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NOTE

SUR

les solutions singuliéres d'une équation différentielle ordinaire
du premier ordre,

par H. AMSTEIN

Les géométres se sont beaucoup occupés de la question des
solutions singulieres d’une équation différentielle du premier
ordre. Encore derniérement, M, E. Picard, dans son T7aité d'a-
nalyse, tome 111, p. 44 & 60, y a consacré un chapitre magistral.
I1 semblerait donc qu’il n’y ait pas lieu de revenir sur un sujet
si souvent et si bien traité. Aussi n’ai-je pas la prétention de
modifier en quoi que ce soit les méthodes employées et les résul-
tats obtenus jusqu’a présent, mais simplement de présenter la
question sous un jour différent et peut-étre nouveau. Il en décou-
lera un procédé souvent utile pour déterminer les solutions sin-
guliéres d’'une équation différentielle donnée.

En déterminant un élément de contact du plan par les trois
coordonnées

Ly Y, D

on voit que le plan entier contient > * de ces éléments.

Une équation
(1) f(z,y,p)=0

définit, par conséquent, > * éléments de contact. Une courbe
est, en général, un ensemble de > ! éléments de contact tels
que la ligne droite de 1’élément passe par le point consécutif.
(Dans certains cas elle peut contenir - 2 éléments de contact.)
Elle sera une intégrale de ’équation (1), si en chacun de ses
dy

points x, ¥, la direction de sa tangente, déterminée par p = E
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satisfait & ’équation (1). L’intégrale générale de ’équation dif-
férentielle se compose de = ' courbes et contient, dans son en-
semble, les > * éléments de contact définis par I’équation (1).
Toute intégrale qui ne fait pas partie de l'intégrale générale est
dite une solution singuliere. La solution singuliére sera, dans
la régle, I’'enveloppe des courbes composant I'intégrale générale.
Il peut arriver que == ' éléments de contact satisfaisant &
Péquation (1) aient un point commun; dans ce cas, ce point
devra également étre considéré comme une intégrale particu-
liére ou une solution singuliere ou quelquefois méme I'une et
lautre.

Soit donc
(1) f(z,9,0)=0, p=2"
I’équation différentielle donnée et
(1) F(z,y,C)=0, C = const.

son intégrale générale. On remarquera que des opérations abso-
lument identiques conduisent d’une part a4 'enveloppe de (17) et
d’autre part au lieu géométrique des points ou 1’équation (1)
fournit pour p des racines doubles, et I’on peut démontrer que
les deux courbes ainsi obtenues sont, en général, identiques et
forment une solution singuliére de (1). Il est donc naturel de
considérer (1) comme l’équation d’une famille de courbes. La
quantité p y joue le role d'un paramétre qui conserve pour
chaque courbe individuelle une valeur constante.

Il va de soi que les éléments de contact d’une courbe
f(x,y, p) =0, p=-const. ne font pas, en général, partie des > *
éléments de contact définis par ’équation (1). Il pourrait en étre
autrement dans le cas ou la valeur accidentelle attribuée au

parametre p se confondit avec la valeur %— , tirée de 1’équation
f(x,y,p)=0,p=const. Mais il ne suffit pas, pour amener
dy

cette circonstance, que E_aE soit égal a p; encore faut-il que les

trols quantités z, y, p= E{{ satisfassent simultanément a 1’é-
z
quation (1).
Ces considérations conduisent au procédé suivant: Dans
I'équation différentielle donnée
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(1) flz,y,p)=0
on considere p comme constant; on en tire par différentiation

o f

w_ %

de— f

dy

) dy
et I'on pose 2y =P Les deux courbes
() f(x,y,p)=0,  p=-const.
p) J
et @ % o

D$+P3y =V,

se coupent en un certain nombre de points dans lesquels les
éléments de contact z, y, p pourront appartenir aux -0 * élé-
ments donnés par I'équation (1). Si donc on élimine la quantité p
entre les équations (1) et (2), on obtiendra une équation

¢(x,y)=0

qui ne renferme aucune constante arbitraire et représentera,
en général, une solution singuliere de I’équation différentielle
donnée.

Le premier membre de (2) peut se décomposer en plusieurs
facteurs; dans ce cas on effectuera I'élimination indiquée isolé-
ment entre chacun des facteurs et 1’équation (1). Pour savoir
si une courbe ainsi obtenue est une intégrale de l’équation
diftérentielle donnée ou non, il faudra s’assurer si elle satisfait &
I’équation (1) ou non. Enfin la distinction entre les solutions
singuliéres et les intégrales particuliéres se fera d’aprés les
regles connues que ’on trouve dans les bons manuels.

En résumé, si 'on fond en une seule les regles pratiquées de
préférence jusqu’a présent et celle proposée dans les lignes qui
précedent, elle pourra s’énoncer comme 1l suit :

Toute solution singuliere de (1) satisfait simultanément aux

équations
(1) f(x,y,p)=0,
o O A
(2) B‘_x“i‘p@*‘“oa
(3) M:O i

dp
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Réciproquement , en éliminant p soit entre les équations (1)
et (2), sout entre les équations (1) et (3), on obtient une solution
singuliere, a la condition toutefois que le résultat obtenu satis-
Jasse simultanément aux équations (1), (2) et (3).

Cet énoncé contient le criterium de Darboux.

Aux enveloppes proprement dites, il convient d’ajouter les
points isolés par lesquels passent > ' éléments linéaires, pourvu
qu’ils satisfassent & I’équation différentielle donnée, et & la con-

\ ; - g ;
dition Dﬁ == i al n’est_ pas indispensable qu’ils remplissent la
\
f ~—p=0.

J

Remarque. — Lorsque 1’équation (1) n’admet pas de solution
singuliére, I’élimination de p entre les équations (1) et (2) con-
duit & une courbe qui n’est pas une intégrale de (1), mais bien
le lieu géométrique des points des courbes f (z, y, p)=0,

p=const., ou la constante p et —— Y ont la méme valeur.

dx
Quelques exemples simples et bien connus feront voir au lec-
teur lavantage que le procédé développé plus haut pourra lui
procurer.

Exemple 1. — Soit donnée 1’équation diftérentielle
(D) flx,y,p)=2py+2pry+a*+y'—1=0,
dont I'intégrale générale est
1) (x—Cer+4yy*=1—C.  C=const.
I’équation (1), dans laquelle on considére, pour un instant, p

comme un parameétre, représente >o ' ellipses qui toutes passent
par les points x == 1, ¥y = 0. En la différentiant dans cette hy-

dy__

Fra 4 il vient

pothése et en posant immédiatement

dpPy+2py+2px+22+2py=0
(2) (14p°)2py+2)=0.
On satisfait a cette équation en admettant soit

(a) 2py+ax=20,

ou bien
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so1t

(b) 14p2=0.
Dans le premier cas on a

x

27=—-§§

et I'introduction de cette valeur dans I’équation (1) donne
2
(3) F+y —1=0.

L’équation (3) satisfait aux équations (1) et (2), de méme qu'a
la condition

J -
D%_ai Py +2ay=2y 2Lpy+x)=0;

elle représente bien une solution singuliére de 1’équation diffé-
rentielle donnée. L’ellipse (3) est en effet aussi bien ’enveloppe

des ellipses f(z, ¥y, p) =0, p = const. que celle des circonfé-
rences (1?).

Dans le second cas ol p = =1, (1 =)—1), I’élimination de p
entre les équations (1) et (b) fournit

4) 22—y —1x2uy=0,
€quation qui se décompose en ces quatre
y—i(x—1)=0,
( y—+ilxz—1)=0,
y—i(z+1)=0,
Yy +i(x—+1)=0.

Chacune de ces droites imaginaires satisfait a 1’équation (1),

(4%) (

\ y
mais ne remplit pas la condition D—;; = 0. Il s’ensuit que 1’on

peut (si toutefois on admet des intégrales imaginaires) les con-
sidérer comme des intégrales de I’équation différentielle donnée ;
ce ne sont, il est vrai, ni des solutions singuliéres, ni des inté-
grales par ticuliéres, mais seulement des parties d’intégrales
particuliéres. En effet, en combinant les équations (4*) convena-
blement, il vient .

wy | B =0,

B @+ 1P 4y =0_
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et I’on reconnait dans ces circonférences de rayon zéro des inté-
grales particuliéres obtenues en attribuant dans (12) a la
constante C les valeurs + 1. Il se présente ici le cas intéressant
ou la méme intégrale peut étre envisagée comme une intégrale
particuliére et comme une solution singuliere. En effet, d'une
part les circonférences (4") sont bien des intégrales particu-
liéres; d’autre part, elles se réduisent aux points z==+1,y =0
et doivent, de ce fait, étre considérées comme des solutions
singuliéres, car, quelle que soit la valeur de p, les points
x = =+ 1, y = 0 satisfont simultanément & ’équation (1) et a la

A

condition 5 = 0. Bien qu’ils ne remplissent pas la condition (2),

tant que p reste arbitraire, les ! éléments de contact de
I’équation (1) qui passent par chacun d’eux, répondent bien a la
définition, donnée plus haut, d’une intégrale singuliére.

On aura déja remarqué que ces points sont les foyers de I'en-
veloppe (3) et que les droites (4*) ne sont autre chose que les

tangentes émanant des points circulaires & 'infini, & cette méme
- courbe.

Exemple 2. — Soit donnée 'équation différentielle des coni-
ques homofocales

(1) f,y,p)=(px—y)(@+py)—p=0,

dont I'intégrale générale est

(19)

1+a+———l @ = const.

On en déduit les équations

fy

Q) Ltp =r—n) 1+ =

D -]
(3) 5jgc=x(x+py)+y(pw—y)—1=x*~—9'—1+2px’9=‘3-

L’équation (1), lorsqu’on y envisage » comme un parameétre,
représente > ' hyperboles équilatéres qui ont l’origine pour
centre et passent toutes par les quatre points x ==+1, y = 0;
w=0, y==£i
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[’équation (2) est satisfaite

&=

1") pour p=7=r,
2°) pour p=—-1%.
En introduisant p = g dans I’équation donnée, il vient

——p=0,

d’ot I'on conclut que le premier facteur de (2) ne conduit pas a
une solution singuliére, mais seulement & une partie d’'une inté-
grale particuliére & savoir y = 0. On trouverait de méme, en
considérant dans 1’équation donnée y comme variable indépen-
dante et x comme fonction cherchée, que z = 0 est également
une partie d’une intégrale particuliére.

LI’hypothése p = 44, introduite dans ’équation (1), donne

(Fwwx—y)(rtiy)F1=0
ou bien
(yFw)*+1=0.
Cette équation représente les quatre droites imaginaires

y—i(x+1)=0,
qui, satisfaisant simultanément aux équations (1),(2) et (3), cons-
tituent des solutions singuliéres de 1’équation (1). Elles forment
en effet, non seulement ’enveloppe des hyperboles équilatéres

f(z, y,p) =0, p = const., mais encore celle des coniques ho-
mofocales (1%). Leurs six points d'intersection sont :

a) les points circulaires 4 'infini;

b) les foyers réels des coniques (1*): x = 4+ 1, y = 0, et

¢j les foyers imaginaires de ces mémes coniques : £=0,
=t 8

Les valeurs e = +1, y =0,
a2 U=k

satisfont aux équations (1) et (3) quel que soit p; mais elles ne
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remplissent pas la condition (2) pour une valeur arbitraire
de p. Malgré cette derniére circonstance, les foyers des coni-
ques (1) doivent, en vertu de la définition donnée plus haut,
étre considérés comme des solutions singuliéres de 1’équation
différentielle donnée.

Exemple 3. — L’équation de Clairaut

() f(z,y,p)=y—pr—9(p)=0,

ou ¢ (p) désigne une fonction quelconque de p, se soustrait au

procédé employé dans les deux exemples précédents. En effet,
Péquation

iy Of g oA
(2) Fprojy=p—2p=Y

est satisfaite pour n’importe quelle valeur de p. On ne peut donc
pas éliminer p entre ces deux équations.

Ce fait indique que I'intégrale générale de I’équation proposée
se compose de > ! droites qui ne peuvent étre que celles-ci:

(3) y=Czx+o0(C), C=const.

et I'on reconnait que dans ce cas les courbes f(z, y,p) =0,
p = const. et les courbes composant 'intégrale générale (3) sont
identiques. Il s’ensuit qu’aussi les deux problémes quelquefois
différents: 1° de trouver la solution singuliere de (1); 2°¢ de
trouver 'enveloppe de (3), se confondent dans le cas actuel.

Réciproquement, lorsqu’on rencontre, dans cet ordre d'idées
Péquation p — p = 0, on en conclut que ’équation proposée est
une équation de Clairaut.
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