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COURBES D’EGALE LONGUEUR

PAR

H. AMSTEIN

PL. I-1IL.

Dans la théorie de la flexion d’une poutre prismatique
on considére celle des fibres dont la longueur n’est pas
modifiée par Paction des forces, c’est la fibre neutre. La
forme qu’elle affecte aprés la flexion est dite ligne élas-
tigue. La fibre neutre et la ligne élastique sont des courbes
d’égale longueur. _

Il va sans dire qu’en géométrie on peut former autant
de courbes d’égale longueur qu'on veut. Il suffit, a cet
effet, d'introduire des facteurs de proportionnalité conve-
nables. Dans ce domaine la recherche des courbes d’égale
longueur ne présente aucun intérét. Il n’en est pas de
méme d’autres domaines. Comme 'étude des lignes élas-
tiques définies plus haut est trés importante en mécanique,
il peut étre intéressant, dans le domaine des représenta-
tions conformes, d’étudier une question analogue.

Le probleme dont s’occupe ce petit travail est done le
suivant : Etant donnée une fonction monogeéne, quelle est
la courbe dont la longueur de chacun de ses éléments n’est
pas modifiée par la représentation conforme attachée a
cette fonction ?

(e probléme est de ceux que l'on rencontre tout natu-
rellement sur son chemin dés que 'on aborde I'étude des
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2 _ H. AMSTEIN

représentations conformes. Sa résolution n’offre aucune
difficulté, d’ailleurs elle est connue. Ce n’est donc pas pour
la méthode employée que nous offrons ces quelques pages
au lecteur, mais bien pour les résultats de détail obtenus.

Il peut, en effet, étre utile de connaitre des courbes qui,
entre deux points correspondants quelconques, ont la
méme longueur, ou bien encore des courbes dont la lon-
gueur peut, comme par exemple celle de la lemniscate, étre
divisée en un certain nombre de parties égales.

Soit
(1) =B =8, @, Oyess)

une fonction- monogéne de la variable indépendante
c—=ux + iy et des paramétres constants a —a’ 4+ ia",
b=>0"+ 10", ... :

On sait que toute fonction de cette nature sert d’inter-
médiaire 4 une représentation conforme.

En mettant en évidence la valeur absolue r et la dévia-
tion ¢ de la dérivée f'(2), I'équation

dl=f"(z, a, b,...)ds=rePids

montre que le rapport des valeurs absolues de d{ et d=
est égal a r, ce qui peut s’écrire en adoptant la notation
généralement en usage

|d
|

|
|

™y

|

—

tq

Il suffit donc que r soit égal a Punité pour que la lon-
gueur de I'édlément d= ne soit pas modifiée par la repré-
sentation conforme { =f(z, a, b, ...).

On arrive au méme résultat en introduisant les quan-
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tités conjugées de {, =, a, b, ... que nous désignerons

par l'indice 1, de sorte que
L=f—m, sy,=oxr—uy, ay=a —ia", by=b'"—1ib", ....
En effet Péquation (1) entraine cette autre
(1%) G, :f(._:la(’lﬂ [’L: ces)

et on a, en désignant encore par ds I'élément de la courbe
originale . (<), et par do I'élément de la courbe image. ({),

dz. dz, = (dx + idy) (dx—idy) = dx? 4 dy? = ds*?,
d¢. df, = (ds 4+ idy) (d&— idy) = d&2 + dr?2 = dg?,
el puisque
@Lz=F (2, 6, by s .)J:, dt, =f (2, a,,b,, ...)ds,,
il vient
G2 =) (2, By Dy wond AFF 8y v g5 By v v o) hey =
=f(s,a,b,...)f (5150, by, ...)ds2.
Ainsi, pour que do soit égal a ds. il suffit que 'on ait
(2)  fle,a, by ...) {2, 8y by )= 1.

Cette condition détermine la courbe (2). Pour trouver la
courbe correspondante ({), on peut ou bien chercher direc-
tement I'image de la courbe (=), ce qui sera généralement
assez long, ou bien se servir de I'équation (2) appliquée a
la fonction inverse de f(s, a, b, ...), car de

d¢ di, 1
des dz;— 7’
il suit immédiatement
de  deg
P =1.

EE- - dg,
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Cect dit, nous allons passer en revue les représentations
conformes les plus élémentaires et les mieux connues, afin
de découvrir des courbes d’égale longueur.

wf (Ig w/f
(= — =1, , =1
ds Rl ’
et, par conséquent,
> gy =1.

Comme cette dernicre relation est indépendante de =,
on en conclut que les courbes ('::') et ({) sont toujours
identiques. La formule (1) constitue, en effet, un simple
déplacement de origine avec maintien de la direction des
axes des coordonnées et y.

I1. (1) = as, a = const.

f["f
-~
—

-

(="

N (-[1 L4

[.a relation

n'est satisfaite que si @ est de la forme e, ot 4 est un
nombre réel. Dans ce cas il n'existe done pas de courbes
d’égale longueur, a moins que le facteur ¢ n’ait pour seul
effet une rotation autour de lorigine commune des plans

e

comme le svmbole de la similitude parfaite, avec Porigine

z) et (). La formule (1) peut, en vérité, étre considére

comme centre de similitude.
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. _as 4+ 8
I11. (1) g
ot

a:a.’ + I-O.C”, p):‘jr + f.p)”, }’ — y»’ + ’-},n’ ()‘:' ()-! + l'a\ﬂ

sont des constantes.

On sait que cette fonction fait correspondre a toute cir-
conférence (=) une circonférence ({), la droite étant consi-
dérée comme un cas particulier de la circonférence. Elle
est le symbole de ce que Meebius appelle une « Kreisver-
wandtschaft », ou encore, elle caraetérise (avec une légére
modification), une transformation au moyven de ravons
vecteurs réciproques.

De (1) on tire

«d — 3y o «, 0, — 3, 1,
T (ys 4027 T (ry £, + dy)?

[

d’on

i

p— td 3y % 0 — By 75 b
' (rs + 92 (n £ + ;)2 ’

¢

ou bien

(2) (r=+ )2 (1 51+ d)* = (@d — By) (e, 6, — B, 1y) -
En posant pour simplifier 'écriture

) — gy = A" 4+ A"
ou

AN=(a'"d0" — g8 y)—(a" 0" —B"¢"),
J_\.ff — (a! ()-'r - ‘3! ‘},u) + La” d-r . ;j),’ yf)’
il vient

(ad — 3p) (e 0y — By = A2+ A2

Ensuite on trouve successivement
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(75 +0)(y, 5, +9) = vy, £y + 703, + yd, 5 + 90, =
=0 ) O i) (0 i) (e i)+
+ 0 iy (6 —i0") (x4 iy) + 90" =
—(y'249"2) (22 y2) +2(y' 0 +7"8") 2 +2(y' 0" —y" 8 Yy "2 4+0"2.
Ainsi la condition (2) fournit 'équation

L0 247" 2) (22 y2) 2070 7" 0" Lo +2(y' 0" —y" 0 Yy 0" 240" 2 P=A" 24 A"2

qui est celle d’une courbe du 4° degré dégénérant en deux
circonférences, dont 'une est imaginaire.

Celte équation peut facilement étre mise sous la forme
normale

, () " ( rr 2 7 r ()‘”-—— H()-r 2 \/;\’2"]— A”“—’
(J? ¥ }— _—I_—_l : ) + (,’/ }L—,., y,ﬁ—) — 7 T
il o i

ou la seconde valeur de \/,\"—’ + N2 a été rejetée.

La courbe (z) étant une circonférence, on sait d’avance
que son mmage (¢) sera une courbe de méme nature. Pour
la trouver, on rdésoudra Péquation (1) par rapport a =,
ce qui donne

e Ty
T yS — «

En comparant cette formule avee (1), on reconnait qu’il
suffit de remplacer dans Péquation précédente

xropar &, ypary, epar—d, Jpar —e

pour obtenir 'équation de la courbe ({), a savoir

(

Ifh-

'y + y")l’_'_ ( o y —d'y )’ \/A"-’ + A"2
- 7o "o = T 79 | e et 7 o I
A o ML : ¥ Ry 2 s o
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Comme ces substitutions n’affectent pas les quantités A’
et A” ¢ on voit que les circonférences (£) et ({) ont le méme
rayon ; ce sont bien des courbes d’égale longueur.

1Y L

ot n est un nombre constant réel quelconque, mais diffé-
rent de I'unité.
Dans ce cas on a

<o e
[lemppeed, £ = ngneAd,
et la condition
'ty =n? (g1 =1
donne
n*(x? + Yt =1
ou
2 oot .
x + y - 9
nu—-i

La courbe (2) est une circonférence de centre 0 et
1 - , :
de rayon —5— . La courbe ({) sera également une circon-

]lit--"-i

- : 1
férence de centre 0, mais de rayon —— . On s’en con-

ni’l*—-—i
vaine immédiatement.

En effet, la formule
|

n
e

_—
£ ¢

montre que, pour obtenir équation de cette courbe, il
suffit de remplacer dans I'équation précédente

xparé, ypary et npar—,
n
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ce qui donne

1
2_'_,?}-'.’:_____,.__.

on

f Jr‘l'f'

nn——l

I est a remarquer que la correspondance entre les
courbes () et ({) est telle que le point { parcourt n fois sa
circonférence, tandis que = décrit une seule fois la circon-
férence (<).

i —
9 o — e

1 1
< s

Clas particulier. e

Les circonférences () et ({) se confondent ; leur rayon
est ¢gal a Punité. Les deux points correspondants parcou-
rent cette courbe en méme temps, mais en sens inverse.

Observation. 11 est évident que, les points = et { res-
tant en général distincts, les courbes (2) et ({) se confon-
dront toutes les fois que la fonction { et la fonction inverse
£ sont identiques. Plus loin nous rencontrerons encore un
exemple de ce genre.

, 1 1
VY- (1) _é.:'cy(:"l_‘":).

Nous rappelons, en passant, que cette fonction trans-
forme le systéme de circonférences concentriques avec 'o-
rigine comme centre commun et le faisceau de rayons
correspondants respectivement en un systeme d’ellipses et
d’hyperboles homofocales aux foyers ¢ == + 1.

De (1) il suit

| 1 L1 1
v=g(1-n) =g (-5)

ensorte que la condition {' 'y = 1 prend la forme

1 1 1)___
(=) (i-5)=1
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ou bien

322 4 24 2% —1=0.
L’équation de la courbe (=) devient ainsi

(x4 y?)? 4+ 2(x?—y?)—1=0,
ou, posant

X=rcosg, y=—rsng,
en coordonnées polaires

3rt4+2r2cos29g—1=0.

En résolvant cette équation, soit par rapport a r, soit
par rapport a cos 2 ¢,

; = %—\/H—— cos 2 ¢ + \/3 + cos? 2¢, )
: » (fig. 1)
) cos 2 i s
\ =T /

on obtient des formules qui se prétent bien au calcul nu-
mérique. |

Etant connu un point r, ¢ de la courbe (), on peut
déterminer le point correspondant de la courbe () a Iaide
des formules

g‘:%—(/'-—l——i—)cosgo, r!:-ol_)‘— (r— -}-) sin ¢ ,

que Pon obtient en posant dans I'équation (1) = = re%:,
et en séparant ensuite la partie réelle de la partie imagi-
naire.

Il est d’ailleurs facile d’établir P'équation de cette courbe.
En résolvant 'équation (1) par rapport a =, il vient

::é‘i\/é"’—hl,
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d’on

»

; ¢ _\/é‘-—lic

= § o e

‘/4-2#1_ \/gz_{_ ,

C Vei—1xy
By 2= e
Vi —1
La condition £ £'; = 1 donne ensuite
(\/§°—_1+ Ve —1x¢)
. S — 1,
\/§ L. \/5'1 ==
relation a laquelle on peut donner la forme

Vo1 V1= —¢¢

En rendant rationnel et en si.mpliﬁant., on est conduit a

['p

1 -

O - 9
'ngétl_‘_"g

2 +§ 2 51_4‘4_@11:01
ce qui f()ul'n.it l’équaliml_ cherchée
3(£2 4 7t — 4 (& + ) (8 —1?) +16 292 = 0.

Transformée en coordonnées polaires, a Paide des

for-
mules

E==ocosy, m=osiny,
elle devient, aprés division par ¢!
30t — 4 o2cos 20 4+ 4sin22y = 0.

En vue du calcul numérique, on en tire

-_—;\/g—\/cosﬂwi\/4f(*0329¢’_3-’

T fig. 2
o o/iE T (fig. 2)

cos 2 Y —
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Remarque. La présence du facteur commun g¢* accuse
Porigine comme un point quadruple de la courbe.

VI. 1) 42=1.

De cette équation on tire d’abord

(=V1—s,

puis
«“! ____ < ~r :1
— g B b §, — e
~2 —— o2
1 — - Vi—z,
La condition ' ', = 1 devient

d’on il suit

ou bien

La courbe () est donc une hyperbole équilatére qui, en
vertu de la symétric de I'équation (1) relativement aux
variables = et {, se correspond a elle-méme. La corres-
pondance est telle qu’au point 2, y correspond le point

E§—x, »=—1y, ouencore le ‘point. §=—x,n="yYy.
VII. {=log =.
Dans ce cas .
/) P 1 4 I 1
S = —7—» S§1=7")>
o~ 1 |

) r

et la condition {"{’; = 1 donne la circonférence

B2 gre=l .
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s=e, '—e, ', —e¢
il suit
4+ =0, oublen &=0.

Lorsque le point =z parcourt le cercle des unités une
fois dans le sens positif, le point { décrit la portion de
Paxe des 7 qui va de , =0 a y = 4 2x.

VIII. [ — arc¢sin £.

Dans le cas actuel on a

/ 1 i 1

La courbe (£) est une lemniscate particuliére au para-

U s

metre \/2 , & savoir
(1) (24 y?)2—2(x2—y?) =0. (tig. 3)

Pour trouver limage de cette courbe, on partira de
Iéquation

il —i
i e e —e
£=sin{ = :
: 2
qui fournit
il o 18 (761 11
r_€ Je g e Fe
F=—— S
La condition =" ¢', = 1 prend la forme

1 14 —i{ i1 1]
3+ ) (™ +e%) =1,
ou bien ‘
(S4-C1) {{—1) —{[—4i)

+ & + e B = 4,

21‘5‘: '-"2{5 2],?

e G+ e e
; 2n —3
(2) e + ¢ +2c0828 = 4.

N

(({+a)
e

+ e =4,
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Posant pour un instant

2
€ — .

cette dernieére équation devient

ll—l—M—l—Q(us“)&;‘ 4,

ou
u? 4+ 2 (cos 25 —2)u + 1 =0.

On en tire

9

-

e — u = (2 — cos 28) + \/(2—0052 £)2—1.

Finalement la courbe ({) est représentée par I'équation

7= —12— log [(2 — cos 2%) + \/(@———(us%) —1 ]
ou
— 4 L ioer@a— £) + /(2 95)?2
g 5 log [(2—cos28) + V(2—cos25)2—1 | (fig. 4).

On remarquera que Pordonnée 1 est une fonction pério-
dique de I'abscisse & ; la période est égale a 7.
L’élément de cette courbe est donné par la formule

Or

—_—

) sin 2§
-

ds — — o

\/(_9 — c0s2§)2—1

et, par conséquent

sin2 2 98 / 1 —cos 2&
de — \/1 -+ e o %_) — d: = \ : ({_

S 2\/ 1 — cos 2& /i 2d& . V2 d
i (1 e COS 2};) ( — COS 0);) C s ' ¢ . - g o
S 23 =8 \/ — cos 2& \/l—l—sm—
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Afin de vérifier si, entre deux points correspondants,
les courbes (=) et ({) ont la méme longueur, il est utile
d’exprimer les coordonnées x, y en fonction de &. A cet
effet on éerira

: 1 i —.f-;) 1 i(&Fin) — i(&iy)
b4 .1,—{—1.1/.__?(6 _6_—“3_3”;(6 — g )_

iE—p  —if g 1 [—. . e 7 . . e
.(e”e ——e’e):—a)—.[e (cos &+ ¢sin §)—e (cos § — ¢ sin _E]:

i —7
e —l—é_” i e e — e .

: & — COS £.
2 a

En comparant, dans les deux membres, les parties
réelles et les parties imaginaires, on obtient

L e+ e .
Y b j— 9 — SIS«
3) B
e — e -

Incidemment on pourra constater (ce qui d’ailleurs est
connu) qu'aux droites 7 — const. correspond un systeéme
d’ellipses homofocales

.:L-:? y?
(e” |- E”)z (e” — ?’)2
2 2

et aux droites & — const. un systéme d’hyperboles homo-
focales

Les foyers communs a toutes ces courbes sont les points
a—El, g=1,
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-
-

Dans le but de faire disparaitre la variable 5 des for-
mules (3), on modifie 'équation (2) de la maniére suivante:

Ay -2 ) ;
(2) —‘—(’W: 4 —'2 cos 2%,

n —27 __ "
+ 2+ e —=6—2cos 2§,

27 —2n ;
e — 24 ¢ == 2—2cos 2&,

d’ou Pon tire

En introduisant ces valeurs dans les formules (3), ces
derniéres prennent la forme

/ N . /3 95 — 1 9 9571
\ ___-——E—»Jl 5.,\/ — COS .__.-E\/(_.—C(Jb 25)°—1>
{ f/_—\/—l(;- .g‘g\/lm(o szésin?!.:f.

On en déduit

i (2 — cos 2&) sin 2&

= d&, dn= cos 2& d§;
V(@ — cos 26)7 —1

puis

(2— cos 2£)2sin? 2§

= \/d.:c‘3 +dyr= (2 — cos 28)2 — 1

4 cos225 dE =

1 — cos 2& _ s = 2 dé —  Jed: _‘
(3 — cos 2&) (1 — cos 2%) \/3 — cos 2& ‘/1 + sin? §
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Ainsi on a bien ds = do et les deux courbes sont
d’égale longueur. Il va sans dire que, s’il s’agissait de
calculer la longueur de la lemniscate (1), on préférerait
introduire des coordonnées polaires moyvennant les for-
mules 2 = r cos cp y=rsng. On obtiendrait de cette

hu on

V@g(ﬁy

COS 2(} & (IS = e
)
‘J_/ COS 2(]‘

r = \/r?j

Le rayon de courbure R de la courbe (£) est donné par

Ia formule

\/(/.’1"-’- “—‘]— dy? ' .

= dr d? y — (/g/ d? x

SOn (\lll(‘%‘sl()“ “l(‘(‘ (l( ii)llllllll"‘s (43 est

/9
R—=—_Y

Jsin s

)

tandis que le ravon de courbure P de la courbe () devient

\/1 /(/: ' -
(/*- V2

I

d?y sin &
d&?
P
Le rapport "= 3 est done constant; cette circons-

tance digne d’étre remarquée, se rencontrera encore plu-
sieurs fois dans la suite de ce travail.

IX.

— arctg =

!'f‘\;-

Cette fonction conduit aux mémes courbes que la pré-
cédente, a la seule différence pres que les axes des et
des y sont échangés entre eux (mais non les axes des &
et des 7).
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X. (1) sz-i—.l

33

Cette fonction permet de représenter dune maniére
conforme Pextérieur du cercle des unités sur 'extérieur de
I'astroide particuliére.

2
3

-3

: 1 ,
é-:l—n‘a g =1—

S &

+

(9]l ]

&
Dans ce cas on a

1
ra
1
et la condition ¢’ {’;, = 1 donne

z*l—l—z;*:l,

d’ou il suit que la courbe (£) a pour équation

2 2\ 9 2 ,,9 1
@ (@ 4y —8ary =5

e

ou en coordonnées polaires, si I'on pose x —=rcos ¢,
Yy =rsng

rt(1—8sin?gcos?y) = rt(1 — 2sin?2¢) = ricosdg = % ’
ou encore
1 ;
(3) = iqpem—a (fig. 5) -
: \/2 cos 4o -

De cette équation on tire, en désignant par ¢ langle
que fait la tangente en un point quelconque avec le rayon
vecteur et par « 'angle que fait cette méme tangente avec
'axe positif des x,

XXXVII 2
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d’ott

’élément de la courbe a pour expression

{r\?2 1 dg
ds=\/r 4 E—)d ~_1
(dSP ¥ ‘!”/9 (cos &g)s

et le rayon de courbure R devient

. ds 1
H= % = e T 5 ‘
3 ;/2 (cos dy)"
Cette courbe a quatre asymptotes passant par l'origine
et faisant avec 'axe positif des x respectivement les angles

4 % , = 3—; . Elle est donc du genre hyperbole.

Posant dans DPéquation (1) 2 = re'? et en séparant les
parties réelles des parties imaginaires, il vient

E==rcosg + 31r3 cos 3¢,

sin 3¢,

= 7 Bl @ —

((1’01‘1 pour r—1 lastroide & — g— cos g, n = % sin 3¢ ou (2)).

En introduisant dans ces équations la valeur de r tirée
de (3), on obtient pour la courbe ({) la représentation

paramétrique
1 4 cos ¢ + cosTg

e~ Tt
1) 3 (2 cos dg)i
" 1 4 si —sin 7 i
[ = 2 sin ¢ ‘;111 P . (fig. 6)
\ (2 cos dg)n
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Cette courbe qui se compose de quatre branches, a les
mémes asymptotes que la courbe (2); elle posséde en
outre quatre points doubles situés sur les axes coordonnés
a la distance 1,20959 de l'origine ; un de ces points corres-
pond a ¢ = 14° 15" 38", 39. Pour trouver I'élément de
cette courbe, on formera

ds — — _&1'_ sin 11(,03 dins
\/2 (cos &g)z
iy = 1 cosllg

B 7 5 A9
\/ 2 (cos dg)s
d’ott Pon tire, comme cela devait étre

1 de
V2 (cos L)

do — ds —

On peut encore remarquer que pour cette courbe

tg « = cotg 11lp ou e« = % — 1lg

et le rayon de courbure

1 1 _
11 \&/é_ (cos dg)i

P =

Ainsi, en deux points correspondants, les rayons de
courbure des courbes (z) et ({) sont dans un rapport

onstant — -~—-1 .
cCOnsia — 3

| 1 1\
XI. 1y =g (32_,_ ._2_3).

A Tégard de cette fonction qui sert d’intermédiaire a la
représentation conforme de extérieur du cercle des unités

2 2
sur l'extérieur de l'astroide & 4 13 =1, on pourra con-
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sulter mon travail intitulé : Un exemple de représentation
conforme, « Bulletin de la Société Vaudoise des Sciences
naturelles », vol. XI, 1878, pages 175 a 198.

Bien que cette fonction ne se distingue de la précédente

3 |
que par le facteur constant T les courbes (2) et ({) sont

trés différentes de celles que nous venons de trouver.
Dans le cas actuel la courbe () a pour équation

T(x2+y)t+9Qxt—1222y2 4 2yH) =9,
ou en coordonnées polaires . = r cos ¢, y = rsin ¢,
7r8 4+ 18rtcosdyp = 9. (hg. 7)

En vue du calcul numérique on en tire

) |
(2) r :\_4/—1—?\/—960s 4gp+\/81 cos? 4¢ 4 63 .

Son élément est donné par Pune des formules

12 rdyg . 4 rdg
7rt+ 9cosdy \/9c0s‘~’4@ + 7

ds —

et son rayon de courbure par

| 24 rd
R=4 -
. 35 r3—27

L’équation (2) étant satisfaite, il suffit pour obtenir les
coordonnées &, 9 du point de la courbe ({) qui corres-
pond au point r, ¢ de la courbe (g), de poser & = re'?
dans P'équation (1) et de comparer, dans les deux mem-
bres, les parties réelles et les parties imaginaires, ce qui
donne |
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(3rcosg + ——-(:09 39),

vp-l'—» »Lb;»-a-

(3 r sin ¢ — ?1; sin 3¢) . (fig. 8)

Cette courbe présente quatre points doubles situés sur
les axes coordonnés A la distance 0,83662 de l'origine. (Un
de ces points répond & ¢ = 18255’ 20", 35). La construc-
tion de la courbe est facilitée par la connaissance de

dy
tg # = —~ et du rayon de courbure. On trouve
d&

r8 cos By — 2 rt cos ¢ + cos 3(;3

g f=— r$ sin 5 — 2 rt sin ¢ — sin 390
et
P __ 245
35 r8s — 99

(Au point double correspondant a la valeur indiquée de
¢, tg g = =1,73152).

X1I. (1) { = ns— psn

olt p est un nombre réel quelconque et n un nombre
entier positif.

Cette fonction résout le probléme : Représenter d’une
maniére conforme I'intérieur du cercle des unités sur 'in-
térieur d'une épicycloide. A p = 1 correspond une épicy-
cloide ordinaire et & p < 1 une épicycloide allongée. *)

Dans ce cas

‘=n(—pl), i=n(1—psrd),

*) Comparez mon travail intitulé : Noles sur les épicycloides et les hypocy-
cloides, envisagées au point de vue de la représeniation conforme. Bulletm de
fa Soc. vaud. des Sciences nat. Vol. XXVIII, 18g2, p. 9.
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et la condition {' 'y == 1 donne I'équation

n2[1—p (sn=t 4 5n—d) 4 p2 (5 5] = 1

qu’on peut mettre sous la forme

9

pileg)n—t—p(en—t 4 gin—l)y = — ne— 1

9

n-

ou, en introduisant £ = & 4 1y, £, = & — 1y et en po-
sant

m(m—1) (m—2)... (m—Fk+1)
1e B 3 —_ k

B

prxrty?)rt—plar—t+ (n—1) 2" —2yi—(n—1), 23y —
—(n—1)g =t y3i4 ... + (n—1), xn—h—tyhgh 4 4 yn—tin—1] —
— p[axn——(n—1), 22 yi—(n—1), "3 y> + (n—1); xn—4 y* i+ ...
oo + (=D (n—1), an—h— yk ik 4 4 (—1)n—dyn—1jn—1] —

nz—1
n2

En simplifiant, il vient

p(x4y2)n——9p[xr—1— (n—1), xn—3y? + (n—1), xSyt § ....

n?—1

4+ (—1)A(n—1)gxn—22 y22 — | | = —

5 b
na.

ce que 'on peut écrire 1°) lorsque n est impair

A=1(n—1) - .
P? (:E?_i_y?)n—i _9[) Z (_ l)% (n_l )Qz!ffl—?l——i !/22, — n'ﬂ,’_ -
A=0
et 2°) lorsque n est pair
Z=~1§(n—2) n?
2 (2 2\n— W ORI VNP . | S [ L Ut
p2 (et ytp—i—2p "EO (—D*(n—1)g xn—22—1 2t — =
A=
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En coordonnées polaires & = r cos ¢, y=rsing, ces
équations prennent respectivement la forme

1°) pour n impair

A=%Ul-—i) 9 1
= - . . - CRessl [
})2 ren—1) Qp rn—i1 ¥ (_...._‘] )/-, (n__l)g-)L cosn—22—1 @ s1n22 ¢ —=— —n—é—— ’
7[.:0 ‘ "
2° pour n pair
2,:12-(11—2) 9 1
- c % 7 o = y n- _
prrin=t)—9ppn—1 3 (—1)2(n—1)2) cosn—2—1 g sin2t g = — g
71.=0

Etant de la forme Aa2n 4 Bam 4 C =0, ces équa-
tions peuvent étre résolues par rapport a r.

En tenant compte de I'une ou de l'autre de ces équa-
tions, suivant que n est impair ou pair, on obtient la
courbe correspondante ({) par les équations

& = nr cos ¢ — prt cos neg
7 = nr sin ¢ — presin ng

’ . 4 ’
qu'on établit en posant dans (1) & = re'? et en séparant
les parties réelles des parties imaginaires.

XIII. (1) —=ns 4+ 571 :
ou p et n ont la méme signification que dans 'exemple
précédent.

A Taide de cette fonction on peut représenter l'exté-
rieur du cercle des unités conformément sur Pextérieur
d’une hypocycloide ordinaire ou allongée suivant que

p=1loup<<l.%)

) L. c.p. 9.
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De (1) on tire

Vol P e IO
o= (1= L), fuma (1= L),

et la condition {’ {’; = 1 fournit 'équation
e P P
% 1Y _ —
n (1 zn+4) (1 zlnﬂ) — 1

;1 (331)n+1_p (zll+i + 31)2-}'1) _I__IJZ’ o O_

ou
n?

Un calcul analogue a celui qui vient d’étre fait dans
I'exemple précédent, conduit aux équations finales

1°) pour n impair

.___HT (.1:2 + y-z)n.-j‘—i . QP s (_1)2 (n + 1)22 an—2+1 yﬂ — _pz .
A=0
2°) pour n pair
n?—1 2'=%n
T nr (462 = yP)r il —2p (— D2 (n+1)ep xn—2H1 y22 —= —p2,
2=0

En coordonnées polaires & = r cos ¢, y = r sin ¢, elles
prennent la forme

1°) pour n impair

g h=g(nipl)
— p2(nEl) — 2p prtd } ~2-0 (—1)* (n+1)22 cosn—2H g sin2 g — — p2,
2°) pour n pair
4
n?—1 s

g r2(nBl) —2p bl 3 (—1)%(n4-1)2,cosn—22Fl g sinh g = —p2.
2=0



COURBES D’EGALE LONGUEUR 2D

Les points &, 5 de la courbe image ({) sont fournis par
les équations

g " P
§—=nrcos ¢ -+ o COS g,

o ; . s
i =nrsing — - sin ng,

ot les variables r» et ¢ sont relides entre elles, suivant le
cas, par 'une ou l'autre des équations précédentes.

Exémple. Soit p=1, n=1,
1
C——Z+;'

Directement ou a l'aide des formules précédentes, on
trouve que la courbe () est une hyperbole équilatére dont
équation est

2

.1?2—~g/

ou en coordonnées polaires x —=rcosg, y =rsing

1 .
P i g (Flg. 9.)
\/2’ cos 2¢
Son élément a pour expression
1 dep
V 2 (cos Qgp)g

g —

et les quantités ¢, «, R dont la signification est la

méme que dans I'exemple X, prennent respectivement la
valeur )
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o .— & 0 & = (190___. o
$ =5 —2, crlgd=r = =colgly,
7T
a:f)‘—}-gp:é—"—gﬁa
de ‘/0) (cos 299)‘3

La courbe ({) est donnée par les équations

) 1 1 \/
B == e s S — 2 cos 20\ cos
( i (r+ P)COSSD (‘/Qcosﬂgo—l_ (’7) =

1) ¢
(1) y

) ?”/-—(T‘—-l-)‘illlgoh_. - ._——\/E_’Tg)s?gz) sin ¢ ,
’ r \/2005250

ou par I’équation unique que 'on obtient en éliminant le
paramétre ¢ entre ces deux équations, a savoir
3(8242)? (82—n?)—B (E242)?— [A(2—)— 9] =0. (Fig. 10)
Elle a deux asymptotes qui font, comme celles de 'hy-

1 , ..
L7 avec I’axe positif des &, et deux
points doubles situés sur Paxe des & a la distance == \/§

de Porigine. Les tangentes en ces points font les angles

perbole, les angles —+

1 , .. .
- 3 7T avec Paxe positif des &.

Des équations (1) on tire

sing—2(sin 2¢g cos 2¢ cos g + sing cos22¢) -

dé =
V2 (cos2g):
sm(p—Q cos 2¢g (sin2¢ cos (p + cos2¢sing) iy == suu,c—%os")gc%m&p J
\/ 2 (cos Qq))z \/ 2 (cos Qgp)
_ __ sing — (sin 5¢ -+ sin gp) i _sin 517 < Ao

V2 (cos 2¢): V 2 (cos 2¢)3
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dy — CO8 ¢—2(cosgcos?2g—singsin2¢cos2¢) el ==
| — — 3 -
V 2 (cos 2¢)z

__cosg—2cos2¢(cos2¢cosgp—sin2¢sing) ,  cosg—2cos2gcos3g

= ; dy = = g AP
\/ 2 (cos 2¢)2 \/ 2 (cos 2¢)2
__¢os g;——lcos 5179 —{: cos ) i = _cos 517 i
\/ 2 (cos2g): \/ 2 (cos 2¢)2
Il s’ensuit que
L dy .
t_%‘t,:gl—:-:cotgiiq-, =5 —59¢, d3 = —bdy,
do =\/ ds? 4+ dy? = 1__ dg = I8
V2 (cos 2¢)°
P s -d—g s i : .
dp 5 /2 (cos 29)%

Ainsi on reconnait qu’en deux points correspondants
quelconques, le rayon de courbure de la courbe (z) est
5 fois aussi grand que celui de la courbe ().

Les courbes d’égale longueur ne sont que des cas parti-
culiers de courbes dont les longueurs comptées & partir
de deux points correspondants jusqu’a deux autres points
correspondants quelconques sont dans un rapport cons-
tant. Le probléme : « Etant donnée une fonction de la
variable complexe =

E=F (8, Gy Dy vu )y

trouver deux courbes correspondantes (£) et ({) telles que
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do
o=
a résoudre que celui des courbes d’égale longueur. En
effet, de

m, ot m est une constante réelle », est aussi facile

do? — 1" (&; @5 by «as) J (855 Qi By v o) 082
il suit immédiatement

(%%)-_:m?:_—ff(z,(l,b, cosy S G2y @ o Dy swwma) g

et, si 0({,a,b,...)est la fonction inverse de f(<,a,b,...),
on a également

dvid 1
(do’) —m?2 fl(z,a,b,...) fl(zi,a4,b0,...)
zgp’(g"aﬂb? "')gg’(gl’alﬂblﬁ "')'

Ainsi les courbes originales (£) sont déterminées par la
relation

I ey @y by se)f (855 Oy s Dy g wnn) = 0825

et les courbes images ({) par la relation analogue

1

m?

o (Cyay by ) @ Gy tyyby,e)=—.
Quand on fait varier le paramétre m, les courbes (z2) et
(¢) forment, en général, deux familles de courbes distinctes
qui cependant peuvent se confondre ; ce sera le cas toutes
les fois que I'équation entre = et { sera symétrique relati-
vement & ces deux variables.
Il ne sera pas inutile de faire suivre ces considérations
de quelques exemples.
I _az4p
. e = sy L
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Les lettres «, 8, y, d, A’, A" conservant la méme si-
gnification que dans Pexemple III, p. 5, le procédé indiqué
conduit aux équations suivantes : Pour les courbes (=)

yr dw" + " d-n' 2 ,J”— 14 d-.' 9 1 ‘/jxff!—l—f\*”?
(m-l— 5 7,,2 ) + (y-}-” - 7”2 ) = T
e e o moytay

et pour les courbes ({)

!]hn

o’ }” + o yf.’ )2 + ( i }” e y” ) 9 . \/:\f.z + A"
NN, SO WS S N — = C
9 "o i 19 E: 19 ;2

e el ¥
Si m varie d’une courbe a Pautre, ces équations repré-
sentent deux systémes de circonférences concentriques.
Une circonférence du second systéme est m fois aussi

longue que la circonférence correspondante du premier
systeme

I1. {=log z. (Exemple VI, p. 11).

Les courbes (g) sont les circonférences

_ 1
ax? - y? — —
Y m?’
les courbes ({) les droites
E§=—logm.

Lorsque £ déerit une fois et dans le sens positif une de
ces circonférences, le point { parcourt la droite § = — log m
depuis = 0 jusqu'a n = 2.

II. { —arcsin g. (Exemple VIII, p. 12).
La famille des courbes (2) est donnée par I'équation

m+

(24 y?)? — 2 (2?2 — y?) + (1—L> =190,



3o H. AMSTEIN

et la famille des courbes ({) par équation

2 2 2
n = =+ log [(W — COS Q,r) + \/(m" — €O0S 23) —1 ]

Pour m =1 la courbe (£) est une lemniscate et la forme
de la courbe correspondante est connue (fig. 3 et 4).

Lorsque m <1 la courbe (g) est formée d’un seul trait
entourant la lemniscate plus ou moins étroitement suivant
que m se rapproche plus ou moins de lunité (fig. 11), et
la courbe ({) a une forme se rapprochant de celle indi-
quée dans fig. 12 qui, de méme que fig. 11, répond a

e
VT

Enfin lorsque m >1, la courbe (2) se compose de deux
traits fermés, symétriques par rapport a laxe des y,
tandis qu'un ensemble d’une infinit¢ de traits fermés,
isolés et tous identiques, constitue la courbe ({) ; car on a
déja reconnu que 'ordonnée 7 est une fonction périodique
de Pabscisse &.

Les rayons de courbure R et P des courbes (2) et ({)
ont respectivement pour expression

(1—m)+3r“
P— = : :3 )
It
(1 =)+
Iv. =1 —=2.

Par le procédé habituel on trouve
pour les courbes (2)

(1—mb) (224 y2)2 4 2m* (22— y?) — m* =0,
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pour les courbes ({)

2 1
BT . e
il n?) mt 0,

-

et 'on peut remarquer que la seconde équation s’obtient en

(1——1) (St o

m*

remplacant dans la premiére & par &, y pary, m par =1y

St done on se figure les plans (2) et ({) confondus, les
deux familles de courbes n’en forment qu’une seule. Elles
constituent, en quelque sorte, une involution en ce sens
(ue la correspondance entre deux courbes qui répondent &
la méme valeur de mn, est réciproque.

Lorsque P'une des courbes est formée d’un seul trait
fermé, la courbe correspondante se compose de deux traits
fermés, isolés et symétriques par rapport a axe des or-
données.

Dans le cas limite m — 1, hyperbole 22 — y2 = g S¢

correspond a elle-méme. (Elément double de I'involution.)
V. { =3z — z3.
Les courbes (2) ont pour équation

m?2

(22 4 g —2 (w2 — ) =T — 1,
et les courbes ({) sont données par

& = 3r cos ¢ — r3cos 3¢,

(1)

n = 3r sin ¢ — 3 sin 3¢ .

- * . ’ - \
Dans le cas particuliérement intéressant ou m — 3, la
courbe (2) devient la lemniscate

(@ + gt —2 (@t — ) =0,
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ou, en coordonnées polaires x = rcos ¢, y = r sin ¢,

(2) = \/éﬂ\/cos 20 . (fig. 13)

En introduisant cette valeur de r dans les équations (1),
il vient

§=3 V@\/;)s 2¢ cos o — 2712 cos 2¢ \/cos 2_99 cos 3¢ —
== VQ\/;(")S 20 (3 cos ¢ — 2 cos 2¢ cos 3¢) =

s 1/_2-\/55 2¢ (3 cos ¢ — cos ¢ — 08 H)

—V2 \/E)S 2¢ (2 cos ¢ — cos bg),

n—=3V2 \/cos 2¢ sin ¢ —2 14 ‘/COS 2¢ cos 2¢ sin 3¢ —

=132/ cos 2¢ (3 sin ¢ — 2 cos 2p sin3¢) —

=72 \/ cos 2; (3 sin ¢ — sin ¢ —sin 5¢)

== V3 \/cos é—(; (2 sin ¢ — sin 5¢),

en sorte que P'on a pour la courbe correspondante ({) la
représentation paramétrique

( E=V2V cos 2—50 (2 cos ¢ — cos Hy),
(3:) - - - .
==t 4 \/cos 2¢ (2 sin ¢ — sin 5¢). (fig. 14)

De (2) on tire
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d’oul

. d . T
tgl}:r-d—i:—cotgﬂgo, J::é—-[—?go,

a:g+_3go, Ida:3d99,

et comme on a

2 | 9
ds -:.\/r‘-’ +(€?—) dipe= —V:—@_—,
¢ V/ cos 2

le rayon de courbure R de la lemniscate a pour expres-

sion

R:?—: 2 oy
“ 3\/cos°.:2gp

Les équations (3) donnent

d&l
2
_ —2sin2¢cos ¢ + sin2¢ cos by —2sin g cos 2¢ + 5cos 2¢ sin 5¢ iy

sin 2 ‘ - I . .
e [— Sy (2cosgp—cosbg) + Y €OS 2¢ (—2sing 4+ 5sin 590)] do —
cos 2¢ ‘

V cos 2
S —2sin 3¢ + sin 7gp_—mi—_2_(sm T¢ + sin 3¢) dip = 3sin7g s,
\/cos 2¢ \/cos 2¢
e [— qﬂ@_ (2sin ¢ —sin5¢) + V €08 29 (2 cos ¢ — 5 cos 5gv)] dy =
2 \/cos 2¢
__—2sin2¢sin @ 4 sin 2¢sin5¢ + 2cos 2¢ cos ¢ —5 cos2¢ cos 5y i
\/cos 2¢
2c0s3¢p—cosTg —2(cos7 cos 3 | 3cos7
st ¢ P —2(o08T9 +088G) v P, dw;
\/cos 2¢ V cos 2¢

XXXVII
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d’ott il suit

di= 3y7S019 4

\/congp
d?;r:—?)]@%d@,

\/cos.@..gp

do =V de* + dp2=3y2 24—

\/(:09230
dn T
t.gf-i’:d—é:—cotg%o, ﬂ:§+7g}, dg =T7dg.

Le rayon de courbure P de la courbe ({) devient donc

do 3 V2

P=-= —=

dg — cos 2¢
et 'on reconnait qu’en deux points correspondants les
rayons de courbure des courbes ({) et (¢) sont dans le

rapport constant L 9
| TR

La courbe ({) posséde trois points [doubles, a savoir
Porigine et les points § = #=2,702..., 7 = 0 dont l'un

-
correspond & ¢ = arc sin \/—K——— (ou g =24°40' 36", 62).

A Torigine les tangentes a la courbe font les angles

1 , - L] .
+ -~ avec l'axe positif des &; aux deux autres points

4
doubles on a tg p —=17,847...

Nous avons rencontré plusieurs couples de courbes
d’égale longueur (ou de longueur proportionnelle) qui, en
deux points correspondants, ont des rayons de courbure
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proportionnels. Ce fait n’est pas général. On peut, en con-
séquence, demander : Quelle est la condition a laquelle la
fonction { = f (s, a, b, ...) doit suffire pour qu’il se
produise ? Il est facile de répondre a cette question.

Si F(x, y) =0 est I'équation d’une courbe, son rayon
de courbure a pour expression

3
aF 2 aF 2
\/ (6’1?) T (51/—)
(aF) 2 oF  oF 6F &F (‘ZIL) 2 52F

dy) éx? " éx oy ox dy

R e

Dans le cas actuel ou

Fx,yy=f" (g,a,b, ...)f (51, a;, b, ...)—m2=10

“tse 'équation de la courbe (g), nous poserons, afin de
simplifier Iécriture

S (e a, by =0 f (215 ag, by, )—fl,

FlB, By 0y ) B2F s B i 5By nme) B3
etc.

Alors il vient

L AR ,?E-zu"ﬁ —F A",

o2F —_— gl "o 1o oK — (" L
@_fji—l—gfﬁ "I"f./(ia away‘—"l(jfl_ffl)a
d2F P B nopn Iy
Sr = — "R =2 £+ P A,

de sorte que

- VIR VIR |
PR =R+ R T —F"
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Le rayon de courbure P de la courbe correspondante ()
s’obtient par la méme formule. Il devient, si 'on désigne la
fonction inverse de § par ¢ ({, a, b, ...) et qu’a I'égard
de la fonction ¢ on adopte des notations abrégées analo-
gues aux précédentes a qavoir @ (L@ By san) =1 ;

@ (C1s s by o) =907

\/sp’ ¢ \/so” ¢, " ?

IFI-__._ q)lffg) + q\lh’:) (q’! (};’” ___q)

(1) P=2

7 *
9
)

"2 (9" ¢
Or on sait que

. 1 , f” w 3.]0”2_.,/',,]'”’
_..fr b} @ ——— ff3 ? q’ m— j-rl—j 2

et de méme

1 - ,f1” 3,/.,’2_](.’].’”
@1’ :j_i_’ , )Sclf! ——JT;B 9:'1’”: 1 (fl,:) 15 1 .

En introduisant ces valeurs dans (1), on obtient

R

L, fw fi”
P: ‘2 T o 0 " "9 "o T
B T A sy A= ATCY sy

R
Pour que le quotlent - soit constant et — n, ou n est

“un nombre réel positif ou négatif, on doit avoir, en tenant

compte de P'égalité \/f’f’l =m,

.I_{- o lf”g(Q‘}if!?__.f;feﬁﬁf‘) +tf‘i!fz(2.f‘!f2_'f‘fffff) —
1-) o j‘ffg(ﬂfﬁfﬂ__‘flﬂz) +j1"2(fffﬂ_f”2) —_— .

De cette équation on tire successivement, afin de donner
a la condition cherchée la forme la plus simple possible
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LIRS RS A
j'rfg(‘fifﬁm__j'lﬂg) +ﬁﬂg(fr‘f”f ____fffg)

- Tt
ffo(jifﬁHl _j;_l.F?) +'](1ﬂ'2(flfﬂl_j‘”2) ?

Sfr2fi"e __mn + 1
j'ffz (ji!j‘l!” —-ﬁ 174 2) + f:‘l ”2 (f’ fh’f __j'ff 2) - 2 5 |

j?fz('ﬂf!fiI!! _‘](iIIQ) +.}(]'.II2 (.f‘f!f'ﬂl "-"‘"”]('”Q) L ——___2

l

f.rfgjiffg T omn -l— 1 9
j;_”z""'“,fi’.f;m +'/w.2__.f‘rfm o _____________9
jil!g 'f‘h’-z — m’l—l— 1 ?

dil (%-)4-%(;"):—-;2—,;?:;

Ainsi la condition nécessaire et suffisante pour que le
fait mentionné plus haut arrive, est

(L) (5 = conn
(_2) %(7) 'CE ,}? — const.

En d’autres termes, il faut qu’en vertu de 'équation de

la courbe (2) |
L =

le premier membre de 'équation (2) se réduise a une cons-
tante.

Le probléme inverse : Etant donnée une courbe (z),
déterminer la fonction { = f (2) et la courbe ({) de telle
facon que les deux courbes soient d’égale longueur, offre
é¢videmment beaucoup plus de difficulté que: celui qui vient
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d’étre traité. D’ailleurs on reconnait aisément que si I'on
sait trouver une solution, on pourra en indiquer un nombre
illimité , car la solution dépend en dernier lieu d’une qua-

drature. Toute la difficulté consiste a mettre 'équation de
la courbe donnée sous la forme ¢ (¢). ¥ (2,) =1 (ou,
quand il s’agit de deux courbes dont la longueur de 'une
est un multiple donné de celle de 'autre, ¥ (2) ¥ (2,) = m?2).
Une fois cette forme obtenue, il suffira de poser /' (2)=uy(2),
d’on il suit immédiatement

(—G=Sy(s)ds.

Nous choisissons comme exemples deux courbes que
nous avons rencontrées déja plusieurs fois, a savoir la
lemniscate et ’hyperbole équilatére. Le procédé indiqué s’y
applique sans la moindre difficulté.

Exemple 1. La lemniscate.
(2 + y?)2—2(x?—y?) = 0.
Cette équation peut se mettre sous les formes différentes
s2el— (224 25) =0,
25— (24 2)+1=1,
(22— 1) (2—1) =1.

On peut donc poser

1% £ (2) =1 — 22, d’oﬁé‘—CO:%@z_‘zg)?

2 () =y1—22, » é'—*é'g:%(z\/l—z?—-l-arcsin z);
1

1
3%) £’ (g) = ‘/1‘_:—2 » §—s = arc sin z;
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b1 - . 1 14+ =
40)f(")_1—z‘—” d’on C——go_glogluz,
0 ’ — 2\ 2 ' 2 3 1 5
5)f(:':)_(1——z.~)'-, » g—é'n:z——?;z'-{-gz";
60;)')"’(2): \71—2‘-’, » C—Cozf‘ylmz?dz;
70)f'(5): \,&/11——-—-, » {—Lp= V_i—;

s, ] — g2
ete.

Exemple 2. Hyperbole équilatere.

2

m-

-_-tlzz—.

2

En mettant cette équation successivement sous] les

formes
24 27=1,

Cette derniére forme permet de poser
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1° /7 (z)::lt——};, ‘ d’o'ﬁg—_to:z-}-

t |

2N Fzg)= \/1-——— » {—{,= V 22— 1 + arc coséc < ;

. 1 1 . 1 142
0 Y oL A S T e e ’ P —_— e o =
3)j (@) l_l— 1_22, dOllé‘ Co._...f 210@1—3’
‘2'2
| 1 oz
Vi) ————————, » g'———é':‘/l-——z‘-’;
_1___1 \/1—22 ¢
& -
) f ()= a==={/ 1> doUL—¢ "f\/
o \71 1 b= t—=
- "
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