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Bulletin de la Société Vaudoise des Sciences Naturelles.

Vol. XXXI. N° 119. 1895.

NOTE
SUR LE LOGARITHME-INTÉGRAL

PAR

H. AMSTEIN

Le logarithme-intégral est une transcendante peu complaisante,

à laquelle on ne connaît pas, jusqu'à présent, de propriétés

remarquables, mais qui joue néanmoins un rôle important
dans l'analyse, soit dans les intégrales Eulériennes, soit comme
limite d'autres intégrales définies. Un passage relatif à cette
fonction, qui se trouve à la page 54 de l'excellent petit ouvrage
de M. le D'phil. J.-H. Graf, intitulé : « Einleitung in die Theorie
der Gammafunktion und der Euler'schen Integrale » (Berne,
chez K.-J. Wyss) m'a paru trop bref pour être suffisamment
clair.

Désireux d'éclaircir, autant que possible, le point resté obscur,
je me suis décidé à effectuer les calculs numériques longs et
pénibles dont on trouvera plus loin les résultats et à publier le
résumé de mes efforts, dans les quelques pages suivantes, qui
contiendront, je l'espère, parmi des considérations et des
formules connues depuis longtemps déjà, quelques résultats
nouveaux.

I
On appelle logarithme-intégral la fonction

Ç dx
~~J Ioga;

'
o

où x signifie une variable réelle. Si l'on considère la courbe

y ^F' (%1)
rapportée à un système de coordonnées rectangulaires, on peut,

xxxi 14



H. AMSTEIN

en admettant aussi des surfaces négatives, envisager J comme
l'expression de la surface de cette courbe. Comme telle J est
une fonction uniforme de x, et c'est de celle-ci qu'il s'agit
ordinairement dans les applications. (La courbe possède l'asymptote
x= 1. A l'origine l'axe des y est tangent à la courbe; le point

#= — =0,1353.., y= — 7^ est un point d'inflexion. La courbe

se trouve tout entière du côté des x positifs.) La surface en
question peut être calculée à l'aide de l'une des deux séries
bien connues

X

JdxIoga;"
:C + log(-logx)+ - lüg

C dx „ n=xlog»a'
(ln) H Ü^ C+log(log*)+n~ ¥^T'

ou
C 0,577215664901532

est la constante d'Euler. (Comp, par exemple J.-A. Serret,
Cours de calcul diff. et int., tome II, page 229.) Les deux séries
sont absolument convergentes pour toutes les valeurs réelles et
positives de la variable x; on se sert de la première ou delà
seconde, suivant que x est plus petit ou plus grand que l'unité.

i

fdx (' dx
t—— et I

j
¦ est infiniment

o i
grande, la première est négative, la seconde positive. En résolvant

l'équation

n='° log» x0 C + log (log*') + 2' -±-r
n=\ "¦• "•¦

on obtient la valeur d'x pour laquelle la surface négative dans
sa totalité et une partie de la surface positive se compensent
mutuellement. A l'aide de la régula falsi ou de toute autre
méthode d'approximation, on trouve sans difficulté que

J =0 pour x= 1,451369
logx l '
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(chiffre aussi exact que le permet l'emploi des tables de
logarithmes à 7 décimales). Cette valeur d'à;, portée dans la fig. 1,
montre à l'évidence que la fonction J devient infinie de x 0

àx=l tout autrement que de x 1 à x =>o.

Si, dans J, on fait la substitution réelle

jf, —— o ^
(a/JC — ¦ 3.Z (Xi

>f

i_

t=.Xa, log ,r a log £,

où x est un nombre positif quelconque, il vient

ç dx çtrldt
J logx~J logtC

o

M—l

Jtî—jdt se ramènent donc

immédiatement au logarithme-intégral. Pour ne citer qu'un exemple,
on pourrait écrire

f'ao-r-aj+att1 ...-\-antn
dt--

logt

J""
dx r dx P dx Ç dx

îoi^' + u'J ïoiï+a\] ïoi^+-+a"J ïo^
0 o o

et comme cas particulier

pn-l_^»-l Ç fa Ç fa Ç fa
J logt ~J Ioga,- J Ioga;-J log x
o n o rm

Dans ces intégrales r peut être plus grand ou plus petit que
l'unité, mais non égal à l'unité, car on a déjà reconnu que

i
"" dx

J logX
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Ainsi l'égalité précédente ne saurait subsister pour r — 1. En
effet, on sait que son premier membre

i

J—ÌoJT-dt=lo*m'

ce qui, en général, est différent de zéro, tandis que son second
i

membre, I
-. est manifestement nul.J Ioga;'

i
Pour une valeur déterminée de la limite supérieure x, l'intégrale

X

J I dxJ Ioga;
o

peut être considérée comme une fonction continue d'à. Dès lors
il est possible, à l'aide de la série de Taylor, de passer de J à

_ /y+/3-i jJ<— J Ioga; *"'
o

où ß est un nombre réel quelconque, mais tel que a. -f- ß > 0.
A cet effet on formera les dérivées successives de J par rapport
à la variable a.

On a

M fxa-] l0g * 7 f a J *°
V"= I —i — dx= \ x"—1 dx=—, « > 0)ix J Ioga; J « ' v ^ '

o o

y-j_,.«n°g^ n
3a« ~ L « «2J'
^3J qpOg'-*-' .') ]2ëJH i

2!
?a3 —x L ]¦

En appliquant le théorème de Leibnitz, à savoir

dp(uv) dp u dp u dv

p{p—1) dp "u d'v du dp v dpv
1.2 der*-d«>+----H,d«-dBev--+«- daP
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et en posant
1

u x", v —' x
de sorte que

du a d'-U a du a k

dx X i°S^fa?=x log-x, ...^- x log x,

dv 1 d'v 2! d3v 3! dkv
_ * /c!

da — a- ' cfe2- a3 'da3 — a4 ' " ' dx"~{ > /+1'
il vient d'abord

\ x / a logp a; P-i,
a log a;

^P a -

«log "i / i \P-i a log a; p x
¦* a x

et ensuite
n-l

^=:ca|-log_,_(H_1)log_^ +

IH-^-l,-!,^-^.-»)^.
...+(-i)-^(._i)!^+(_ir>(«_i)iiri

a a J

et le théorème de Taylor donne maintenant

" ,.«+Xl p ,.«-1
t ff_!,7 P* » .*" ß^uriogx- Il p

(I 0

apog'X' log» 2P1 ß3 a [log3a,' log"-x Ioga; 3!] ß4
x |_~ - + a3J 3!+x L « ~ ~~+ xr~1>\ 4Ì

+^^_4^%4.3l2g^_4!^+ iil-g-r-
|_ a as a" a4 a5J 0

Oflog5a- _log4a; log3.» „log2a ..Ioga? 5!~] ß6
a; o—;—T-J.4—,— — a.4.à—i-+o —-. -f Xi+La a- a3 a4 ' a5 aF J 6

+
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ou bien, en ordonnant cette série suivant les puissances crois-
sautes de (a log a) et en posant, pour simplifier l'écriture,
(3

a

•xa(i+>)~1
¦ dx ¦(2) J'=P Ioga;

fx'1-1, a\\ 1... X, 1.. 1-. 1 I
i>

Xalogalp 1 1 1 l.c I

(«logori i i x i+a 2! |^3 /. 4A +5/ -6A+...J-r-

^ï£ï[>,_>,.+';._.. .j^^',^
[i,-..]..."^r^rk-¦¦!+¦¦ -

Or, on sait que

Â-jÀ^g >.5-j>.'+....=iog a+>^

à la condition que |).| <1, où \a\ signifie la valeur absolue de

la quantité a. On peut donc, dans cette hypothèse, donner à J,
la forme définitive

V- Jx«(l
+ ')-l r. e«-l i

-HJ-dx=) ïoJ-xdx +xa¦^d+'-)-
Il o

«Ioga:)!-, _ ."1 (ctloga-'fr. 1. ."1

—îr-|_iogi+A:-/.J+ï-^^[iog(i+/.)-/.+J/.sJ-
a log a:•SrH^y 1+;,_,+^>._^.].

(«îogxvr, x. i., x.i^|bg(l+A)-,.+TAS-g/.3+îA<J-
ft(alogx)n f, 1. 1., (—1) -ni
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Les quantités entre crochets sont toutes, en valeur absolue,
plus petites que log (I4-/.). Il s'ensuit que la série (2a) est

convergente à la façon de celle qui représente la fonction
exponentielle. Dans le cas, où | et log a; | > 1, elle reste encore utile
au calcul numérique à peu près comme la série pour log (1 + /).

Pour a;=l la série (2'>) donne l'intégrale bien connue qu'on
a déjà rencontrée plus haut, à savoir

', a+ß—l ll-\ r.X — X -<fc=io8(i+4)J Ioga.' "'" lu»\x-r a
0

Il est évidemment permis de remplacer dans (2) la quantité À

par ï/., ce qui donne

O (I

,,n-a>-i .«-1 1 ; •

:Xï''X'X;'- —' +

*°l^[r^y^'y>-'-t,'A
,Aji±p-[_s,y_., + s,+i.^ j+

.<,.(«Ioga:)4! i 1

*r—fr^\r*' + 7rï

+^(^)![4,6_....]+....

0

+,^[(^X,+...)+,(X,+...)]+...

+

+
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En vertu des séries

1.1. 1 1

logsl-r-a": jas — ^-x'+^x" — g^'-r- ¦¦¦ j

1 11 \
arctg a' x — r-a;3-|- —ar'— =-3;'+... '

0 A 0 ï '

on peut écrire, en supposant j /. | < 1,

JV'~1+/i; /"a;""1 einXI"sx /'•1/_1[cos(«/loga)+èsin(«;.loga;)]
—j dx= I î dx I -jIoga.' J Ioga' J Ioga-

j^ dx -+- xa j^logy/1 + /* + i arctg A |—
n

.y (J^l [iog^r+Äi+t(arctg A-Ä)] -+-

_^a («Ioga;)8|-]og^j-^5_ L, + .(arctg ._. }J _

tf.r=

+
»fi'doga:)

C ~
4!

flogy/l + Â2 — 5-A*+j-A' + i(arctgA—A + jj-Â*)]-

„(alogx)*2"
x

j(arctg/-/+ |/3 - j^j rn~' ]-

+ i(arctgi-x+1/¦-... t^-ri",+,] +
La convergence de cette série donne lieu à une remarque

analogue à celle qui vient d'être faite à l'égard de la série
précédente.
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De cette égalité en découlent deux autres que l'on obtient en

égalant séparément les parties réelles et les parties
imaginaires.

(3)

Ç£ca_1cos(aAloga;).. fœ"-'
7 a f, /,""7X (al°gœ), fTTTi >

J ïoi^ rfx=J îoi^fe+ a; [logN/l + ^—rr-logN/H-A» +
0

+(^):(VlTIi_^v.-^l!liogv/i+^-4^,+

+^^(^1+^-^.^^/)+...
(alogxp" ,¦ .; 1 1 .„ (—1) -snv

"•+L-(Äyr( ëV+/ ^"+ï "^ )_

(alogx)2n+1/| ,-—— 1 1
,4 (_1)\? 1

rr _
J'xa

sin (aA log x) „f (alogx)
i—v fe ; dx œ" arctg/— ^- ,° y (arctg A—A)+log x L t ;

.0

(alogx)* N (alogx)3 1

+ 2, (arctg A — /) — f, (arctg /. — / -f yrx3) +
(alogx)' 1

- 4, (arctg/.-/ + iïx3)+....

(alogx)""
L

1 (—l)".»n-l
¦(arctg/-/+ -A3-...b^T^ -(2m)! v ° 371 '" 2w—1

/ i \2n-M y \«+l(alogx) ^ 1 (—1) T
3n+1(arct,g,_A+IA3_..JxdL_A-+>)+....]

(2re+l)!

Dans le cas particulier, où x=l, l'équation (3) donne

fxa-'cos (ß Ioga) J fx"-1 / '

/5
Ü u
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ou bien

f^-j^ßlog*)]^J log x,
o

ou encore

/ix"-1 sins |„-jS Ioga;) j
I r^ dx=<yiogJ Ioga- 2

La substitution

vMf

vMl
logx —?/, x=e', dx=—e %

permet de donner à cette intégrale la forme

X

o y 4: ° a-

(Cette intégrale est probablement connue ; cependant je ne l'ai
pas trouvée dans les ouvrages à ma disposition.)

La formule (4) donne pour x 1 l'intégrale connue

i
fa;a_1sin(ßloga;) ß

r-^——- dx arctg — >

J Ioga; ° a
o

à laquelle, à l'aide de la substitution log x — y, on peut
donner la forme

X

Je y sin ßy ß—rldy arctg Ü •

o «/ «

Cette dernière intégrale est une fonction continue de a qui
conserve sa signification encore pour a 0, de sorte que l'on
retrouve l'égalité

X
Psin ßy 7 tt > rvI '--dy —±— suivant que ß^ 0.

Il va de soi que ces intégrales sont susceptibles d'une infinité
de formes plus ou moins intéressantes, mais ce n'est pas ici le
lieu d'entrer dans plus de détails.
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n
Dans la suite on envisagera le logarithme-intégral comme

une fonction de la variable complexe z x-\-yi et l'on étudiera,
pour autant que cela paraît utile, la représentation transmise

par la fonction

o

L'original dans le plan (z) et l'image dans le plan £) sont,
en général, semblables dans leurs éléments infiniment petits,
ce qui veut dire que les angles correspondants dans les deux
plans sont égaux. Les points singuliers, c'est-à-dire les points,
où la représentation cesse d'être semblable dans les éléments
infiniment petits, sont ceux où la dérivée de la fonction considérée

devient zéro ou infiniment grande. Dans le cas actuel où

*L_ _L_
dz log z

ce sont les points z=l, z 0 et z= =*,.

1) Pour reconnaître la nature de la fonction Ç au point z— 1,
il suffit de développer cette dernière, dans le voisinage de ce

point critique, en une série ordonnée suivant les puissances de

(z — 1). A cet effet, soit

z==l-\-i, dz dt,

et 'Ç, la valeur (infiniment grande) que prend 'Ç pour 0= 1 ; on a
alors

t. t t

f dt
_

Ç* ' dt Çdl(\_}_4
J iog(i+o~.n-K2 + ..-J t \ 2" +

—1

t

dt/, 1 \l+7*...) logt-

et l'on voit que t 0 ou s 1 est ce qu'on appelle un pôle
logarithmique. Il s'ensuit, par exemple, que si le point s, parti
de l'origine et arrivé en z 1, décrit une demi-circonférence
autour de ce point comme centre et avec un ravon aussi petit
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qu'on voudra, dans le sens positif (celui des angles croissants),
pour continuer ensuite son chemin le long de l'axe réel, la
fonction 'C prend, correspondant à cette demi-circonférence, la
composante imaginaire -\-r.i et continue ensuite son chemin
parallèlement à l'axe réel du plan (Ç). A un demi-tour autour
du point z= 1, dans le sens négatif, correspond la composante
imaginaire — -i de la fonction 'Ç, et en général, à un arc de

cette même circonférence dont l'angle au centre est égal à

zh 2m + 1 -, où î» signifie un nombre entier positif, répond,
dans le plan (Ç), la composante ± (2m-f-1) ta. La surface de

Riemann, destinée à transformer la fonction 'Ç en une fonction
uniforme, se compose donc d'une infinité de feuillets qui passent
l'un dans l'autre de la manière connue le long des lignes de

passage établies de.s là.s =°.On a déjà vu que pour des

z réels 'C est négatif de^ 0à^:=l, et devient — rx, en z 1.

Dès que z a dépassé ce point et se meut le long de l'axe réel
jusqu'à z » Ç décrit l'une des droites r, =± 2m -f-1 n de

l — rx jusqu'à i + =°.

2) Le point z=0 est comme dit M. Graf (1. c. pg. 54) tin
pôle d'une nature toute particulière. Le moyen le plus efficace
d'étudier la fonction Ç dans le voisinage de ce point est, sans
doute, celui de déterminer par un petit nombre de points les
images de quelques droites, partant de l'origine et allant à

l'infini. A cet effet soit

s pef\

où p est une variable réelle qui ne prend que des valeurs positives

et cp la mesure circulaire d'un angle constant. Alors s
décrit une droite, partant de l'origine et faisant l'angle cp avec
l'axe positif des x. («/=tgcp. x, a; 0, »). Par la substitution

e=pe**, de— e** dp

la fonction 'Ç se transforme en

>-= f e''^ =ey» f dP =efi hogp-vi dc^" J log(^) J l°SP+9i J log^ + cp2 '

P 0

_ m f log Pdf, j Ç dp- J log *p + cpä _ '? e J log 'p + cp*
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Posant, pour simplifier l'écriture,

r log p dp _ Ç a\ _J iog*p+r~ .1 iog2,o+cps_1>'
0 fl

il vient

l-\-rli=re®i(A — icpB)=(Acosa + cpBsincp)-)-'i(Asincp — cpBcoscp).

De cette façon les points des courbes correspondant aux
droites en question, sont donnés d'une manière uniforme par les

équations
i c — A coscp + cp Bsincp

r, — A sin cp — cp B cos cp.

Les quantités réelles A et B étant indépendantes du signe
de ç, ces formules montrent immédiatement que deux courbes

qui correspondent à deux rayons symétriques par rapport à

l'axe réel (cp et — cp), sont également symétriques par rapport
à ce même axe.

On a d'abord, en posant pour abréger log 2,c + cps D,

log u —log -o- X*d\ -^1 dp, d'A y^-~y do",

m d!J ru 2 log.fr
7 tdn -s-, d-B r= =y- d-p1,

puis ensuite

cos œ log p -+- cp sin co cos e> far—log-&) — 2cp sin cc log p- ' L dc, (Pc= '—'¦ y-y; (/,02,I) '

p Ir ' '

sincplog.o—cp cosce sincp(cps—log *p) ¦+¦ 2cp cos cp log p

D- L Clfy, (l'-f,— '- '

-fr, L ' — dC
pu-

Soit a l'angle que fait la tangente au point (ç, r,) avec l'axe
positif des s, dn l'élément d'arc et R le rayon de courbure; on
trouve

dr, sin cp log p — cp cos cp / " dp
tga=-y-A~ ï -¦—- ,da—v di' + dr,* —=,° dl. cos es log p -+- cp sin cp

' v <- ~r '

R __™__ -£-y/D -£- y/log *0 + *«.did/; — d/; «-; cp r
cp

y ° ¦

L'observation des signes de dç et d« dans le voisinage de
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p — 0,dp étant supposé positif, permet de reconnaître les
directions suivant lesquelles les courbes correspondant à des

valeurs déterminées de cp s'éloignent de l'origine. On trouve,
par exemple, que pour

cp 0., tg a — 0, a—-—~,

1

fii-ft — 1 a =-
n

,T7T

1

_ tg U =•" a— -
1

_

• >

cp —-. tg«=— 1. a=- 1_
~ 4"

cp=-, tgu=0, u= 0.

Lorsque p 1, log p 0, il vient

tg a — cotg cp,

d'où il suit que les tangentes à ces courbes, aux points
correspondant à p 1, sont perpendiculaires aux directions initiales.

Pour p—rx on a
\g u — tg cp,

de sorte que, p croissant sans limite, les tangentes à ces courbes
se rapprochent indéfiniment de la direction cp.

Le rayon de courbure R de toutes ces courbes, à l'exception
de celle qui correspond à cp 0, a la valeur zéro pour p 0.
Cela ne veut pas dire cependant que l'origine soit un point de
rebroussement de ces courbes, mais seulement qu'en ce point
elles cessent d'être réelles, puisque'/? n'admet pas de valeurs
négatives.

La connaissance des maxima et minima des coordonnées \ et r,

facilite beaucoup la construction d'une courbe. Or, dans le cas
actuel di 0 si

eos cp. log p + cp sin cp 0 ou p e '

l'abscisse % possède donc un maximum ou un minimum, par
exemple pour les combinaisons suivantes de <p et p :
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— 7 TT

!""' P e

?=y~> p °

î ft1 P e

cp r p 1.

L'ordonnée k atteint son maximum ou son minimum quand
d»? 0, c'est-à-dire quand

sin cp log p — cp cos cp 0, ou p e'

ce qui donne par exemple les combinaisons

±ir

1

Cp -TT Tt, 0 1
'2

_3_

4

— 77T
q e '

Cp TT, p 0

Afin d'obtenir les valeurs numériques de X et >j, il paraîtrait
naturel de calculer en premier lieu les intégrales réelles A et B
et d'employer ensuite les formules (5). Mais j'ai trouvé,
après divers essais, qu'il est plus simple d'évaluer directement
'C i-\-mk l'aide de la série 1") convenablement modifiée, ce

qui rend superflue la connaissance des quantités A et B qui,
d'ailleurs, sont données par les formules tirées de 5

A X cos cp + r, sin cp

cp B X sin cp — rt cos cp

La série (la)

J
' dz „ log s log "z log 3z

ïoj-z
C' + l08(l°B*) +TTT +W+-or

est convergente sans restriction pour toutes les valeurs réelles
et positives de z ; dans cette hypothèse elle donne la valeur
numérique du logarithme-intégral, pourvu qu'on y remplace la
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constante C' par C, et, dans le cas où z < 1, le terme log (log z)

par log — log,?). Il est donc permis de l'étendre à des valeurs
complexes de z, occupant le plan entier, cc qui peut se faire de
la manière suivante.

Si l'on pose
z pe^1,

le logarithme principal de z devient

log^=logp + cpi,

où cp est compris entre —- et -\-~. Kn écrivant pour abréger

»=» Jog« z

n=l

et en remplaçant log z par sa valeur, il vient à l'aide du
théorème de Taylor

S(S + T*) S(S)+S,(S)^-S"(S)J-S",(S)Çf-f-S"(s)|;+

+S>)^-...-W^)^+...
Or, 9i n

S S S s
S^ ÎTT! + 2T2~! + 373~!+ ' ' ' +nsnl+ ' ' '

et par conséquent, cette série étant différentiable terme par
terme

2 wTwT""^108^' io8P s

S(«) l+7I+3î+i1+...H-jrr+...
1 r s s' s3 s' sn'-"'ì 1

7[-l + l + ìl+2! + 3!+4l + + ...+-,+ ...]=
es 1

s

(9*1

n
formes

Le coefficient de -~j- peut ainsi prendre l'une ou l'autre des

sw(s)=Dr-1)^s_1

Afin de former la dérivée nième de la fonction — (es—1), on

appliquera le théorème de Leibnitz déjà cité (pg 206), en posant
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1
U C" --1, V -,

ul e*.
s1

u» es. ¦H —
2

1
S3'
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fc '
nK ' es, v — v 1 > sk+i

et l'on trouve, m* désignant le kiftme coefficient du binôme, soit

n(n — 1) {n — 2) (n —fe+1)
"fc =^7T—3T—~ k

(n+1) (n)/eS_l\ i i; 2! 3! i- k\
S(s) Ds \—j-J=je»—».^C+n.p^-rt^c+.-C—1) »^—es-+-..)

s

-^j--y|s — «s +«(« — l)s —n(n—1)(« — 2)s +...

...+(— I}""9 w (m— 1) («— 2)... 3 s'-+

+ (-l)"-1«.(M-l)...3.2s + (-l)"«!]-(-l)"^r

(-1)"+1 ^+^r„|/-i)x^(«-i)(»-2).... (»-/ + i)/~".

Les dix premières dérivées de S (s) sont

S'(S)=y(es-l)

S"(*)=£[*-l] +i
S'"(S)=^[ss-2S +2]-J

S,v(.s)=J[s3-3S2 + Gs-6]-r-J
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s

Sv(s) J[Si-4s3+ 12.^-245 + 24]-^

SVI (s) |f [s5 — 5 s' + 20 s3 — 60 s'- + 120 s — 120] +^
Sv"(s) |j- [s6— 6 s'' + 30 s4 —120 s3 + 360 s5 - 720 s + 720]—^

s s

s

Sxl"''s |rrs' — 7sfi + 42sr> — 210s* + 840 s3 — 2520 s5 + 5040s — 5040]-

5040

S

S" (s) 4 [s' — 8 s7 + 56 s6 — 336 s5 + 1680 s1 — 6720 s3 -+- 20160 ss —

40320
— 40320 s + 40320] —

S

§*(s)=~0\s>— <Js,+ 72s7 — 504sfi+3024s5 — 15120 s' + 60480 s3 —

—181440 s2 + 362880 s — 362880] +
362°80

'ci)" («) 1

Pour s 0 le coefficient de1XXclevjentS(0)=—. Entre deuxni y ' n
dérivées successives de S (s) il existe la relation

^es-nÎls)
v ' s

que l'on démontre facilement et dont la connaissance peut être
utile, soit comme moyen de contrôle, soit pour calculer les
termes de la série

En introduisant z pe?1 dans le terme log (log z), il vient
d'abord

log g log p -\-yi r e'',

où r y log* p + cp2

est une quantité positive et cp un angle compris entre — n et

+ 71, déterminé de telle façon que
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co,^=^^,sin^=7r^=)tg,^ 9
y/log'û + cp2 y/log'o + cp-' 8r log o

Ensuite log (log z) prend la forme

log (log g) log y/log V + cps + '|i
et la série (1>) devient

(6)Jiif^=CI+l0Sv/1^^^+^+S(s) + s'(s)S'-s^s)2"r

Il s'agit maintenant de déterminer la constante C' ensorte
que, pour cp 0, c'est-à-dire pour des z réels, la série (6)
coïncide avec la série (1) et que, pour o 0, elle affecte la
valeur zéro. Dans les applications de la série (6) le terme

log0ogao + cp2 doit toujours être réel; d'autre part on peut
écrire

log^log y + cp2 log ^log p y 1 + -^,0

log[/'-riog(,oV/l+T^)]

=iog(—îog.o)—-i+iog(y i+-^|j-
et cette expression se réduit, pour cp 0, à

log (— log p)—ni.

Or, quant cp, partant de valeurs positives, tend vers zéro et

que p < 1, -\ acquiert la valeur t. et l'on prendra, en

conséquence

C C — ni.

Dans le cas, où cp est négatif et tend vers zéro, il vient
cp — tt, et il faudra poser

C' C + st.

Par ces déterminations de C' le but proposé est atteint. Elles
subsistent encore, lorsque p > 1, car on a déjà vu que le Ioga-
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rithme-intégral prend, dans le premier feuillet, la composante
imaginaire ± r.i, aussitôt que l'argument réel z dépasse l'unité.

La série ((>), appliquée à des cp positifs,

0

+ [|T(s3-3s"- + 6s-6)+|-]|Ì!+
devient pour p 1, c'est-à-dire dans le cas où z se meut de

l'origine jusqu'à un point du cercle des unités, et où c|> ^-;r

e,<?-

Jdz „ 1 & Cp2 Cp3 G34 ((pi)"
^=c_OT+iogcp+I^+rT!Î-^1-^,+ï^+.. .+;fL+...

0

„ 1 r es2 o* cpe n .r cp a3 œ5 i=C-lJ^+logcp+|__0]+rT!-—i+. J+^- l j-OT+s^j-.-J.
Or, on a

(p5 rp' rp6

~01+4^4Î~076T

?3 y
ï/n^3T3l+ 575]~"

.J™£^_,/*oi*,
(I

(5

| sin?
J '

et par suite

Jds
1 ~ rsinsicp fsincp

ï =0--ô-îTi+logcp—2 | -—floj + î dcp.
log.? 2 > or j ç ' ' J cp

(i On'La présence du terme —^'i dans cette formule pourrait
paraître étrange, vu que pour cp 0 l'intégrale devient réelle et
égale à — =» ; mais on n'oubliera pas que le logarithme-intégral

acquiert la composante imaginaire —ryizi, lorsque la variable^.
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décrit, dans le sens négatif, le quadrant d'une circonférence de

rayon infiniment petit et avec z=\ pour centre, afin de passer
de l'axe réel à la circonférence du cercle des unités.

Voici maintenant quelques chiffres obtenus à l'aide de la
série (6). Partout où l'intervention des tables de logarithmes à
7 décimales a été nécessaire, l'exactitude de la 7* décimale ne
saurait être garantie.

¦ni
e

C dz
1) cd tt. 0,07366791 SI + i.O,28114072,.; ' J logz ' 2I '. ' "'

calculé jusqu'à cp20.)

ed+X

Jdzlol^=-°'022» + î'-0'80r'3* (?")
(I

J,^ -0,ßH.. + i. 1,900 (cp12)

ii

yie'

2) *=\n' Jî^=0,33059740M+».0,10895213« (cp")

ft(l + T-0

JI^=O,6055509+i.O,76566S2 (cp13)

rX(l+0
e

f^~ 1,0034S + i,. 3,353., (cp">. Maximum de X-)

J «(-l + l1)

r?—=0,0233',„—i.0,0031,, (cp10.Minimum de J7.)
J logz ' "9 ' '" VT '

rX;

3) <p=^-t:. P
j— =0,47200065,3— i. 0,20003415sc (cp". Minim, de n.)
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(1 + ìffi)

Jdzj—=1,4180675 + «'.0,1328283. (cp13. Tables de log.)

(cp»)
1 P dz

4) ?=4^- j!—=0,l8534832ls-».O,81182044su

O+i-i)
e

J*
d^

j—=1,8357377 —i. 1,1831371 (cp'». Tables de log.)

é'
"(1+0

Jîofi 1 »395995« - * '] >2 [ 1008»> (q?'. Minino, de '/?.)

tM-1 + >)

fj^=—0,0632402, —/'.0,2561938, (9". Minim, de £.)

Si l'on admet que dans l'intégrale

=/log*

le log z ne soit plus réduit à sa seule valeur principale, on

pourra poser, en désignant par k un nombre entier quelconque,
positif ou négatif, et par cp un angle compris entre — tt et + rc.

e peV+skn)i,

log z log p -f- (cp + 2 kn) i re1"-

et le logarithme principal de cette expression devient

log (log*) =logr+ '|i.
Dans cette formule

r =y/logî,* + (c? + 2/w:)r
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est une quantité positive et cp un angle compris entre — - et+-,
déterminé par les équations

logp cp + 2for cp+2/OT
cos <li -, —, sin cl -.

T tsd.=s-. •

y/logïlr, + (cp + 2fc^, y/log«io+ (cp + 2fc7rj2 logP

(7) J-

L'intégrale J peut encore être calculée au moyen de la série

,r^; i;, + log(/logV + [?-l-2te'+^+S(s)+S,!s)î±^

2!

où l'on a posé, comme précédemment, s log p.
La constante C1 doit être déterminée de telle façon que

l'intégrale prenne la valeur zéro pour p 0. On reconnaît
aisément que

C Cs+szi,

suivant que k est positif ou négatif, ou si /c 0, suivant que cp

est positif ou négatif. Il est évident que dans le cas, où k ^0,
l'image de l'axe réel positif n'est plus une droite. A cause des

valeurs relativement grandes de (cp + 2/c7r), la série (7), tout
en étant convergente dans le plan entier, ne se prête guère au
calcul numérique.

De l'étude et des calculs qui viennent d'être faits, il découle
la construction suivante. Comme on a l'habitude de le faire
quand on considère le log z dans toute sa généralité, on peut se

figurer que le plan (z) se compose d'une infinité de feuillets
conformément aux valeurs multiples du nombre entier k. Un
feuillet, F0, sera assigné au logarithme principal, pour lequel
fc=0 et log 1=0; le feuillet F;., au-dessous de F„ et le feuillet
F—jt, au-dessus de F0, seront destinés à représenter les mêmes
valeurs de z, mais dont les logarithmes diffèrent du logarithme
principal respectivement des quantités ±.2krzi. Tous les feuillets
seront coupés le long de l'axe réel depuis l'origine jusqu'à — =*> ;

ensuite on reliera le bord positif (cp +7:) de chaque feuillet
au bord négatif du feuillet qui se trouve immédiatement au-
dessous et le bord négatif {'(= — -) au bord positif du feuillet
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immédiatement au-dessus. Dans la surface de Riemann ainsi
construite, non - seulement le log z, mais encore l'intégrale

J*
dz

î est une fonction uniforme de la variable z.logz
o

En résumé, l'origine du plan [e) est un point singulier tel
que, dans chaque feuillet séparément, l'égalité est conservée
entre les angles de l'original et les angles correspondants de
l'image. Le rayon cp const, qui peut appartenir à tous les
feuillets, a une infinité de courbes pour images; ces courbes
diffèrent les unes des autres, il est vrai, mais leurs tangentes
initiales ont toutes la même direction, et il en est de même des

tangentes aux points p=\ et &==<>. La nature de la fonction

/dz7—— paraît entièrement caractérisée par ces propriétés.
o

Dans la fig. 2 on a tracé les courbes correspondant aux113rayons cp —-, =tï~. =J7:, ^ du feuillet F0.

3) En ce qui concerne le point z=^>, il paraît certain que la
X

Jdzrj— s'y comporte comme à l'origine. En tous cas,
o

les courbes qui correspondent aux rayons <p=c et cp=— (n — c),
situés dans le même feuillet, passent à l'infini l'une dans l'autre
sans interruption de la continuité, de sorte que l'égalité des

angles correspondants est maintenue. Les différents feuillets
doivent être soudés les uns aux autres de manière à ne pas
déranger les lignes de passage déjà établies, et il n'est pas
nécessaire de créer de nouvelles voies de passage.

Lausanne, le 18 mai 1895.
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