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NOTE

SUR LE LOGARITIIME-INTEGRAL

PAR

H. AMSTEIN

Le logarithme-intégral est une transcendante peu complai-
sante, a laquelle on ne connait pas, jusqu’a présent, de proprié-
tés remarquables, mais qui joue néanmoins un role important
dans I’analyse, soit dans les intégrales Eulériennes, soit comme
limite d’autres intégrales définies. Un passage relatif a cette
fonction, qui se trouve a la page 54 de I’excellent petit ouvrage
de M. le D phil. J.-H. Graf, intitulé : « Einleitung in die Theorie
der Gammafunktion und der Euler’schen Integrale » (Berne,
chez K.-J. Wyss) m’a paru trop bref pour étre suffisamment
clair. -

Désireux d’éclaircir, autant que possible, le point resté obscur,
je me suis décidé & effectuer les calculs numériques longs et
pénibles dont on trouvera plus loin les résultats et & publier le
résumé de mes efforts, dans les quelques pages suivantes, qui
contiendront, je ’espére, parmi des considérations et des for-
mules connues depuis longtemps déja, quelques résultats nou-
veaux.

I

Oun appelle logarithme-integral la fonction

x
J:J'lda; :
og x
0

ou x signitie une variable réelle. Si 'on considere la courbe

1 .
Y=Togz’ (fig. 1)

rapportée & un systeme de coordonnées rectangulaires, on peut,
XXXI 14
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en admettant aussi des surfaces négatives, envisager J comme
Pexpression de la surface de cette courbe. Comme telle J est
une fonction uniforme de z, et c’est de celle-ci qu’il s’agit ordi-
nairement dans les applications. (La courbe posséde asymptote
x=1. A Dorigine I’axe des y est tangent & la courbe; le point
x=21; =0,1303.., y=— -;—est un point d’inflexion. La courbe
se trouve tout entiere du coté des z positifs.) La surface en
question peut étre calculée a 1'aide de 'une des deux séries
bien connues

T
Ly n—x i
(1) sz du =C(C—4log(—logx)+4 = logn.cz,
0 "=

I.ng —1 n.n!
£ d n— l i
a . X e . iw Ognl:
(1) J__flng!]C_(,—i-log(log:z)+ﬂf:l .l
0

ou
C=0,577215664901532

est la constante d’Kuler. (Comp. par exemple J.-A. Serret,
Cours de caleul diff. et int., tome I, page 229.) Les deux séries
sont absolument convergentes pour toutes les valeurs réelles et
positives de la variable z; on se sert de la premiére ou de la
seconde, suivant que x est plus petit ou plus grand que 'unité,

1 ©
n dx * dx .
Chacune des deux surfaces | —— et | —— est infiniment
J logx log
0 !

grande, la premiere est négative, la seconde positive. En résol-
vant I’équation

_ "“*logr x
P . N =
0=C+ log (log x) +ﬂ:1 =
on obtient la valeur d’x pour laquelle la surface négative dans
sa totalité et une partie de la surface positive se compensent
mutuellement. A ’aide de la regula falst ou de toute autre

méthode d’approximation, on trouve sans difficulté que

logaz™
0

xr
* dx -
=0 pour x=145136%,,,
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(chiffre aussi exact que le permet ’emploi des tables de loga-
rithmes 4 7 décimales). Cette valeur d’z, portée dans la fig. 1,
montre & I’évidence que la fonction J devient infinie de x =0
A =1 tout autrement que de x =1 a 2 = .

S1, dans J, on fait la substitution réelle

E==y, de = at*! dt,
1

ks, logz=«log¢,

ou « est un nombre positif quelconque, 11 vient

r t
logz™ J logt
U 0

(@1
Les intégrales de la formefm—t dt se ramenent donc 1immeé-
diatement au logarithme-intégral. Pour ne citer qu’un exemple,
on pourrait écrire

)
qa0+al t+a, t:: s + Cln, tn
J log ¢

=
i
- I pin+1)

-
| c "c‘l.z:+a l“dx+ cl-a:+ ta > dx
=dy | 70—+ | i+ | To=F - Fn | =

°J logx ' ) logax T ? ) logax ”J logz
0 0 0
et comme cas particulier
A

pm
J‘t"-l — ¢m—l P J‘ dr
log ¢ log & logz— ) logx z

0 . pom
Dans ces intégrales r peut étre plus grand ou plus petit que
l'unité, mais non égal a I'unité, car on a déja reconnu que

1

r dz

logx

= — oo,



206 H. AMSTEIN

Ainsi I’égalité précédente ne saurait subsister pour » ==1. En
effet, on sait que son premier membre

1
fn—1 — gm—1 n
=5 dt=log—>
,f log ¢ &m
0 .
ce qui, en général, est diftérent de zéro, tandis que son second

membre J‘l , est manifestement nul.

Pour une valeur déterminée de la limite supérieure x, I'inté-
grale
a—1

xr

peut étre considérée comme une fonction continue d’«. Dés lors
1l est possible, a P’aide de la série de Taylor, de passer de J a

x
xﬂ -+ '3— 1

oy == dx ,

log x
0
ou (5 est un nombre réel quelconque, mais tel que a4 5 > 0.
A cet effet on formera les dérivées successives de J par rapport
a la variable «.

On a
D x¢— log a®
= s u—l o \
J‘ Tog & —dx = s = ot (¢ >0)
22 logz 1
ﬁ;~*[ﬁr“¥}

g legs o 2
ded o «® g |*

...............................

En appliquant le théoreme de Leibnitz, & savoir

d’luv)  d"u & u
= ’U-I— =
do? dz=" pd p—1" d9'+
pp—1)d" " u d*v du d v dw
+ 1.2 da?’“—g'dags+"'+pdo¢'da'p—1+u" o
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et en posant

« 1
U=— X ,T)z'—“—a
de sorte que
du__ - d*u ¢ d u — %o
=" g o, a=atlogts, =t log'a,
dv 1 dw_ 2! d» 3! dk'u_, 1k7.:!
da™ ~ 2P datT 2 dltT T ot "'?lﬁac—’:_(# ) S

1l vient d’abord

da’ B
o log" i oy o108 s
+pp—1l" — 5= — . (1) pla” — +(=1) pl o5,
: 24 24
et ensuite :
»J o log" ' » log"
i w1V o v
Dxn =& [ o (n 1) 2 -+
log e log " x
+(n—1) (n—2) ——(n——l)(n—))(n—o) — 4.
10 n—I1 1
+(—1)"" (n-—l = —}—(m_l) (n—1)! -—]
et le théoreme de Taylor donne maintenant
v Al a Tow i X
= = afloge 17 &
J'",’ log Togz W= J'locu:d“(’—‘- 3 [ % _ac"]" 1
]
logx  _logx 2!7 4 logz _logx logr 3! 5*
¢ e B — p Pt 3 Buiu - hadig [P nall
i [ o Tl Tl “'+ \' 2 o2 s «? z‘] 1!
< [logix log®x log' loge 417 F°
e e e R
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ou bien, en ordonnant cette série suivant les puissances crois-
santes de (« log «) et en posant, pour simplifier 'écriture,

5
22—
74
& all47)
T
5
0
(=] =
&L o 1‘3 1_ 1 5 6
log - dx l/——g/ “+ =2 5 4+ e e J+
u \alog"b) - 1 L] 3 1"6
1! [Z STEE RS TR J'*’
aleloge)ri., 1., 1.0 1., '
~+x 51 [—3"/ —T +.)/ -5/ —+- .._—l—
o (tlog V1 1., 1., o tlogf 1., 1.,
-+ —‘:‘,—‘!— I/‘ “)‘"/+G/b— +J/1—"T,——" ?'/.'-"6"/°+
o lalog )’I1.
Or, on sait que
. 1. 1., 1. , )
/‘—§/.2+3‘/.0—I/}—|—....=1Ogl‘;1—i—/.)

a la condition que |7| <1, ou |a| signifie la valeur absolue de
la quantité ¢. On peut donc, dans cette hypothese, donner a J,
la forme définitive

' , x(t(]—*—),)-q - .L'MA] \ .
(20) Jiz‘j‘_e—-—(luv_—_—rmdx—i-x“)log(l—i—/.)—
.n B i

log 2
th
ah;é”b)[lorr l472)— ]Jl—ﬂé’—— [log(l»{——/)—/—}——/*J
(¢log

\3 1‘2 1‘:5 ]
T 10”‘ 1—+—f /—{—g/. —g/ e

n( logx)
A{=1) (—C-z-%{-'—[l g(l—{—/)—/—}- 22—




NOTE SUR LE LOGARITHME-INTEGRAL 209

Les quantités entre crochets sont toutes, en valeur absolue,
plus petites que log (1+47). Il s’ensuit que la série (22) est
convergente a la facon de celle qui représente la fonction expo-
nentielle. Dans le cas, ou |alogx| > 1, elle reste encore utile
au calcul numérique a peu pres comme la série pour log (14-7.).

Pour z=1 la série (2) donne 'intégrale bien connune qu’on
a déja rencontrée plus haut, & savoir

1

w+p—1 el P
@ — . f5
de=1log(1- -——)
f log - ( Fa ;
0

D

Il est évidemment permis de remplacer dans (2) la quantité 7.
par ¢, ce qui donne

: gy i 1 i 1 o
S PO L SR FR VR VR TN FUL ST
logx ) logw b l“"‘;ﬂ gh bt -1—-(]/, _+

rd

] lrg 13 _l_'s lo l,h_l_
B Taea Vol ¥ Xt - s

1!
alelogal v, 1.0 . 1o
LT L——3A -1 +5/. + 5t ..._+
a(alogayll,, i, 1., ], elclogo)fi 1,
Y _I/'u_—?)_/' —6/. + —“+ & i 75/, +“A — +
«log x)’ 1
3 5",’ )l 54 ..]+
o o /1 1 1 ( 1 1
- ! 5 i i T Y 2 o B T 295
_,J logxdl’b—i—(l— [(24 G + g4 ----)—H \/L gh A )]-1-
0
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En vertu des séries

2 1 N 1 A 6 1 8
log 14w =gat—g +6~2: — 3+
S e ‘l
to x —_ 1 3 lfﬁ 1 1 \ |”{/I<
arctg x = —~g~.¢b+5uc—7—x—i—... -
on peut écrire, en supposant |7.| <1,
v AL ffx“"l G g @ O ][cos (eAlogx) +zq1n(wlom)]
dit— | ~ dr =J dr==
log log « log z
0 0
v 0=l
e 100 % dr+x [log__';\/l_-—i;:?2 ~+-iarctg /'.]—~
) }
lo
—_a" Ju 1§x)[10 \/l+)’+z(arctgA—A)]

log )® ]
7 Qz(;g_!:r‘) [log\/l ~+ 7' —54* 41 (arctg l—l)] -

a alogx )’ Fa— 1. .5 . 1
(__,._g_%;_) -log\/l + 4% -§~/~?+_z(arctg A—l+§ﬂﬁ)]+

+c“(—a—l—i—ig!—m‘-ilog\/@-};—l +1A‘+z(a1(tg/t /.+ )]
z" ﬁ___(a(lgi;c?)"" [log\/1+/2—§m ~+ IA — %?j AU
+i(arctg}f.—/',+;—).3—— 2;11 Al ]_
(‘T(};g_i‘f\frl [log V1 +2.‘-’—~1-A2+i—);‘——. g (-—-”—;):LA-P
—I—i(arctgiwl—i-:;-—la— . % f"“] 4.

La convergence de cette série donne lieu & une remarque
analogue a celle qui vient d’étre faite a I'égard de la série pré-
cédente.
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De cette égalité en découlent deux autres que l'on obtient en
égalant séparément les parties réelles et les parties imagi-

naires,
(3)
x:c“_lcos(alloga:). . ) i [ ----- _lﬂgﬂ
‘.f logx wdmmflog L log\/l‘*‘”“‘ - logy/1+ 7 +
0 ’ 0
1, logaw)s, oo 1,
+(&10g$ \/l—l“/bg oL 2)#(*a%%jl[\logvl+)ﬂ)-—— _Q__AE)_i_
- e L L,
gf‘logm) (logy 14 2* — 5 24 g 74+ ..
(alogm) a 2_1_’! l.“l_ (—1)n i —
(3ny1 QogVI+ 2 —g i om * )
(aloga)™t! s 1 oa b (-1) ]
ST (logy/1 44 ghH M — YA R

* 2 sin (a4 log x) . (alogax) .
() J log @ do =" [awtgl‘ {1 (Arotgd—ai)+

(eloga)? .. (alg)

21 (arctg A —A)— (mctg/——/_|_ 15yl
-I-(a1 = )(arctg/—/—i- A4 ..
6510 " —1 n.i’n——l.
( (qb ))——(arctgA—/+ F (Q'n——)l/L )
ﬂ(a logm)‘lnﬂ 1 (— I)M_1 2n+1

S iy

Dans le cas particulier, ot =1, I'équation (3 ) donne

Gn . T Bretgd— g ii—. ..

Fooos o e e

Cca_,i LOSf logl a—1 a
j“ log d'__j—.l -dcc—lf-lno‘\/ 1+(‘9)

U
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ou bien
1 |
fmflwl [l: cos ([ log a:)J dr = log 1
g log a: “——?_ﬂ_
+(£)
| a
ou encore :
) 1
2”1 sin (—2—,6 logx) ] |
f——- dx= g5 log s
'S lOg a£ =~ 7 p

;

0 ;)
| 1 +( «
La substitution
loge=—y, = cnlp? y dx._—:—zydy
permet de donner A cette intégrale la forme

B—ay - (1

f" *Jsm2(2_ﬁy) 1, @+
0 Yy dy =7 % ¢
(Cette intégrale est probablement connue; cependant je ne l'ai
pas trouvée dans les ouvrages & ma disposition.)

La formule (4) donne pour x = 1 I'intégrale connue

1

j"x““l sin (8 log ) £

o)
oz % dx = arctg Fi

& laquelle, a l'aide de la substitution log x = — ¥, on peut
donner la forme

—ay . |

sin
¢ ie-:lidy:al,rctgp— :
0 Yy a
Cette derniére intégrale est une fonction continue de a qui

conserve sa signification encore pour ¢=0, de sorte que l’on
retrouve ’égalité

xL

sin 3y - >
'nf_y— dy:_—t-_—f_)—, sutvant que 32- 0.
Il va de soi que ces intégrales sont susceptibles d’une infinité
de formes plus ou moins intéressantes, mais ce n’est pas ici le
lieu d’entrer dans plus de détails.
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]
11

Dans la suite on envisagera le logarithme-intégral comme
une fonction de la variable complexe ¢ = x4 yi et I’on étudiera,
pour autant que cela parait utile, la représentation transmise
par la fonction

de

log z
0

L’original dans le plan (2) et I'image dans le plan (£) sont,
en général, semblables dans leurs éléments infiniment petits,
ce qui veut dire que les angles correspondants dans les deux
plans sont égaux. Les points singuliers, c’est-a-dire les points,
ou la représentation cesse d'étre semblable dans les éléments
infiniment petits, sont ceux ou la dérivée de la fonction consi-
dérée devient zéro ou infiniment grande. Dans le cas actuel ou

ity L
dz~ logz
ce sont les points 2=1, 2=0 et z=-=.

1) Pour reconnaitre la nature de la fonction { au point 2=1,
il suffit de développer cette derniére, dans le voisinage de ce
point critique, en une série ordonnée suivant les puissances de
(¢ — 1). A cet effet, soit

c=14+1, des=dt,

et £, la valeur (infiniment grande) que prend £ pour z=1; on a
alors

t ¢ |
A "‘ Codt J"dt lt L
’"“‘-"") log (1+2¢) Jt—50+ .. ‘ +7”)

( {
t
dt 1 )
=f}_(1+§t_,_)=logt+...
0

et I'on voit que t=0 ou 2=1 est ce qu'on appelle un pole
togarit/_’w;:zique. Il s’ensuit, par exemple, que si le point z, parti
de Vorigine et arrivé en ¢ =1, décrit une demi-circonférence
autour de ce point comme centre et avec un rayon aussi petit

\v

b
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K}

qu’on voudra, dans le sens positif (celui des angles croissants),
pour continuer ensuite son chemin le long de 'axe réel, la
fonction £ prend, correspondant & cette demi-circonférence, la
composante imaginaire + w¢ et continue ensuite son chemin
parallélement & 'axe réel du plan (£). A un demi-tour autour
du point z =1, dans le sens négatif, correspond la composante
imaginaire — =i de la fonction £, et en général, & un arc de
cette méme circonférence dont 'angle au centre est égal a
=+ (2m -+ 1) =, ou me signifie un nombre entier positif, répond,
dans le plan (), la composante & (2m <+ 1) 7. La surface de
Riemann, destinée & transformer la fonction £ en une fonction
uniforme, se compose donc d’une infinité de feuillets qui passent
I'un dans l'autre de la maniére connue le long des lignes de
passage établies de z=14a #2=1. On a déja vu que pour des
z réels Z est négatif de z=04a z=1, et devient — > en 2

Des que Z a depasse ce point et se meut le long de I'axe 1eel
jusqu’a g = 2o , & z décrit 1'une des droites n== (2m + 1)z de
f= — 5o jusqu'a £ =+ oo,

2) Le point 2= 0 est comme dit M. Graf (1. c. pg. 54) un
pole d’'une nature toute parlz’culiére. Le moyen le plus efficace
d’étudier la fonction £ dans le voisinage de ce point est, sans
doute, celui de déterminer par un petit nombre de pomts les
images de quelques droites, partant de Porigine et allant &
U'infini. A cet eftet soit

z = pe?,
ou p est une variable réelle qui ne prend que des valeurs posi-
tives et ¢ la mesure circulaive d'un angle constant. Alors z
décrit une droite, partant de 1'origine et faisant 1'angle ¢ avec
Paxe positif des . (y=tge. 2, £ =0, ... >0}, Par la substitu-
tion ' .
z=pe?, dze=¢"dp

la fonction ¢ se transforme en

___-f ¢ dp — e =gl logﬂo_',,dp:
lon‘(pe‘?" lOUD'f‘(F’Z Y log*n+¢*

0 0
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Posant, pour simplitier I’écriture,

{'100' cde de 1
log *o + 2* = loED ot

il vient |
?zi—l—‘f;i:e‘?i(;\&i@]}):{;\cosqs—i—'.szinq,}-{—'é(Asiuapmchcosw.

De cette fagon les points des courbes correspondant aux
droites en question, sont donnés d’'une maniére uniforme par les

équations
(5)

Les quantités réeiles A et B étant indépendantes du signe
de ¢, ces formules montrent immédiatement que deux courbes
qui correspondent a deux rayons symétriques par rapport a
Paxe réel (v et — ¢}, sont également symétriques par rapport
a ce méme axe.

On a d’abord, en posant pour abréger log*p 4 ¢*=

log o s — log -J+$§2

[IARY
H

osy—l—chsin(L

|
[ v=Asine—zBeosw.

dA = D do, d*A = 2D do*,
4B = -}3 d*B = — = ;}i'& de?,
puis ensuite
B w log f -+ Sll]_ff do, d%= cos¢ of— log ﬂp‘;{—— 27 Siln? logf_ 1o?
_ ) = o D? A
site log s —wcoso ., single—log®u)+ 2ecosclog s
=y de, d*n= D et

Soit e 'angle que fait Ja tangente au point (£, 7 ) avec l'axe

positit des Z, do 'élément d’arc et R le rayon de courbure; on

trouve
d'ﬁ sinwlog o — ¢ cose sy
b e e ! i BT e \/ 52 TR
d()"3 9 - 0 gz
R= —“V/D =2V 1og 0+ o
dZdr —dn d*2 ™ o @\/100 o4

L’ohservation des signes de df et dr dans le voisinage de
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p=0, dp étant supposé positif, permet de reconnaitre les di-
rections suivant lesquelles les courbes correspondant a des
valeurs déterminées de o s’éloignent de l'origine. On trouve,
par exemple, que pour

1 5
cp:—i—r:,tguzl, U=—7T,
1 I
':?‘ - E_l't-’ tb‘ (4 >, = ?T’,
5 1
¢ =1 tea=—1, (t=— 77,
=g, R, = 1),

Lorsque p =1, log £ =0, il vient
! ‘ tg a= — cotg ¢,

d’ou 1l suit que les tangentes & ces courbes, aux poiuts corres-
pondant & ¢ =1, sont perpendiculaires aux directions initiales.

Pour g = > on a
tga=1tg g,

de sorte que, & croissant sans limite, les tangentes a ces courbes
se rapprochent indéfiniment de la direction o.

Le rayon de courbure R de toutes ces courbes, a 'exception
de celle qui correspond & @ =0, a la valeur zéro pour ¢ =0.
Cela ne veut pas dire cependant que l’origine soit un point de
rebroussement de ces courbes, mais seulement qu’en ce point
elles cessent d’étre réelles, puisque'p n’admet pas de valeurs
négatives.

La connaissance des maxima et nunima des coordonnées £ et 7
facilite beaucoup la construction d’une courbe. Or, dans le cas
actuel dc=0, s1

. —-'_otvcp
oS v, loglo+cpsm =0 ou pg=e¢e’

i

Pabscisse 2 possede donc un maximum ou un minimum, par
exemple pour les combinaisons suivantes de ¢ et ¢ :



1 —im
CP:E‘Ta o=¢e

1
D= g =1
3 o i

3 ir

@:471', lo:e
CP: 7:’ IO—:l'

[Cordonnée 7 atteint son maximum ou son minimum quand
dr, =0, c’est-a-dire quand
Crotge

sin ¢ log p—g coso=0, ou g=¢’ :

ce qui donne par exemple les combinaisons

I 1
Y=y w = C
1
C{z:““z—fi’, l621
s -—i
3
CP:Z_‘T& L=
Gi== T P:O

Afin d’obtenir les valeurs numériques de £ et 7, il paraitrait
naturel de calculer en premier lieu les intégrales réelles A et B
et d’employer ensuite les formules (5). Mais j’ai trouveé,
apres divers essais, qu’il est plus simple d’évaluer directement
£= &4 alaide de la série (1¢) convenablement modifiée, ce
qui rend superflue la connaissance des quantités A et B qui,
d’ailleurs, sont données par les formules tirées de (5)

A=Zcosg+rsing
vB=~£fsing—rn cosy

La série (1¢)

" de e logs log®z logiz
gz = U tlog(loga) +—757 + 5757 +53 757+ -

0

est convergente sans restriction pour toutes les valeurs réelles
et positives de z; dans cette hypothése elle donne la valeur
numérique du logarithme-intégral, pourvu qu’on y remplace la
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constante C’ par C, et, dans le cas ot 2 < 1, le terme log (log )
par log (—logz). Il est donc permis de 1’étendre & des valeurs
complexes de 2z, occupant le plan entier, ce qui peut se faire de
la maniére suivante.

Si Pon pose
£ = pet,

le logarithme principal de 2 devient
log z=log o+ 91,

oll g est compris entre — = et 4. Kn écrivant pour abréger

S(logz), logp=s

et en remplacant log 2z par sa valeur, il vient & I'aide du théo-
réeme de Taylor

~ I ur ) e 4
S(s+9i)=5(s) ~i—5(3’1' -l ()91 S (8)%T+5 (s)%+

57 H
~ ¥ ?
—+5 (s)%—!- +S (s)——.
Or,
s? 3 ”

S(s)= 1|+2 2!+3 d'+ -+ 'n'+

et par conséquent, cette série étant différentiable terme par
terme y
s? s® n—~1

es -1
S

1 LA
:;[_1+1+1!+)t 3—|+41++ + 1+ ]

cP)

Le coefficient de ——— peut ainsi prendre I'une ou l'autre des

formes

), =l (€—1\
s™ (s) = D} ( - )

¢ m ' ; 1’
Afin de former la dérivée niéme de la fonction = (es—1), on

appliquera le théoréme de Leibnitz déja cité (pg 206), en posant
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1

u=cs—1, v=—>
s

- 1'
d’ou wl = 5. == —
4 82
21
ui=ée, (Rl— Pl
; k!
(k) B = (=1 ——
U =ces v ( 1 sk

et l'on trouve, n; désignant le kitme coefficient du bindome, soit

nn—1)n—2) ... n—k+1)

np =

.2, 3. ... k
(n+1) () es—1\ 1 1! 2! 3! k!
S(s)=D;, (-—g—-)=-s—eswn,?c~+ui—é-;-es--—mg;eé‘—i—...(—1) ﬂ?ksk_'_l es+..)
—2 (n—?)! . —l, (n TR
o o (— 1) o A4} e S+(-1) ==y lo—1.

$

=3ne+1 [sar__ s n(n—1) g nn— 1) (n—2) P

o (=1 — 1D n—2)...35+

Hn— n !
+ (1" mm—1)...3.2s4+(—1"n!]—(—1 =
w1 n! es }l:n 1;" ey 9 . 1 n—aA
= (—1) Sn+1+3n+1 ;;0(— Y un—ln—2).... n—2+1)s

Les dix premiéres dérivées de S (s) sont

!
S(S)-——-;e — 11

" ? 1
S (s):% [s — 1]+

5

_ %
Sm _____!9_ 2 o1 =
()= [e—2s+2)— 5

Sw(s)--—— [s°—3s® +Gs—6j+

XXXI 15
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g 5
S ¥ 9
b‘(s):%[s —4s° -1—1789—248‘-1—24]——4

s‘“(s;:% $—D5s' 4208 — bo.s~+1208_120]+@

E,—[s —68°4+308*—1205°43608* — 72054 ;20]—-2-—O

S |
S = S sT— 750425 — 210 5" 4840 5° — 2520 8 4 5040 5 — 5040] +-

IxX
S ()

5040
——
S

—-—[s — 85" 4 568" — 336 8* 4+ 1680 s' — 6720 s* 4 20160 52 —

— 40320 s 4+ 40320] —

S,O[s —98' 4728 — 504 5* 4+ 3024 s — 15120 s* + 60480 s —
362880 |

— 181440 s* 4 362880 s-— 362880] +

Pour s =0 le coefficient de ‘(’J ) ~—devientS (O)-_-.:? Entre deux

dérivées successives de S (s) 1l ex1ste la relation

()
n+1) e —nmn S S
S (3) = —-S—()

que 1’on démontre facilement et dont la connaissance peut étre
utile, soit comme moyen de contrdle, soit pour calculer les
termes de la série

En introduisant z=0e¥ dans le terme log (log #), il vient
d’abord

log z=1log p + i =r¢"",

ot r=y/log® o+ ¢

est une quantité positive et ) un angle compris entre — = et
—+ 7, déterminé de telle fagon que
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log o ; @
- , Sin = === .
ylog 2o 4o v Viog*o+ ¢t €Y =log;

Ensuite log (log 2) prend la forme

COS '.[/=

log (log ) =log \/log *p 4 ¢*+ i

et la série (1) devient

(G)L"" = C'+logylog e+ 47+ 4i+8(5) + 5 (5) 8" (9 & —

I s'agit maintenant de déterminer la constante C' ensorte
que, pour =0, c'est-d-dirc pour des z réels, la série (6)
coincide avec la série (1) et que, pour =0, elle affecte la
valeur zéro. Dans les applications de la série (6) le terme

100\/100'*0—{-@' doit toujours étre réel; d’autre part on peut
éerire

e P o oo CPE-_ =
logy/log *0 4 ¢* = log (loo & \/1 +10g 2.0)_
oy R o TD_:“_#
= log [(, e log(p \/1 N locﬂp)]—
; ot
=10g(———logp)~—m+log( 14 loé;*o)

et cette expression se réduit, pour o =0, &

log (— log o) —=i.

Or, quant o, partant de valeurs positives, tend vers zéro et
que o < 1, ¥ acquiert la valeur = et I'on prendra, en consé-

quence
¢('=C—mi.
Dans le cas, ou @ est négatif et tend vers zéro, il vient
Y =-—mx, et il faudra poser
C('=C+=

g ; . 1 # . ‘
Par ces déterminations de C le but proposé est atteint. Elles
subsistent encore, lorsque o > 1, car on a déja vu que le loga-
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rithme-intégral prend, dans le premier feuillet, la composante
imaginaire == mé, aussitot que 'argument réel 2z dépasse 'unité.
La série (6), appliquée a des ¢ positifs,

x "

(6) ‘j—‘ld u?/—{-lon‘\ﬂog?a Coz—l-‘{[..i.. w —.—9__

i et

. 5 - s
e—17 . ss—1 17 e . ; 2] o?
i el G Gt -1 e R R

RN T
+L?(.>—os-|-Ga,--o)-;-§r]éT

devient pour =1, c’est-a-dire dans le cas ou 2 se meut de
1

Porigine jusqu’a un point du cercle des unités, et ou 2]/=Q~f‘
&
dz . l . . ¥ ¢ ¢’ (99"
logz_b—'m_i‘log‘ﬁ"z_ N R LTICE e 5"+4 4’+ Y e
¢t 9 ¢ ¢ ¢
=0 yritoget| AT I BT Tl - ~srsar|
Or, on a
o? qp’ o® cos g—1 5 [(sin*io
~g o i G".BT*'""“J g e deﬁ"’
0 ' O '
; ¢
¢ v s _{smyp
117 5""5 =) s
i
et par suite
c’.?l ] 7

{ 1 in2leq 1n
.fl(;:z =(-— 5] i+ log o— ?‘J'?_Tf_" do+1 ( L ‘Odfp

0 H
. 1 . : .
La présence du terme —-;=¢ dans cette formule pourrait pa-

raitre étrange, vu que pour ¢ = 0 l'intégrale devient réelle et
égale i — > ; mais on n’oubliera pas que lc logarithme-intégral

acquiert la composante nmaginaire — iy ™, lorsque la variableg.
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décrit, dans le sens négatif, le quadrant d’une circontérence de
rayon mhmment petlt et avec z=1 pour centre, afin de passer
de 'axe réel i la circonférence du cercle des unités.
Voict maintenant quelques chiffres obtenus & Paide de la
série (6). Partout ot l'intervention des tables de Iogarithmeq a
7 décimales a été nécessaire, 'exactitude de la 7° décimale ne
sauralt étre garantie.

Tt
* dz
1) P =ty Jlog’“:OO 2667 ‘)lgl—-}-z (0,28114072,

~
‘calculé jusqu’s ¢*.)
A7)
dz

log 2
0

(2-Fi)

= 0,022, 41.0,806,, (¢")

> dz .
" '17):@;2:“”6“ ~42.1.990 ‘ (cp"z)
0 '
%‘JT?:
e
dz

log 2
0

—0,33059740, .~ .0,16895213, (¢'")

%]
_e

]
| 02
S|

M 4
5wt
(;( + )

dz
log 2
u

—: T(1-+1)
€

dz
log &
0

3 ;
Tw(—1-41i)
o

da

U

—0,69550,, =4 1.0,76566,, (¢")

=1,063,,+1.5,353,,  (¢'". Maximum de &)

=0,0233,,—%.0,0031,, (¢'°. Minimum de ».)

I\. [-'-

[

N’l

f log 2= 04200065, —7.020003415,, (4", Minim. de n.)
0
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(14-2xi)
¢ ” =
E . ¢ m
@=1’4180675+z'0’1328285' (¢'* Tables de log.)
0

1 -
71-7"

e
1 > de

4) g=g7. | pgs= 018684832, —1.081182044,, (™)
0

(14 % i)
4

g dz (2] ¥ 3 (3 Lord m
@:1,8357077—2. 11831371 (g'. T'ables de log.)
0

T4
€
{122 = 1,395095,, —i.1,211008, (" Minim. de 7.)
0

| ef-,?f(—1+f}

dz
log 2
0

=—0,0632402, —¢.0,2561938, (¢*. Minim. de &.)

Si Pon admet que dans 'intéerale
q g

le log 2z ne soit plus réduit a sa seule valeur principale, on
pourra poser, en désignant par £ un nombre entier quelconque,
positif ou négatit, et par ¢ un angle compris entre — = et 4 .

' AR
& = IOGCPJF )‘ 3

log &= 1log ¢~ (p+2kr) i=re™
et le logarithme principal de cette expression devient
log (log 2) = log 4 'Li.

Dans cette formule

r = ‘/10g= o4 (o +42k7)?
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est une quantité positive et un angle compris entre — = et 4=,
déterminé par les équations
e log o Sl = o4 2kn tg\g_—@_kglm'
\/log o ={o=2k7)* \/log o4 (o4 2km)? log

(1)

L’intégrale J peut encore étre calculée au moyen de la série

dz

ou I’on a posé, comme précédemment, s = log .

La constante C' doit étre déterminée de telle facon que I'in-
tégrale prenne la valeur zéro pour £ =0. On reconnait aisé-
ment que

C'= Ui,
suivant que k est positif ou négatif, ou si £ =0, suivant que
est positif ou négatif. Il est évident que dans le cas, ou % >
I'image de 'axe réel positif n’est plus une droite. A cause des
valeurs relativement grandes de (v -+ 2kr), la série (7), tout
en étant convergente dans le plan entier, ne se préte guere au

calcul numérique.
De D’étude et des calculs qui viennent d’étre faits, il découle

" la construction suivante. Comme on a 1’habitude de le faire

quand on considére le log 2 dans toute sa généralité, on peut se
figurer que le plan (z) se compose d’une infinité de feuillets
conformément aux valeurs multiples du nombre entier k. Un
feuillet, I,, sera assigné au logarithme principal, pour lequel
k=0 et log 1=0; le feuillet I, au-dessous de F, et le feuillet
F—;:, au-dessus de F,, seront destinés & représenter les mémes
valeurs de 2, mais dont les logarithmes diftéerent du logarithme
principal respectlvement des quantités + 2kxz. Tous les feuillets
seront coupés le long de i’axe réel depuis ’origine jusqu’a — o ;
ensuite on reliera le bord positif (¢ =+ =) de chaque feuillet
au bord négatif du feuillet qui se trouve immédiatement au-
dessous et le bord négatif (7=-—=) au bord positif du feuillet

| —==

i - oy ) o a4, \O+2kT .
1—(@:0+1og\/log-.o+(c.o+zkxf+4n+3(s)+b‘(s) I
0
+2kr) 7t ( +2kr i
SN L P TP = K
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immédiatement au-dessus. Dans la surface de Riemann ainsi
construite, non-seulement le log 2z, mais encore l'intégrale

-
A~
L]

J locrzeSt une fonction uniforme de la variable z.
o
(]

En résumé, l'origine du plan (2) est un point singulier tel
que, dans chaque feuillet séparément, I’égalité est conservée
entre les angles de l'original et les angles correspondants de
I'image. Le rayon ¢ =const. qui peut appartenir a tous les
feuillets, a une infinité de courbes pour images; ces courbes
différent les unes des autres, il est vrai, mais leurs tangentes
nitiales ont toutes la méme direction, et il en est de méme des
tangentes aux points p=1 et s=50, La nature de la fonction

-
~

Z A -8 » o rd -’ ”
l—oﬂgjg parailt entierement caractérisée par ces propriétés.
0 ‘
Dans la fig. 2 on a tracé les courbes correspondant aux
1 1 3 . y
IaYONs ¢ = -7, =5, =7, =7 du feuillet F,.
3) En ce qui concerne le point 2=>-, il parait certain que la

-4
fonctionfl—ocig p s’y comporte comme 3 l'origine. En tous cas,
0

les courbes qui correspondent aux rayons g=c¢ et 9=— (7 —c),
situés dans le méme feuillet, passent & I'infini I’'une dans l'autre
sans interruption de la continuité, de sorte que I’égalité des
angles correspondants est maintenue. Les difiérents feuillets
doivent étre soudés les uns aux autres de maniére & ne pas
déranger les lignes de passage déja établies, et il n’est pas
nécessaire de créer de nouvelles voies de passage.

Lausanne, le 18 mai 1895.
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