 (— 1 )x (n — 1 )» as-»-«--* y» — ^—- •

A=0
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En coordonnées polaires x zz r cos <p, y zz r sin q ces

équations prennent respectivement la forme

1°) pour n impair

/j2r2(-!-I)_g/)r»_l 2 (_l)A(n_l)2;iCosn-2X-lg3sin2^g)ZZ —

2" pour n pair

p*r*(n—i)_2pA.n—i 2 (—l)^(ra—l)2^cosn—2;i—*(psm2>.çpzz— .7—•

Etant de la forme Aa;2"- + Bxm 4- G zz 0, ces équations

peuvent être'résolues par rapport à r.
En tenant compte de l'une ou de l'autre de ces

équations, suivant que n est impair ou pair, on obtient la
courbe correspondante (£) par les équations

[ 'i zz nr cos (p—prn cos nep

[ rj zz nr sin q — prn sin nq

qu'on établit en posant dans (1) œz re''^ et en séparant
les parties réelles des parties imaginaires.

XIII. (1) t nz + £,
où /3 et n ont la même signification que dans l'exemple
précédent.

A l'aide de cette fonction on peut représenter l'extérieur

du cercle des unités conformément sur l'extérieur
d'une hypocycloïde ordinaire ou allongée suivant que

p zz 1 ou p < 1. *)

L. c. p. 9.
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De (1) on tire

t' « l--£xr C'i n UM ¦- _„ /i .../»

et la condition f' t,\ zz 1 fournit l'équation

Pn2 1 -
ou

2 T-l (ir.*¦.)"+* —/- (^+1 + ^i"+1) + /J2 0
nL

Un calcul analogue à celui qui vient d'être fait dans

l'exemple précédent, conduit aux équations finales

1°) pour n impair

——-(/x'2 + //2)"+l —2/3 2 (— l)-H«+l)»aï»-*H-iyM ——p2;
11

Â=0

2°) pour n pair

—— O»2 + y2)"+1—2/3 2 (— l)-H«-f l)»a^»+*y»-:=:—p2-n /V=0

En coordonnées polaires x zz r cos y, y zz r sin y, elles

prennent la forme

1°) pour n impair

__r2(n-r>l)_ 2/>/-n+l 2 (—1)1 (rt+l^COS^-^+lysin2^ — —p2,
71 /=0

2°) pour n pair

1=4«

__Z_ri(n*i)_2jpr'-*H 2 (—iy;(n+l)2/.cos«-2^+i(psin^îpzz—/32.n a=0
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Les points £, ?j de la courbe image (f) sont fournis par
les équations

P
è zz nr cos q + -— cos nq

prtzznr sin q — sin nq

où les variables r et q sont reliées entre elles, suivant le

cas, par l'une ou l'autre des équations précédentes.

Exemple. Soit p zz 1, n zz 1,

Directement ou à l'aide des formules précédentes, on
trouve que la courbe (z) est une hyperbole equilatere dont
l'équation est

x2—y2zz -,
ou en coordonnées polaires x zz r cos q y zz r sin q

1

V 2 cos 2y

Son élément a pour expression

dszz-L- **

(Fig- 9-)

\J 2 (cos 2<jp) 5

et les quantités d-, a, R dont la signification est la
même que dans l'exemple X, prennent respectivement la
valeur
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n dep _0- zz — — 2ç>, car tg -> zz r -j2- zz cotg 2g>,

TX

uzzi} A- ç>zz- — cp,

„ _
ds

(1)

d« -Vg (cos 2<p)2

La courbe (C) est donnée par les équations

f £ (r + I) cos f =(^=j + y/2 «o- 2^ cos „

/ r, zz fr sin w zz I —= — 1/2 cos 2co isin a
\ \ ri \ ^ 2 cos lep V rj

ou par l'équation unique que l'on obtient en éliminant le

paramètre q entre ces deux équations, à savoir

-2(£2+3y2)2(£2—rf2)—5(£2+îy2)2— [4(£2—r;2)—9]2zz0. (Fig. 10)

Elle a deux asymptotes qui font, comme celles de

l'hyperbole, les angles ± —n avec l'axe positif des £, et deux
4

points doubles situés sur l'axe des £ à la distance dz ^3
de l'origine. Les tangentes en ces points font les angles

dz =- n avec l'axe positif des £.

Des équations (1) on tire

sintp—2 (sin 2g> cos 1q cos q + siii^cos22</>)
ac zz 3 ag) zz

^2 (cos2y)5

sin q — 2 cos 1q (sin 2</> cos y -f- cos 2<j> sin çp) sinçp—2cos2asin3a>
r= s flyzz —; ä dq

y/2 (cos 2^)2 V 2(cos29>)-?

ging^gin5y + »i,.ff)rfy _sin5y
y/ 2 (cos 2y)2 y/ 2 (cos 2c/)s
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cosy—2(cosg>cos22y — sinysin2</)cos2</;)
(Xli — zzz-z; 0 CIW ——

\J 2 (cos2çf)ï

_eos</>—2 cos 1q (cos 2g; cos y — sin2o)sinre) coso-—2cos2çcos3y
— 7= S «ÇP -= 7= 5 '

d 2 (cos 2q)ï J 2 (cos 2«.)3

cos«—(cos 5<r + cos w) cos 5a
zz —=——-— ?- dq zz —- dq

v/2(cos2f/)s \f 2 (cos 2y)3

U s'ensuit que

^,/9 ~ rf£ ~ COi" 5? ' ^ —^~5^' (Ißzz—Odq,

da zz Jed2 + chf2 zz 4= —^—j zz ds,
V

y 2 (cos 2y)î

p rfc 1

rf£ 5^2 (cos 2<p)i
'

xVinsi on reconnaît qu'en deux points correspondants
quelconques, le rayon de courbure de la courbe (z) est
5 fois aussi grand que celui de la courbe (£).

Les courbes d'égale longueur ne sont que des cas
particuliers de courbes dont les longueurs comptées à partir
de deux points correspondants jusqu'à deux autres points
correspondants quelconques sont dans un rapport constant.

Le problème : « Etant donnée une fonction de la
variable complexe z

trouver deux courbes correspondantes (z) et (£) telles que
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-j-zzm, où m est une constante réelle », est aussi facile

à résoudre que celui des courbes d'égale longueur. En
effet, de

cla2zzf'(g, a, b, ...)/'(-«i» «i> 6i> • • •) ^2

il suit immédiatement

'da\2
ds — m'2 =/' (•*", «> <-»> • • •)/' ^H«!^!.-),

et, si ^(£, a, 6,...) est la fonction inverse def(z, a, b,...),
on a également

f/.5\2 1 1 - 1

da) m2 f'(z,a,b,...) f'(g1,a1,b1,...)

zzep'fl-, a, b,...)<p'(£i, a-., bt,

Ainsi les courbes originales (ir) sont déterminées par la
relation

f (z,a,b, ...)/' (zt, ax, bt, zz m2,

et les courbes images (J) par la relation analogue

<p'(i,a,b, ep'(£-., %, 6-,, zz —

Quand on fait varier le paramètre m, les courbes (z) et
(£) forment, en général, deux familles de courbes distinctes
qui cependant peuvent se confondre; ce sera le cas toutes
les fois que l'équation entre z et f sera symétrique
relativement à ces deux variables.

Il ne sera pas inutile de faire suivre ces considérations
de quelques exemples.

I y — "f + P
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Les lettres «, ß, y, â, A', A" conservant la même

signification que dans l'exemple III, p. 5, le procédé indiqué
conduit aux équations suivantes : Pour les courbes (g)

(x i r't' + r'ty /„ y'â"-y"ô'y_ i v/a'2 + a^
\X + y'2 4-y"2 + [y +y'2 + y"2 / t v*-r y'i + y-. ; - m /2 + 7"2 '

et pour les courbes (£)

' ..l \ il il \ 9 / /// • " \ o l/ A'S I A"Sce y A- u y \2 i a y —a y \ 2 V A - + A -
;¦/

y'2 + y"2 Z - ï2 + y"2
•

Si m varie d'une courbe à l'autre, ces équations
représentent deux systèmes de circonférences concentriques.
Une circonférence du second système est m fois aussi

longue que la circonférence correspondante du premier
système

II. f zz log z. (Exemple VII, p. 11).

Les courbes (z) sont les circonférences

x2 + y2 zz —° m2

les courbes (J) les droites

£ zz — log m

Lorsque z décrit une fois et dans le sens positif une de

ces circonférences, le point t, parcourt la droite £ zz — log m

depuis i] zz 0 jusqu'à »/ zz 27T

III. f zzare sin g. (Exemple VIII, p. 12).

La famille des courbes (g) est donnée par l'équation

{x2 + y2)2 - 2 (x2 - y2) + (l - -L) zz 0
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et la famille des courbes (f) par l'équation

rj zz dz log [(^-COs2?)+V(-â-cos2£)2-l
Pour m zz 1 la courbe (z) est une lemniscate et la forme

de la courbe correspondante est connue (fig. 3 et 4).
Lorsque m -< 1 la courbe (z) est formée d'un seul trait

entourant la lemniscate plus ou moins étroitement suivant

que m se rapproche plus ou moins de l'unité (fig. 11), et
la courbe (£) a une forme se rapprochant de celle indiquée

dans fig. 12 qui, de même que fig. 11, répond à

-=\^
Enfin lorsque m > 1, la courbe (z) se compose de deux

traits fermés, symétriques par rapport à l'axe des y
tandis qu'un ensemble d'une infinité de traits fermés,
isolés et tous identiques, constitue la courbe (£) ; car on a

déjà reconnu que l'ordonnée rj est une fonction périodique
de l'abscisse £.

Les rayons de courbure R et P des courbes (ir) et (J)
ont respectivement pour expression

R
2

Pzz

IV. ?zzv/ï— z2

Par le procédé habituel on trouve

pour les courbes (ir)

(1 — m4) (x2 + y2)2 + 2m4 (x2 — y2) — m4 zz 0

m2 ^ _

2

-JL) + 3r4

m (l - mi)
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pour les courbes (f)

(l — -1) (£2 + r2)2 + -A (£2 — r;2) — -L zz 0

et l'on peut remarquer que la seconde équation s'obtient en
1

remplaçant dans la première x par £, y par?;, m par m
Si donc on se figure les plans (z) et (£) confondus, les

deux familles de courbes n'en forment qu'une seule. Elles
constituent, en quelque sorte, une involution en ce sens

que la correspondance entre deux courbes qui répondent à

la même valeur de m, est réciproque.
Lorsque l'une des courbes est formée d'un seul trait

fermé, la courbe correspondante se compose de deux traits
fermés, isolés et symétriques par rapport à l'axe des
ordonnées.

1
Dans le cas limite m zz 1, l'hyperbole x2 — y2 zz — se

correspond à elle-même. (Elément double de l'involution.)

V. £zz3z — z>.

Les courbes (z) ont pour équation

(x2 + y2)2-2(x2-y2)zz^-l,
et les courbes (f) sont données par

i£
zz 3r cos <p — r3 cos 3(p,

t] zz 3r sin <p — r3 sm 3ip

Dans le cas particulièrement intéressant où m zz 3, la
courbe (z) devient la lemniscate

(X2 + y2y _ 2 (x2 — y2) zz 0,
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ou, en coordonnées polaires xzzr cos <p, y zz r sin <p.

(2) r zz y/2 \/ cos 2p (fig. 13)

En introduisant cette valeur de r dans les équations (1),
il vient

£ zr 3 Î! S/ cos lip cos <p — 2 V2 cos lep ^ cos lep cos 3p zz

zz V 2^/cos 2ß> (3 cos <p — 2 cos 2ç? cos 3ç) zz

zz Ï2 y cos lep (3 cos ep — cos <p — cos hep)

zz V2 y cos lep (2 cos ep — cos hep),

t] zz 3 K2 y cos lep s'mep — 2 Y2 y cos lep cos lep sin dep zz

zz y 2 y/cos lep (3 sin ç> — 2 cos lep sin3ç>) zz

zz YHy cos 2ç9 (3 sin ep — sin ep — sin hep)

zz V 2 \/cos 2^? (2 sin ç> — sin hep),

en sorte que l'on a pour la courbe correspondante (£) la

représentation paramétrique

[ £ zz y 2 y cos lep (2 cos cp — cos hç),

(3) _f ij zz y 2 \/ cos 2ç> (2 sm ç> — sin 5ç>). (fig. 14)

De (2) on tire

— zz— y2 sinz¥-
rfy V7"008 2^
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tg^zzr-Jzz-cotg2^, -^zz J+2ç>,

7V
ce zz — Ar 3ep dexzz Sdep,

et comme on a

A=V/,. + fâ> ^-W ' \/cos lip

le rayon de courbure R de la lemniscate a pour expression

R _ ds_ ~fï
~~ da

3 y cos lep

Les équations (3) donnent

J_ r ^ü^_(2cosy—cos5y) + VC0S%<P (—2 sin y -\-hsu\hq)\dq zz
L v/cos 2ip J

c/çp zz

d'i'_ p sin 2q

y cosIq

_ — 2sin2<pcos(p-L-sin2</JCOs5'/j—2 sin y cos Iq -|-5cos2</Jsin5<£

y cos Iq
—2 sin 'òq A- sin Iq -\- 2 (sin Iq + sin 3çp) 3sin7</>

V COS Iq y cos Iq

r zz T ^___^JL (2 sin çp — sin5y) + V^08 % (2 cos y — 5 cos 5y )] dq> zr
L V COS Iq J

_ —2 sin 2y sin y -f-sin2<jpsin5<jp Ar 1 cos Iq cos q — 5cos2çpcos5</>

y/cos Iq

_2cos3y — coslq—2(cos7y +cos3y) 3cos7y

VCOS Iq Vcoslq
3
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d'où il suit

d'izz sjÏt-È-Z^,
y COS Iq

y COS Iq

da zz y1d'i2 + dr}2 zz 3 \jl dq

y coslq

l%? --li= — C0lg7q, ßzz^+7q, dßzzldq.

Le rayon de courbure P de la courbe (tf) devient donc

da S 11
Pzz

dß 7 \/cos2(p

et l'on reconnaît qu'en deux points correspondants les

rayons de courbure des courbes (J) et (z) sont dans le

P 9
rapport constant •=- zz —

La courbe (£) possède trois points [doubles, à savoir
l'origine et les points £ zz dz 2,702..., rj zz 0 dont l'un

/h~ VTT
correspond à q zzare sin \/ £ (ouy=z24°40'36",62).

A l'origine les tangentes à la courbe font les angles
1

dr-r-TT avec l'axe positif des £; aux deux autres points

doubles on a tg ß zz 7,847

Nous avons rencontré plusieurs couples de courbes

d'égale longueur (ou de longueur proportionnelle) qui, en
deux points correspondants, ont des rayons de courbure
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proportionnels. Ce fait n'est pas général. On peut, en
conséquence, demander : Quelle est la condition à laquelle la
fonction Çzzf(z, a, b, doit suffire pour qu'il se

produise? Il est facile de répondre à cette question.
Si F (x, y) — 0 est l'équation d'une courbe, son rayon

de courbure a pour expression

'£F\ 2 /dF\
Kdx) + \dy)

SX zz - /d¥\2 d2F
9

ôF £F <32F /<9F\2ô2F
dy) eJx2~'" dx dy dx dy \dx) dy2

Dans le cas actuel où

F(x,y)zzf (z,a,b, ...)/' (z, a-., bx, — m2 0

tse l'équation de la courbe (z), nous poserons, afin de

simplifier l'écriture

/' (z, a, b, zz/', /' (zt, a-., 61; /',
/" (z, a, b, zz/", /" (gt, at, b,,...) zz/,",

etc.

Alors il vient

g zz/'/" +/'/"• ^ ((/"Â1 -f A"),

g zz/'"/' +2/" /" +/'/'", J£- zz i (/'"/' _/- /£•)

~ - (/'7x' -2/"/i" +/'//')
de sorte que

R=r 2
/,2(/i7i'"-/i"2) +/i"2 (/'/'"-/"2)
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Le rayon de courbure P de la courbe correspondante (f)
s'obtient par la même formule. Il devient, si l'on désigne la

fonction inverse de f par q Cç,, a, b, et qu'à l'égard
de la fonction q on adopte des notations abrégées analogues

aux précédentes, à savoir q' (Ç, a, b, zz q'
9»'(fu «i»*i»"0 9,i'» etc-

m p-o \/qTq~' S/V~<p7'n
w -\"2(W<pr--w"i) + <p1"H<f'<f'"-<p"2)

Or on sait que

,_1 m._ /" „m_3/"2-/7"
v,, ^ _ //B, _ /fî

et de même

,_i ,,_ /i"
(C

m SA"*-A'A'
<Pi —p > fi ——ypis ' îPi — 7'"^

En introduisant ces valeurs dans (1), on obtient

y f"fP 2/'/i'/ff2 (2//'2 -/'/'") +//'2(2/"2-/'/")
"

R
Pour que le quotient -ry- soit constant et zz «, ou n est

un nombre réel positif ou négatif, on doit avoir, en tenant

compte de l'égalité yf'f\ zz m,

R .f"2(%A"2-A'A'") +A"H<zf"2-f'f")
p - ~7FTUi'Am-A"i) +fi"Hff"-f"2) mn.

De cette équation on tire successivement, afin de donneila

condition cherchée la forme la plus simple possible
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f"2(Â"2-A'fi") + A"2(f"2-f'f") + V"2A"2 _ mn./"2(/i'/r-/i"2) +/i"2(/'/'"-/"2) " ~ ¦

< 2/"2/"2
U /¦//«/"HA'fx'-A"2) +A"2(ff"-f"2) '

Z"2//'2 mn + 1

/"2 (/x '/r -/1 '2)+a "2 (/r -r2) ~ ~~2"~ '

/,2 (///r -/1"2) +./;,/2 (/,.r -r2) _ __j_
/"2/"2 - mn Ar 1 '

A"2-fi'fi" ,f"2-ff"_ !_Z"2 /"2 ~~ »w+i '

rf //i'\ rf /7'x 9

<** Vi')+ dz\f"J-dz, V/"/ ' dz \f'J — mn+ 1

Ainsi la condition nécessaire et suffisante pour que le

fait mentionné plus haut arrive, est

'» é (7)+'£ (£) =consl-

En d'autres termes, il faut qu'en vertu de l'équation de
la courbe (z)

f'fi' ™2

le premier membre de l'équation (2) se réduise à une
constante.

Le problème inverse : Etant donnée une courbe (z),
déterminer la fonction £ zzf(z) et la courbe (J) de telle
façon que les deux courbes soient d'égale longueur, offre
évidemment beaucoup plus de difficulté que celui qui vient



38 u. amstein

d'être traité. D'ailleurs on reconnaît aisément que si l'on
sait trouver une solution, on pourra en indiquer un nombre

illimité, car la solution dépend en dernier lieu d'une
quadrature. Toute la difficulté consiste à mettre l'équation de

la courbe donnée sous la forme ip (z). \p (zt) zz 1 (ou,
quand il s'agit de deux courbes dont la longueur de l'une
est un multiple donné de celle de l'autre, xp (z) ip (zx) zz m2).
Une fois cette forme obtenue, il suffira de poser/'(z)zzip(z),
d'où il suit immédiatement

C-:ozzfxp(z)dz.
Nous choisissons comme exemples deux courbes que

nous avons rencontrées déjà plusieurs fois, à savoir la
lemniscate et l'hyperbole equilatere. Le procédé indiqué s'y
applique sans la moindre difficulté.

Exemple 1. La lemniscate.

(x2 + y2)2 —l(x2 — y2)zz0.

Cette équation peut se mettre sous les formes différentes

g*gl —(g2 + g*)-0,
g2z\ — (z2 + z\)A-\ \,

(*2-l)(^-l)zzl.
On peut donc poser

1») /' (Z)ZZ\- Z2, d'Où X. _ £0 - | (3, _ ,8) ;

2°)Z» V1-*2, » f-fo-^v^ï^ + arcsin/);
1 I

V)f'(g)-zz-i==, ». f — fa arc sin z;/ï=:
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4°) /' W r=T2 ' d'où £-f0zzi log J-±--

5°)/'(r) (l-r*)*, » t-f0 .r-| *• + £*<-;

6°) Z (*) y/l-*2, » t — to J\/T—72 dz ;

7°)Z'(-s) T7=i=. » ?-f. JV^=-^ C7!— ^2V/l—r2 J \J:

etc.

Exemple 1. Hyperbole equilatere.

*'-y*=Y
En mettant cette équation successivement sous] les

formes
*2 + *î 1,

1_ _1__ 1

¦> "T" „2

-é + rf
k-(^i)^ '

il vient finalement

'-^) («-£)
Cette dernière forme permet de poser
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Vf'(*)_=Ì.-±, d'oùf—f0 r+i;
(z)zz\/t--l, »2°)/'(r) zzyi ——, » £—'f0 \/z2—\ + arc coséc ir;

3°) /' (*) —V 1 - j4p > d'où f- f, -1 log l±f;
1

—F2-.'

4«;/(*) -=!= -=¦•••=, » t-to=V/i--^2;

5°)/'(*) -yf^TZVÄ' d'où f — f0 Jti/r^i-irf^;
1

v ~3

etc.
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