Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles

Herausgeber: Société Vaudoise des Sciences Naturelles

**Band:** 25 (1889-1890)

**Heft:** 101

**Artikel:** Fonctions abéliennes du genre 3 : un cas particulier [suite]

Autor: Amstein, H.

**DOI:** https://doi.org/10.5169/seals-262156

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF: 29.11.2025** 

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Vol. XXV.

Nº 101.

1890.

# FONCTIONS ABÉLIENNES DU GENRE 3

# UN CAS PARTICULIER (SUITE)

PAR

### H. AMSTEIN

## Le problème de Jacobi.

L'existence de la relation

$$s^4 + z^4 - 1 = 0$$

entre les variables s et z entraîne celle des trois intégrales abéliennes de première espèce (comp. le n° 99 de ce bulletin, p. 9),

$$w_1 = \int_0^z \frac{dz}{\sqrt[4]{(1-z^4)^3}}, \quad w_2 = \int_0^z \frac{z\,dz}{\sqrt[4]{(1-z^4)^3}}, \quad w_3 = \int_0^z \frac{dz}{\sqrt{1-z^4}},$$

dont la limite inférieure 0 est censée être dans la première nappe de la surface de Riemann T'. L'intégrale  $w_3$  est elliptique et l'on a vu (n° 99, p. 43 et suiv.) qu'il est possible de ramener aussi  $w_4$  et  $w_2$  à des intégrales de même nature. En effet, la substitution

$$\zeta = e^{\frac{\pi i}{4}} \frac{z}{s}$$
, ou  $z = e^{-\frac{\pi i}{4}} \frac{\zeta}{\sqrt[4]{1-\zeta^4}}$ ,  $s = \frac{1}{\sqrt[4]{1-\zeta^4}}$ 

transforme  $w_i$  en

$$w_1 = e^{-\frac{\pi i}{4}} \int_0^{\zeta} \frac{d\zeta}{\sqrt{1-\zeta^4}}$$

et la substitution

$$s = \sqrt[4]{1 - z^4} \quad \text{ou} \quad z = \sqrt[4]{1 - s^4}$$

amène pour  $w_1$  la forme

$$w_{1} = -\int_{1}^{s} \frac{ds}{\sqrt{1-s^{4}}} = \int_{0}^{1} \frac{ds}{\sqrt{1-s^{4}}} - \int_{0}^{s} \frac{ds}{\sqrt{1-s^{4}}} = K_{2} - \int_{0}^{s} \frac{ds}{\sqrt{1-s^{4}}},$$

d'où il suit.

$$K_2 - w_2 = \int_0^s \frac{ds}{\sqrt{1-s^4}}.$$

Ecrivant, pour simplifier,  $w_1$  à la place de  $e^{\frac{\pi i}{4}}w_1$  et  $w_2$  à la place de  $K_2 - w_2$ , on voit que, d'après la notation de Gauss, on a

$$\xi = \text{sinlemn } w_1, \quad s = \text{sinlemn } w_2, \quad z = \text{sinlemn } w_3.$$

(Dans la présente étude, les notations de Jacobi : sin am x, cos am x,  $\Delta$  am x, de même que celles de Gauss : sinlemn x, etc., seront remplacées par les expressions plus simples sn x, cn x, dn x, conformément à l'usage établi par beaucoup d'auteurs. Lorsque le module k n'est pas indiqué expressément, il est sousentendu que k=i.)

Soit maintenant

Si l'on introduit comme variables des intégrales  $v_1$ ,  $v_2$ ,  $v_3$ , définies par les congruences

$$\begin{cases} v_{1} \equiv w_{1}^{(1)} + w_{1}^{(2)} + w_{1}^{(3)}, \\ v_{2} \equiv w_{2}^{(1)} + w_{2}^{(2)} + w_{2}^{(3)}, \\ v_{3} \equiv w_{3}^{(1)} + w_{3}^{(2)} + w_{3}^{(3)}, \end{cases}$$

le problème de Jacobi peut s'énoncer comme il suit : Etant données les valeurs de  $v_1$ ,  $v_2$ ,  $v_3$ , trouver algébriquement les valeurs correspondantes de  $s_1$ ,  $s_2$ ,  $s_3$ ,  $s_4$ ,  $s_4$ ,  $s_5$ ,  $s_6$ ,  $s_8$ 

Or, il est évident que, lorsque les valeurs de  $v_1$ ,  $v_2$ ,  $v_3$  sont connues, les valeurs correspondantes qu'affectent n'importe quelles fonctions uniformes de ces variables, par exemple sn  $w_1$ , sn  $w_2$ , sn  $w_3$ , seront parfaitement déterminées. Il s'ensuit que

dans le cas actuel, le problème en question peut être ramené à celui-ci : Etant données les quantités a, b, c, de telle sorte que

$$\begin{cases} \operatorname{sn} v_1 = \operatorname{sn} (w_1^{(1)} + w_1^{(2)} + w_1^{(3)}) = a, \\ \operatorname{sn} v_2 = \operatorname{sn} (w_2^{(1)} + w_2^{(2)} + w_2^{(3)}) = b, \\ \operatorname{sn} v_3 = \operatorname{sn} (w_3^{(1)} + w_3^{(2)} + w_3^{(3)}) = c, \end{cases}$$

et en outre les six relations

$$\operatorname{sn} w_{1}^{(i)} = e^{\frac{\pi i}{4}} \frac{\operatorname{sn} w_{3}^{(i)}}{\operatorname{sn} w_{2}^{(i)}}, \operatorname{sn}^{4} w_{2}^{(i)} + \operatorname{sn}^{4} w_{3}^{(i)} = 1, (i) = 1, 2, 3;$$

déterminer les 9 quantités sn  $w_1^{(i)}$ , sn  $w_2^{(i)}$ , sn  $w_3^{(i)}$ , (i) = 1, 2, 3.

On reconnaît immédiatement que les 9 inconnues se réduisent facilement à 3, par exemple à sn  $w_3^{(1)}$ , sn  $w_3^{(2)}$ , sn  $w_3^{(3)}$ . La possibilité de la solution étant ainsi hors de doute, on prévoit que la solution elle-même dépend, en dernier lieu, d'une équation du 3° degré dont les racines sont les valeurs cherchées de  $z_1$ ,  $z_2$ ,  $z_3$ .

Voici comment on pourrait poser les premiers jalons sur la voie qui, théoriquement, aboutit au but désiré. Soit, pour abréger l'écriture

$$p_i = \operatorname{sn} w_{\mathbf{3}^{(i)}}, \quad q_i = \operatorname{cn} w_{\mathbf{3}^{(i)}}, \quad r_i = \operatorname{dn} w_{\mathbf{3}^{(i)}}, \quad i = 1, 2, 3.$$

L'application du théorème relatif à l'addition des fonctions elliptiques donne d'abord

$$\operatorname{sn}(w_3^{(1)} + w_3^{(2)}) = \frac{p_1 q_2 r_2 + p_2 q_1 r_1}{1 + p_1^2 p_2^2},$$

puis

$$\operatorname{sn}(w_3^{(1)} + w_3^{(2)} + w_3^{(3)}) = c =$$

$$= \frac{ \sin(w_3^{(1)} + w_3^{(2)}) \cos w_3^{(3)} \sin w_5^{(3)} + \sin w_3^{(3)} \cos(w_3^{(1)} + w_3^{(2)}) \sin^2 w_3^{(3)} }{1 + \sin^2(w_3^{(1)} + w_3^{(2)}) \sin^2 w_3^{(3)}} =$$

$$=\frac{(1+p_1^2p_2^2)(p_1q_2r_2+p_2q_1r_1)q_3r_3+p_3(q_1q_2-p_1p_2r_1r_2)(r_1r_2+p_1p_2q_1q_2)}{(1+p_1^2p_2^2)^2+(p_1q_2r_2+p_2q_1r_1)^2p_3^2},$$

ou bien, en chassant le dénominateur et en ordonnant

$$\begin{split} q_{2}r_{2}q_{3}r_{3}\left(p_{1}+p_{1}^{3}p_{2}^{2}\right)+q_{1}r_{1}q_{3}r_{3}\left(p_{2}+p_{1}^{2}p_{2}^{3}\right)+\\ &+q_{1}r_{1}q_{2}r_{2}\left(p_{3}-p_{1}^{2}p_{2}^{2}p_{3}-2c\,p_{1}\,p_{2}\,p_{3}^{2}\right)=\\ &=c\left[\left(1+p_{1}^{2}p_{2}^{2}\right)^{2}+p_{1}^{2}p_{3}^{2}q_{2}^{2}r_{2}^{2}+p_{2}^{2}p_{3}^{2}q_{1}^{2}r_{1}^{2}\right]-\\ &-p_{1}p_{2}p_{3}\left(q_{1}^{2}q_{2}^{2}-r_{1}^{2}r_{2}^{2}\right). \end{split}$$

Si l'on pose encore pour simplifier

$$\begin{aligned} p_1 + p_1^3 p_2^2 &= A, \quad p_2 + p_1^2 p_2^3 &= B, \\ p_3 - p_1^2 p_2^2 p_3 - 2c \, p_1 p_2 p_3^2 &= C, \\ c \left[ (1 + p_1^2 p_2^2)^2 + p_1^2 p_3^2 q_1^2 r_2^2 + p_2^2 p_3^2 q_1^2 r_1^2 \right] - \\ &- p_1 p_2 p_3 \left( q_1^2 q_2^2 - r_1^2 r_2^2 \right) &= D, \end{aligned}$$

les quantités A, B, C, D sont des fonctions rationnelles de  $p_1$ ,  $p_2$ ,  $p_3$ , c'est-à-dire de  $z_1$ ,  $z_2$ ,  $z_3$ , car

$$\begin{aligned} q_1^2 r_1^2 &= 1 - p_1^4, \quad q_2^2 r_2^2 = 1 - p_2^4, \quad q_3^2 r_3^2 = 1 - p_3^4, \\ q_1^2 q_2^2 &= (1 - p_1^2) \left( 1 - p_2^2 \right), \quad r_1^2 r_2^2 = \left( 1 + p_1^2 \right) \left( 1 + p_2^2 \right) \end{aligned}$$

et l'équation précédente peut s'écrire

$$Aq_{2}r_{2}q_{3}r_{3} + Bq_{1}r_{1}q_{3}r_{3} + Cq_{1}r_{1}q_{2}r_{2} = D.$$

En la mettant sous la forme

I. 
$$[A^2q_2^2r_2^2q_3^2r_3^2 + B^2q_1^2r_1^2q_3^2r_3^2 - C^2q_1^2r_1^2q_2^2r_2^2 - D^2]^2 = 4q_1^2r_1^2q_2^2r_2^2 [ABq_3^2r_3^2 + CD]^2,$$

on reconnaît que cette d'ernière équation est rationnelle en  $z_1, z_2, z_3$ .

D'une manière analogue, on obtient encore deux autres équations pour  $z_1$ ,  $z_2$ ,  $z_3$ . En effet, si l'on attribue aux quantités p, q, r la signification

$$p_i = \operatorname{sn} w_2^{(i)}, \quad q_i = \operatorname{cn} w_2^{(i)}, \quad r_i = \operatorname{dn} w_2^{(i)}, \quad i = 1, 2, 3$$

et que l'on remplace dans les équations précédentes c par b, on obtient d'abord une équation II° en tout semblable à l'équation I, à cela près qu'elle est rationnelle en  $s_1$ ,  $s_2$ ,  $s_3$ . A l'aide de la relation  $s_i^4 + z_i^4 - 1 = 0$  on peut encore la transformer en une équation II, rationnelle en  $z_1$ ,  $z_2$ ,  $z_3$ .

Enfin, si p, q, r signifient

$$p_i = \operatorname{sn} w_i^{(i)}, \quad q_i = \operatorname{cn} w_i^{(i)}, \quad r_i = \operatorname{dn} w_i^{(i)}, \quad i = 1, 2, 3$$

et que l'on remplace c par a, on arrive d'abord à une équation rationnelle en  $\zeta_1$ ,  $\zeta_2$ ,  $\zeta_3$  que l'on peut ensuite, au moyen des re-

lations  $\zeta_i = e^{\frac{\pi i}{4}} \frac{z_i}{s_i}$ ,  $s_i^4 + z_i^4 - 1 = 0$  ramener à une équation III, également rationnelle en  $z_1$ ,  $z_2$ ,  $z_3$ .

On est ainsi en possession de trois équations

$$I. f_1(z_1, z_2, z_3) = 0$$
,  $II. f_2(z_1, z_2, z_3) = 0$ ,  $III. f_3(z_1, z_2, z_3) = 0$ 

qui permettent de déterminer  $z_1$ ,  $z_2$ ,  $z_3$  en fonction de a, b, c, et l'on sait qu'on n'obtiendra qu'un système de valeurs admissibles pour les trois inconnues.

Les quantités  $z_1$ ,  $z_2$ ,  $z_3$  une fois connues, on trouve sans difficulté les valeurs correspondantes de  $s_1$ ,  $s_2$ ,  $s_3$ . On a, en effet,

 $s_i = m_i \sqrt[4]{1-z_i}$ , où  $m_i = \pm 1, \pm i$ , suivant la nappe dans laquelle est situé le point  $z_i$ , et ces facteurs  $m_i$  se déterminent aisément en substituant  $s_i$ ,  $s_i$ ,  $s_i$ ,  $s_i$  dans l'équation  $H^{\circ}$ .

Un autre procédé aboutissant à la solution est celui-ci. En opérant une permutation circulaire sur les indices des quantités p, q, r dans l'équation  $\mathbf{I}$ , on forme deux autres équations  $\mathbf{I}^a$  et  $\mathbf{I}^b$  et les trois équations  $\mathbf{I}$ , la  $\mathbf{I}^b$  ajoutées membre à membre donnent lieu à une nouvelle équation symétrique en  $z_1$ ,  $z_2$ ,  $z_3$ . D'une manière analogue et répondant aux données b et a, on pourra établir encore deux autres équations dont l'une est symétrique en  $s_1$ ,  $s_2$ ,  $s_3$  et l'autre symétrique en  $s_1$ ,  $s_2$ ,  $s_3$ . Celles-ci se tranforment aisément en équations symétriques par rapport aux mêmes inconnues  $s_1$ ,  $s_2$ ,  $s_3$ . A l'aide de ces trois équations, il doit alors être possible de former une seule équation du 3° degré en  $s_1$ , dont les racines sont précisément les valeurs cherchées de  $s_1$ ,  $s_2$ ,  $s_3$ . Les valeurs correspondantes de  $s_1$ ,  $s_2$ ,  $s_3$  se trouvent ensuite comme dans la solution précédente.

Vu la longueur des formules, il ne paraît d'ailleurs guère possible d'effectuer réellement les calculs qui viennent d'être indiqués sommairement.

Quand on passe du sinam aux fonctions 3 de Jacobi et viceversa au moyen de la formule

$$\sqrt[h]{k}$$
 sinam  $\left(\frac{2Kx}{\pi}, k\right) = \frac{\vartheta_1(x, q)}{\vartheta_1(x, q)}$ ,

où

$$K = \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1 - k^{2} \sin^{2} \varphi}}, \quad K' = \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1 - k'^{2} \sin^{2} \varphi}},$$

$$\frac{2Kx}{\pi} = \int_{0}^{\varphi} \frac{d\varphi}{\sqrt{1 - k^{2} \sin^{2} \varphi}},$$

$$k^{2} + k'^{2} = 1, \quad q = e^{-\frac{\pi}{K}},$$

le paramètre q joue un rôle important. Dans la suite, la connaissance de cette quantité sera très utile, sinon indispensable, de sorte qu'il vaut certainement la peine d'en calculer la valeur pour le cas particulier k=i,  $k'=\sqrt{2}$ .

On a déjà trouvé (n° 99, p. 49)

$$K = \int_{0}^{1} \frac{dz}{\sqrt{1-z^{4}}} = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-\frac{4}{2}\sin^{2}\varphi}} = K_{3}$$

et l'intégrale K' s'obtient de la manière suivante : On a

$$\begin{split} \mathbf{K}' = & \int_{0}^{1} \frac{dz}{\sqrt{(1-z^{2})(1-2z^{2})}} = \int_{0}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-2\sin^{2}\varphi}} = \int_{0}^{\frac{\pi}{4}} \frac{d\varphi}{\sqrt{1-2\sin^{2}\varphi}} + \\ & + \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{1-2\sin^{2}\varphi}} = \int_{0}^{\frac{\pi}{4}} \frac{d\varphi}{\sqrt{1-2\sin^{2}\varphi}} - i \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d\varphi}{\sqrt{2\sin^{2}\varphi-1}} = \mathbf{A} - i\mathbf{B}. \end{split}$$

Si, dans l'intégrale A, on substitue

$$\sin \varphi = \frac{\sin \psi}{\sqrt{2}}, \text{ d'où } d\varphi = \frac{1}{\sqrt{2}} \frac{\cos \psi \, d\psi}{\sqrt{1 - \frac{1}{2} \sin^2 \psi}}$$

il vient

$$\int_{0}^{\frac{\pi}{4}} \frac{d\varphi}{\sqrt{1-2\sin^{2}\varphi}} = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{\cos\psi \, d\psi}{\sqrt{1-\frac{1}{2}\sin^{2}\psi} \, \sqrt{1-\sin^{2}\psi}} =$$

$$= \frac{1}{\sqrt{2}} \int_{0}^{\frac{\pi}{2}} \frac{d\psi}{\sqrt{1-\frac{1}{2}\sin^{2}\psi}} = K_{3},$$

tandis que l'intégrale B, à l'aide de la substitution  $\varphi = \frac{1}{2}\pi - \varphi_4$  se transforme en

$$\int\limits_{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{d\phi}{\sqrt{2\sin^2\!\phi-1}} = -\int\limits_{\frac{\pi}{4}}^{0} \frac{d\phi_{\text{1}}}{\sqrt{2\cos^2\!\phi_{\text{1}}-1}} = \int\limits_{0}^{\frac{\pi}{4}} \frac{d\phi_{\text{1}}}{\sqrt{1-2\sin^2\!\phi_{\text{1}}}} = K_3.$$

Il s'ensuit que

$$K' = (1-i) K_3$$

et par conséquent

$$q = e^{-\pi \frac{\mathbf{K}'}{\mathbf{K}}} = e^{-\pi \frac{(1-i)\mathbf{K}_3}{\mathbf{K}_2}} = e^{-\pi(1-i)} = -e^{-\pi}.$$

### Le problème de Riemann.

Soient  $v_1$ ,  $v_2$ ,  $v_3$  des variables définies comme fonctions des trois points  $\xi_1(s_1, z_1)$ ,  $\xi_2(s_2, z_2)$ ,  $\xi_3(s_3, z_3)$  par la congruence

$$\left( \int_{1}^{3} \left( \int_{\alpha_{1}}^{\xi_{1}} dw_{h} + \int_{\alpha_{2}}^{\xi_{2}} dw_{h} + \int_{\alpha_{3}}^{\xi_{3}} dw_{h} \right) \right) \equiv (v_{1}, v_{2}, v_{3}),$$

où  $w_1$ ,  $w_2$ ,  $w_3$  signifient trois intégrales abéliennes de première espèce, dont les modules de périodicité sont  $k_1^{(i)}$ ,  $k_2^{(i)}$ ,  $k_3^{(i)}$ . Conformément à la notion de la congruence, à un seul système de points  $\xi_1$ ,  $\xi_2$ ,  $\xi_3$ , correspond une infinité de valeurs de  $v_1$ ,  $v_2$ ,  $v_3$ , comprises dans l'expression

$$\left(\frac{3}{h}\left(v_h+\sum_{i=1}^{i=6}m_i\;k_h^{(i)}\right)\right),$$

où  $m_1, m_2, ... m_6$  désignent des nombres entiers quelconques. Or, une fonction des variables  $v_1, v_2, v_3$ , uniforme et en général continue, possédant les six périodes  $k_1^{(i)}, k_2^{(i)}, k_3^{(i)}$ , est aussi une fonction uniforme des points  $\xi_1, \xi_2, \xi_3$ . Ceci établi, le problème de Riemann peut s'énoncer comme il suit : Etant données des fonctions à six périodes des variables  $v_1, v_2, v_3$ , on demande de les représenter algébriquement par les valeurs qu'affectent s et z dans les trois points  $\xi_1, \xi_2, \xi_3$ . (Comp. Weber, p. 62.)

Au lieu d'aborder immédiatement la solution de ce problème fondamental et de former les fonctions  $\mathcal{P}$  avec les intégrales normales  $u_1$ ,  $u_2$ ,  $u_3$ , il est préférable de passer d'abord, à l'aide d'une transformation du  $2^d$  degré, à d'autres intégrales normales  $u'_1$ ,  $u'_2$ ,  $u'_3$  qui, introduites dans les fonctions  $\mathcal{P}$ , permettent la décomposition de ces fonctions en trois fonctions  $\mathcal{P}$  elliptiques. A cet effet, il est nécessaire d'établir en premier lieu les formules générales pour la transformation des fonctions abéliennes du genre 3.

Soient  $w_i$ ,  $w_2$ ,  $w_3$  les trois intégrales de première espèce données et

| $w_{\scriptscriptstyle 1}$ |                        | $w_{2}$            |                      | $w_{\scriptscriptstyle 3}$ |                                 |
|----------------------------|------------------------|--------------------|----------------------|----------------------------|---------------------------------|
| A <sub>4</sub> (1)         | B <sub>1</sub> (1)     | A, (2)             | $B_{1^{(2)}}$        | A,(3)                      | B,(3)                           |
| $A_{2}^{(1)}$              | $\mathbf{B}_{2}^{(1)}$ | A2(2)              | $\mathbf{B_2^{(2)}}$ | $A_{2}^{(3)}$              | $\mathbf{B}_{\mathbf{z}^{(3)}}$ |
| $A_3^{(1)}$                | $\mathbf{B_{3}^{(1)}}$ | A <sub>3</sub> (2) | $\mathbf{B_3}^{(2)}$ | $A_{3}^{(3)}$              | $\mathbf{B}_{3}^{(3)}$          |

leurs modules de périodicité, soient  $w_1'$ ,  $w_2'$ ,  $w_3'$  les intégrales transformées et

| $w_{i}{}'$    |                                 | $w_{\scriptscriptstyle 2}{}'$ |                        | $w_{\mathfrak{s}^{'}}$ |                      |
|---------------|---------------------------------|-------------------------------|------------------------|------------------------|----------------------|
| $C_{i}^{(1)}$ | $\mathbf{D}_{\mathbf{i}}^{(1)}$ | C <sub>4</sub> (2)            | D <sub>1</sub> (2)     | C <sub>1</sub> (3)     | $\mathbf{D_1}^{(3)}$ |
| $C_{2}^{(1)}$ | $\mathbf{D_2}^{(\mathbf{I})}$   | $\mathbf{C_2}^{(2)}$          | $D_2^{(2)}$            | $\mathbf{C}^{2}(3)$    | $D^{3}(3)$           |
| $C_{3}^{(1)}$ | $\mathbf{D_{3}}^{(1)}$          | $\mathbf{C_{3}}^{(2)}$        | $\mathbf{D_{3}}^{(2)}$ | $\mathbf{C}^{3}$ (3)   | $\mathbf{D}^{3}(3)$  |

leurs modules de périodicité; soient enfin  $u_1, u_2, u_3$  les intégrales normales de première espèce du système primitif, définies par les équations

(a) 
$$\begin{cases} \pi i \, w_1 = \Lambda_1^{(1)} \, u_1 + \Lambda_2^{(1)} \, u_2 + \Lambda_3^{(1)} \, u_3 \\ \pi i \, w_2 = \Lambda_1^{(2)} \, u_1 + \Lambda_2^{(2)} \, u_2 + \Lambda_3^{(2)} \, u_3 \\ \pi i \, w_3 = \Lambda_1^{(3)} \, u_1 + \Lambda_2^{(3)} \, u_2 + \Lambda_3^{(3)} \, u_3 \end{cases}$$

et  $u'_1, u'_2, u'_3$  les intégrales normales de première espèce du système transformé, données par les équations

(b) 
$$\begin{cases} \pi i \, w'_{1} = C_{1}^{(1)} \, u'_{1} + C_{2}^{(1)} \, u'_{2} + C_{3}^{(1)} \, u'_{3} \\ \pi i \, w'_{2} = C_{1}^{(2)} \, u'_{1} + C_{2}^{(2)} \, u'_{2} + C_{3}^{(2)} \, u'_{3} \\ \pi i \, w'_{3} = C_{1}^{(3)} \, u'_{1} + C_{2}^{(3)} \, u'_{2} + C_{3}^{(3)} \, u'_{3} \end{cases}$$

Posant pour abréger

$$\begin{vmatrix} A_{1}^{(1)}, & A_{2}^{(1)}, & A_{5}^{(1)} \\ A_{1}^{(2)}, & A_{2}^{(2)}, & A_{5}^{(2)} \\ A_{1}^{(3)}, & A_{2}^{(3)}, & A_{5}^{(3)} \end{vmatrix} = D$$

et d'une manière analogue

$$\begin{vmatrix} C_{\mathbf{1}^{(1)}}, & C_{\mathbf{2}^{(1)}}, & C_{\mathbf{5}^{(1)}} \\ C_{\mathbf{1}^{(2)}}, & C_{\mathbf{2}^{(2)}}, & C_{\mathbf{5}^{(2)}} \\ C_{\mathbf{4}^{(3)}}, & C_{\mathbf{2}^{(3)}}, & C_{\mathbf{3}^{(3)}} \end{vmatrix} = \mathbf{D}',$$

on tire des équations (a) et (b)

$$\begin{pmatrix} u_{1} = \frac{\pi i}{D} \begin{vmatrix} w_{1}, A_{2}^{(1)}, A_{5}^{(1)} \\ w_{2}, A_{2}^{(2)}, A_{3}^{(2)} \\ w_{5}, A_{2}^{(3)}, A_{5}^{(3)} \end{vmatrix}, \qquad \qquad \begin{pmatrix} u'_{1} = \frac{\pi i}{D'} \begin{vmatrix} w'_{1}, C_{2}^{(1)}, C_{3}^{(1)} \\ w'_{2}, C_{2}^{(2)}, C_{3}^{(2)} \\ w'_{5}, C_{2}^{(3)}, C_{5}^{(3)} \end{vmatrix},$$

$$(c) \langle u_{2} = \frac{\pi i}{D} \begin{vmatrix} A_{1}^{(1)}, w_{1}, A_{3}^{(1)} \\ A_{1}^{(2)}, w_{2}, A_{3}^{(2)} \\ A_{1}^{(3)}, w_{5}, A_{3}^{(3)} \end{vmatrix},$$

$$(d) \langle u'_{2} = \frac{\pi i}{D'} \begin{vmatrix} C_{1}^{(1)}, w'_{1}, C_{3}^{(1)} \\ C_{1}^{(2)}, w'_{2}, C_{3}^{(2)} \\ C_{1}^{(3)}, w'_{5}, C_{3}^{(3)} \end{vmatrix},$$

$$(u)_{5} = \frac{\pi i}{D'} \begin{vmatrix} C_{1}^{(1)}, C_{2}^{(1)}, w'_{1} \\ C_{1}^{(2)}, C_{2}^{(2)}, w'_{2} \\ C_{1}^{(3)}, C_{2}^{(2)}, w'_{5} \end{vmatrix}.$$

$$(u)_{5} = \frac{\pi i}{D'} \begin{vmatrix} C_{1}^{(1)}, C_{2}^{(1)}, w'_{1} \\ C_{1}^{(2)}, C_{2}^{(2)}, w'_{2} \\ C_{1}^{(3)}, C_{2}^{(3)}, w'_{5} \end{vmatrix}.$$

Les modules  $a_{ik}$  des fonctions  $\mathcal{F}$  relatives au système primitif sont déterminés par les équations

(e) 
$$\begin{cases} \pi i \, B_{h}^{(1)} = A_{1}^{(1)} a_{1h} + A_{2}^{(1)} a_{2h} + A_{5}^{(1)} a_{3h} \\ \pi i \, B_{h}^{(2)} = A_{1}^{(2)} a_{1h} + A_{2}^{(2)} a_{2h} + A_{5}^{(2)} a_{3h} \\ \pi i \, B_{h}^{(3)} = A_{1}^{(3)} a_{1h} + A_{2}^{(3)} a_{2h} + A_{5}^{(3)} a_{3h}, \ h = 1, 2, 3 \end{cases}$$

et les modules  $b_{ik}$  des fonctions  $\mathcal G$  relatives au système transformé par les équations analogues

$$(f) \begin{cases} \pi i \, \mathrm{D_{h^{(1)}}} = \mathrm{C_{4}^{(1)}} b_{1\mathrm{h}} + \mathrm{C_{2}^{(1)}} b_{2\mathrm{h}} + \mathrm{C_{5}^{(1)}} b_{3\mathrm{h}} \\ \pi i \, \mathrm{D_{h^{(2)}}} = \mathrm{C_{4}^{(2)}} b_{1\mathrm{h}} + \mathrm{C_{2}^{(2)}} b_{2\mathrm{h}} + \mathrm{C_{5}^{(2)}} b_{3\mathrm{h}} \\ \pi i \, \mathrm{D_{h^{(3)}}} = \mathrm{C_{4}^{(3)}} b_{1\mathrm{h}} + \mathrm{C_{2}^{(3)}} b_{2\mathrm{h}} + \mathrm{C_{5}^{(3)}} b_{3\mathrm{h}} \,, \ h = 1, \, 2, \, 3. \end{cases}$$

Or, il s'agit actuellement d'opérer la transformation de façon qu'on ait

(1) 
$$\begin{cases} w_1 = a_1 w'_1 + b_1 w'_2 + c_1 w'_3 + g_1 \\ w_2 = a_2 w'_1 + b_2 w'_2 + c_2 w'_3 + g_2 \\ w_3 = a_3 w'_1 + b_3 w'_2 + c_3 w'_3 + g_3 \end{cases}$$

où  $g_1$ ,  $g_2$ ,  $g_3$  signifient des constantes et les  $a_i$ ,  $b_i$ ,  $c_i$  des multiplicateurs quelconques.

A partir d'ici, on peut suivre presque textuellement le raisonnement qui se trouve développé dans le mémoire de M. L. Königsberger intitulé: « Ueber die Transformation der Abel'schen Functionen erster Ordnung. » (Borchardt's Journal für die reine und angewandte Mathematik, tome 65, p. 335 à 358.)

Si dans les équations (1) on augmente les intégrales  $w'_1$ ,  $w'_2$ ,  $w'_3$  des modules de périodicité  $C_i^{(1)}$ ,  $C_i^{(2)}$ ,  $C_i^{(3)}$  multipliés la première fois par  $\mu_i$  et la seconde fois par  $\nu_i$  et que l'on désigne les valeurs correspondantes des intégrales normales  $u'_i$  dans le premier cas par  $v'_i$ , dans le second cas par  $v_i$ , on obtient les deux systèmes d'équations

$$\begin{vmatrix} (\pi i w_{1}) = \\ = \pi i [a_{1}w'_{1} + b_{1}w'_{2} + c_{1}w'_{5} + a_{1}u_{1}C_{1}^{(1)} + b_{1}\mu_{1}C_{1}^{(2)} + c_{1}\mu_{1}C_{1}^{(3)} + g_{1}] = \\ = A_{1}^{(1)}v'_{1} + A_{2}^{(1)}v'_{2} + A_{3}^{(1)}v'_{3}, \\ (\pi i w_{2}) = \\ = \pi i [a_{2}w'_{1} + b_{2}w'_{2} + c_{2}w'_{5} + a_{2}\mu_{1}C_{1}^{(1)} + b_{2}\mu_{1}C_{1}^{(2)} + c_{2}\mu_{1}C_{1}^{(3)} + g_{2}] = \\ = A_{1}^{(2)}v'_{1} + A_{2}^{(2)}v'_{2} + A_{3}^{(2)}v'_{5}, \\ (\pi i w_{3}) = \\ = \pi i [a_{3}w'_{1} + b_{3}w'_{2} + c_{3}w'_{5} + a_{3}\mu_{1}C_{1}^{(1)} + b_{3}\mu_{1}C_{1}^{(2)} + c_{5}\mu_{1}C_{1}^{(3)} + g_{3}] = \\ = A_{1}^{(3)}v'_{1} + A_{2}^{(3)}v'_{2} + A_{3}^{(3)}v'_{5};$$

$$\begin{vmatrix} (\pi i \, w_1) = \\ = \pi i [a_1 w'_1 + b_1 w'_2 + c_1 w'_5 + a_1 \nu_1 C_1^{(1)} + b_1 \nu_1 C_1^{(2)} + c_1 \nu_1 C_1^{(3)} + g_1] = \\ = A_1^{(1)} v_1 + A_2^{(1)} v_2 + A_3^{(1)} v_5 ,$$

$$\langle \pi i \, w_2 \rangle = \\ = \pi i [a_2 w'_1 + b_2 w'_2 + c_2 w'_3 + a_2 \nu_1 C_1^{(1)} + b_2 \nu_1 C_1^{(2)} + c_2 \nu_1 C_1^{(3)} + g_2] = \\ = A_1^{(2)} v_1 + A_2^{(2)} v_2 + A_3^{(2)} v_3 ,$$

$$\langle \pi i \, w_3 \rangle = \\ = \pi i [a_3 w'_1 + b_3 w'_2 + c_3 w'_3 + a_3 \nu_1 C_1^{(4)} + b_3 \nu_1 C_1^{(2)} + c_3 \nu_1 C_1^{(3)} + g_3] = \\ = A_1^{(3)} v_1 + A_2^{(3)} v_2 + A_3^{(3)} v_3 .$$

Dix autres systèmes d'équations analogues s'obtiendraient en faisant intervenir successivement les modules de périodicité  $C_2^{(i)}$ ,  $C_3^{(i)}$ ,  $D_1^{(i)}$ ,  $D_2^{(i)}$ ,  $D_3^{(i)}$  et en même temps d'autres facteurs  $\mu_2$ ,  $\nu_2$ ;  $\mu_3$ ,  $\nu_3$ ;  $\mu'_4$ ,  $\nu'_4$ ;  $\mu'_2$ ,  $\nu'_2$ ;  $\mu'_3$ ,  $\nu'_3$  et enfin d'autres quantités v. Si l'on retranche les équations du système (3) des équations correspondantes du système (2), il vient

$$\begin{cases} \pi i \left(\mu_{1} - \nu_{1}\right) \left[a_{1} C_{1}^{(1)} + b_{1} C_{1}^{(2)} + c_{1} C_{1}^{(3)}\right] = \\ = A_{1}^{(1)} \left(v'_{1} - v_{1}\right) + A_{2}^{(1)} \left(v'_{2} - v_{2}\right) + A_{3}^{(1)} \left(v'_{3} - v_{5}\right) \\ \pi i \left(\mu_{1} - \nu_{1}\right) \left[a_{2} C_{1}^{(1)} + b_{2} C_{1}^{(2)} + c_{2} C_{1}^{(3)}\right] = \\ = A_{1}^{(2)} \left(v'_{1} - v_{1}\right) + A_{2}^{(2)} \left(v'_{2} - v_{2}\right) + A_{3}^{(2)} \left(v'_{3} - v_{3}\right) \\ \pi i \left(\mu_{1} - \nu_{1}\right) \left[a_{5} C_{1}^{(1)} + b_{5} C_{1}^{(2)} + c_{5} C_{1}^{(3)}\right] = \\ = A_{1}^{(3)} \left(v'_{1} - v_{1}\right) + A_{2}^{(3)} \left(v'_{2} - v_{2}\right) + A_{3}^{(3)} \left(v'_{3} - v_{5}\right) \end{cases}$$

Or, M. Königsberger démontre (p. 343 du travail cité) que les différences des quantités v doivent être de la forme

(5) 
$$\begin{cases} v'_{1} - v_{1} = r_{11} \pi i + s_{11} a_{11} + s_{21} a_{12} + s_{31} a_{13} \\ v'_{2} - v_{2} = r_{21} \pi i + s_{11} a_{21} + s_{21} a_{22} + s_{31} a_{23} \\ v'_{3} - v_{3} = r_{31} \pi i + s_{11} a_{31} + s_{21} a_{32} + s_{31} a_{33}, \end{cases}$$

où les  $r_{i_1}$  et  $s_{i_1}$  signifient des nombres entiers quelconques. En d'autres termes, ces différences doivent être égales à un système de périodes des fonctions  $\mathcal{P}$  que l'on peut former avec les intégrales normales données  $u_i$ ,  $u_2$ ,  $u_3$ . Des équations analogues existent pour les différences des autres quantités v.

Ecrivant pour abréger

$$\mu_{1} - \nu_{1} = m_{1} , \quad \mu_{2} - \nu_{2} = m_{2} , \quad \mu_{3} - \nu_{3} = m_{3} ,$$
  
$$\mu_{1}' - \nu'_{1} = m'_{1} , \quad \mu'_{2} - \nu_{2}' = m'_{2} , \quad \mu'_{3} - \nu'_{3} = m'_{3} ,$$

et posant, afin d'obtenir le facteur commun  $\pi i$ ,

$$a_{ik} = \pi i \, \tau_{ik}, \quad b_{ik} = \pi i \, \tau'_{ik},$$

les équations (4) et leurs analogues, à l'aide des relations (5), peuvent se mettre sous la forme

$$m_{i} \left[ a_{h} C_{i}^{(1)} + b_{h} C_{i}^{(2)} + c_{h} C_{i}^{(3)} \right] =$$

$$= A_{1}^{(h)} \left[ r_{1i} + s_{1i} \tau_{11} + s_{2i} \tau_{12} + s_{3i} \tau_{13} \right] + A_{2}^{(h)} \left[ r_{2i} + s_{1i} \tau_{21} + s_{2i} \tau_{22} + s_{3i} \tau_{23} \right] -$$

$$+ A_{3}^{(h)} \left[ r_{3i} + s_{1i} \tau_{31} + s_{2i} \tau_{32} + s_{3i} \tau_{33} \right]$$

$$m'_{i} \left[ a_{h} D_{i}^{(1)} + b_{h} D_{i}^{(2)} + c_{h} D_{i}^{(3)} \right] =$$

$$A_{1}^{(h)} \left[ r'_{1i} + s'_{1i} \tau_{11} + s'_{2i} \tau_{12} + s'_{3i} \tau_{13} \right] + A_{2}^{(h)} \left[ r'_{2i} + s'_{1i} \tau_{21} + s'_{2i} \tau_{22} + s'_{3i} \tau_{2i} \right] +$$

$$+ A_{3}^{(h)} \left[ r'_{3i} + s'_{1i} \tau_{31} + s'_{2i} \tau_{32} + s'_{3i} \tau_{33} \right].$$

Les indices h et i devant prendre successivement les valeurs 1, 2, 3, ces deux équations représentent en tout 18 équations différentes répondant aux combinaisons 1,1, 1,2, 1,3; 2,1, 2,2, 2,3; 3,1, 3,2, 3,3.

L'écriture sera encore simplifiée, si l'on multiplie les équations précédentes respectivement par  $m_2$   $m_3$ ,  $m_1$   $m_3$ ,  $m_4$   $m_4$ ,  $m'_2$ ,  $m'_3$ ,  $m'_4$ ,  $m'_3$ ,  $m'_4$ ,  $m'_2$ , suivant que leur premier membre est déjà muni du facteur  $m_1$ ,  $m_2$ ,  $m_3$ ,  $m'_4$ ,  $m'_2$ ,  $m'_3$ . Posant encore

$$\begin{pmatrix} m_2 m_3 r_{i_1} = \rho_{i_1}, m_2 m_3 s_{i_1} = \sigma_{i_1}, m'_2 m'_3 r'_{i_1} = \rho'_{i_1}, m'_2 m'_3 s'_{i_1} = \sigma'_{i_1}, \\ m_1 m_3 r_{i_2} = \rho_{i_2}, m_1 m_3 s_{i_2} = \sigma_{i_2}, m'_1 m'_3 r'_{i_2} = \rho'_{i_2}, m'_1 m'_3 s'_{i_2} = \sigma'_{i_2}, \\ m_1 m_2 r_{i_3} = \rho_{i_3}, m_1 m_2 s_{i_3} = \sigma_{i_2}, m_1' m'_2 r'_{i_3} = \rho'_{i_3}, m'_1 m'_2 s'_{i_5} = \sigma'_{i_3}; \end{pmatrix}$$

(7) 
$$\begin{cases} \omega_{ik} = \rho_{ik} + \sigma_{1k}\tau_{i_{1}} + \sigma_{2k}\tau_{i_{2}} + \sigma_{3k}\tau_{i_{3}}, \\ \omega'_{ik} = \rho'_{ik} + \sigma'_{1k}\tau_{i_{1}} + \sigma'_{2k}\tau_{i_{2}} + \sigma'_{3k}\tau_{i_{3}}, i = 1, 2, 3; k = 1, 2, 3 \end{cases}$$

les équations (6) présentent finalement la forme

(8) 
$$\begin{cases} m_{1} m_{2} m_{3} \left[ a_{h} C_{i}^{(1)} + b_{h} C_{i}^{(2)} + c_{h} C_{i}^{(3)} = \sum_{k=1,2,3} A_{k}^{(h)} \omega_{ki}, \\ m'_{1} m'_{2} m'_{3} \left[ a_{h} D_{i}^{(1)} + b_{h} D_{i}^{(2)} + c_{h} D_{i}^{(3)} = \sum_{k=1,2,3} A_{k}^{(h)} \omega'_{ki}, \end{cases}$$

De ces équations, on tire aisément les 18 modules de périodicité  $C_i^{(h)}$  et  $D_i^{(h)}$  des intégrales transformées  $w'_h$ , exprimés en fonction des modules de périodicité primitifs  $A_i^{(h)}$  et des multiplicateurs  $a_i$ ,  $b_i$ ,  $c_i$ . Si l'on désigne par  $\delta$  le déterminant  $(a_1, b_2, c_3)$ , on trouve successivement

$$| m_{1}m_{2}m_{3}\delta C_{i}^{(1)} = \begin{vmatrix} \sum_{k} A_{k}^{(1)}\omega_{ki}, b_{1}, c_{1} \\ \sum_{k} A_{k}^{(2)}\omega_{ki}, b_{2}, c_{2} \\ \sum_{k} A_{k}^{(3)}\omega_{ki}, b_{3}, c_{3} \\ k \end{vmatrix},$$

$$| m_{1}m_{2}m_{3}\delta C_{i}^{(2)} = \begin{vmatrix} a_{1}, \sum_{k} A_{k}^{(1)}\omega_{ki}, c_{1} \\ a_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki}, c_{2} \\ a_{3}, \sum_{k} A_{k}^{(3)}\omega_{ki}, c_{3} \\ k \end{vmatrix},$$

$$| m_{1}m_{2}m_{3}\delta C_{i}^{(2)} = \begin{vmatrix} a_{1}, b_{1}, \sum_{k} A_{k}^{(1)}\omega_{ki} \\ a_{2}, b_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{1}, b_{1}, \sum_{k} A_{k}^{(1)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{2}, b_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{1}, \sum_{k} A_{k}^{(1)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{3}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{2}, b_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{2}, b_{2}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{3}, b_{3}, \sum_{k} A_{k}^{(2)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{3}, b_{3}, \sum_{k} A_{k}^{(3)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{3}, b_{3}, \sum_{k} A_{k}^{(3)}\omega_{ki} \\ k \end{vmatrix},$$

$$| a_{3}, b_{3}, \sum_{k} A_{k}^{(3)}\omega_{ki} \\ k \end{vmatrix},$$

Les équations (f) fournissent les modules  $\tau'_{i\,k}$  des fonctions  $\vartheta$  transformées. Vu la longueur des formules, il paraît utile de déterminer séparément d'abord le dénominateur commun à ces quantités et ensuite leurs numérateurs.

Le dénominateur commun est donné par le déterminant

$$m_1^3 m_2^3 m_3^3 \delta^3 D' = m_1^3 m_2^3 m_3^3 \delta^3 \cdot \begin{vmatrix} C_1^{(1)}, C_2^{(1)}, C_3^{(1)} \\ C_1^{(2)}, C_2^{(2)}, C_3^{(2)} \\ C_1^{(3)}, C_2^{(3)}, C_3^{(3)} \end{vmatrix} =$$

$$= \begin{bmatrix} \sum A_{k}(1)\omega_{k_{1}}, b_{1}, c_{1} \\ \sum A_{k}(2)\omega_{k_{1}}, b_{2}, c_{2} \\ \sum A_{k}(3)\omega_{k_{2}}, b_{2}, c_{2} \\ \sum A_{k}(3)\omega_{k_{2}}, b_{2}, c_{3} \\ \sum A_{k}(3)\omega_{k_{2}}, b_{3}, c_{3} \end{bmatrix} , \begin{bmatrix} \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ \sum A_{k}(2)\omega_{k_{2}}, b_{2}, c_{2} \\ \sum A_{k}(3)\omega_{k_{3}}, b_{3}, c_{3} \\ \sum A_{k}(3)\omega_{k_{2}}, b_{3}, c_{3} \end{bmatrix} , \begin{bmatrix} \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ \sum A_{k}(3)\omega_{k_{3}}, b_{3}, c_{3} \\ \sum A_{k}(3)\omega_{k_{3}}, b_{3}, c_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1}, \sum A_{k}(1)\omega_{k_{1}}, c_{1} \\ a_{2}, \sum A_{k}(2)\omega_{k_{1}}, c_{2} \\ a_{3}, \sum A_{k}(3)\omega_{k_{1}}, c_{3} \end{bmatrix} , \begin{bmatrix} a_{1}, \sum A_{k}(1)\omega_{k_{2}}, c_{1} \\ a_{2}, \sum A_{k}(2)\omega_{k_{3}}, c_{2} \\ a_{3}, \sum A_{k}(3)\omega_{k_{1}}, c_{3} \end{bmatrix} , \begin{bmatrix} a_{1}, \sum A_{k}(3)\omega_{k_{2}}, c_{2} \\ a_{3}, \sum A_{k}(3)\omega_{k_{3}}, c_{3} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{1}} \\ a_{2}, b_{2}, \sum A_{k}(2)\omega_{k_{1}} \\ a_{2}, b_{2}, \sum A_{k}(2)\omega_{k_{1}} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(3)\omega_{k_{3}}, c_{3} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ a_{1}, b_{1}, \sum A_{k}(3)\omega_{k_{3}}, c_{2} \\ a_{2}, b_{2}, \sum A_{k}(3)\omega_{k_{3}}, c_{3} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(3)\omega_{k_{3}}, c_{2} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(2)\omega_{k_{3}}, c_{2} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(2)\omega_{k_{3}}, c_{2} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, \sum A_{k}(1)\omega_{k_{3}}, b_{1}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(3)\omega_{k_{3}}, c_{2} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{2}} \end{bmatrix} , \begin{bmatrix} a_{1}, b_{1}, b_{1}, b_{1}, b_{1}, b_{1}, c_{1} \\ a_{2}, b_{2}, \sum A_{k}(3)\omega_{k_{3}}, c_{3} \\ a_{3}, b_{3}, \sum A_{k}(3)\omega_{k_{3}}, c_{3} \end{bmatrix}$$

qui se décompose en ces deux facteurs:

$$\begin{vmatrix} \sum_{k} A_{k}^{(1)} \omega_{k_{1}}, \sum_{k} A_{k}^{(2)} \omega_{k_{1}}, \sum_{k} A_{k}^{(3)} \omega_{k_{1}} \\ \sum_{k} A_{k}^{(1)} \omega_{k_{2}}, \sum_{k} A_{k}^{(2)} \omega_{k_{2}}, \sum_{k} A_{k}^{(3)} \omega_{k_{2}} \\ \sum_{k} A_{k}^{(1)} \omega_{k_{3}}, \sum_{k} A_{k}^{(2)} \omega_{k_{3}}, \sum_{k} A_{k}^{(3)} \omega_{k_{3}} \\ k \end{vmatrix} \cdot \begin{vmatrix} b_{2}, c_{2} \\ b_{3}, c_{3} \end{vmatrix}, -\begin{vmatrix} b_{1}, c_{1} \\ b_{3}, c_{3} \end{vmatrix}, -\begin{vmatrix} b_{1}, c_{1} \\ b_{3}, c_{3} \end{vmatrix}, -\begin{vmatrix} a_{1}, c_{1} \\ a_{2}, c_{2} \end{vmatrix} \\ -\begin{vmatrix} a_{2}, c_{2} \\ a_{3}, c_{5} \end{vmatrix}, -\begin{vmatrix} a_{1}, c_{1} \\ a_{3}, c_{3} \end{vmatrix}, -\begin{vmatrix} a_{1}, c_{1} \\ a_{2}, c_{2} \end{vmatrix} \\ \begin{vmatrix} a_{2}, b_{2} \\ a_{3}, b_{3} \end{vmatrix}, -\begin{vmatrix} a_{1}, b_{1} \\ a_{2}, b_{2} \end{vmatrix}, -\begin{vmatrix} a_{1}, b_{1} \\ a_{2}, b_{2} \end{vmatrix} \end{vmatrix}$$

dont le premier peut s'écrire sous la forme d'un produit

$$\begin{vmatrix} A_{1}^{(1)}, A_{2}^{(1)}, A_{3}^{(1)} \\ A_{1}^{(2)}, A_{2}^{(2)}, A_{3}^{(2)} \\ A_{1}^{(3)}, A_{2}^{(3)}, A_{3}^{(3)} \end{vmatrix} \cdot \begin{vmatrix} \omega_{11}, \omega_{21}, \omega_{31} \\ \omega_{42}, \omega_{22}, \omega_{32} \\ \omega_{13}, \omega_{23}, \omega_{33} \end{vmatrix},$$

tandis que le second  $= \delta^2$ , en vertu d'un théorème bien connu sur les déterminants adjoints.

Si l'on pose, comme précédemment,  $(A_1^{(1)}, A_2^{(2)}, A_3^{(3)}) = D$  et en outre

on a finalement

$$\mathbf{D}' = \frac{\mathbf{D} \, \boldsymbol{\Omega}}{m_1^3 m_2^3 m_3^3 \delta}.$$

Pour les 9 numérateurs on obtient d'une manière analogue

$$\begin{vmatrix} D_{i}^{(1)}, C_{2}^{(1)}, C_{5}^{(1)} \\ D_{i}^{(2)}, C_{2}^{(2)}, C_{5}^{(2)} \\ D_{i}^{(3)}, C_{2}^{(3)}, C_{5}^{(3)} \end{vmatrix} = \frac{D}{m_{1}^{2}m_{2}^{2}m_{5}^{2}m'_{1}m'_{2}m'_{3}\delta} \begin{vmatrix} \omega'_{1i}, \omega'_{2i}, \omega'_{3i} \\ \omega_{12}, \omega_{22}, \omega_{32} \\ \omega_{13}, \omega_{23}, \omega_{33} \end{vmatrix},$$

$$\begin{vmatrix} C_{\mathbf{1}^{(1)}}, D_{i}^{(1)}, C_{\mathbf{3}^{(1)}} \\ C_{\mathbf{1}^{(2)}}, D_{i}^{(2)}, C_{\mathbf{3}^{(2)}} \\ C_{\mathbf{1}^{(3)}}, D_{i}^{(3)}, C_{\mathbf{3}^{(3)}} \end{vmatrix} = \frac{D}{m_{\mathbf{1}^{2}} m_{\mathbf{2}^{2}} m_{\mathbf{3}^{2}} m'_{\mathbf{1}} m'_{\mathbf{2}} m'_{\mathbf{3}} \delta} \begin{vmatrix} \omega_{\mathbf{1}\mathbf{1}}, \omega_{\mathbf{2}\mathbf{1}}, \omega_{\mathbf{3}\mathbf{1}} \\ \omega'_{\mathbf{1}\mathbf{1}}, \omega'_{\mathbf{2}\mathbf{1}}, \omega'_{\mathbf{3}\mathbf{1}} \\ \omega_{\mathbf{1}\mathbf{3}}, \omega_{\mathbf{2}\mathbf{3}}, \omega_{\mathbf{3}\mathbf{3}} \end{vmatrix},$$

$$\begin{vmatrix} C_{\mathbf{1}^{(1)}}, C_{\mathbf{2}^{(1)}}, D_{i^{(1)}} \\ C_{\mathbf{1}^{(2)}}, C_{\mathbf{2}^{(2)}}, D_{i^{(2)}} \\ C_{\mathbf{1}^{(3)}}, C_{\mathbf{2}^{(3)}}, D_{i^{(3)}} \end{vmatrix} = \frac{D}{m_{\mathbf{1}}^{2} m_{\mathbf{2}}^{2} m_{\mathbf{3}}^{2} m'_{\mathbf{1}} m'_{\mathbf{2}} m'_{\mathbf{3}} \delta} \begin{vmatrix} \omega_{\mathbf{1}\mathbf{1}}, \omega_{\mathbf{2}\mathbf{1}}, \omega_{\mathbf{3}\mathbf{1}} \\ \omega_{\mathbf{1}\mathbf{2}}, \omega_{\mathbf{2}\mathbf{2}}, \omega_{\mathbf{3}\mathbf{2}} \\ \omega'_{\mathbf{1}i}, \omega'_{\mathbf{2}i}, \omega'_{\mathbf{3}i} \end{vmatrix},$$

de sorte que les formules définitives qui permettent de passer des modules  $\tau_{i\,\mathbf{k}}$  aux modules  $\tau_{i\,\mathbf{k}}$ , deviennent

| 200                      |                                                                                                                 |                                         | (10)                                                                                                                                                                                                 |                                                                                          |                                                                                                                      |                                                                                     |
|--------------------------|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| ن                        | 7,                                                                                                              |                                         | 77                                                                                                                                                                                                   |                                                                                          | 7,                                                                                                                   |                                                                                     |
| m',m',m'3                | $\underline{\underline{m_1 m_2 m_3}}$                                                                           |                                         | $\tau'_{21} = \frac{m_1 m_2 m_3}{m'_1 m'_2 m'_3}$                                                                                                                                                    |                                                                                          | $\tau'_{11} = \frac{m_1  m_2  m_3}{m'_1 m'_2 m'_3}$                                                                  |                                                                                     |
| Q                        | $\omega_{12}, \omega_{22}, \omega_{32}$ $m_1 m_2 m_3   \omega'_{11}, \omega'_{21}, \omega'_{31}   \gamma'_{11}$ | $\omega_{11}, \omega_{21}, \omega_{31}$ | $egin{array}{c} \omega_{13}, \omega_{23}, \omega_{33} \ & & & & & & \\ & & & & & & & \\ & & & &$                                                                                                     | $\omega_{11}, \omega_{21}, \omega_{31}   \omega_{11}, \omega_{21}, \omega_{31}  $        | $= \frac{m_1  m_2  m_3}{m'_1 m'_2 m'_3} \frac{ \omega_{13},  \omega_{23},  \omega_{33} }{2},  \tau'_{12} =$          | $\omega_{11}, \omega_{21}, \omega_{31}$ $\omega_{12}, \omega_{22}, \omega_{32}$     |
| $m_1' m_2' m_3' m_3' $ 2 | $m_1 m_2 m_3   \omega_{12}, \omega_{22}, \omega_{32}  $                                                         | $\omega_{44}, \omega_{21}, \omega_{51}$ | $\frac{m_1 m_2 m_3}{m'_1 m'_2 m'_3} \frac{ \omega_{13}, \omega_{23}, \omega_{33} }{\Omega}, \tau'_{22} = \frac{m_1 m_2 m_3}{m'_1 m'_2 m'_3} \frac{ \omega_{13}, \omega_{25}, \omega_{33} }{\Omega},$ | $ \omega_{11}, \omega_{21}, \omega_{31} $<br>$ \omega'_{12}, \omega'_{22}, \omega_{32} $ | $, \tau'_{12} = \frac{m_1 m_2 m_3  \omega_{13}, \omega_{23}, \omega_{33} }{m'_1 m'_2 m'_3},$                         | $ \omega_{12}, \omega_{22}, \omega_{32} $ $ \omega_{12}, \omega_{22}, \omega_{32} $ |
| $m'_{1}m'_{2}m'_{5}$ 9   | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                           | $\omega_{44}, \omega_{21}, \omega_{34}$ | $\tau'_{23} = \frac{m_1 m_2 m_3}{m'_1 m'_2 m'_3}$                                                                                                                                                    | $[\omega_{11}, \omega_{21}, \omega_{31}]$ $[\omega'_{13}, \omega'_{23}, \omega'_{33}]$   | $\frac{1}{3}, \tau'_{13} = \frac{m_1 m_2 m_3}{m'_1 m'_2 m'_3} \frac{\omega_{13}, \omega_{23}, \omega_{33}}{\Omega},$ | $\omega_{13}, \omega_{23}, \omega_{33}$ $\omega_{12}, \omega_{22}, \omega_{32}$     |

En ce qui concerne les intégrales normales transformées, il s'agit d'abord d'établir des relations entre ces quantités et les intégrales normales primitives. Or, d'une part on a

$$\pi i w_i = A_1^{(i)} u_1 + A_2^{(i)} u_2 + A_3^{(i)} u_3$$

d'autre part les équations (1) et (b) donnent

$$\pi i \, w_{i} = \pi i \left[ a_{i} \, w'_{1} + b_{i} \, w'_{2} + c_{i} \, w'_{5} + g_{i} \right] =$$

$$= a_{i} \left[ C_{1}^{(1)} u'_{1} + C_{2}^{(1)} u'_{2} + C_{3}^{(1)} u'_{3} \right] + b_{i} \left[ C_{1}^{(2)} u'_{1} + C_{2}^{(2)} u'_{2} + C_{3}^{(2)} u'_{3} \right] +$$

$$+ c_{i} \left[ C_{1}^{(3)} u'_{1} + C_{2}^{(3)} u'_{2} + C_{3}^{(3)} u'_{3} \right] + \pi i \, g_{i}$$

$$= \left[ a_{i} \, C_{1}^{(1)} + b_{i} \, C_{1}^{(2)} + c_{i} \, C_{1}^{(3)} \right] u'_{1} + \left[ a_{i} \, C_{2}^{(1)} + b_{i} \, C_{2}^{(2)} + c_{i} \, C_{2}^{(3)} \right] u'_{2} +$$

$$+ \left[ a_{i} \, C_{3}^{(1)} + b_{i} \, C_{3}^{(2)} + c_{i} \, C_{3}^{(3)} \right] u'_{3} + \pi i \, g_{i}.$$

Si l'on égale les seconds membres de ces équations et que l'on répartisse encore les trois constantes  $\pi ig_1$ ,  $\pi ig_2$ ,  $\pi ig_3$  sur les variables  $u_1$ ,  $u_2$ ,  $u_3$ , on obtient

$$\begin{split} \big[ a_i \, \mathcal{C}_{\mathbf{1}}^{(1)} + b_i \, \mathcal{C}_{\mathbf{1}}^{(2)} + c_i \, \mathcal{C}_{\mathbf{1}}^{(3)} \big] u'_{\mathbf{1}} + \big[ a_i \, \mathcal{C}_{\mathbf{2}}^{(1)} + b_i \, \mathcal{C}_{\mathbf{2}}^{(2)} + c_i \, \mathcal{C}_{\mathbf{2}}^{(3)} \big] u'_{\mathbf{2}} + \\ & + \big[ a_i \, \mathcal{C}_{\mathbf{3}}^{(1)} + b_i \, \mathcal{C}_{\mathbf{3}}^{(2)} + c_i \, \mathcal{C}_{\mathbf{3}}^{(3)} \big] u'_{\mathbf{3}} = \\ & = \mathcal{A}_{\mathbf{1}}^{(i)} (u_{\mathbf{1}} - \varepsilon_{\mathbf{1}}) + \mathcal{A}_{\mathbf{2}}^{(i)} (u_{\mathbf{2}} - \varepsilon_{\mathbf{2}}) + \mathcal{A}_{\mathbf{3}}^{(i)} (u_{\mathbf{3}} - \varepsilon_{\mathbf{3}}), \, i = 1, 2, \, 3. \end{split}$$

A ces équations, en y substituant les valeurs des sommes  $a_i C_k^{(1)} + b_i C_k^{(2)} + c_i C_k^{(3)}$  que l'on tire des relations (8), on peut donner la forme suivante :

$$\begin{pmatrix} u'_{1} \sum_{k} A_{k}^{(1)} \omega_{k_{1}} + u'_{2} \sum_{k} A_{k}^{(1)} \omega_{k_{2}} + u'_{3} \sum_{k} A_{k}^{(1)} \omega_{k_{5}} = \\ = m_{1} m_{2} m_{3} \left[ A_{1}^{(1)} (u_{1} - \varepsilon_{1}) + A_{2}^{(1)} (u_{2} - \varepsilon_{2}) + A_{5}^{(1)} (u_{3} - \varepsilon_{3}) \right] \\ u'_{1} \sum_{k} A_{k}^{(2)} \omega_{k_{1}} + u'_{2} \sum_{k} A_{k}^{(2)} \omega_{k_{2}} + u'_{3} \sum_{k} A_{k}^{(2)} \omega_{k_{3}} = \\ = m_{1} m_{2} m_{3} \left[ A_{1}^{(2)} (u_{1} - \varepsilon_{1}) + A_{2}^{(2)} (u_{2} - \varepsilon_{2}) + A_{5}^{(2)} (u_{3} - \varepsilon_{3}) \right] \\ u'_{1} \sum_{k} A_{k}^{(3)} \omega_{k_{1}} + u'_{2} \sum_{k} A_{k}^{(3)} \omega_{k_{2}} + u'_{3} \sum_{k} A_{k}^{(3)} \omega_{k_{3}} = \\ = m_{1} m_{2} m_{3} \left[ A_{1}^{(3)} (u_{1} - \varepsilon_{1}) + A_{2}^{(3)} (u_{2} - \varepsilon_{2}) + A_{5}^{(3)} (u_{5} - \varepsilon_{5}) \right]$$

Au moyen de ces équations on établit facilement les formules qui donnent les variables  $u'_i$  en fonction des  $u_i$ . En effet, le dénominateur commun aux trois intégrales  $u'_i$  devient

$$\begin{vmatrix} \sum A_{k}^{(1)} \omega_{k_{1}}, \sum A_{k}^{(1)} \omega_{k_{2}}, \sum A_{k}^{(1)} \omega_{k_{3}} \\ \sum A_{k}^{(2)} \omega_{k_{4}}, \sum A_{k}^{(2)} \omega_{k_{2}}, \sum A_{k}^{(2)} \omega_{k_{3}} \\ k & k & k \end{vmatrix} = \begin{vmatrix} A_{1}^{(1)}, A_{2}^{(1)}, A_{3}^{(1)} \\ A_{1}^{(2)}, A_{2}^{(2)}, A_{3}^{(2)} \\ A_{1}^{(3)}, A_{2}^{(2)}, A_{3}^{(3)} \end{vmatrix} \cdot \begin{vmatrix} \omega_{11}, \omega_{21}, \omega_{31} \\ \omega_{12}, \omega_{22}, \omega_{32} \\ \omega_{13}, \omega_{23}, \omega_{33} \end{vmatrix} = D \Omega.$$

Abstraction faite du facteur  $m_1m_2m_3$ , le numérateur de  $u'_1$  a pour expression

$$\begin{vmatrix} A_{1}^{(1)}(u_{1}-\varepsilon_{1})+A_{2}^{(1)}(u_{2}-\varepsilon_{2})+A_{3}^{(1)}(u_{3}-\varepsilon_{3}), & \sum A_{k}^{(1)}\omega_{k_{2}}, & \sum A_{k}^{(1)}\omega_{k_{3}} \\ A_{1}^{(2)}(u_{1}-\varepsilon_{1})+A_{2}^{(2)}(u_{2}-\varepsilon_{2})+A_{3}^{(2)}(u_{3}-\varepsilon_{3}), & \sum A_{k}^{(2)}\omega_{k_{2}}, & \sum A_{k}^{(2)}\omega_{k_{3}} \\ A_{1}^{(3)}(u_{1}-\varepsilon_{1})+A_{2}^{(3)}(u_{2}-\varepsilon_{2})+A_{3}^{(3)}(u_{3}-\varepsilon_{3}), & \sum A_{k}^{(3)}\omega_{k_{2}}, & \sum A_{k}^{(3)}\omega_{k_{3}} \end{vmatrix} = \\ \begin{vmatrix} A_{1}^{(1)}, & A_{2}^{(1)}, & A_{3}^{(1)} \\ A_{1}^{(2)}, & A_{2}^{(2)}, & A_{3}^{(2)} \\ A_{1}^{(3)}, & A_{2}^{(3)}, & A_{3}^{(3)} \end{vmatrix} \cdot \begin{vmatrix} u_{1}-\varepsilon_{1}, & u_{2}-\varepsilon_{2}, & u_{3}-\varepsilon_{3} \\ \omega_{12}, & \omega_{22}, & \omega_{32} \\ \omega_{13}, & \omega_{23}, & \omega_{33} \end{vmatrix} = \begin{vmatrix} u_{1}-\varepsilon_{1}, & u_{2}-\varepsilon_{2}, & u_{3}-\varepsilon_{5} \\ \omega_{12}, & \omega_{22}, & \omega_{32} \\ \omega_{13}, & \omega_{23}, & \omega_{33} \end{vmatrix}.$$

D'une manière analogue on trouve pour le numérateur de u'

$$D \begin{vmatrix} \omega_{11}, & \omega_{21}, & \omega_{31} \\ u_1 - \varepsilon_1, & u_2 - \varepsilon_2, & u_3 - \varepsilon_3 \\ \omega_{13}, & \omega_{23}, & \omega_{33} \end{vmatrix}$$

et pour le numérateur de  $u_3$ 

$$D \begin{vmatrix} \omega_{11}, & \omega_{21}, & \omega_{31} \\ \omega_{12}, & \omega_{22}, & \omega_{32} \\ u_{1} - \varepsilon_{1}, & u_{2} - \varepsilon_{2}, & u_{3} - \varepsilon_{3} \end{vmatrix},$$

de sorte que l'on a finalement

$$(11)u'_{1} = m_{1}m_{2}m_{3} = \frac{\begin{vmatrix} u_{1} - \varepsilon_{1}, u_{2} - \varepsilon_{2}, u_{3} - \varepsilon_{3} \\ \omega_{12}, \omega_{22}, \omega_{52} \\ \omega_{13}, \omega_{23}, \omega_{33} \end{vmatrix}}{\Omega}, u'_{2} = m_{1}m_{2}m_{3} = \frac{\begin{vmatrix} \omega_{11}, \omega_{21}, \omega_{31} \\ u_{1} - \varepsilon_{1}, u_{2} - \varepsilon_{2}, u_{3} - \varepsilon_{3} \\ \omega_{13}, \omega_{23}, \omega_{33} \end{vmatrix}}{\Omega},$$

$$u'_{3} = m_{1}m_{2}m_{3} = \frac{\begin{vmatrix} \omega_{11}, \omega_{21}, \omega_{51} \\ \omega_{12}, \omega_{22}, \omega_{32} \\ u_{1} - \varepsilon_{1}, u_{2} - \varepsilon_{2}, u_{3} - \varepsilon_{3} \end{vmatrix}}{\Omega}.$$

Enfin, en admettant que l'on connaisse les nombres de transformation  $\rho$ ,  $\sigma$ ,  $\rho'$ ,  $\sigma'$  et les modules de périodicité  $C_i^{(h)}$ , les relations (8) fournissent encore les valeurs suivantes pour les multiplicateurs  $a_i$ ,  $b_i$ ,  $c_i$ :

$$(12)a_{i} = \frac{\begin{vmatrix} \sum A_{k}(i)\omega_{k_{1}}, C_{1}(2), C_{1}(3) \\ \sum \sum A_{k}(i)\omega_{k_{2}}, C_{2}(2), C_{2}(3) \\ \sum \sum A_{k}(i)\omega_{k_{3}}, C_{3}(2), C_{3}(3) \end{vmatrix}}{m_{1}m_{2}m_{3}D'}, b_{i} = \frac{\begin{vmatrix} C_{1}(1), \sum A_{k}(i)\omega_{k_{1}}, C_{1}(3) \\ C_{2}(1), \sum A_{k}(i)\omega_{k_{2}}, C_{2}(3) \\ K \\ C_{3}(1), \sum A_{k}(i)\omega_{k_{3}}, C_{3}(3) \end{vmatrix}}{m_{1}m_{2}m_{3}D'}, c_{i} = \frac{\begin{vmatrix} C_{1}(1), C_{1}(2), \sum A_{k}(i)\omega_{k_{2}}, C_{2}(3) \\ C_{3}(1), \sum A_{k}(i)\omega_{k_{3}}, C_{3}(3) \\ M_{1}m_{2}m_{3}D' \end{vmatrix}}{c_{i} = \frac{\begin{vmatrix} C_{1}(1), C_{1}(2), \sum A_{k}(i)\omega_{k_{2}} \\ C_{2}(1), C_{2}(2), \sum A_{k}(i)\omega_{k_{2}} \\ K \\ C_{3}(1), C_{3}(2), \sum A_{k}(i)\omega_{k_{3}} \\ K \end{vmatrix}}{m_{1}m_{2}m_{3}D'}.$$

Ces formules vont maintenant être appliquées au cas d'une transformation du second degré. Si l'on dispose les nombres entiers  $\varrho_{ik}$ ,  $\sigma_{ik}$ ,  $\varrho'_{ik}$ ,  $\sigma'_{ik}$  de la manière suivante :

on sait que dans le cas d'une transformation du second degré leur déterminant doit être = 2<sup>3</sup> et qu'en outre il faut les choisir de façon à satisfaire aux trois conditions

(m) 
$$\tau'_{12} = \tau'_{21}, \ \tau'_{13} = \tau'_{51}, \ \tau'_{23} = \tau'_{32}.$$

Ces égalités se décomposent en général en un grand nombre (60) de conditions partielles, à moins, toutefois, qu'il n'existe entre les modules donnés d'autres relations que celles-ci:

$$\tau_{12} = \tau_{21}, \ \tau_{13} = \tau_{31}, \ \tau_{23} = \tau_{32}.$$

Or, dans le cas particulier qui fait l'objet de cette étude, il a déjà été trouvé (n° 99, p. 17)

$$\begin{cases} \tau_{11} \!\!=\!\! \frac{a_{11}}{\pi i} \!\!=\!\! \frac{2}{5} (1 \!+\! 2i), \ \tau_{12} \!\!=\!\! \tau_{21} \!\!=\!\! \frac{a_{12}}{\pi i} \!\!=\!\! -\frac{1}{5} (3 \!+\! i), \ \tau_{22} \!\!=\!\! \frac{a_{22}}{\pi i} \!\!=\!\! \frac{2}{5} (1 \!+\! 2i), \\ \tau_{13} \!\!=\!\! \tau_{31} \!\!=\!\! \frac{a_{13}}{\pi i} \!\!=\!\! \frac{1}{5} (1 \!-\! 3i), \ \tau_{23} \!\!=\!\! \tau_{32} \!\!=\!\! \frac{a_{23}}{\pi i} \!\!=\!\! \frac{1}{5} (1 \!+\! 2i), \\ \tau_{33} \!\!=\!\! \frac{a_{33}}{\pi i} \!\!=\!\! -\frac{2}{5} (1 \!-\! 3i), \\ \tau_{23} \!\!=\!\! \tau_{32} \!\!=\!\! \frac{a_{23}}{\pi i} \!\!=\!\! \frac{1}{5} (1 \!+\! 2i), \\ \tau_{33} \!\!=\!\! \frac{a_{33}}{\pi i} \!\!=\!\! -\frac{2}{5} (1 \!-\! 3i), \\ \tau_{34} \!\!=\!\! \tau_{34} \!\!=\!\! \frac{a_{34}}{\pi i} \!\!=\!\! -\frac{1}{5} (1 \!-\! 3i), \\ \tau_{34} \!\!=\!\! \tau_{34} \!\!=\!\! \frac{a_{34}}{\pi i} \!\!=\!\! -\frac{1}{5} (1 \!-\! 3i), \\ \tau_{34} \!\!=\!\! \tau_{34} \!\!=\!\! \frac{a_{25}}{\pi i} \!\!=\!\! -\frac{1}{5} (1 \!-\! 3i), \\ \tau_{34} \!\!=\!\! -\frac{1}{5} (1 \!-\! 3i), \\ \tau_{35} \!\!=\!\! -\frac{1}{5} (1 \!-\! 3i),$$

de sorte que l'on a par exemple

$$\begin{aligned} \tau_{11} &= \tau_{22} = 2 \; \tau_{23}, \; \tau_{55} = -2 \; \tau_{13} = -2i \; \tau_{12}, \\ \tau_{11} \; \tau_{22} - \tau_{12}{}^2 &= -\frac{2}{5} (2-i) = i \tau_{11}, \; \tau_{11} \; \tau_{23} - \tau_{12} \; \tau_{13} = 0, \\ \tau_{11} \; \tau_{33} - \tau_{15}{}^2 &= -\frac{2}{5} (2-i) = i \tau_{11}, \; \tau_{22} \; \tau_{15} - \tau_{12} \; \tau_{25} = \frac{1}{5} (3+i) = i \tau_{15}, \\ \tau_{22} \; \tau_{53} - \tau_{23}{}^2 &= -1, & \tau_{33} \; \tau_{12} - \tau_{13} \; \tau_{25} = \frac{1}{5} (1-3i) = \tau_{13}, \\ \begin{vmatrix} \tau_{11}, \; \tau_{12}, \; \tau_{13} \\ \tau_{21}, \; \tau_{22}, \; \tau_{23} \\ \tau_{31}, \; \tau_{32}, \; \tau_{33} \end{vmatrix} = -\frac{2}{5} (1+2i) = -\tau_{11}. \end{aligned}$$

Il s'ensuit que le nombre des équations provenant des conditions (m) est considérablement diminué.

Les nombres qui paraissent le mieux répondre au but proposé, sont les suivants :

Leur déterminant est effectivement = 8, et l'on se convainc aisément, en calculant les modules  $\tau'_{ik}$ , qu'ils satisfont aux conditions (m). Dans la suite on prendra donc

Avant de procéder à l'évaluation des différentes quantités qui entrent dans ce problème et afin de faciliter les calculs ultérieurs, il ne sera pas inutile de rappeler à cet endroit les valeurs des modules de périodicité primitifs (n° 99, p. 14).

$$A_{1}^{(1)} = 2(1-i) K_{1} | B_{1}^{(1)} = 4 K_{1}$$

$$A_{2}^{(1)} = -2 K_{1} | B_{2}^{(1)} = -2 K_{1}$$

$$A_{3}^{(1)} = 2 K_{1} | B_{3}^{(1)} = -2 K_{1}$$

$$A_{1}^{(2)} = 0 | B_{1}^{(2)} = 0$$

$$A_{2}^{(2)} = -2 (1+i) K_{2} | B_{2}^{(2)} = 2 (1-i) K_{2}$$

$$A_{3}^{(2)} = 2 (1-i) K_{1} | B_{3}^{(2)} = 2 (1+i) K_{2}$$

$$W_{3}$$

$$A_{1}^{(3)} = 4i K_{5} | B_{1}^{(3)} \Rightarrow 0$$

$$A_{2}^{(3)} = -2 (1-i) K_{5} | B_{2}^{(3)} = -2 (1+i) K_{5}$$

$$A_{3}^{(3)} = 2 (1+i) K_{5} | B_{3}^{(3)} = -2 (1-i) K_{5}$$

$$K_{2} = K_{3} = K_{1} K_{1} = K \sqrt{2} \cdot (1. \text{ c. p. 49}).$$

Maintenant les quantités  $\omega_{ik}$  et  $\omega'_{ik}$  deviennent en vertu des formules (7)

$$\begin{split} \omega_{11} &= \quad \frac{2}{5}(3+i) \quad \omega_{21} = -\frac{2}{5}(2-i) \quad \omega_{31} = -\frac{2}{5}(1+2i) \\ \omega_{12} &= \quad \frac{2}{5}(1+2i) \quad \omega_{22} = \quad \frac{2}{5}(1-3i) \quad \omega_{32} = -\frac{4}{5}(1+2i) \\ \omega_{13} &= -\frac{2}{5}(1+2i) \quad \omega_{23} = -\frac{2}{5}(1+2i) \quad \omega_{33} = \quad \frac{2}{5}(2-i) \\ \omega'_{11} &= \quad \frac{2}{5}(1+2i) \quad \omega'_{21} = -\frac{1}{5}(3+i) \quad \omega'_{51} = \quad \frac{1}{5}(1-3i) \\ \omega'_{12} &= -\frac{1}{5}(1-3i) \quad \omega'_{22} = \quad \frac{2}{5}(2-i) \quad \omega'_{32} = \quad \frac{2}{5}(1-3i) \\ \omega'_{13} &= \quad \frac{1}{5}(1-3i) \quad \omega'_{23} = \quad \frac{1}{5}(1-3i) \quad \omega'_{33} = \quad \frac{1}{5}(3+i). \end{split}$$

Posant

$$m_1 m_2 m_3 = m'_1 m'_2 m'_3 = 2$$
,

les formules (10) donnent

$$\tau'_{11} = \tau'_{22} = \tau'_{33} = \frac{1+i}{2},$$

$$\tau'_{12} = \tau'_{21} = \tau'_{13} = \tau'_{31} = \tau'_{23} = \tau'_{32} = 0.$$

Par suite des formules (11), les intégrales normales transformées s'obtiennent d'abord sous la forme

$$\begin{cases} u'_{1} = (u_{1} - \varepsilon_{1}) - \frac{1+i}{2}(u_{2} - \varepsilon_{2}) + \frac{1+i}{2}(u_{3} - \varepsilon_{3}) \\ u'_{2} = \frac{1+i}{2}(u_{2} - \varepsilon_{2}) - \frac{1-i}{2}(u_{3} - \varepsilon_{3}) \\ u'_{3} = i(u_{1} - \varepsilon_{1}) - \frac{1-i}{2}(u_{2} - \varepsilon_{2}) + \frac{1+i}{2}(u_{3} - \varepsilon_{3}) \end{cases}$$

et si, à l'aide des formules qui se trouvent à la page 17 du n° 99, on y substitue encore les valeurs des  $u_i$  en fonction des intégrales primitives  $w_i$ , elles deviennent

$$\begin{cases} u'_{1} = \pi \frac{-1+i}{4 \text{ K } \sqrt{2}} w_{1} + \left[-\varepsilon_{1} + \frac{1+i}{2} \varepsilon_{2} - \frac{1+i}{2} \varepsilon_{3}\right] \\ u'_{2} = -\frac{\pi i}{4 \text{ K } w_{2}} + \left[-\frac{1+i}{2} \varepsilon_{3} + \frac{1-i}{2} \varepsilon_{3}\right] \\ u'_{3} = \frac{\pi i}{4 \text{ K } w_{3} + \left[-i\varepsilon_{1} + \frac{1-i}{2} \varepsilon_{2} - \frac{1+i}{2} \varepsilon_{3}\right] \end{cases}$$

Jusqu'ici les constantes  $\varepsilon_i$  sont restées complètement arbitraires. On les déterminera par les conditions suivantes qui se justifieront plus tard d'elles-mêmes :

$$\begin{pmatrix}
-\varepsilon_{1} + \frac{1+i}{2}\varepsilon_{2} - \frac{1+i}{2}\varepsilon_{3} = 0 \\
-\frac{1+i}{2}\varepsilon_{2} + \frac{1-i}{2}\varepsilon_{3} = \frac{\pi i}{4} \\
-i\varepsilon_{1} + \frac{1-i}{2}\varepsilon_{2} - \frac{1+i}{2}\varepsilon_{3} = 0;$$

on en tire

$$\varepsilon_{\mathbf{1}} \!\!=\!\! \frac{\pi}{20}(2-i)\,, \varepsilon_{\mathbf{2}} \!=\! -\frac{\pi}{20}(3+i)\,, \varepsilon_{\mathbf{3}} \!=\! -\frac{\pi}{10}(2-i)$$

et l'on a par suite

$$\begin{cases} u_{1}' = u_{1} - \frac{1+i}{2} u_{2} + \frac{1+i}{2} u_{3} = \pi \frac{-1+i}{4 \operatorname{K} \sqrt{2}} w_{1} \\ u_{2}' = \frac{1+i}{2} u_{2} - \frac{1-i}{2} u_{3} + \frac{\pi i}{4} = -\frac{\pi i}{4 \operatorname{K}} w_{2} + \frac{\pi i}{4} \\ u_{3}' = i u_{1} - \frac{1-i}{2} u_{2} + \frac{1+i}{2} u_{3} = \frac{\pi i}{4 \operatorname{K}} w_{3} \end{cases}$$

Avec ces nouvelles variables  $u'_i$  et les modules correspondants

$$b_{11} = b_{22} = b_{33} = \pi i \frac{1+i}{2} = -\frac{1-i}{2} \pi,$$

$$b_{12} = b_{13} = b_{23} = 0$$

on peut maintenant former la fonction & fondamentale. Dans le cas actuel, l'équation de définition

$$F(w_1, w_2, w_3) = b_{11}n_{1}^2 + 2b_{12}n_{1}n_{2} + b_{22}n_{2}^2 + 2b_{13}n_{1}n_{5} + 2b_{25}n_{2}n_{3} + b_{55}n_{5}^2 + 2(n_{1}u'_{1} + n_{2}u'_{2} + n_{5}u'_{5})$$

$$\sum_{\substack{n_{1}, n_{2}, n_{3} \\ \text{prend la forme}}} b_{11}n_{1}^2 + 2b_{12}n_{1}n_{2} + b_{22}n_{2}^2 + 2b_{13}n_{1}n_{5} + 2b_{25}n_{2}n_{3} + b_{55}n_{5}^2 + 2(n_{1}u'_{1} + n_{2}u'_{2} + n_{5}u'_{5})$$

$$\begin{split} & \vartheta(u_1, u_2, u_3') = \sum_{n_1, n_2, n_3} e^{\pi^{\frac{1-i}{2}} (n_1^2 + n_2^2 + n_3^2) + 2(n_1 u_1' + n_2 u_2' + n_3 u_3')} \\ & = \sum_{n_1} e^{\pi^{\frac{1-i}{2}} n_1^2 + 2n_1 u_1'} \sum_{n_2} e^{\pi^{\frac{1-i}{2}} n_2^2 + 2n_2 u_2'} \sum_{n_2} e^{\pi^{\frac{1-i}{2}} n_3^2 + 2n_3 u_3'} \\ & = \sum_{n_1} e^{\pi^{\frac{1-i}{2}} n_1^2 + 2n_1 u_1'} \sum_{n_2} e^{\pi^{\frac{1-i}{2}} n_2^2 + 2n_2 u_2'} \sum_{n_2} e^{\pi^{\frac{1-i}{2}} n_3^2 + 2n_3 u_3'} \end{split}$$

Si l'on pose

$$e^{-\pi \frac{1-i}{2}} = q_1, u'_1 = iv'_1, u'_2 = iv'_2, u'_5 = iv'_5,$$

il vient

(13) 
$$\vartheta(u_{1}'u'_{2}u'_{3}) = \sum_{n_{1}} q_{1}^{n_{1}^{2}} e^{2n_{1}v'_{1}i} \sum_{n_{2}} q_{1}^{n_{2}^{2}} e^{2n_{2}v'_{2}i} \sum_{n_{3}} q_{1}^{n_{5}^{2}} e^{2n_{3}v'_{3}i} =$$

$$= \vartheta_{3}(v'_{1}, q_{1}) \vartheta_{5}(v'_{2}, q_{1}) \vartheta_{5}(v'_{3}, q_{1})$$

et l'on reconnaît, ainsi qu'il a été prévu, que dans ce cas les fonctions  $\vartheta$  abéliennes se décomposent en un produit de trois fonctions  $\vartheta$  elliptiques.

Il convient de modifier le module et les arguments de ces fonctions. Au moyen de la formule (Comp. Enneper, Elliptische Functionen, p. 304)

$$\sqrt{1-k}\,\vartheta_{5}(0,q)\,\vartheta_{5}(x,\sqrt{q})=\vartheta(x,q)^{2}-\vartheta_{4}(x,q)^{2}$$

on passera d'abord au module double, ou, ce qui revient au même, on remplacera  $q_1$  par  $q_1^2 = q$ , de sorte que

$$\vartheta(u'_1u'_2u'_3) = \frac{1}{\vartheta_3(0,q)^3(\sqrt[1]{1-k})^3}.$$

$$. \big[ \mathcal{G}(v'_1, q)^2 - \mathcal{G}_1(v'_1, q)^2 \big] \big[ \mathcal{G}(v'_2, q)^2 - \mathcal{G}_1(v'_2, q)^2 \big] \big[ \mathcal{G}(v'_3, q)^2 - \mathcal{G}_1(v'_3, q)^2 \big],$$

où  $q = e^{-\pi(1-i)}$ . Cette quantité ne devant plus être changée, dorénavant elle ne sera plus indiquée expressément; il en sera de même de l'argument 0. La seconde transformation, destinée à substituer aux arguments  $v_i$  leur double  $2v_i$ , consiste dans l'application des formules (Enneper, p. 295)

$$\vartheta(x)^2 = \frac{1}{\sqrt{2}} \sqrt{\vartheta_{\mathbf{3}}{}^{\mathbf{5}}\vartheta_{\mathbf{3}}(2x) - \vartheta_{\mathbf{2}}{}^{\mathbf{3}}\vartheta_{\mathbf{2}}(2x) + \vartheta^{\mathbf{5}}\vartheta(2x)},$$

$$\vartheta_{\mathbf{1}}(x)^{\mathbf{2}} = \frac{1}{\sqrt{2}} \sqrt{\vartheta_{\mathbf{5}}{}^{\mathbf{5}}\vartheta_{\mathbf{3}}(2x) - \vartheta_{\mathbf{2}}{}^{\mathbf{5}}\vartheta_{\mathbf{2}}(2x) - \vartheta^{\mathbf{5}}\vartheta(2x)} \,.$$

Si l'on pose, pour abréger,

$$2v'_1 = v_1, 2v'_2 = v_2, 2v'_3 = v_3,$$

de sorte que

$$v_1 = -2iu'_1, v_2 = -2iu'_2, v_3 = -2iu'_3,$$

il vient finalement

$$\cdot \bigg[ \sqrt{\frac{\partial_{5}^{3} \vartheta_{5}(v_{2}) - \vartheta_{2}^{3} \vartheta_{2}(v_{2}) + \vartheta^{3} \vartheta(v_{2})}{\partial_{5}^{3} \vartheta_{5}(v_{2}) - \vartheta_{2}^{3} \vartheta_{2}(v_{2}) - \vartheta^{3} \vartheta(v_{2})}} - \sqrt{\frac{\partial_{5}^{3} \vartheta_{5}(v_{2}) - \vartheta_{2}^{3} \vartheta_{2}(v_{2}) - \vartheta^{3} \vartheta(v_{2})}{\partial_{5}^{3} \vartheta_{5}(v_{3}) - \vartheta_{2}^{3} \vartheta_{2}(v_{3}) + \vartheta^{3} \vartheta(v_{5})}} - \sqrt{\frac{\partial_{5}^{3} \vartheta_{5}(v_{3}) - \vartheta_{2}^{3} \vartheta_{2}(v_{3}) - \vartheta^{5} \vartheta(v_{5})}{\partial_{5}^{3} \vartheta_{5}(v_{3}) - \vartheta_{2}^{3} \vartheta_{2}(v_{5}) - \vartheta^{5} \vartheta(v_{5})}} \bigg].$$

Afin de passer aux 63 autres fonctions  $\vartheta$ , il suffit d'augmenter dans le  $\vartheta$  fondamental, les arguments de tous les systèmes de demi-périodes possibles, conformément à l'équation de définition (Weber, p. 14)

$$\begin{array}{c} \vartheta(u'_{1} + \frac{1}{2} \omega_{1}, u'_{2} + \frac{1}{2} \omega_{2}, u'_{3} + \frac{1}{2} \omega_{3}) = \\ = -\frac{1}{4} \sum \sum_{i \mid k} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i \mid k} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i \mid k} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i \mid k} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i \mid k} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i \mid k} g_{i} g_{k} - \frac{1}{2} \pi i \sum_{i} g_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} - \sum_{i} g_{i} u'_{i} \\ = e^{-\frac{1}{4} \sum_{i} \sum_{i} b_{i} h_{i} \\ = e^{-\frac{1}{4} \sum_{i} b_{i} h$$

Or, lorsque les variables  $u'_i$  augmentent d'un système de demi-périodes

$$\begin{cases} \frac{1}{2}\omega_{1} = \frac{1}{2}h_{1}\pi i + \frac{1}{2}g_{1}b_{11} \\ \frac{1}{2}\omega_{2} = \frac{1}{2}h_{2}\pi i + \frac{1}{2}g_{2}b_{22} \\ \frac{1}{2}\omega_{3} = \frac{1}{2}h_{3}\pi i + \frac{1}{2}g_{3}b_{33}, \end{cases}$$

les arguments  $v_i$  acquièrent les accroissements correspondants

$$\begin{cases} \frac{1}{2}p_{1} = h_{1} \pi - ig_{1} b_{11} \\ \frac{1}{2}p_{2} = h_{2} \pi - ig_{2} b_{22} \\ \frac{1}{2}p_{3} = h_{3} \pi - ig_{3} b_{33} \end{cases}$$

et les fonctions  $\vartheta_{\lambda}(v_i + \frac{1}{2}p_i)$  se modifient de la manière suivante (Comp Enneper, p. 83 et suiv.):

$$\begin{cases}
\vartheta_{3}(v_{i} + h_{i}\pi - ig_{i}b_{ii}) = & \overline{q}^{\frac{1}{4}g_{i}^{2}} = g_{i}v_{i}i \vartheta_{\lambda_{3}}(v_{i}) \\
\vartheta_{2}(v_{i} + h_{i}\pi - ig_{i}b_{ii}) = & (-1)^{h_{i}} \overline{q}^{\frac{1}{4}g_{i}^{2}} = g_{i}v_{i}i \vartheta_{\lambda_{2}}(v_{i}) \\
\vartheta_{1}(v_{i} + h_{i}\pi - ig_{i}b_{ii}) = (-1)^{h_{i}} i \overline{q}^{i} \overline{q}^{\frac{1}{4}g_{i}^{2}} = g_{i}v_{i}i \vartheta_{\lambda_{1}}(v_{i}) \\
\vartheta_{1}(v_{i} + h_{i}\pi - ig_{i}b_{ii}) = i \overline{q}^{i} \overline{q}^{\frac{1}{4}g_{i}^{2}} = g_{i}v_{i}i \vartheta_{\lambda_{1}}(v_{i}) \\
\vartheta_{1}(v_{i} + h_{i}\pi - ig_{i}b_{ii}) = i \overline{q}^{i} \overline{q}^{\frac{1}{4}g_{i}^{2}} = g_{i}v_{i}i \vartheta_{g_{i}}(v_{i}),
\end{cases}$$
The pour simplifier l'écriture, on a remplacé les indices  $3 - i \overline{q}^{i} = 0$ 

où, pour simplifier l'écriture, on a remplacé les indices  $3-g_i$ ,  $2+g_i$ ,  $1-g_i$  respectivement par  $\lambda_3$ ,  $\lambda_2$  et  $\lambda_1$ .

Dans ces formules le facteur i signifie, comme toujours,  $\sqrt{-1}$ , l'indice i prend successivement les valeurs

1, 2, 3, et chacun des nombres  $g_i$  et  $h_i$  est ou = 0, ou = 1. Si dans l'équation (14) on remplace simultanément les variables  $u'_i$  par  $u'_i + \frac{1}{2}\omega_i$  et les variables  $v_i$  par les valeurs correspondantes  $v_i + \frac{1}{2}p_i$  et que l'on fasse usage des équations précédentes, il vient

$$-\frac{1}{e} \frac{1}{4} b_{11} \left( g_1^2 + g_2^2 + g_3^2 \right) - \frac{1}{2} \pi i \left( g_1 h_1 + g_2 h_2 + g_3 h_3 \right) - \left( g_1 u'_1 + g_2 u'_2 + g_3 u'_3 \right) g_1^{g_1 g_2 g_3} \left( u'_1, u'_2, u'_3 \right) =$$

$$= \overline{2\sqrt{2}} \overline{\partial_{5}^{5}(\sqrt{1-k})^{3}} \left[ \left[ \sqrt{ \left. \partial_{5}^{5} \overline{q}^{\frac{4}{4}} g_{k}^{2} - g_{k} v_{k}^{i} \right. \partial_{\lambda_{3}}(v_{k}) - (-1)^{h_{k}} \partial_{2}^{\frac{4}{3}} \overline{q}^{\frac{4}{4}} g_{k}^{2} - g_{k} v_{k}^{i} \cdot g_{\lambda_{2}}(v_{k}) + i^{9} \overline{u}^{2} \overline{q}^{\frac{4}{4}} g_{k}^{2} - g_{k} v_{k}^{i} - g_{k} \overline{u}^{2} - g_{k} \overline{u}^{2} \overline{u}^{2}$$

$$-\sqrt{\left.\mathcal{Y}_{5}^{5}\overline{q}_{4}^{4}g_{k}^{2}}-g_{k}v_{k}^{i}}\right._{\lambda_{3}}(v_{k})-(-1)^{h_{k}}\mathcal{Y}_{2}^{3}\overline{q}_{4}^{4}g_{k}^{2}-g_{k}v_{k}^{i}}\mathcal{Y}_{\lambda_{2}}(v_{k})-i^{g_{k}}\mathcal{Y}_{5}\overline{q}_{4}^{4}g_{k}^{2}-g_{k}v_{k}^{i}}\mathcal{Y}_{\lambda_{2}}(v_{k})]=$$

$$= \frac{1}{2\sqrt{2} \vartheta_{5}^{5} (\sqrt{1-k})^{3} q^{8} (g_{1}^{2} + g_{2}^{2} + g_{3}^{2}) \frac{1}{e^{2}} (g_{1}v_{1} + g_{2}v_{2} + g_{5}v_{3})i}.$$

où H désigne le produit des trois facteurs que l'on obtient, en assignant à h successivement les valeurs  $\left[ \left. \left( \sqrt{\left. \vartheta_{5}^{\ 5} \vartheta_{\lambda_{3}}(v_{k}) - (-1)^{h_{k}} \vartheta_{2}^{\ 5} \vartheta_{\lambda_{2}}(v_{k}) + i^{g_{k}} \vartheta^{5} \vartheta_{g_{k}}(v_{\varepsilon})} - \sqrt{\left. \vartheta_{5}^{5} \vartheta_{\lambda_{3}}(v_{k}) - (-1)^{h_{k}} \vartheta_{2}^{\ 5} \vartheta_{\lambda_{2}}(v_{k}) - i^{g_{k}} \vartheta^{5} \vartheta_{g_{k}}(v_{k})} \right], \right.$ 

1, 2, 3. On reconnaît aisément qu'à l'exception de  $\overline{e}^{\frac{1}{2}\pi i}\sum_{k}g_{k}h_{k}$ , les facteurs exponentiels se détruisent de part et d'autre, de sorte que

$$\begin{array}{c} {\mathcal{S}_{\{\mathrm{S}_{1}\mathrm{S}_{2}\mathrm{S}_{3}\}}^{\{\mathrm{S}_{1}\mathrm{S}_{2}\mathrm{S}_{3}\}}(u'_{1},u'_{2},u'_{3})} = e^{\frac{1}{2}\pi i(g_{1}h_{1}+g_{2}h_{2}+g_{5}h_{2})} \\ {2\sqrt{2}\,\mathcal{S}_{5}}(\sqrt{1-h})^{5} \\ \\ \\ \\ \\ \end{array} } \\ \cdot \left[ \left[ \sqrt{\,\mathcal{S}_{5}^{\,5}\mathcal{S}_{\lambda_{3}}(v_{k}) - (-1)^{h_{k}} \mathcal{S}_{2}^{\,5}\mathcal{S}_{\lambda_{2}}(v_{k}) + i^{9^{k}} \mathcal{S}^{5}\mathcal{S}_{g_{k}}(v_{k})} - \sqrt{\,\mathcal{S}_{5}^{\,5}\mathcal{S}_{\lambda_{3}}(v_{k}) - (-1)^{h_{k}} \mathcal{S}_{2}^{\,5}\mathcal{S}_{\lambda_{2}}(v_{k}) - i^{9^{k}} \mathcal{S}^{5}\mathcal{S}_{g_{k}}(v_{k})} \right]} . \end{array}$$

Le carré du quotient qu'on peut former avec deux de ces fonctions &, est une fonction uniforme, continue dans toute la surface de Riemann T'à l'exception de certains points et qui, en général, possède six périodes. La racine carrée d'une telle fonction a donc pour expression

(15) 
$$\frac{\mathcal{Y}_{[1,1_{2}k_{3}]}^{g_{1}g_{2}g_{3}}}{\mathcal{Y}_{[1,1_{2}k_{3}]}} (w'_{1},w'_{2},w'_{3}) e^{\frac{1}{2}\pi i(g_{1}h_{1}+g_{2}h_{2}+g_{3}h_{3})} \\ \frac{\mathcal{Y}_{[1,1_{2}k_{3}]}}{\mathcal{Y}_{[1,1_{2}k_{3}]}} (w'_{1},w'_{2},w'_{3}) = \frac{1}{2\pi i(\nu_{1}\mu_{1}+\nu_{2}\mu_{3}+\nu_{3}\mu_{3})} \\ \frac{\mathcal{Y}_{[\mu_{1}\mu_{2}\mu_{3}]}}{(\mu_{1}\mu_{2}\mu_{3})} (w'_{1},w'_{2},w'_{3}) + \frac{1}{2\pi i(\nu_{1}\mu_{1}+\nu_{2}\mu_{3})} \\ \frac{\mathcal{Y}_{[\mu_{1}\mu_{2}\mu_{3}]}}{(\mu_{1}\mu_{2}\mu_{3})} (w'_{1},w'_{2},w'_{3}) + \frac{1}{2\pi i(\nu_{1}\mu_{1}+\nu_{2}\mu_{3})} \\ \frac{\mathcal{Y}_{[\mu_{1}\mu_{2}]}}{(\mu_{1}\mu_{2})} (w'_{1},w'_{1}) + \frac{1}{2\pi i(\nu_{1}\mu_{1}+\nu_{2})} \\ \frac{\mathcal{Y}_{[\mu_{1}\mu_{2}]}}{(\mu_{1}\mu_{2})} (w'_{1},w'_{1}) + \frac{1}{2\pi i(\nu_{1}\mu_{1}+\nu_{2})} (w'_{1},w'_{1}) +$$

où  $m_s$  est mis pour  $3 - \nu_k$  et  $m_s$  pour  $2 + \nu_k$ . On voit immédiatement que, des trois facteurs dont se compose le produit H, l'un se réduit à l'unité

toutes les fois que  $g_{\rm m} = \nu_{\rm m}$  et en même temps  $h_{\rm m} = \mu_{\rm m}$ ; deux des facteurs deviennent égaux à l'unité, si l'on

a simultanément  $g_{\rm m} = \nu_{\rm m}$ ,  $h_{\rm m} = \mu_{\rm m}$  et  $g_{\rm n} = \nu_{\rm n}$ ,  $h_{\rm n} = \mu_{\rm n}$ , où n est différent de m.

Il s'agit maintenant de trouver pour ces fonctions l'équivalent algébrique en s et z. A cet effet, il est nécessaire de considérer des cas particuliers.

Exemple I. Soit 
$$\begin{pmatrix} g_1 g_2 g_3 \\ h_1 h_2 h_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}, \begin{pmatrix} \nu_1 & \nu_2 & \nu_3 \\ \mu_1 \mu_2 \mu_3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
.

L'application de la formule (15) donne

$$\frac{\vartheta_{\{0\ 0\ 0\}}(u'_{1}, u'_{2}, u'_{3})}{\vartheta(u'_{1}, u'_{2}, u'_{3})} =$$

$$= \frac{\sqrt{\frac{\partial_{3}^{3}\vartheta_{3}(v_{1})}{\theta_{2}^{3}\vartheta_{2}(v_{1}) + \theta_{2}^{3}\vartheta_{2}(v_{1}) + \theta_{2}^{3}\vartheta_{2}(v_{1})} - \sqrt{\frac{\partial_{3}^{3}\vartheta_{3}(v_{1})}{\theta_{2}^{3}\vartheta_{2}(v_{1}) - \theta_{2}^{3}\vartheta_{2}(v_{1}) + \theta_{2}^{3}\vartheta_{2}(v_{1})} - \sqrt{\frac{\partial_{3}^{3}\vartheta_{3}(v_{1})}{\theta_{2}^{3}\vartheta_{2}(v_{1}) - \theta_{2}^{3}\vartheta_{2}(v_{1}) - \theta_{2}^{3}\vartheta_{2}(v_{1})} - \frac{\partial_{3}^{3}\vartheta_{3}(v_{1})}{\theta_{2}^{3}\vartheta_{3}(v_{2}) + \theta_{2}^{3}\vartheta_{2}(v_{2}) + \theta_{2}^{3}\vartheta_{2}(v_{2}) + \theta_{2}^{3}\vartheta_{2}(v_{2}) - \theta_{2}^{3}\vartheta_{2}(v_{2}) + \theta_{2}^{3}\vartheta_{2}(v_{2}) - \theta_{2}^{3}\vartheta$$

Des fonctions  $\vartheta$  on passe aux fonctions elliptiques en divisant sous les radicaux numérateur et dénominateur du 1<sup>er</sup> facteur par  $\vartheta_3$   $\vartheta$   $(v_4)$ , du 2<sup>d</sup> par  $\vartheta_3$   $\vartheta$   $(v_2)$ , du 3<sup>e</sup> par  $\vartheta_3$   $\vartheta$   $(v_3)$  et en tenant compte des formules

$$\frac{\vartheta_{2}}{\vartheta_{3}} = \sqrt{k}, \quad \frac{\vartheta}{\vartheta_{3}} = \sqrt{k'},$$

$$\frac{\vartheta_{1}(v_{i})}{\vartheta_{1}(v_{i})} = \sqrt{k} \operatorname{sn}(w'_{i}, k), \quad \frac{\vartheta_{2}(v_{i})}{\vartheta_{1}(v_{i})} = \sqrt{\frac{k}{k'}} \operatorname{cn}(w'_{i}, k), \quad \frac{\vartheta_{3}(v_{i})}{\vartheta_{1}(v_{i})} = \frac{1}{\sqrt{k'}} \operatorname{dn}(w'_{i}, k),$$
où

$$w_i = \frac{2K}{\pi} v_i$$
 et  $\sqrt{\frac{2K}{\pi}} = \vartheta_3(0) = 1 + 2 \sum_r q^{r^2}, r = 1, 2, \dots \infty$ .

Par ces formules les quantités K, k et k' sont déterminées d'une manière uniforme, si toutefois on considère les fonctions  $\vartheta$  comme étant données sans ambiguïté. On trouve, en effet,

$$K = \frac{K_1}{\sqrt{2}} = K_2 = K_3, k = i, k' = \sqrt{2}.$$

Ces substitutions faites, l'équation précédente prend actuellement la forme

$$\frac{\mathcal{Y}_{\{1\ 1\ 1\}}^{\{0\ 0\ 0\}}(u'_{1}, u'_{2}, u'_{3})}{\mathcal{Y}(u'_{1}, u'_{2}, u'_{3})} = \frac{\sqrt{\operatorname{dn}w'_{1} - \operatorname{cn}w'_{1} + 2} - \sqrt{\operatorname{dn}w'_{1} - \operatorname{cn}w'_{1} - 2}}{\sqrt{\operatorname{dn}w'_{1} + \operatorname{cn}w'_{1} + 2} - \sqrt{\operatorname{dn}w'_{1} + \operatorname{cn}w'_{1} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{2} - \operatorname{cn}w'_{2} + 2} - \sqrt{\operatorname{dn}w'_{2} - \operatorname{cn}w'_{2} - 2}}{\sqrt{\operatorname{dn}w'_{2} + \operatorname{cn}w'_{2} + 2} - \sqrt{\operatorname{dn}w'_{2} + \operatorname{cn}w'_{2} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} + 2} - \sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} + \operatorname{cn}w'_{3} - 2}}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - \operatorname{cn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w'_{3} - 2}} \cdot \frac{\sqrt{\operatorname{dn}w'_{3} - 2}}{\sqrt{\operatorname{dn}w$$

Or, il existe des rapports très simples entre les variables  $w_i$  et les intégrales primitives  $w_i$ , car on a

$$\begin{cases} w'_{1} = \frac{2 K}{\pi} v_{1} = -\frac{4 i K}{\pi} u'_{1} = \frac{1+i}{\sqrt{2}} w_{1}, \\ w'_{2} = \frac{2 K}{\pi} v_{2} = -\frac{4 i K}{\pi} u'_{2} = K - w_{2}, \\ w'_{3} = \frac{2 K}{\pi} v_{3} = -\frac{4 i K}{\pi} u'_{3} = w_{3} \end{cases}$$

et l'on se souvient des relations

$$\frac{1+i}{\sqrt{2}}w_{1} = \int_{0}^{\zeta} \frac{d\zeta}{\sqrt{1-\zeta^{4}}}, \text{ où } \zeta = \frac{1+i}{\sqrt{2}} \frac{z}{s},$$

$$K - w_{2} = \int_{0}^{s} \frac{ds}{\sqrt{1-s^{4}}}, \quad w_{3} = \int_{0}^{z} \frac{dz}{\sqrt{1-z^{4}}},$$

desquelles on tire

$$\begin{cases} \operatorname{sn} w'_{1} = \zeta & \operatorname{sn} w'_{2} = s \\ \operatorname{cn} w'_{1} = \sqrt{1 - \zeta^{2}} & \operatorname{cn} w'_{2} = \sqrt{1 - s^{2}} & \operatorname{cn} w'_{3} = \zeta \\ \operatorname{dn} w'_{4} = \sqrt{1 + \zeta^{2}} & \operatorname{dn} w'_{2} = \sqrt{1 + s^{2}} & \operatorname{dn} w'_{3} = \sqrt{1 + z^{2}}. \end{cases}$$

Par conséquent, il vient finalement

$$\frac{9 \atop \{111\}}{9 (u'_{1}, u'_{2}, u'_{3})} = \frac{\sqrt{\sqrt{1+\zeta^{2}}-\sqrt{1-\zeta^{2}}+2} - \sqrt{\sqrt{1+\zeta^{2}}-\sqrt{1-\zeta^{2}}-2}}{\sqrt{\sqrt{1+\zeta^{2}}+\sqrt{1-\zeta^{2}}+2} - \sqrt{\sqrt{1+\zeta^{2}}+\sqrt{1-\zeta^{2}}-2}} - \frac{\sqrt{\sqrt{1+\zeta^{2}}-\sqrt{1-\zeta^{2}}-2}}{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}+2} - \sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}} - \frac{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}}}{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}+2} - \sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}} - \frac{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}}}{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}+2} - \sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}}} - \frac{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}}}{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}+2}-\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}}} - \frac{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}}{\sqrt{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-\sqrt{1-z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}-2} - \frac{\sqrt{1+z^{2}}-2}-2}{\sqrt{1+z^{2}}-2}$$

Pour ne pas détruire dans cette expression la forme qui permet de remonter à l'origine de chaque terme, il convient de renoncer aux quelques simplifications possibles.

Exemple II. Dans le cas de

$$\begin{pmatrix} g_{\mathbf{1}}g_{\mathbf{2}}g_{\mathbf{3}} \\ h_{\mathbf{1}}h_{\mathbf{2}}h_{\mathbf{3}} \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 1 \ 1 \end{pmatrix}, \begin{pmatrix} \nu_{\mathbf{1}} \ \nu_{\mathbf{2}} \ \nu_{\mathbf{3}} \\ \mu_{\mathbf{1}}\mu_{\mathbf{2}}\mu_{\mathbf{3}} \end{pmatrix} = \begin{pmatrix} 0 \ 0 \ 0 \\ 0 \ 0 \ 0 \end{pmatrix}$$

un calcul analogue à celui qui vient d'être indiqué dans ses détails, conduit à la formule

$$\frac{9 \underset{\{0 \ 1 \ 1\}}{0 \ 0 \ 0}}{(0 \ 1 \ 1)} \frac{(w_1, w_2, w_3)}{3 (w_1, w_2, w_3)} = \frac{\sqrt{\sqrt{1 + s^2} - \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} - \sqrt{1 - s^2} - 2}}{\sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} - 2}}.$$

$$\frac{\sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} - 2}}{\sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} - 2}}.$$

$$\frac{\sqrt{\sqrt{1 + s^2} - \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} - \sqrt{1 - s^2} - 2}}{\sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} + 2} - \sqrt{\sqrt{1 + s^2} + \sqrt{1 - s^2} - 2}}.$$
Exemple III. Soit  $\binom{g_1 g_2 g_3}{h_1 h_2 h_3} = \binom{0 \ 0 \ 0}{0 \ 0 \ 1}, \binom{\nu_1 \ \nu_2 \ \nu_3}{\mu_1 \mu_2 \mu_3} = \binom{0 \ 0 \ 0}{0 \ 0 \ 0}$ .

Dans cette hypothèse il vient

$$(18) \frac{\frac{\mathcal{Y}_{\{0000\}}(u'_{1}, u'_{2}, u'_{3})}{\mathcal{Y}(u'_{1}, u'_{2}, u'_{3})}}{\frac{\mathcal{Y}(u'_{1}, u'_{2}, u'_{3})}{\sqrt{1+z^{2}} + \sqrt{1-z^{2}} + 2} - \sqrt{\frac{1-z^{2}}{1+z^{2}} - \sqrt{1-z^{2}} - 2}}{\sqrt{\frac{1+z^{2}}{\sqrt{1+z^{2}} + \sqrt{1-z^{2}} - 2} - \sqrt{\sqrt{1+z^{2}} + \sqrt{1-z^{2}} - 2}}}.$$

Exemple IV. Si 
$$\begin{pmatrix} g_1g_2g_3 \\ h_1h_2h_3 \end{pmatrix} = \begin{pmatrix} 100 \\ 100 \end{pmatrix}, \begin{pmatrix} \nu_1 & \nu_2 & \nu_3 \\ \mu_1\mu_2\mu_3 \end{pmatrix} = \begin{pmatrix} 111 \\ 111 \end{pmatrix}$$
,

on arrive à l'égalité

(19) 
$$\frac{\vartheta_{\{1\ 0\ 0\}}(u_{1},u_{2},u_{3})}{\vartheta_{\{1\ 1\ 1\}}(u_{1},u_{2},u_{3})} =$$

$$= -\frac{1}{\sqrt{i}} \frac{\sqrt[4]{1+s^{2}} + \sqrt{1-s^{2}} + 2}{\sqrt[4]{1-s^{2}} + i\sqrt{1+s^{2}} + 2is - \sqrt{\sqrt{1-s^{2}} + i\sqrt{1+s^{2}} - 2is}}{\sqrt[4]{1+z^{2}} + \sqrt{1-z^{2}} + 2is - \sqrt{\sqrt{1-z^{2}} + i\sqrt{1-z^{2}} - 2is}}{\sqrt[4]{1-z^{2}} + i\sqrt{1-z^{2}} + 2iz - \sqrt[4]{1-z^{2}} + i\sqrt{1-z^{2}} - 2iz}}{\sqrt[4]{1-z^{2}} + i\sqrt{1+z^{2}} + 2iz - \sqrt[4]{1-z^{2}} + i\sqrt{1+z^{2}} - 2iz}}$$

Les formules (16) à (19) et toutes celles qu'on peut établir d'une manière analogue, ne résolvent le problème de Riemann que dans un cas particulier; elles manquent de généralité en ce sens que les variables  $u'_i$  qui entrent dans les fonctions  $\vartheta$  ne sont pas indépendantes les unes des autres. Mais il est facile de généraliser la solution, au moins dans le cas qui vient d'être traité, c'est-à-dire le plus simple et pour cela même le plus important, où il s'agit de fonctions du second ordre à six périodes. A cet effet, on introduira comme variables dans les fonctions  $\vartheta$  les quantités suivantes

(20) 
$$\begin{cases} U'_{1} = (u'_{1})^{(1)} + (u'_{1})^{(2)} + (u'_{1})^{(3)} \\ U'_{2} = (u'_{2})^{(1)} + (u'_{2})^{(2)} + (u'_{2})^{(3)} \\ U'_{3} = (u'_{3})^{(1)} + (u'_{3})^{(2)} + (u'_{3})^{(3)} \end{cases}$$

où  $(u_i)^{(1)}$ ,  $(u_i)^{(2)}$ ,  $(u_i)^{(3)}$  signifient les valeurs que prend l'intégrale  $u_i$  respectivement pour les limites supérieures  $z_1$ ,  $s_1$ ;  $z_2$ ,  $s_2$ ;  $z_3$ ,  $s_3$ . (Dans les formules (16) à (19) deux des limites  $z_i$  et  $s_i$  sont égales à 0.) Or, le développement que l'on trouve ci-dessus à partir de l'équation (13) reste évidemment valable, si l'on substitue aux variables introduites successivement et représentées par des minuscules, les sommes correspondantes,

ant par des majuscules. En répétant and modifié, tout le raisonnement précédent, on arriva à des variables  $W_1$ ,  $W_2$ ,  $W_3$  qui permettent de fonctions  $\vartheta$  aux fonctions elliptiques.  $\begin{cases} W_1 = w_1(1) + w_1(2) + w_1(3) \\ W_2 = w_2(3) + w_1(2) + w_2(3) \\ W_3 = w_3(1) + w_3(2) + w_3(3) \end{cases}$ intégrales  $w_1$ ,  $w_2$ ,  $w_3$  conservent leur signification prince de sorte que  $\begin{cases} \int_0^{z_1} \frac{dz}{\sqrt{(1-z^{1})^3}}, w_2(1) = \int_0^{z_1} \frac{dz}{\sqrt{1-z^4}}, i = 1, 2, 3 \end{cases}$ les relations  $\frac{1+i}{\sqrt{2}}W_1 = \int_0^{z_1} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_2} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}} = \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}}$   $V_2 = 3K - W_2 = \int_0^{z_1} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_2} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}} = \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}}$   $W_3 = W_3 = \int_0^{z_1} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_2} \frac{dz}{\sqrt{1-z^4}} + \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}} = \int_0^{z_3} \frac{dz}{\sqrt{1-z^4}}$ Ceci posé, on reconnaît que pour résoudre le problème en question, il suffit de remplacer d'une part les variables  $w_i$  par d'autre part les quantités  $\xi$ , s, z respectivement par les équations (16) à (19) et leurs semblables.

The description of the following of the problème en question  $v_3$  and  $v_4$  and  $v_4$ 

$$\begin{cases} W_1 = w_1^{(1)} + w_1^{(2)} + w_1^{(3)} \\ W_2 = w_2^{(1)} + w_2^{(2)} + w_2^{(3)} \\ W_3 = w_3^{(1)} + w_3^{(2)} + w_3^{(3)} \end{cases}$$

$$w_{1}^{(i)} = \int_{0}^{z_{i}} \frac{dz}{\sqrt[4]{(1-z^{4})^{3}}}, w_{2}^{(i)} = \int_{0}^{z_{i}} \frac{zdz}{\sqrt[4]{(1-z^{4})^{3}}}, w_{3}^{(i)} = \int_{0}^{z_{i}} \frac{dz}{\sqrt{1-z^{4}}}, i = 1, 2, 3$$

$$W_{1} = \frac{1+i}{\sqrt{2}}W_{1} = \int_{0}^{\zeta_{1}} \frac{d\zeta_{1}}{\sqrt{1-\zeta^{4}}} + \int_{0}^{\zeta_{2}} \frac{d\zeta}{\sqrt{1-\zeta^{4}}} + \int_{0}^{\zeta_{3}} \frac{d\zeta}{\sqrt{1-\zeta^{4}}} = \int_{0}^{\Xi} \frac{d\zeta}{\sqrt{1-\zeta^{4}}}$$

$$W'_{2}=3K-W_{2}=\int_{0}^{s_{1}}\frac{ds}{\sqrt{1-s^{4}}}+\int_{0}^{s_{2}}\frac{ds}{\sqrt{1-s^{4}}}+\int_{0}^{s_{3}}\frac{ds}{\sqrt{1-s^{4}}}=\int_{0}^{S}\frac{ds}{\sqrt{1-s^{4}}}$$

$$W'_{3}=W_{3} = \int_{0}^{z_{1}} \frac{dz}{\sqrt{1-z^{4}}} + \int_{0}^{z_{2}} \frac{dz}{\sqrt{1-z^{4}}} + \int_{0}^{z_{3}} \frac{dz}{\sqrt{1-z^{4}}} = \int_{0}^{Z} \frac{dz}{\sqrt{1-z^{4}}}.$$

$$\zeta_i = \operatorname{sn}(w_1^i)^{(i)}, \ s_i = \operatorname{sn}(w_2^i)^{(i)}, \ z_i = \operatorname{sn}(w_3^i)^{(i)}, \ i = 1, 2, 3$$

$$\Xi = \operatorname{sn} \left[ (w'_1)^{(1)} + (w'_1)^{(2)} + w'_1^{(3)} \right] =$$

et les quantités S et Z s'obtiennent en substituant, dans l'expression précédente, aux quantités  $\zeta_i$  respectivement les quantités  $s_i$  et  $z_i$ . Après avoir fait toutes les substitutions indiquées, on arrive finalement à des équations de la forme

$$\frac{\vartheta_{\{\omega\}}(U_{1}, U_{2}, U_{3})}{\vartheta_{\{\omega'\}}(U_{1}, U_{2}, U_{3})} = F(s_{1}, s_{2}, s_{3}; z_{1}, z_{2}, z_{3}),$$

où F désigne une fonction algébrique. Elles résolvent le problème de Riemann dans toute la généralité voulue, car si l'on y attribue aux variables  $U_i$  des valeurs absolument arbitraires, les points  $z_i$ ,  $s_i$  sont également déterminés en vertu des équations de définition (20), que l'on doit, à vrai dire, considérer comme des congruences.

Remarque. Dans ce qui précède, on n'a pas eu besoin des multiplicateurs  $a_i$ ,  $b_i$ ,  $c_i$  et des modules de périodicités transformés  $C_i^{(h)}$ ,  $D_i^{(h)}$ ; mais il peut être intéressant et utile de les connaître. Or, en mettant en regard les équations.

$$\begin{cases} w_1 = \frac{1-i}{\sqrt{2}} w'_1 & w_1 = a_1 w'_1 + b_1 w'_2 + c_1 w'_3 + g_1 \\ w_2 = K - w'_2 & w_2 = a_2 w'_1 + b_2 w'_2 + c_2 w'_3 + g_2 \\ w_3 = w'_3 & w_3 = a_3 w'_1 + b_3 w'_2 + c_5 w'_3 + g_5 \end{cases}$$

on en conclut qu'il est permis d'admettre que

$$\begin{cases} a_{1} = \frac{1-i}{\sqrt{2}}, b_{1} = 0, c_{1} = 0, g_{1} = 0 \\ a_{2} = 0, b_{2} = -1, c_{2} = 0, g_{2} = K \\ a_{3} = 0, b_{3} = 0, c_{5} = 1, g_{5} = 0. \end{cases}$$

Des équations (9) on tire ensuite