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NOTE
sur les épicyeloides el les hypocycloides, envisagées au point de vue
de la représentation conforme

PAR

H. AMSTEIN

Lorsqu’en 1877 j’ai publié mon travail, intitulé : « Un exemple
de représentation conforme » (Bulletin XV, 78), les résultats
qu’on va lire dans cette note m’étaient déja connus et trés pro-
bablement je n’étais pas seul & les connaitre. Je ne les estimais
cependant pas assez importants pour les publier. Si aujourd’hui
je me décide néanmoins & les consigner dans ce bulletin, ce n’est
pas que j’ale modifié mon opinion sur leur valeur, mais plutot
parce qu'un travail paru dans les Miftheilungen der Natur-
Jforschenden Gesellschaft,in Bern, intitulé: « Conforme Abbil-
dung des Kreises auf das Innere einer Epicycloide » me fait sup-
poser que l'intérét du public mathématique pour cette sorte de
questions n’est pas encore complétement éteint.

¢) REPICYCLOIDES ORDINAIRES

Soit £, » les coordonnées rectangulaires d'un point, ¢ une va-
riable auxiliaire pouvant prendre toutes les valeurs réelles de 0
a 27, R le rayon du cercle fixe, dont le centre est placé & 'ori-
gine et » le rayon du cercle mobile qui roule sans glisser sur le
cercle fixe; alors les équations

( E=(R+7) cosl—_g;ql; -7 COS-R%—QZ @,
(1) ~
<n=(R+r) sin{-—{cPw-r Sinl—{%cp

représentent une épicycloide. Celle-ci sera dite ordinaire, si elle
ne possede pas d’autres points doubles que des points de re-
broussement du premier genre et qu'apres avoir fait une seule
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fois le tour de l'origine, elle revient au point de départ. A cet

; . : 1 . ; :
eftet on doit avoir r.—_—.—R, ou n represente un nombre entier

positif. En 1emplagant cp par g, s par— h on peut donner aux

équations (1) la forme

g%iz(n—}—l) cosp — cos (n—+1) o,
(1%) ]
\ Rr..._

Entin, en modifiant échelle de la figure et en remplagant
(n—+1) par n, on peut écrire

(n+1)sinz —sin(n+41) .

S £=MNC0ST—COSNY,

(1%)

(n=mnsiny —sinng.

Si I'on multiplie la premiére de ces équations par 1, la se-

conde par ¢ = \/— 1 et que 'on ajoute membre & membre, il
vient

£+ 7t =m0 (cos ¢+ ¢ sin ¢) — (COS NP + 2 SIn ng) = nePi — e

ou, en posant

=
I
N

i+ m=g, evi

(D {=mnzg —zn

) EPICYCLOIDES ALLONGEES

Les épicycloides et hypocycloides (qu'on appelle aussi épicy-
cloides extérieures et intérieures) sont dites allongées, quand
elles ne possedent ni points doubles, ni points de rebroussement
du premier genre. Les premieres sont données par les équations

( t=(R47r) cos%qo——p Ccos I—{%_—?:cp,

R+r

o ¥ .
Zr,:(R—{—r)stq;-—-«psmTcp,
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ou R et » conservent leur signification primitive et p désigne la
distance du point qui décrit la courbe au centre du cercle mo-
bile. Pour que 1'épicycloide soit allongée, il suffit que 1'on ait
r

R

p par %Rp, si enfin on change d’échelle (en supprimant le fac-

p <. Sidans les équations (2) on remplace 3 ¢ par ¢, » par %R,

teur :—zR) et qu’on écrive n & la place de (n + 1), elles prennent
la forme

(2)

g'g__—:-ncoscp — P COS Ny,

{ 7= sin g — p sin ng,

ol maintenant p est un nombre positif < 1. Comme précédem-
ment on en déduit cette nouvelle équation

(II) L=nz — pzr

) HYPOCYCLOIDES ORDINAIRES

D’une maniére analogue, en partant des équations

s

r

) R—vr
| £= (R—r)cos gy A-rcos —p—g,
(3)

. T . R—»
n=(R—1r) Sl p ¢ — Fsih—p—0,

P i R

. » . ~ - re 1
qui représentent une hypocycloide, aprés avoir posé » = R et
finalement remplacé (2 — 1) par », on arrive aux équations
( £ = C0os ¢ + COS Ny,
(3 ' ‘

{ »=nsing —sinne

qui donnent naissance a cette autre

(I1T) L= +£E'
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3) HYPOCYCLOIDES ALLONGEES

Les équations

[, r R—y»
\ E=(R—r) cosl—{@+p cos—mR——go,
4) \
( r—=(R—17r) Sin = o — p sin ——"
= . R? D g7
qui représentent pour p < r,r = %R une hypocycloide allongée,
se mettent aisément sous la forme

Séﬁ:ncosqo —~+ p cos no,
( 7 =mnsinp— psinnp,

(1

ou p signifie un nombre positif < 1. On en déduit immédiate-
ment

(IV) t=ne L

zn

Soit 2 = & + yi Vaffixe du point (z, ) du plan (2), L=E+xi
'affixe du point (%, ») du plan (). La fonction

E=nz—z"

établit une relation entre les deux plans; ainsi lorsque par
exemple z=¢¥% parcourt le cercle des unités, ¢ décrit ’épi-
cycloide

/!

s'gzncoscp—cosncp,
(n=mnsing —sinno,

et s1 Pon considére le plan (2) comme l'original, le plan ()
comme 'image, on sait qu’original et image sont semblables
dans leurs éléments infiniment petits. De cette loi il faut excep-
ter les points, ou la dérivée

dZ

(Ezn (1 — Zn_l)

s'annule. Ce sont les points

LT

2 =e"—], E=0,1,2,... (n—2)
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et ’on montre facilement qu’d ces points correspondent les
points de rebroussement du premier genre de ’épicycloide en
question. En effet, on voit immédiatement que pour =0 ou
¢=0, le point {=(n—1), v =0 est un point du dit genre.
Or, il suffit de faire tourner le systéme de coordonnées d’un

]

angle ¢, =fzk " 4 Paide des formules

—1
(€= <£cosg+7sing,

| 7/ = — £ sin o, + 7 cos g,
kT
pour reconnaitre que les (72— 1) points z=e"—! se trouvent
exactement dans le méme cas. Ces considérations, convenable-
ment modifiées, s’appliquent également aux fonctions (II), (III)
et (1V).

Pour étudier les représentations, transmises par les formules
@), ..dAV), il convient de chercher, dans chacun des cas, les
deux systémes de courbes qui correspondent ’'un au systéme
de circonférences concentriques, avec l'origine comme centre,
Pautre au faisceau de leurs rayons communs,

) EPICYCLOIDES ORDINAIRES
En substituant

-

(3) 2 =re%
dans ’équation

o L=nz—a",
1l vient

£~ ni=mnr (cos ¥ 4 ¢ sin @) — »* (cos e -+ i sin ny),
ou, en séparant les parties réelles des parties imaginaires

S £ = nr cOS @ — "% COS NP,
(6)
( n==nr sin ¢ — 7P sin ny.

Or si dans I’équation z=7¢?’ on considére » comme constant,
@ comme variable, le point z se meut sur une circonférence de
rayon #, ayant son centre & l’origine. Mais si, au contraire, on
considére ¢ comme constant et » comme variable, le point 2
décrit le rayon (commengant & Porigine et allant & Dinfini) qui
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fait I’angle  avec ’axe positif des z. Ainsi, au systéme de cir-
conférences concentriques correspondent les courbes données
par les équations (6), dans lesquelles on considére » comme un
paramétre variable; tandis qu’au faisceau de rayons répondent
les courbes, représentées par les mémes équations (6), mais
dans lesquelles on considére ¥ comme un paramétre variable. Il
va de sol que ces dernieres courbes sont les trajectoires ortho-
gonales du systéme, caractérisé par » = const.
En mettant les équations (6) sous la forme

%: " Cos g — r*—1 cos ny,
(62)

s .
| —=mnsIin ¢ — "l ng,

1
on reconnait immédiatement que pour# =const. et <1 elles
représentent des épicycloides allongées. Il s’ensuit qu’a un point
de I'intérieur du cercle des unités correspond un point — et un
seul — de lintérieur de V’épicycloide (1b).

Afin d’obtenir I'équation en coordonnées rectangulaires du
systeme de trajectoires orthogonales de ces épicycloides, on
éliminera la variable » entre les équations
(6) S £ = mr COS ¢ — " COS NG, | sin g | sin ¢

6 1

. - |
( =Ny s ¢ —rhsin Ny, ‘ —COsS ny | —COos g.

On trouve d’abord

. £ sln nY—7 COS NG n— g Sing —7008¢
nsin(n— o’ sin(n—1)g ’
puis
(&sIn ny — 7 COSNY)* _ £SINY — 7 COSY
nrsm® (i —1) o sin (n— 1) ’
ou bien

(7Y (Esin® ¢ — % cos no)r=n" sinn—f(n — 1)¢ (£sIn 3 — 7 COS @).

Ces courbes sont par conséquent des paraboles de P'ordre 1.
Leur équation en coordonnées polaires p,  est la suivante:
. . sin (¢ — )
i t=l—= grgint—1 (h— 1)@ ——r—— 7=
( ) P ( jcPSlnn (ncp_gp)
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) EPICYCLOIDES ALLONGEES

En faisant la substitution & =»e¥ dans I’équation

L= nz — pzn
on trouve d’abord

\ E=¥rn cosS © — Prtcos ny,
( 7 =1rnsin g — prrsin ng.

Pour = const. <1 ces équations représentent des épicy-
cloides allongées.

Les trajectoires orthogonales de ces courbes (v =const.) sont
données en coordonnées cartésiennes par 1’équation

i . n
(£ sin ng — 7 cos ny)r="1_ gin n—1(y — 1) o (£sin @ — x cos @),

en coordonnées polaires par ’équation
ne . sin (g —:
o l=—sin"-1(n — 1) q;——(cp—ﬂ
sin (np — 1)
Ce sont encore des paraboles de l'ordre ».

») HYPOCYCLOIDES ORDINAIRES
Dans le cas de la fonction
1
{=nz+4 —
ZT’L

la substitution 2z = re¥i conduit aux équations

( o :
c=rn COQ@—I——-CO&,%@,
(8)

) 1 .
( N =rRSIN @ ——= SN %Y.
En les mettant sous la forme

=N CoS ¢ 4~ -—-cos no,

b |J\

\
( —?ZSIDCP---—I_l_

?l::s

SN n g,
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on reconnait que pour # =const. et > 1 elles représentent des
hypocycloides allongées. On en conclut qu’a un point de 'exté-
rieur du cercle des unités correspond un point — et un seul —
de l’extérieur de ’hypocycloide ordinaire (32). (Par lextérieur
d’une courbe fermée on entend ici celle des parties du plan li-
mitées par la courbe qui contient le point & l'infini.)

Les trajectoires orthogonales de ces hypocycloides ont pour
équation en coordonnées cartésiennes

(9) (£ sin %@ 4% cos ng)*& sin @ — » cos @) = n* sin®+! (n 4 1) @
et en coordonnées polaires

sint+! (n+ 1)@
ST (g 9 sin (¢ — 9

(9e, ‘o'""*' 1— 4

0) HYPOCYCLOIDES ALLONGEES

Adaptées a la fonction

)
B s y,
C=nz—+ w

les équations (8), (9) et (92) subissent les modifications suivantes
!/ P

\ £=7'ncoscp—i—;;lcosn@,

(10)

b

('ﬁ=rn sin @ —ﬁsin no;

(11) (£sin ng 7 cos ng)r(£sin @ — 7 €os ¢) = prrsin*+1(n + 1)o;
sin®tln41)o

sin (0 g+ ) sin (g — 3

Pour » = const. > 1 les équations {10) représentent encore des
hypocycloides allongées.

Un cas particulier intéressant s’obtient en faisant # =1 dans
les équations précédentes. L'hypocycloide allongée (42) devient
alors ’ellipse

(112 o = ppn

52 .,.“‘.‘

=]

et la fonction

L=z

(W =t
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sert d'intermédiaire 4 la représentation conforme de ’extérieur
du cercle des unités sur ’extérieur de cette ellipse. ¥)

La discussion et le tracé de toutes les courbes dont 1l a été
question jusqu’ici, n’offrent aucune difficulté.

Ce qui précéde peut se résumer en cette proposition :

Pour représenter d’'une maniere conforme Uintérieur du cercle
des unités sur Uintérieur d’une épicycloide, on se servira de la

Jonction
L=nz—per,

o p=10u < 1, sutvant que Uépicycloide est ordinaire ou al-
longée, tandis que pour représenter d'une maniére conforme
Uextérieur du cercle des unités sur Uextérieur d’une hypocy-
cloide, on devra employer la fonction

7o 2

L=nz+ ot
ou p est encore < 1, lorsqu’il s'agit d'une hypocycloide allongée
et égal a 1 dans le cas d'une hypocycloide ordinaire.

Dans ce genre de questions on a ’habitude d’envisager non-
seulement les courbes du plan (£), mais encore celles du plan ()
et plus particulierement les isofimes et les isophases. On ap-
pelle ainsi les courbes du plan (2) qui correspondent, les pre-
miéres & un systéme de circonférences concentriques du plan
(%), avec l'origine comme centre, et les derniéres a leurs trajec-
toires orthogonales, c’est-a-dire au faisceau de rayons communs.
Les lignes suivantes seront consacrées a4 une étude succincte de
ces deux especes de courbes.

[SOTIMLS
) EPICYCLOIDES ORDINAIRES

Si dans I'équation
1 L=z (n— o)

*) Sous une forme un pen différente j’ai rencontré cette représentation
conforme pour la premiére fois dans un cours intitulé : « Introduection a
la théorie des fonctions », professé¢ par M. H.-A. Schwarz en 1869-70 a
I’Ecole polytechnique fédérale, & Zurich.

9
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)

o,

13,

on égale £ a 0, les racinez de I'équation du n° degré ainsi ob-
tenue, sont

n—1_ opri

=0, 2=V ne!, kE=0,1,...n—2);

on les appellera les zéros de la fonction L. Posant encore, pour
simplifier I'écriture

n—l_
\/ W=t
on peut écrire
ke 2T
(12) r—_z Iz — aen1),
0,n—2

2R
ou /7 siguifie le produit des facteurs (¢ — aer—1), k prenant suc-
cessivement les valeurs 0,1, 2, .. (n-—2). L’équation (12) peut
se mettre sous la forme

o . . . A " , ‘2’371' ( P Ok
Etrni=—"w4yi) 1l (.L~--(LbObn_1 -H\y —

Oyn—2

et si I'on remplace les quantités imaginaires par leurs conju-
guées '

, ) o/ o . . 2kr

B o st e ;L—Jg 1] [\x —— @ Cos n__l)*—fz<y—asm”__l)]_

o,n—2

Multipliant les équatlons (124) et (12}, membre & membre, et
égalant 2* 4 »* a une constante ¢*, 1l vient

( co Ll 1 ——asingkﬁ)e]
LS n—I1 +\¥ n—1

Puisque 2* 4+ 72 = ¢*, le point £ décrit une circonférence de
rayon ¢ autour de l'origine comme centre. Il s’ensuit que I’é-
quation (13) représente une isotime pour toute valeur constante
de ¢; et ’on reconnait en méme temps la propriété caractéristi-
que des isotimes, & savoir la constance du produit des rayons
vecteurs qu’on obtient en joignant les zéros de £ par des lignes
droites & un point quelconque de la courbe. Iin effet, ’équation
(13) montre qu’en désignant la valeur absoiue de z par » et celle

bt A Q
- " o —

0n-2

Q?{Tti)
du facteur \z- -aer—1/ par ¢, ,on a

(OG- Prm1 =1
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Afin de développer le produit contenu dans I'équation (13), on
pourra écrire en remontant & I’équation (I) et en désignant par
2, la quantité conjuguée de 2 :

E4-vi=nz — 2",
E—ri=nz, — z,",
d’ou par multiplication
B4t =cC =0t — sz, v a0l S ana
Or, on a
o=l = gn—t =g (n =1, an—2y—(n—1, ev=3 y* —yp (n—1), n—4 A
2=l =an—l—in—1), :t:'“—‘fy—(n— Hyah =3yt =i n—=V,un=1y 4 .

on en tire, en additionnant ces deux égalités membre & membre
ct en prenant la moitié

___';\‘Zn—l + zin—-——l) — ‘L'H,—]. _(“-—1;‘2 xﬂ,——-’) _y!?- + (n'__l)i =3 _!ji N
1

k

L4 A [i
,‘\NI

])Am _ 1) an—1—2A y;ﬂl’
£=0

ou la lettre de sommation 7 parcourt les nombres entiers posi-
tifs depuis 2 =0 jusqu’au plus grand nombre entier contenu
dans i (n—1).
Maintenant I’équation des isotimes devient
/-— n—l
13) (.If"—l-y“:)[(x iyl —2n I (—- DA — 1}, n—1—2) "I?"]
r=0

Pour la transformer en coordonnées polaires
_— ! —_ in '
X =g cosl, y=rpsinl,
on remarquera que d’apres le théoréme de Moivre on a

}. = n—I

}_:(i 1)* (n — 1),3 cos®1—2A Lsin?* § =cos (n — 1) L,
A=0

de sorte que I’équation (13%) se transforme finalement en
(1Y) =1 4 nt—2n pr=lcos (n — 1) Y] =¢2

Les isotimes sont, par conséquent, des courbes algébriques
du degré 2n. Il n’est pas difficile de se faire, au moins approxi-
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mativement, une idée de la forme de ces courbes. En effet, comme
les circonférences 2% 4% =¢? entourent 'origine, leurs images
— autrement dit les isotimes — doivent nécessairement entourer
les zéros de la fonction £. De quelle maniére? C’est ce que I’é-
quation (13b) permet de reconnaitre.

i
Pour ¢ =0 ou plus généralement ) = - I_-lr

Jk=0,1..(n—2),
elle prend la forme

P"Jn N pn—H _+_,“:! Pz =c::
ou bien

([ “’P)ﬂ =,
ou encore

Or, pour ¢=0, cette équation donne les zéros de {; pour
¢ < (n—1) elle possede deux racines voisines et positives ; pour
= (n—1) les deux racines se confondent, et enfin pour¢> (n—1)
une seule des racines est positive. Il s’ensuit que pour ¢ =0 I'i-
sotime se réduit aux n zéros de £; pour ¢ < (n—1) elle se
compose de n petits ovales dont chacun entoure un des zéros
de £; pour ¢= (» — 1) elle posséde sur chacune des droites
n_2km
LT
entoure un zéro de £ et enfin pour ¢ > (#—1) l'isotime forme
une branche unique entourant les s zéros de &.

un point double et forme (»— 1) lacets dont chacun

£5) EPICYCLOIDES ALLONGEES

Dans ce cas les équations (132) et (132) deviennent

(14%)
g -
(@ + y“)[p* (@ )= A —2mp 3 (— DA (1), an— =2y J”—‘C"’
~=0

(IL_U)) p‘-' [1)2 P'-.)(ﬂ—l) +“‘2 . np Pﬂ-—l cos (".r__ l) .\P] — c'l.
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») HYPOCYCLOIDES ORDINAIRES

Les zéros de la fonction

g+l -+ .1_
oo 1 n
‘:—.”H—*_g—d}l "_'/,"'
sont
ntl 1
; i 191
’:’Jk: 73"-&-1 3 Iﬁ:(),l,:.).’...n-
En posant
n+1
1
a=\/ —,
n
£ peut se mettre sous la forme
k e Loy
H(z—ac"+1 )
; ; - 0,1 .
f=i+m=n PR
et 'on a de méme
K . Ll

Uz, —ae"t! )
On

e —_

=1

E—Tnl=n

2"

Multipliant ces deux équations, terme par terme, on obtient
pour les isotimes, images des circonférences Z* + 7 =¢?, Ié-

quation
R 2% +1\° 2h4-1\*
. uﬂﬂ[(x——acos—“ ~—> ~+ (1 — @ sin — ) ]
(10) 52_{_-42:62___ g n+1 (J n+1

@y

Sil'on désigne la valeur absolue de z par p, celle du facteur
k41 _.
—_—T » . ”
(24— aen+1 ) par g,, on peut admettre comme équation de dé-

finition des isotimes la suivante
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Un procédé analogue a celul qui a été employé dans le cas
des épicycloides, permet de mettre 'équation (15) sous la forme

(15)

+
(h 1) (n +1) !L”‘}‘l-—JAJ‘)R_U

JI‘lH

(a2t — 2 (2 4+ o°) ’%-1—1—}—9?1
A=0

Ainsi les isotimes sont des courhes algébriques de lordre
(2nr—+2). Pour la transformation en coordonnées polaires, on
remarquera que l'on a

n41 7. -n+1

AT -
:~:( I (1) 13yt = it = (= 1) (1) cos™ 1= 0 sin?h ) =
A=0

=itlcos(n+1) Y,
de sorte que (15%) devient
(15Y) w2 pntl)— g2 pn -2 oitlcos (n 4 1) P 4 1=0.
Cette forme se préte bien & une discussion succincte des
courbes en question. En effet, si dans cette équation on fait

-d lb+
VS o elle devient

- ) . — 2 ')‘
W pt) 2 pentl 41 = ¢ o2
ou
wphtt — b= - eph

et 'on reconnait que pour ¢=0, l'isotime se réduit aux zéros
de £ Pour ¢ < (n+1) elle entoure sous forme de (w4 1) pe-
tits ovales les dits zéros. Lorsque ¢=(n + 1), I'équation pré-
cédente possede la racine double z =1, I''sotime a un point
double — et soit dit en passant — les deux tangentes en ce point
241

w17
Entin, s1 ¢ > (n+ 1), I'isotime se compose de deux branches
fermées, dont 'une entoure les zéros de £ et autre origine.

font des angles de == 45° avec 'axe de symétrie ) =

3) HYPOCYCLOIDES ALLONGEES

Le fait que I'on a
=nz+4 %
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amene les modifications suivantes des équations (15%) et (15)

(164)
+

/__:
\< = 7 n-41—2h o7

W@t )T — @ Ayt 2p

I—O

(160)  w*ptntl— ¢ o 4 2pp o tlcos (n+ 1)) 4+ p*=0,

ISOPHASES
N o) EPICYCLOIDES ORDINAIRES
Soit
2k _.
, ——ﬂa -
F=ype?, z—acr! =g e, k=0,1,2,..(n—2).

Alors, en prenant le logarithme des deux membres de ’équa-
tion (12), il vient
h=n—2 h=n—2
log(f4n)=log(— ) +logo+ I logo, +vi+1 3 o

k=0 k=0
et 'on a de méme, en remplagant ¢ par — i, sauf dans log (—1)

k=n—2 k=n—2
log (6 —rni)=log(—1)4logo+ X logo,—owi—1i X o.
=0 k=0

De ces deux équations on tire, en retranchant la seconde de
la premiére et en divisant par 2¢

1 F4ut b=l
-y 0g R 2 ]
D) 27 _ i T}+].::O 7k
ou
2k
Y — asin n—1
o = arctg 4 4 wretg i o \/w
H=—=al T = Ar = i
' 8 x’ P Qhr’
X -— (A CoSs
n—1

Si, d’autre part, on pose
Edvi = Pefti ;

on a

log (2 4 i) =log I’ + 64,
log (£ #ni)=1log P — ¢,

E47i
?ilog?——f?, 8,

]

D (n+ Dy ¥ =
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de sorte qu’en attribuant & 6 une valeur constante, I’équation
par laquelle on peut définir les isophases, prend la forme

(17) G+ PPt e A T2 =0,

Pour obtenir I’équation des isophases en coordonnées polaires
o, b, on tiendra compte de la relation

tg 0""?

J

Il vient successivement

Edrni=nz— z"=n (1+yz)—(4¢—|—ya R
=no(cos Yy + isinb)— or(cosn ) +esinnd),

d’on 1] suit

g E=mnpcosy—crcosny,

( v =mnpsind — ersinnl,

B g T siny — ghsinny _ ;sin {J — prlsinwd
T8 T nocosh—corecosnyT nmcosh—n—leosnl’
et enfin
sin (b — 6
(17) h—l=py (¥ ),
' sin (ng——-(j)

Ce sont des courbes de l'ordre # qui se composent de

(n — 1) branches hyperboliques, passant chacune par un zéro
ki

2, = aer—1de Z et d’une n™ branche non hyperbolique passant
par origine. Cette derniére dégéneére en une ligne droite toutes
les fois que le numérateur et le dénominateur de s7—1 ont un
facteur- variable commun, ce qui arrive dans (#-—1) cas. En
effet, le numérateur s’annule pour ) =46 et le dénominateur
pour 5y = 6+ v, ol v représente un nombre entier. On a done

d’une part w =@¢, d’autre part ! u—(itzz, ce qui donne I'é-
()
galité
_ b+um
=
dont on tire
1
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L’équation (17*) montre que toutes les isophases sont épui-
sées, quand @ varie d’une maniére continue de 0 & w. Mais la
condition 6 < 7 est satisfaite, si ’on donne a u successivement
les valeurs 0,1, 2, ... (n—2).

La courbe posséde »n asymptotes qui forment les angles
"’ ’_'__ 0+ v
YT

v=0,1,2, .. (r— 1) avec 'axe polaire positif.

) EPICYCLOIDES ALLONGEES
Par suite de ’emploi de la fonction
£ =—nz-—pz*,
’équation (17%) se modifie en

n sin () — 6)

pht—1 =—=—

* P sin (nd—a)’
») HYPOCYCLOIDES ORDINAIRES

Des considérations analogues a celles qui ont fourni les équa-
tions (17) et (17*) conduisent d’abord a I'équation de définition

(18) Do+ Gy 4+ Ca+ ... 4 On— NP =0 =const.,

ou

Sln2k+1
Y—a ST
Y . n-1
(_—_arctgz, v, = arctg ST 1 o8 =t Lo &0 wills
r — a COS —r
n—+1"
n+l
1
o= iy

puis & I’équation en coordonnées polaires des isophases
1 sin(ny—+6)
nosin (¢ —6)

Ces courbes sont de lordre (24 1). Elles sont formées de
(n —1) lacets fermés et d'une branche infinie possédant une
6

(18) ot =
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asymptote. Cette derniére branche dégéneére en une ligne droite
toutes les fois que 6 prend une des valeurs comprises dans

_ prm

0=———, u=0,1,...n
n-+4+1 ‘
Du fait que ¢ s’annule pour =ﬂ,

v=0,1,..2n—1),
n v ”(n )

on conclut que ’origine est un point multiple, ou % branches se
croisent. Il va de soi que la courbe, dans son ensemble, passe
par les (n 1) zéros de £.

3) HYPOCYCLOIDES ALLONGEES

Dans ce cas I'équation (182) doit étre remplacée par la sui-
vante
gl — Sl.n ('} _'___)
n sin (Y —6)

La description de la surface de Riemann, attachée & la va-
riable 2 considérée comme fonction de ¢, ne rentre pas dans le
cadre de cette note.

O— —O

Note de l'imprimeur. -—— Une erreur d'tmpression s'est glissée dans
la numérotation des pages du présent mémoire, dont les 16 preiniéres
dotvent porter les folios 67 a 82.
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