
Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 33 (1897)

Heft: 123

Artikel: Note sur les solutions singulières d'une équation différentielle ordinaire
du premier ordre

Autor: Amstein, H.

DOI: https://doi.org/10.5169/seals-265050

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-265050
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


22 BULL. SOC. VAUD. SC. NAT. XXXIII, 123.

NOTE

les solutions singulières d'une équation différentielle ordinaire

du premier ordre,

par H. AMSTEIN

Les géomètres se sont beaucoup occupés de la question des

solutions singulières d'une équation différentielle du premier
ordre. Encore dernièrement, M. E. Picard, dans son Traité
d'analyse, tornelli, p. 44 à 60, y a consacré un chapitre magistral.
Il semblerait donc qu'il n'y ait pas lieu de revenir sur un sujet
si souvent et si bien traité. Aussi n'ai-je pas la prétention de
modifier en quoi que ce soit les méthodes employées et les résultats

obtenus jusqu'à présent, mais simplement de présenter la
question sous un jour différent et peut-être nouveau. Il en découlera

un procédé souvent utile pour déterminer les solutions
singulières d'une équation différentielle donnée.

En déterminant un élément de contact du plan par les trois
coordonnées

x,y,p,
on voit que le plan entier contient =*>3 de ces éléments.

Une équation
(1) f(x,y,p) 0

définit, par conséquent, =o2 éléments de contact. Une courbe
est, en général, un ensemble de ^> ' éléments de contact tels
que la ligne droite de l'élément passe par le point consécutif.
(Dans certains cas elle peut contenir ^> * éléments de contact.)
Elle sera une intégrale de l'équation (1), si en chacun de ses

du
points x, y, la direction de sa tangente, déterminée par# ,7 •
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satisfait à l'équation (1). L'intégrale générale de l'équation
différentielle se compose de =° ' courbes et contient, dans son
ensemble, les po2 éléments de contact définis par l'équation (1).
Toute intégrale qui ne fait pas partie de l'intégrale générale est
dite une solution singulière. La solution singulière sera, dans
la règle, l'enveloppe des courbes composant l'intégrale générale.
Il peut arriver que »> ' éléments de contact satisfaisant à

l'équation (1) aient un point commun; dans ce cas, ce point
devra également être considéré comme une intégrale particulière

ou une solution singulière ou quelquefois même l'une et
l'autre.

Soit donc

(1) f(x,y,p) 0, p dfx

l'équation différentielle donnée et

(la) F(x,y,C) 0, C — const.

son intégrale générale. On remarquera que des opérations
absolument identiques conduisent d'une part à l'enveloppe de (la) et
d'autre part au lieu géométrique des points où l'équation (1)
fournit pour p des racines doubles, et l'on peut démontrer que
les deux courbes ainsi obtenues sont, en général, identiques et
forment une solution singulière de (1). Il est donc naturel de
considérer (1) comme l'équation d'une famille de courbes. La
quantité p y joue le rôle d'un paramètre qui conserve pour
chaque courbe individuelle une valeur constante.

Il va de soi que les éléments de contact d'une courbe

f(x,y,p) 0,p> const, ne font pas, en général, partie des ^>i
éléments de contact définis par l'équation (1). Il pourrait en être
autrement dans le cas où la valeur accidentelle attribuée au

paramètre p se confondît avec la valeur -j~, tirée de l'équation

f(x, y,p) — 0,p const. Mais il ne suffit pas, pour amener
du

cette circonstance, que -~- soit égal à p ; encore faut-il que les

Uitf
trois quantités x, y,p — -~- satisfassent simultanément à l'é-

Cl X

quation (1).
Ces considérations conduisent au procédé suivant : Dans

l'équation différentielle donnée
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(1) f(x,y,p) 0

on considère p comme constant ; on en tire par differentiation

U
dy ìx
Tx--Jf

et l'on pose —— ». Les deux courbes
dx

f(%,y,P) 0, P const,

et (2) £+P,j 0,

se coupent en un certain nombre de points dans lesquels les
éléments de contacta;, y, p pourront appartenir aux =*>

ä

éléments donnés par l'équation (1). Si donc on élimine la quantité^
entre les équations (1) et (2), on obtiendra une équation

o(x,y) — 0

qui ne renferme aucune constante arbitraire et représentera,
en général, une solution singulière de l'équation différentielle
donnée.

Le premier membre de (2) peut se décomposer en plusieurs
facteurs; dans ce cas on effectuera l'élimination indiquée isolément

entre chacun des facteurs et l'équation (1). Pour savoir
si une courbe ainsi obtenue est une intégrale de l'équation
différentielle donnée ou non, il faudra s'assurer si elle satisfait à

l'équation (1) ou non. Enfin la distinction entre les solutions
singulières et les intégrales particulières se fera d'après les

règles connues que l'on trouve dans les bons manuels.
En résumé, si l'on fond en une seule les règles pratiquées de

préférence jusqu'à présent et celle proposée dans les lignes qui
précèdent, elle pourra s'énoncer comme il suit :

Toute solution singulière de (1) satisfait simultanément aux
équations

(1) f(x,y,p) 0,

<3> |=°-
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Réciproquement, en éliminant p soit entre les équations (1)
et (2), soit entre les équations (1) et (3), on obtient une solution
singulière, à la condition toutefois que le résultat obtenu satisfasse

simultanément aux équations (1), (2) et (S).
Cet énoncé contient le critérium de Darboux.
Aux enveloppes proprement dites, il convient d'ajouter les

points isolés par lesquels passent =*> ' éléments linéaires, pourvu
qu'ils satisfassent à l'équation différentielle donnée, et à la con-

ifdition-Y-= 0; il n'est pas indispensable qu'ils remplissent la

if ifcondition-^- -4- -^- « 0.
ix iy

Remarque. — Lorsque l'équation (1) n'admet pas de solution
singulière, l'élimination de p entre les équations (1) et (2) conduit

à une courbe qui n'est pas une intégrale de (1), mais bien
le lieu géométrique des points des courbes/ (x, y, p) — 0,

p const., où la constante p et —— ont la même valeur.

Quelques exemples simples et bien connus feront voir au
lecteur l'avantage que le procédé développé plus haut pourra lui
procurer.

Exemple 1. — Soit donnée l'équation différentielle

/O, y,p>) 2p2y- + 2pxy + x- + if — l =0,
dont l'intégrale générale est

(1*) (x— ÇjfA-if=\— Cä. C const.

L'équation (1), dans laquelle on considère, pour un instant, p
comme un paramètre, représente ^ ' ellipses qui toutes passent

par les points x ± 1, y 0. En la différentiant dans cette

hypothèse et en posant immédiatement -p=p, il vient

4 p3 y -\-2py + 2p°~ x-\-2x + 2py 0
ou bien

(2) (l+p*)(2py+x)=0.
On satisfait à cette équation en admettant soit

(a) 2py + x=0,



3D H. AMSTEIN

«Oit
(b) l+p« 0.

Dans le premier cas on a

x
p -ïy

et l'introduction de cette valeur dans l'équation (1) donne

(3) Çh-2/2 —1 0.

L'équation (3) satisfait aux équations (1) et (2), de même qu'à
la condition

ifj£ 4 py +îxy=2y Vpy+x) o;

elle représente bien une solution singulière de l'équation
différentielle donnée. L'ellipse (3) est en effet aussi bien l'enveloppe
des ellipses/^, y,p) 0,p const, que celle des circonférences

(la).
Dans le second cas où p ± i, (i Y-^l), l'élimination de p

entre les équations (1) et (b) fournit

(4) x* — if — \±2ixy Q,

équation qui se décompose en ces quatre

/ — i (x — 1) 0,

+»(»-1) 0,
(4a) <
1 ' ' y —t(a: + l)=0,

y+i(x+ l) 0.

Chacune de ces droites imaginaires satisfait à l'équation 1),

ifmais ne remplit pas la condition y=0. Il s'ensuit que l'on

peut (si toutefois on admet des intégrales imaginaires) les
considérer comme des intégrales de l'équation différentielle donnée ;

ce ne sont, il est vrai, ni des solutions singulières, ni des

intégrales par ticulières, mais seulement des parties d'intégrales
particulières. En effet, en combinant les équations (4a) convenablement,

il vient
(x — lY+y* 0,

S O+Ff- + 2f=0
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et l'on reconnaît dans ces circonférences de rayon zéro des
intégrales particulières obtenues en attribuant dans (la) à la
constante C les valeurs ± 1. Il se présente ici le cas intéressant
où la même intégrale peut être envisagée comme une intégrale
particulière et comme une solution singulière. En effet, d'une
part les circonférences 4b sont bien des intégrales particulières

; d'autre part, elles se réduisent aux points x ± 1, y — 0
et doivent, de ce fait, être considérées comme des solutions
singulières, car, quelle que soit la valeur de p, les points
x ± 1, y 0 satisfont simultanément à l'équation (1) et à la

ifcondition y- 0. Bien qu'ils ne remplissent pas la condition (2),

tant que p reste arbitraire, les =*> ' éléments de contact de

l'équation (1) qui passent par chacun d'eux, répondent bien à la
définition, donnée plus haut, d'une intégrale singulière.

On aura déjà remarqué que ces points sont les foyers de
l'enveloppe (3) et que les droites (4a) ne sont autre chose que les

tangentes émanant des points circulaires à l'infini, à cette même
courbe.

Exemple 2. — Soit donnée l'équation différentielle des coniques

homofocales

(1) f(x,y,p) — (px — tj)(x+py)—p 0,

dont l'intégrale générale est

(!a) ïA h —=1, o= const.v ' 1+ a a

On en déduit les équations

(2) ^+P^=(px-y)(\+p-)=o,

if(3) <fr=x{x-t-py)+y{px—y) — \=xî—y'- — l + 2pxy=9.

L'équation (1), lorsqu'on y envisage p comme un paramètre,
représente =» ' hyperboles équilatères qui ont l'origine pour
centre et passent toutes par les quatre points x ± 1, y 0 ;

x — 0, y ±i.
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L'équation (2) est satisfaite

1») pour p \,
2°) pour p ±:i.

En introduisant p — — dans l'équation donnée, il vient
00

-p 0,

d'où l'on conclut que le premier facteur de (2) ne conduit pas à
une solution singulière, mais seulement à une partie d'une
intégrale particulière à savoir y 0. On trouverait de même, en
considérant dans l'équation donnée y comme variable indépendante

et x comme fonction cherchée, que x 0 est également
une partie d'une intégrale particulière.

L'hypothèse p — ± i, introduite dans l'équation (1), donne

(±ix — y){x±iy)~i=-0
ou bien

(y=Fix)* + 1 0.

Cette équation représente les quatre droites imaginaires

y — i(x— 1)=0,
y-\-i{x —1)=0,

Ì y-i(x+l) 0,

\ yA-i(x+l)=0
qui, satisfaisant simultanément aux équations (1),(2) et (3),
constituent des solutions singulières de l'équation (1). Elles forment
en effet, non seulement l'enveloppe des hyperboles équilatères

/ (x, y,p) 0, p — const., mais encore' celle des coniques ho-
mofocales (la). Leurs six points d'intersection sont :

a) les points circulaires à l'infini ;

b) les foyers réels des coniques (la) : x — ± 1, y 0, et
c) les foyers imaginaires de ces mêmes coniques : x 0,

y ±i.
Les valeurs x ± 1, y 0,

x 0, y rt i-

satisfont aux équations (1) et (3) quel que soitj9,- mais elles ne
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remplissent pas la condition (2) pour une valeur arbitraire
de p. Malgré cette dernière circonstance, les foyers des coniques

(la) doivent, en vertu de la définition donnée plus haut,
être considérés comme des solutions singulières de l'équation
différentielle donnée. -s

Exemple 3. — L'équation de Clairaut

C1) /'O, y,p)=y—px—<?(p)—o,

où o (p) désigne une fonction quelconque de p se soustrait au

procédé employé dans les deux exemples précédents. En effet,
l'équation

^ ix+vU=v-*=0if 3/
>*/¦

est satisfaite pour n'importe quelle valeur de^. On ne peut donc

pas éliminer p entre ces deux équations.
Ce fait indique que l'intégrale générale de l'équation proposée

se compose de =*> ' droites qui ne peuvent être que celles-ci:

(3) y Gr-r-<p(C), C const.

et l'on reconnaît que dans ce cas les courbes f(x, y,p) 0,

p const, et les courbes composant l'intégrale générale (3) sont
identiques. Il s'ensuit qu'aussi les deux problèmes quelquefois
différents: 1° de trouver la solution singulière de (1); 2° de

trouver l'enveloppe de (3), se confondent dans le cas actuel.
Réciproquement, lorsqu'on rencontre, dans cet ordre d'idées

l'équation p — p 0, on en conclut que l'équation proposée est
une équation de Clairaut.
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