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FONCTIONS ABELIENNES DU GENRE 3

UN CAS PARTICULIER (suiTk)

PAR 7
H. AMSBSTEIN

L.e probléme de Jacobi.

L’existence de la relation
S4+22—1=0

entre les variables s et 2 entraine celle des trois intégrales abé-
liennes de premiére espéce (comp. le n° 99 de ce bulletin, p. 9),

w _fz de f‘ 2de w_fz dz
1 — ) e 3— =

5 \/(l—-z“ \/(1 —2 )’ 5 \/1 —
dont la limite inférieure O est censée étre dans la premiére nappe
de la surface de Riemann T’. L’intégrale w, est elliptique et I’on
a vu (n°99, p. 43 et suiv.) qu’il est possible de ramener aussi

w, et w, & des intégrales de méme nature. En effet, 1a substi-
tution

1) =l

. T 4 e 1
{=—¢e* Sy ous=e

§ =

\/1~c* V1—¢

transforme w0, en

£ dg

1)
e 4 e
h] \/1 —
et la substitution

4 4
s=\/1——z* ou z=— \/l—s‘

ameéne pour w, la forme

-—“f}/l—-—f; f]/l-—s Vl-——sah f]/lds

w,
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. s ds
hg—-“w,-_—'- fl—‘.
0 V1—s
n

Ecrivant, pour simplifier, w, 4 la place de e * 1w, et w, & la
place de K, —w,, on voit que, d’aprés la notation de Gauss,
on a

£ = sinlemn w,, s = sinlemn w,, z = sinlemn w,.

d’ou il suit .

(Dans la présente étude, les notations de Jacobi : sin am =z,
cosam x, A am x, de méme que celles de Gauss : sinlemn z, etc.,
seront remp]acees par les expressions plus simples sn 2, cn :r:,
dn z, conformément & l'usage établi par beaucoup d’auteurs.
Lorsque le module & n’est pas indiqué expressément, il est sous-
entendu que k=1.)

Soit maintenant

/ = ’ ]/Ifgs W _fVl v 2 =J‘%§f—5—4 ;

0
s, s g dS "8y ds
= | =, w, zf"— o w® =J —}

< : :)) Vl——g, y ; V’].-----Sli 0 ]/-]."—S‘"w

L3 ‘ Zo 2z _
/w3(1)= il“—m—————dz 3 w,?) = *i , W, =‘J _'3_'(1‘?"—— *
VP yVi=# yY1=+
v

Si Pon introduit comme variables des intégrales v, ,v,, v,,
définies par les congruences

wl(l) -+ w1("2) -+ w4(3) 3
we(U + wg('-?) + w2(3) s
ws(l). -+ rwa("?) + w5(3) ,

)
13 ‘L’s
le probléme de Jacobi peut s’énoncer comme il suit : Etant don-
nées les valeurs de v,, v,, v,, trouver algébriquement les va-
leurs correspondantes de s,, 2, (§,)5 Sy 22 (555 83, 25 (83)-

Or, il est évident que, lorsque les valeurs de v, , v,, v, sont
connues, les valeurs correspondantes qu’affectent n’importe

quelles fonctions uniformes de ces variables, par exemple sn w, ,
snw,, snw,, seront parfaitement déterminées. Il s'ensuit que

il

Il

i
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dans le cas actucl, le probléme en question peut étre ramené &
celui-ci : Etant données les quantités a, b, ¢, de telle sorte que

sn v, = sn (w,() 4 w,? 4+ w,6) = qa,
sn v, = sn (w,) 4+ w,(? 4+ w,0)) = b,
sn v, = sn (w,\V) 4- w,@ 4 w,®) = ¢,

et en outre les six relations
i
Tsn w,(0)

ek sn'w,® 4-sn'w,ll =1, (i) =1, 2 3;
2

snw, =e
déterminer les 9 quantités snw,@, snw, ), snw,(), (3) =1, 2, 3.

On reconnait immédiatement que les 9 inconnues se réduisent
facilement & 3, par exemple a snw,(!), snw,?), snw,?. La possi-
bilité de la solution étant ainsi hors de doute, on prévoit que la
solution elle-méme dépend, en dernier lieu, d’une équation du
3° degré dont les racines sont les valeurs cherchées de 2,, 2,, 2,.

Voici comment on pourrait poser les premiers jalons sur la
voie qui, théoriquement, aboutit au but désiré. Soit, pour abré-
ger 'écriture

pi=snw,), ¢ =cnw,), ri=dnw,®, =12 3.

L’application du théoréme relatif a I'addition des fonctions
elliptiques donne d’abord
P+ P g, ¥
1+ p,p,’

sn (w,() 4+ w,?) =
puis
sn (w,() 4+ w, 4+ w,3) =c=
sn('w (D201, )emew,Adneo B —-snew, ) en (20, D410, ) da(ew 4w, )
1 + sn® (w,() 4+ w,®) snw,0
(1+p1 0.7 )(Piqs?s==D.q,71 )57 D3(q1 Qs —P 1Py 277D P24, Gs)
(L4p7p:%) + (01ga7s +22q,7,) ps°
ou bien, en chassant le dénominateur et en ordonnant
Q73937 (Py == P°P7) + @ g7y (P =+ piipst) +
-+ di¥1fats (ps - pigpﬂﬂp:i — Qc.pl pipag) ==
= [(1 +p121)22)2 +pl:‘p32qg27"22 _+_p2~2paeqierl-z] e
— P P:D: (2. — 7).

b
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Si I’on pose encore pour simplifier
Popps=A, p.+pi’p’ =B,
Ps— D Pe"Ps— 2¢p, ps ps* =G,
¢[(V4plps®)® + 20057 rs" + P clrt] —
— Py PePs (8°¢" — 1'rt) =D,

les quantités A, B, C, D sont des fonctions rationnelles de p,,
Pq, Py, Cest-a-dire de 2,, 2,, #,, car

thrta =1—pt ¢’ri=1—p" ¢'ri=1-—7p"

2.} =1—p ) A —ps"), r’r=>0+p") A +p,)
et ’équation précédente peut s’écrire
Aq.r,q.r, + Bq,r,q.r; + Cq,r,q4r, = D.
En la mettant sous la forme
I. [A%,%r,%q,%r + Bq*r.’q.tr,* — CPq.2r ¢, ry — D P =
= 4q,°r*q,’r,* [ABg,’ri2+ CDJ?,

on reconnait que cette derniére équation est rationnelle en
Zyy &y &3

D’une maniére analogue, on obtient encore deux autres équa-
tions pour z,, 2,, z,. En effet, si 'on attribue aux quantités p,
g, r la signification

pi=snw,, ¢gi=cnw,l), r=dnw,), ¢=1 23

et que 'on remplace dans les équations précédentes ¢ par b, on
obtient d’abord une équation II* en tout semblable a I’équation I,
a cela prés qu’elle est rationnelle en s,, s,, s,. A I'aide de la
relation s;*+2;* —1 =0 on peut encore la transformer en une
équation II, rationnelle en z,, 2,, 2,.

Enfin, si p, g, r signifient

pi=snw,, gi=cnw, ri=dnw,0, i=123

et que I'on remplace ¢ par ¢, on arrive d’abord a une équation
rationnelle en &, , &,, §; que 1'on peut ensuite, au moyen des re-
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i

4 4 Z3 i P
lations Z;=e _si , Si*4-2;*—1=0 ramener & une équation III,

i
également rationnelle en z,, 2z,, z,.

On est ainsi en possession de trois équations
L /i (2, 2 2,) =0, H-fs(znzz:za)::oa IIL. f.(2,, 23, 2;,)=0

qui permettent de déterminer z,, z,, 2, en fonction de a, b, ¢, et
P’on sait qu’on n’obtiendra qu’un systéme de valeurs admissibles
pour les trois inconnues.

Les quantités #,, z,, 2, une fois connues, on trouve sans diffi-
culté les valeurs correspondantes de s,, s,, s,. On a, en effet,

i
Si = my \/1—-—35‘, ou m; = =+ 1, & ¢, suivant la nappe dans
laquelle est situé le point 2;, et ces facteurs m; se déterminent
aisément en substituant s,, s,, s, dans ’équation II-.

Un autre procédé aboutissant & la solution est celui-ci. En opé-
rant une permutation circulaire sur les indices des quantités p,
g, r dans ’équation I, on forme deux autres équations I# et I? et
les trois équations I, I# 1> ajoutées membre & membre donnent
lieu & une nouvelle équation symétrique en z,, 2,, 2,. D’une
maniére analogue et répondant aux données b et @, on pourra
établir encore deux autres équations dont I'une est symétrique
en s,, S,, S; et Vautre symétrique en &, &,, &,. Celles-ct se
tranforment aisément en équations symétriques par rapport aux
mémes inconnues z,, Z,, 2;. A 'aide de ces trois équations, il
doit alors étre possible de former une seule équation du 3¢ degré
en z, dont les racines sont précisément les valeurs cherchées de
Z(, %5, 2. Lies valeurs correspondantes de s,, s., s, se trouvent
ensuite comme dans la solution précédente.

Vu la longueur des formules, 11 ne parait d’ailleurs guere pos-
sible d’effectuer réellement les calculs qui viennent d’étre indi-
qués sommairement.

Quand on passe du sinam aux fonctions 4 de Jacobi et vice-
versa au moyen de la formule

VZ sinam (Zﬁj , A:) :J'(‘T’ @:
& S (z, q)
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o
ol A
el A

dy

K @ K= f ,
. V1 — sin® @ . Vl £"* sin? @

2Kxr ["? dy
4 & ]/1 — k? sin? g ’

1K/
k= 1, g—__—e_“f

H

le parametre ¢ joue un rdle important. Dans la suite, la con-
naissance de cette quantité sera trés utile, sinon indispensable,
de sorte qu'il vaut certainement la peine d’en calculer la valeur
pour le cas particulier &k =i, ¥’ =V2.

On a déja trouvé (n° 99, p. 49)

[ 2

1 <
K:J‘ dz _ l—-f dip-, -
: J1—2' VQO V1 —isin*e

et I'intégrale K’ s’obtient de la maniére suivante : On a

K':_J'l ds :['5 de =J'Z__d‘f’
. Y (1—2) (1—22°) J Vi—2sine  J V1-2sintg

O I |

wl A

2 do :
= —1 =A—1iB.
J.Vl—Qsm’ fy 1—2sin*o ]/281n=cp-1
i
S1, dans P'intégrale A, on substitue
sing s sin doit dop = 1 cos¢gdy

Vo’ V2 V1 —tsin®y

1l vient
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.J ]/1-—‘) sin®*@ ]/2 f]/l —3 s::r?’sflc/lql)w sin® np

szyl__mﬂ:—““

tandis que l'intégrale B, a I'aide de la substitution =47 — g,
se transforme en

[‘ _ J‘ do, J" do, _ _ g
]/ sin®¢ — 1 ]/2 cos*p,—1  1—2 sin%p, *

wald s

Il s’ensuit que
K' = (1—1%) K,
et par conséquent

— K — (1—=9) K, —x(l—1i) o
g=—¢e K —=e¢e. K, =e —_ —e .

Le probléeme de Riemann.

Soient w,, v,, v, des variables définies comme fonctions des
trois points &, (8., 2,), &s (Ss, 2.), &3 (82, 25) PAr la congruence

@ (J‘ dwn +f dwp, +J. dwh)) = (vy, ¥;, V),

ol Wy 5 Wy y Wy signifient trois intégrales abéliennes de premiére
espéce, dont les modules de périodicité sont £,(9), k.00, k), Con-
formément & la notion de la congruence, A un seul systéme de
points £, , &, , £,, correspond une infinité de valeurs de v,, v, v;,
comprises dans l'expression

3 i=6 .
(h (vn+ = my kh('))> )
v =
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ou m,, M., ... M, désignent des nombres entiers quelconques. Or,
une fonction des variables v, , »,, v,, uniforme et en général
continue, possédant les six périodes %,0), £,00), k,(), est aussi une
fonction uniforme des points £, , &,, &, . Ceci établi, le probléme
de Riemann peut s’énoncer comme 1l suit : Etant données des
fonctions a six périodes des variables v, , v, , v,, on demande de
les représenter algébriquement par les valeurs qu’affectent s et z
dans les trois points &, , &,, &,. (Comp. Weber, p. 62.)

Au lieu d’aborder immédiatement la solution de ce probléme
fondamental et de former les fonctions 9 avec les intégrales
normales u, , %, , #,, il est préférable de passer d’abord, & 'aide
d’une transformation du 2¢ degré, A d’autres-intégrales nor-
males u',, #',, #', qui, introduites dans les fonctions %, permettent
la décomposition de ces fonctions en trois fonctions & elliptiques.
A cet effet, il est nécessaire d’établir en premier lieu les for-
mules générales pour la transformation des fonctions abéliennes
du genre 3.

Soient w, , w,, w, les trois intégrales de premiére espéce don-
nées et

W, Wy W,
A B® A B®@ A® B®
AL B A®  B® A B®
A0 B A® B A® B®

leurs modules de périodicité, soient w,’, w,’, w,” les intégrales
transformées et

r r !

wl w2 w3
c,m D c,® D,® c,®» Do
C,0 D, C,»  D,® C,® D@
C,0 DM C,2 D@ C,» D,®

leurs modules de périodicité; soient enfin u, , u, , u, les intégrales
normales de premiére espéce du systéme primitif, définies par
les équations
[ miw, = A Du, 4+~ AWu, 4+ AN,
(a) mw, = A,Du, + AP u, + A, u,
miw, = ACu, + AP u, + A0 u,
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et o'y, 'y, ', les intégrales normales de premiére espéce du sys-
téme transformé, données par les équations

mw, = C,0w, + C,(w, 4+ C,(Maw,
(b) mw, = C,0w, + C.w, 4 C,Qu,
miwy, = C,0w, 4+ C,Bw, 4+ C,Mw,
Posant pour abréger
A, AN, A

AG, A®, A® [ =D
AB, AB, A
et d’'une maniére analogue
| C,, C,m, C,M
C,0, C,®, C,@ | =D,

C,®, 0,8, C,M

on tire des équations (a) et ()

. w,, A, Ay o w, , C,0, C,(1)

= 103, A, A, W= 'y, GO, G,
w,, AB), A,B) w's, C,M, C,0
. Al(l)? w‘l') A5(1) g Ci(})i w’i? 05“)

(c) ugz%z A,®, w,, AQ), (d)u'y = -1-7;-’ G, ', G2,

A1(3)7 W, As(g) 01(‘3)5 ’w’:n Cs(S)E

1AM, A0, 0, 1C,0, Cylh), ',
A®, AR w, U = —, C,®@, C,®@, w',|.
AG) A, w, C,0), C.B), 2w,
Les modules a;; des fonctions & relatives au systeme primitif
sont déterminés par les équations
( 78 By = A,Wain + AyMaon + A;(Dasy
(e) 3 @ Bu® = A,Qain + APan 4+ A;Pasn
( 78 Bu® = A, Bam 4+ APasy + ABagn, h=1,2,3
et les modules i des fonctions & relatives au systeme trans-
formé par les équations analogues

<

10
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( 7t D) = C,Wb1n 4 C,Wbap 4 C,(Vbsp
(f) | wiDp® = C,@byn + C,@ban + C;Rban
Z 7t Dp® = C,®b1n + Ci®ban + C;Pban, b =1, 2, 3.

Or, il s’agit actuellement d’opérer la transformation de facon
qu’on ait

S w, = a, W', + b w, 4+ ¢, w's + ¢,
(1) Zug = U, 20’1 + bz ZU’Q + cﬂ 20’5 + 'gg
e Wy = A W'y + by W', + C;W'5 + g5

ou g,, 9., g5 signifient des constantes et les «;, b;, ¢; des mul-
tiplicateurs quelconques.

A partir d’ici, on peut suivre presque textuellement le raison-
nement qui se trouve développé dans le mémoire de M. L. Kénigs-
berger intitulé : « Ueber die Transformation der Abel’schen
Iunctionen erster Ordnung. » (Borchardt’s Journal fiir die reine
und angewandte Mathematik, tome 65, p. 335 & 358.)

S1 dans les équations (1) on augmente les intégrales wr,, w’,,
w'; des modules de périodicité C,(), C,®?, C,3) multipliés la pre-
miére fols par v, et la seconde fois par v, et que I’'on désigne les
valeurs correspondantes des intégrales normales «/; dans le pre-
mier cas par v’;, dans le second cas par v;, on obtient les deux
systemes d’équations

(iw,) =
=ni[ @, W' +b,w e w's+ayu, C,(0+-b, 0, G @412, 0, (g, ] =
'=Ai([)v’i+A2(l)U’2 +A Wy,

(ritn,) =
(2) (=i a0\ +-Da10" 4, W s+, O, 0,0, G, B4 €12, G, 49, | =
=A, @', A R ,+A Ry,

(miw,) =

=il azw’, +bw’ o —-cw' ;azp, G40 1, Cl(g)=+csp'lci Bl g-g;] =
=A, 0" A, A
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(miw,) =
= mt[ a,w’, D'y A-c ' a9, G040y, C,R4-¢,v,C, 4 ¢,] =
== Ai(l}vi'i—A-z“)Uz“i'Asmv; ’

(g 4, ) ==
(3) (= miLa.w’ 40,00 sA-cyw’ s ,v, C,(V4-Dyv, C,D4-¢,v,C,8)4- g, ] =
= A, +A,Ru,+A R, ,

(wiw,) =
=i [a w0, -5 s+as, C, 04y, C,@4-¢,9,C,0) 4 g, ] =
= A B, +ABp,+A B, .

Dix autres systémes d’équations analogues s’obtiendraient en
faisant intervenir successivement les modules de périodicité
G0, C,0, D,®, D0, D) et en méme temps d’autres facteurs
Bay Yai Us, Vs) P u; W Vs5 @5 Vs b enfin d’autres quan-
tités ». Si l'on retranche les (,quatlons du systéeme (3) des équa-
tions correspondantes du systéme (2), il vient

[ 7i(py — ) [,C0 4 b,C,Q) 4 ¢,C,8] =
D@y —2,) 4+ Al (vg —0,) + A0 (05 — ;)

@y | i) [0+ 5O + 600 =
=A@, —v,)+ AW, —v,) + A,® (v, — vy)

i (g — v) [0, 4 00,2 + 0,0 =
= A0 (v, — )+ AB (v/s —w,) + A0 (v/5—05)

Or, M. Konigsberger démontre (p. 343 du travail cité) que
les différences des quantités » doivent étre de la forme

L — :
& Vg — Vg == ¥ T =+ Sqy Ay + Sy Cgy + S5y Ay

() v

? V'y == Uy = Ty T = Syy gy ~+ Sgq Gy ~+ Sy gy

Vg — Uy =1y T 8y Gy Soy Ayy + 8, Ay,

ou les #;, et s;, signifient des nombres entiers quelconques. En
d’autres termes, ces différences doivent étre égales & un systéme
de périodes des fonctions & que I'on peut former avec les inté-
grales normales données u,, u,, u,. Des équations analogues
existent pour les différences des autres quantités v.
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Ecrivant pour abréger

Py — Yy =Wy , ULy — Yy my, , My — V3 = My,

: b ! ’ 1® s il ' / ’
Py — Yy =My, Ly Yy =Wy, [y — Vg

|
B3

et posant, afin d’obtenir le facteur commun ¢,
@ik = T Tik, bk = wi Tk,
les équations (4) et leurs analogues, a l’aide des relations (5),
peuvent se mettre sous la forme
mi [ anCi () 4 0pCi ) 4 ¢,C; ] =
=AW 7, 48, Ty 820 TraHSai Tra J A7y 805 Ty 81 Taa 531 Tas |-
A rgi 8,0 T 810 Taat8si Tas
i [anDi () 4= 0pD; @) 4 ey D; )] =
Ai(h)[rfii"f"srli 7u+3’ei T o T13]+A2(h)[f’gi 84Ty, 455 Taet 8501 2
~+ A0 i 8 i Ty 85 Tas 8 50 Ty )

(6)

Les indices % et ¢ devant prendre successivement les valeurs
1,2, 3, ces deux équations représentent en tout 18 équations
différentes répondant aux combinaisons 1,1, 1,2, 1.3; 2,1, 2,2,
93131, 32, 3,3.

L’écriture sera encore simplifiée, si 'on multiplie les équa-
tions précédentes respectivement par m, m,, m, m,, m, m,,
wlynd,, ml 'y, m o, suivant que leur premier membre est
déja muni du facteur m,,my,m,, m’,, m’,, m’,. Posant encore

( W15 =iy MM Si =07, My s, =p iy, m';m' ;8" ,=0"i,,

M INGT i =P 5 T MSi =G q, M W ¥ i =p"is, M W 8 i5=0",,
e I Y I ! ! ! ! for b
MMLT i 3==P) 3y M MS 3==0% 35 My M GV i 3=0 i3, M M 38 {;—0Ci;,
@ \ @ik = pik + 0\kTi; + Osk Tiz =+ O3kTis,
| Wik = pikt 0" WTi o 0'okTia  0'kTi 5 = 1,23, b= 1,23

les équations (6) présentent finalement la forme

Dy, [anCi O 4 0pCi @ 4+ anCi B = = Axay,,
' : k=1,2,3

f w ' o JanDi D 4+ 0D 4+ epDi = = AxWay; |
-. : K=1,2,3

&

(8)
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De ces équations, on tire aisément les 18 modules de pério-
dicité C;( et D; (M des intégrales transformées w'n, exprimés
en fonction des modules de périodicité primitifs A;(M et des
multiplicateurs a;, b;, ¢;. S11’on désigne par ¢ le déterminant

(ay, by, ¢;), on trouve successivement

|

H

mym,my0C; (1) =

mym i, 0C; () =

m mymy0C; ) =

S

)

m' o o’ 5D () =

m' ym ' 0D ) =

-
r

! i’ i’ 51 =

Aoy, by, ¢,
k

EA](('-?JOJI{-,{, bg, Cq
k

EAk(3)wki) b:n Cs
k

ay, <Ay, ¢,
k

(ti ’ EAk(:‘))mki y (,'2
K

a3 ; .—‘.?Ak(ll)wki § (,'3
K
@y by, <Aooy
Kk
@,, by, =AxPewy;
k
., by, APy
k
4
SAxVwyi, b, ¢,
k
5 /!
SAPwki, by, €

k

EAkm)w’kg, b:“ Cy
k

Uy, SAay; y Gy
k
.
ty 4 EAk(J)wki y Ca
k
Uy, EAk(-‘i)w’ki, (i
k
@, , b| ’ EA]{“)UJ’](;
k

T ’
sy 0y, SARRI
k

sy by, -EA](Q)&}’];-.
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Les équations (f) fournissent les modules z’; i des fonctions

4 transformées. Vu la longueur des formules, il parait utile de
déterminer séparément d’abord le dénominateur commun i ces
quantités et ensuite leurs numérateurs.

Le dénominateur commun est donné par le déterminant

m,*my*m 0% D) = mPm, 'm0 .

EAk(l)wkl 5 b
k

EAR(B)‘UM y By
k

ZAx Ao, by,
k

19

EAR(E)(J)k! 3
k

Ay,
@y, <Aooy, , ¢,
k

as, 2ABlay, ,
k

Cs

ay, by, SAxlo,
k

Qa, bg 5 EAk(:?)CUkl
k

s )] b:’: ’ ‘\:‘L\I((:j){’)ki
k

qui se décompose en

Aoy, , SAKQwy,
k k

EAk(UO}kQ ; EAk(Q)u)k_: )

k

Ak Vo,

k

C,M, G0, ¢

C,@, C,@, C

C,, €@, Oy

EAk(l)wkss bla €y
k

’ EAR(QM}]‘:}'} bza Cal>
k

2A B, by, ¢4
k

Y s
Uy ;Ak(l)a)kﬁ y Gy

y | Aoy EAk Q)wkﬁa Ca |9
k

a5? EAk(:})U)k2’ C'5
k

By, By s -EAk(kaz

s, bey =Axllmn,
k

a3 A b3‘. Ei&k(ﬂ)"ﬂkﬂ
k

ces deux facteurs:

Ibi b] C!
N R b
EAR( )(x)kI b5 , Cs
Sy, | ||
k as, Cs
‘.;‘j_ 3
’
as,0s

EA]{“)O)]{S ; bl )
k

Ez\k('-’)wks, l)._, y Ca
k

E:\k(:ﬂﬂjks N b5 )
k

ay EAk(”(r)ka,
k

2A By,
k

s,

2‘:1}\1;(3)(1)1;3 y
k

as,

@y, Dy y =MDy
k
s, b2 9 ‘Ei\k(g)wks

k

by, ¢, by, e
’

b5,C; I)e’ c:

ay,C _ a,,C,
b

;CL5,C5 a2, Cy

a,, b, a0,
?

as, bs AN
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dont le premier peut s’écrire sous la forme d’un produit
FA, AL, A W,,, gy, ©

AR AR AR [0, ©
A, AG, AG) @

31

22y Wye |

) @

13?1 231 33

tandis que le second = 9%, en vertu d’'un théoréme bien connu
sur les déterminants adjoints.

Si I'on pose, comme précédemment, (A,(, A, A,®)) =D

et en outre

@« ) L)) |

11 211 31
Wy, 0,,, @, — 82,

0)13 , 0)93 , (1)33
on a finalement
D' = Do
T WO TP T
My Mg 1m0

Pour les 9 numérateurs on obtient d’une maniére analogue

D; (W, G0, C1) b W iy Wi, i
Di(g)‘? 02(9)1 05(9) - 9 9 g ’ ’ ’ aJIﬂ’ a)“ii &J3" *
S ; my >, m m' ym/ym’50 : 7
Di(3): ()2( ): Cs((') | Wy Wyy, Wy,
C,, D;m, 05(1) W9 Wayy Wy
D
C,2 D;. C.O | = WG, Wi, 0
i 4 3 - o ? 2l t
AR ) meimim o gy | Y T
C,®, D;3, C,3 I
' Cim’ 02(1): D; D Wy Wgyy W4y
C,2,Co, D;®| = ®,,, O,,, ®
‘ ‘1 ) ‘.. ) ,ml.megms- mrim’zm’sﬁ ’1_$ ’..-! ,32 ’
C,8, (.'2(3), D;3) Wiy Wiy W44

de sorte que les formules définitives qui permettent de passer
des modules 7;x aux modules 7'ix, deviennent
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21

’
-
* 31
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. =

/ ! ’
(0 g4y Wayy @y,

! ! 4
_S_w_ Wy W5y

W,y Wyyy @y Mgy Wy, gy
My My M (0,5, 0y, @0, mymams |05, 0, @,
T
m' ' ym 0 ’ M s 0
Wiy Wayy Dy, _S_:Em_qai_
/ i 4 r f
CRTER PRI Y @ 49y @ ayy Wy,
My My My |© 4, 000, 0, M MMy |0, 04, 0,
T e
y Tae
m' m'sm’y 2 m' 'y, 02
My Wy, Wy ‘SZ_SE__SE
W ygy Doy 4 Wgy T.:w,gmfsmw
! 4 ’ ! ! /
MWy My My |0 gy Woyy @z, B MM |60 15, &gy y 0 5
Ty = —
y Tz

m s 02

m ' m's

2

3}

b

!

il
.

!
T

13

23

33

My Wy Mg |0,y O gy, O

!

I 14
W g9 Woyy W4,

W gy Wey, 0

3

[
ol

m’ ' m

Q

Qw___g

/ 4
W ,,, 0

Sw_.Su__

r
239 @ 3,

My My Mg [0y 0 g5, @ ,,]

o s

£

Wypy Woyy Wy

(7139 Wygy 059

! ! |
My Ny Mg |© 55 O 45, O 55

o

02

?

)

.

En ce qui concerne les intégrales normales transformées, il

s’agit d’abord d’établir des relations entre ces quantités et les

intégrales normales primitives. Or, d’une part on a
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miwi=A,Du, + A,Du, + A Gy, ,.

d’autre part les équations (1) et (b) donnent

mwi=mt{aiw, +biw,+ ciw,+gi| =
=a; [ C,Vw +C,0u ;4-C, M, |4bi [ C, 5

~+¢i [ G, + Gy’ + C, Bl

= [a: C,() 4 b; C, 4-¢; C, ], 4| ai
[al?, ’5(1) + b%

05(9‘) -+ ¢

' 4 C.0w, 4 C,0u | 4
3|+ T gi

Oyl 5 0, - €5 G,
C,A] w7 g,

Si Pon égale les seconds membres de ces équations et que
l'on répartisse encore les trois constantes wig,, wig,, mig, sur
les variables u,, u,, u;, on obtient

[a: C,) 4 b; C,®) 4 ¢; C, e/, 4 [a: C,
+[ai C;0) 4 ; C, 4 ¢; C

== A, (2, — &,) + A0 (u,

()45; €, 4 e O, 'y +

3 3)]‘M:i -
— &)+ A0 (u, —e,),1=1,2, 3.

A ces équations, en y substituant les valeurs des sommes
a; G + b; Ci? 4 ¢; Cx3) que 1'on tire des relations (8), on peut

donner la forme suivante :

wy S Ak, + o’ '3 > AUy, 414, Ak(”wka —
k

= M, Mgy A, (D(, — e,) ~+ A, ()(u, — s,) “+ A,(U(u, — <y)]

2 Aoy, +u', 3 ALQ wks =+ o5
k

== m, MM, [ A, 2)(u,

"‘51)+ APy

l(
= By} ~J= A5("2)(u3 - Eaﬂ

3 APy, =

w, 3 Aok, + 'y 3 ABav, + o'y 3 Ak wy, =

k

k

k

= Mgy A\ O ety -— ) 4 AOa, — €,) 4+ A,y — &5)]

Au moyen de ces équations on établit facilement les formules
qui donnent les variables «'; en fonction des u;. En effet, le dé-
nominateur commun aux trois intégrales u/; devient

SAok, , SAxVwi, , SAV ek,
k k k

ARy, , SAxoy, , SARoy,
k k k

SA®wy, , SAxVokg , SAKPwi,
k k k

(3), A,3)

)y 4y Wgyy Uy,

w |=D Q.

22y Wae

C |04, 0,

a)iai UJQJTQ)MI

11
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Abstraction faite du facteur m,m,m,, le numérateur de u’, a
pour expression

A, (u—e,) A O (wy—e, ) AN (u;—e5), SAVwy,, SAxDay,
k k

A1(9)(?"1"_'51)+A2(Q)(ue’_€z)+A3(?)(”3 —&5); SARwx,, AP ok =
k k

Al(.%)(ui_..51).'..A!(23)(u!—€9)+A3(3)(u3—85 " EAk(B)wkg, EAR{B)(Okg

k k
AW, AL AWM | ju,—e,, Ug—E,, Uy Uy—rE, o Ug—Ey , Us—Es
= A,®, A A @, 0,, 0, |=D| o, 0., o,
AG), A,® AG W,y Bayy O Wy Wy, W,
D’une maniere analogue on trouve®pour le numérateur de #’,
0)11’ aJ';"‘l’ 0)3! l
Dl wy—e,, uy—ey, ty—e, |
(l)“” 0)23, 0133
et pour le numérateur de %',
uJii ) 0)‘21 1 0j3l |
D| o, o, o, | ,
Ug—Ey , Ug—Ey, Uy—Ey 1}
de sorte que 'on a finalement
Uy—Eyy Uyg—Eyg, %s_ssl Wiy Wgyy Wy
M2y a9y, Wiy Uy—E€yy Upg—Eq, Uz—
(11)e’ =it M5 L w;;’ Das , W =M1, MM, Pas w};" Das
Wiy Wgyy Wy
22 32

e
[

g

g

[}
W= Nt

Enfin, en admettant que 'on connaisse les nombres de trans-
formation p, ¢, ¢, ¢ et les modules de périodicité C;(®), les
relations (8) fournissent encore les valeurs suivantes pour les

- multiplicateurs a;, bi, ¢;:
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Ay, C,0), C,® C,0, SAxwy,, C8)
k k
SAay, , C,@), C,6) GV, TAxlwy, , C,6)
k k
SA 0, C,®, C,0 Oy, SAsiy, , G,
K Kk
(12)a; = myMiyms D’ bi= m, Mg, D’ ¢
C,m, C,2, SAlwr,
K
C,0, C,®, SAxlon,
k
C,0, C,®, SAia,
k
b= m,msm, D’

Ces formules vont maintenant étre appliquées au cas d’une
transformation du second degré. Si 'on dispose les nombres
entiers gk, ok, 0'ik, o’ik de la maniere suivante: :

o' 6’y 04 \S et Uy T Oy gy
6’21 6’22 - 0"25 5 — Oy — 0Oy, — Oy
0’5 05 Oy | — 0y, — 05 — 0y
B T e
03 —Q 3033 g 033 039 034
—0'y, — 0 —0'y, 025 02 Om

|
{ 913 Q12 Q11

on sait que dans le cas d'une transformation du second degré
leur déterminant doit étre = 2° et qu’en outre il faut les choisir
de facon & satisfaire aux trois conditions

(m) T

Ces égalités se décomposent en général en un grand nombre

(60) de conditions partielles, & moins, toutefois, qu’il n’existe
entre les modules donnés d’autres relations que celles-ci:

! I !
s F i d Sl d

!

’
-
* 13

!
- O r — — 4
¢ ays =Ty T =71

52-

12

— - — — —
L)

@1y "13— >3ty 23— -32°

I

Or, dans le cas particulier qui fait I’objet de cette étude, 1l a
déja été trouve (n° 99, p. 17)
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Ay, 2 : Oyq _a
Tuz?}‘:—a(l"}"g"): Cyga—rt :u'_'ﬂ (3+?): — e (1+2@)?
s 1 : - s3
\ Tiszfair_?ji:g(l——?)?n), T%:Tﬁ—ﬂ.' 5 (1—{—2’&) Ta3— ’_” (1 3’&),

de sorte que ’on a par exemple

Ty = Taz =2 Ty, To5 — — 2713= — 207y,
- 2
Tip Tage — Ty =—— 5 )_7’)_2"'“ y Taa Taz—Tye T,3=O,
2 2 ¢ 1 ‘ -
Ty Ty Tz = 5(2—3)—"'”11: TeaTy3— 712725:6(3+")—5‘15~
i 1 o
Ty Tos— Tay ===1, 733z‘”—-ﬂ:mr%:%(l—sz):z”,

| Taes Tazy Taa 5
Ta1y Tagy Tag | = — g (1"1"23) — Ty
T31y T3z Tas
11 s’ensuit que le nombre des équations provenant des condi-

tions (m,) est considérablement diminué.
Les nombres qui paraissent le mieux répondre au but pro-

posé, sont les suivants : .
1 0—1§ 2 0 0
0 0—1 1 1 —1
0—1 0 1 1 1
0 0—19¢ 1—-1—1
0—1 0, —1 | — |

0O 0 O 0O 0 2.

Leur déterminant est effectivement — 8 , et lon se convainc
aisément, en calculant les modules ¢;1, qu'ils satisfont aux
conditions (). Dans la suite on prendra donc

r I o L ) _ — T
6-11““1 10 13— 016 43—_—1 P'Gd3——_21612— OSO'M_' 0:
P P ' - - _
05, =0,0, 0,0%;,——1 $G25—“1 1039 —1, 05, = 1,
' ' . - —
0'5,—=0,0 ;3;——1, o’ 55— 0 5 Ogg=——1 3 Bgg——1 ; Byy==—1;

Bt NP —
7

9’51201 0'5—= 0,05,= 1 3 0= 1, g5e——1, 055—=—1
9121:01 9,22: 1,0= 0§055=—1,0,,= 1, 0y=—1
9’11:019112: 0,0,= 0l05= 0,0,= 0,0,= 2.
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Avant de procéder & 1'évaluation des différentes quantités qui
entrent dans ce probléeme et afin de faciliter les calculs ulté-
rieurs, 1l ne sera pas inutile de rappeler a cet endroit les valeurs
des modules de périodicité primitifs (n° 99, p. 14).

wl
AM=21—9K, | B= 4K,
AN =—2K, B,() =—2K,
A= 2K, |Bn=—2K,
Wy
A@=0 ' | B,A=0

A =—2(14) K,

B,&=2(1—14K,

B,0=2(1+4-4) K,

w-’i
A= 4K, B®= 0
A =—2(1—)K; | BO=—20+40)K,
A= 204K, B®=—2(01—9K,

K,=K,=K, K,=K)2. (l.c. p. 49).

Maintenant les quantités w:x et wix deviennent en vertu des
formules (7)

2 2 2
Wy = E (341¢) Wy — 5()—&) Wy = 5( -+ 21)
2 2 , 4 :
09 = 5(1+0$) Wy = 5(1—31) 0)32:——5 (14+22)
2 . 2 2 .
Wi = —¢ (14-24) w”=—5(1+2?,) | 0= 5(2—%)
! 2 (37 ! 1 F: 1 o
, 1 , S 2
“)12—_5(1_33) W g9 — 5(2_3) ) 33— “5(1'_37’)
t 1 3 ! 1 Ny ' 1 :
@ g5 5(1"'33) M g3 — 5(1"‘"3?’) E 33 = 5(34‘2)'
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Posant
MM, = W g, =2,
les formules (10) donnent

, , 142

! — — yotEe
Th=Taa=Tg3— 9

3 o | [ s r— ! e f e
712“721_715'—'?3:—”723'-"'132—0-

Par suite des formules (11), les intégrales normales transfor-
mées s’obtiennent d’abord sous la forme

) 1 + )
wy =, — &) ———5— (U, 55) + (“' €5)
1+2 1—2
Wy == ) (Us — ¢3) S I (U5 — €5)
. . 1—z 1
| Wi — )= — )+ (= )

et si, & l'aide des formules qui se trouvent & la page 17 du n° 99,
on y substitue encore les valeurs des u; en fonction des inté-
grales primitives w;, elles deviennent

, e L oefs § X 1+ 144

=Tkt e e T
vi2) | ) 1 —¢

Wy, = — 4 K W, +["— —"‘* +T53]

) i ’i 14+

W y== 4Kw3-|—[ za+ e — 5 &

Jusqu’ici les constantes ¢; sont restées complétement arbi-
traires. On les déterminera par les conditions suivantes qui se
justifieront plus tard d’elles-mémes :

! 1412 1414

\ — b+ &g a=0
144 Y i

? T TR Rt Ty AT
1—2 14

\_7/51'{“ 9 €y — _g 53:'01
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on en tire

T i ' . T .
(=5 (2— 1), & =—155 (3 +1), g = —15(2 — )

et I’on a par suite

i 1 2 2 2 3 41{1/'? i
1412 1 —1 e yiq) )
We = T T Ty T =TIR"™t 7
, , 1—4 142 i)
%3=Zu1 e "Tu2+—_2‘”u3=mwa

Avec ces nouvelles variables #’; et les modules correspondants

) 1—3
byy = bys = by, =i 59 — T 9 T

biz'—'—'-bls:bzs:o

on peut maintenant former la fonction & fondamentale. Dans
le cas actuel, I’équation de définition

3(“’13 ufg ) u’5)=
2, (M2 2b,emmy b, 20, 5, N5—+2b, naNa M2y ngu’sFnwy)
ny,no, Ny

prend la forme

st . , ,
"; W?z'(”iz'{“nez‘{"ns‘)'l"g("lu 1R o5 u 3)

3(”"! y “’2 ) u’5)= 2

ny,ny,Mn,
_1—‘522:_1:_1'22,_111’,2,
_veﬂTn‘ -+ nlu,zerr =y 1 n,u,zen’ 5 M5t 2ngu,
'nl Ny Ny
S1 ’on pose
1—i
'——W“—B— ! 4
a~ . ; I .t 2 ’_q. ’
e =y U TSy U= g, U ;=0 5,
il vient
1 2n0i my? 2n05t n? 2ngcd
(13) Hu/ v u')==q, € 2q, e 3q, e ==

(G L) Ny

p— 19"3(?/.’1 ) q.l)&?,(,v’g b Q»[) 33(0,3 kK qi)
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et 'on reconnait, ainsi qu'il a été prévu, que dans ce cas les
fonctions  abéliennes se décomposent en un produit de trois
fonctions & elliptiques.

Il convient de modifier le module et les arguments de ces
fonctions. Au moyen de la formule (Comp. Enneper, Elliptische
Functionen, p. 304)

V1 — k950, 9) 9=,V gy=9, 9)* — H(»,9)*

on passera d’abord au module double, ou, ce qui revient au
méme, on remplacera ¢, par ¢, = ¢, de sorte que

1
$0.0°Y 1 —ky
.[19(1)’,, 9)*— V', Q][5 P —3 V', @ ][H(V5, O —H (V55 ¢ 2,
~ _Tf()l—"z) ¥ 2, r A -
oug=e . Cette quantité ne devant plus étre changée,
dorénavant elle ne sera plus indiquée expressément; il en sera
de méme de I'argument 0. La seconde transformation, destinée

a substituer aux arguments +'; leur double 2 v;, consiste dans
Papplication des formules (Enneper, p. 295)

J (’“”twsu’s) ==

1
9(x)* = \/ 9394(28) — 9,294(2) - 93H(2%),

e — \/ G55 95(2%) — &,59,(22) — 939(2x) . |

Si Pon pose, pour abréger,
=, Wy=0,, W', =v,,
de sorte que -
vy =— 2, v, = — 200, v; = — 2w/,
il vient finalement

1
= Voa5 01— k)

[\/ t‘f”s"’b‘a(v.)—92’9g(v.)+339(v.)—\/ A e |

(14) Gy 0y, 0
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. i ‘/3533 3(”:)—323‘92(%)4‘383(%)‘— \/ 35‘35(93) “32532{%J —‘95‘9(7)2) ] '

' [ \/ 35"’{)5(1)5)#&,532(vs)+{}"{}(v5)—-— \/‘95535(95) _'32 5‘92 ('Us) _‘953(7)5)] :

Afin de passer aux 63 autres fonctions &, il suffit d’augmen-
ter dans le % fondamental, les arguments de tous les systéemes
de demi-périodes possibles, conformément & 1’équation de défi-
nition (Weber, p. 14)

1 ’ ! / 1 —
Gy +r“’1:“2+:‘ wz:us—"ga’a)—

\|._\

S3bixgiger— 3T Sgihi—Igiv's
Lk . . J ggl gz (W s, U'y).

1 Qhﬂ

=€

Or, lorsque les variables #'; angmentent d’un systéme de

demi-périodes

71 ] . 1
g&)i——-é-hi Tf@"‘i":):gi bil

(o,—-k ﬂz-hoggbgn

N.;'"—" LS| —

1 -1

=§h37”+§ga bys»

les arguments v; acquiérent les accroissements correspondants
1 .

3P4 =h, ™ — ig, b,

1 .

;P = byt — 1, byg

1 .
§p3=k3ﬂ — 195 b3,
et les fonctions {f} (vi+3%pi) se modifient de la maniére sui-

vante (Comp Enneper, p. 83 et suiv.):

/ G, (vi4 i — igibi) = E%giﬂz g viél‘h (vi)
(Vi him —1gi bii) = (~——‘l)hi_ e’ MJX (i)
Gl T — s Bl =y g g 9, ()

O (i him — igibi) = ig“Edﬁgingi””«‘fgi(m),

ou, pour simplifier I’écriture , on a remplacé les indices 3— g,
2 4 gi, 1 — gi respectivement par 2, 2, et A,.
12
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FONCTIONS ABELIENNES DU GENRE
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a simultanément gm = vm, fm = pim et gn = vn, hn = pn, OU n
est différent de m.

Il s’agit maintenant de trouver pour ces fonctions I’équivalent
algébrique en s et 2. A cet effet, il est nécessaire de considérer
des cas particuliers.

o (09:9:\__ 000) (u, Vg va)__(OOO)
Exemple I. Soit (7% ths)_(lll Ny ~\000) °
L’application de la formule (15) donne

Gpo0) (W, ws, )
111

Gt 'y, W)
_V8395(0,) + 9,79,(v,) £ FI0,) =V I3 H(v,) + #,59,(0,) — 97 ©,).
TV G0 0,)— I Ta(0,) 50 (0,) —V B (0,) — 97 (0,)— 09 (0,)

_VJ_?JB(v)Jr&w (02) + FH(,) =V F(0,) + £.°,(0,) —F3(v,)

V 555 05(0,)— 8,59, (02) F 555H(0) =V 5355(0,)— 38, (v,) — 9°0(v,)

i )/1953 F5(v5) + $, 73, (v5) + 979 (v;) _V‘(}as‘(}'a(”s) + “}25‘93(35) — PH(vy),
V 852 5(05) — 9,59, (v5) + 99 (vy) — S (v;) — P29 (vg) — 99 (vg)

Des fonctions % on passe aux fonctions elliptiques en divisant
sous les radicaux numérateur et dénominateur du 1* facteur
par &2 (v,), du 29 par 33 ¢ (v,), du 3° par 4;* 4 (v;) et en
tenant compte des formules

v o os
J=W,g=mz

‘93
& (U‘) VI , o ) 1
J Iv), N T B ECU(W 1, k)* 33(‘0” —_V‘Edn(w 1 k),
0f1

2K oK __ . .

Wi="g Vi et “_'__—‘}3(0):1'1'22@? yr=1,2,.
e r

Par ces formules les quantités K, £ et A’ sont déterminées

d’une maniére uniforme, si toutefois on considére les fonctions

Y comme étant données sans ambiguité. On trouve, en effet,
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K —
K=]-/—§~=K,=K3, k=i, k=V2.

Ces substitutions faites, I’équation précédente prend actuelle-

ment la forme

33?? g(unues“s) ]/dnw,-——cnw ~+2— ]/dnw,—cnw,——*Q

Hw' e, t'y) ]/dnw ~+ cnw’, -|—‘)——-]/dnw +cnfw,—2

]/dnw’ . — cnw'y, + 2—) dow'y, — cnw’y, —2
]/(?lnw’2 ~+ cnw'y + Q—Vdnw', —+cnw’, — 2

]/dnw’3 —cenw'’, + 2 —) dnw’, — enw’, — 2
V duw’ s cnew’, +2 ——]/dnu;’a ~+cnw';, — 2

Or, il existe des rapports trés simples entre les variables w’; et
les intégrales primitives w;, car on a

, 2K 4zK, 1+?,
2K 41K
/w':,::—-——v._,z—i—u,_l{ w, ,
T T
! ,__QK . 4:K .
W= ﬂ.'va—_‘ = %3-—@03

et 'on se souvient des relations

14 e di o _ 14z

Ve Tt Ty s
-.s Zﬂ
K—w,= .._f @
: ]/1~s “ V1—

desquelles on tire

[=7

ot

( snw', =¢ snw'y=—3: SNl =g
. cenw', :]/1 —&* | enw', =]/1 — 8 |enw,= ]/1 — &
Cdnw', =) 142 | dn w', —) 144 | dn o0 = V1422

Par conséquent, il vient finalement
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’ r L ]
Fiooq W,y us) / Vito—1— _'?_"f__:"__?_:_VKI_#__,?’#“V1..—.. c
S(u'y, u'y 5“'3)— 1/ |

i+ 1=+ V1+o+V1—2—2
y

_/]/1 +s V1542 V1451 —s—2

/Vl +s+Vl—s+2—)V1+s+/1—5 —2

]/1+32—]/1—z’+2— /Vl —-}—z’-—]/l — 2 —2

]/1+z*—|——]/1 B2 — /}/1+32+V1 — 2t =2

Pour ne pas détruire dans cette expression la forme qui
permet de remonter & 'origine de chaque terme, il convient de
renoncer aux quelques simplifications possibles.

Exemple II. Dans le cas de
(9.9293) _ 000) (ui v, va) . (000)
hohshy) — \O11)7 \ppypmyp,) ~ \OOO

un calcul analogue a celui qui vient d’étre indiqué dans ses
détails, conduit a la formule

338 ?2(“13“25“3) VV1+S-"V1WSQ+O_ V1+S’—V1—“32—“—2
‘)‘(u’!}uﬂﬂuS)

(17)

V]/ 1—|—s*—|—]/1-s 42— ]/f1+s?‘+]/lw3’—2

|
VV I+ 1 —F+2— | V1+7—)1—2"—2

VV1+32+V1—32+2—- V144V 1—22—2
v (G199 \_ 000 Vy Vo Va3 \ 000
Exemple III. Soit (hmzhs)'(oo 1) A (H.Hzﬁis)"—(ﬂ 00) -

Dans cette hypothése 11 vient

i Wl (e e RO | (T e

Hu'y,
S V]/1+z‘**+]/1——z2~—2—VV1+32+V1—3’—9

(18)
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. (919295 \__ 100 Ve V3 Va\__ 111
Bremple IV, 81 (40 )=( 1 00), (7 )=(111)
on arrive & I'égalité

& {10 0‘ (u,i 3 M’E s ufa)
00

% (u"l 3 26’% bl ur3)

(19 5

h
}

[P

1 {V1+s+V1—s+2 —J/i+s+)1—s—2

-] e —
V1— 4 1+ s 4+2is— ) V1 —s4i) 1 4 s — 2is

]]/1—]—3_;—&-}/1——52—%2 — W1 +V1——2

V 1— z‘l-]-z']/ 14224 212— Vit§+i]/_1_+ 27— 24z

Les formules (16) & (19) et toutes celles qu’on peut établir
d’une maniére analogue, ne résolvent le probléme de Riemann
que dans un cas particulier; elles manquent de généralité en ce
sens que les variables u'; qui entrent dans les fonctions 4 ne
sont pas indépendantes les unes des autres. Mais il est facile de
généraliser la solution, au moins dans le cas qui vient d’étre
traité, c’est-a-dire le plus simple et pour cela méme le plus
important, ot il s'agit de fonctions du second ordre A six
périodes. A cet effet | on introduira comme variables dans les
fonctions & les quantités suivantes

U’y = (o) =+ (') + (a, )
(20) Uy = (/s)) 4 (') + (')
U’y = ()0 + () + (')

ou (wi)1), (o), (w;)® signifient les valeurs que prend l'inté-
grale «'; respectivement pour les limites supérieures z,, s,;
Zay 8,5 25, S5- (Dans les formules (16) & (19) deux des limites
z; et s; sont égales a 0.) Or, le développement que 'on trouve
ci-dessus a partir de I’équation (13) reste évidemment valable,
si I’on substitue aux variables introduites successivement et
représentées par des minuscules, les sommes correspondantes,
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en les désignant par des majuscules. En répétant ainsi, conve-
nablement modifié, tout le raisonnement précédent,on arrive
finalement & des variables W’,, W’,, W’; qui permettent de
passer des fonctions % aux fonctions elliptiques.

En effet, si ’on pose

g W, = w,() 4+ w,? 4w,
| W, = 10,01} 4 w0, 4 20,
(W, = w,0) + 0,@ + w,®

ol les intégrales w,, w,, w, conservent leur signification pri-
mitive, de sorte que

Zq Ty
dz 2dz dz , .
w()__f ,fw( _j' — w()_—_. e = ] B

4 ——— ———
1—-3 \/ 0 \/ 11—z
on a les relations

w1y & dg fc, dc G dt J‘
v 1/1—-4* Vl—c*

Vi—¢

W', =3K—W,— f f S fb ds
- Vlms V1—s ]/1—_ V1—s¢

%2 dz ‘J‘zs dz Z dz

l1]/1 —z“ -0 1——-3

Cec1 posé, on reconnait que pour résoudre le probléme en
question, il suffit de remplacer d'une part les variables w’; par
U’; et d’autre part les quantités £, s, z respectivement par
E, 8, 7 dans les équations (16) a (19) et leurs semblables.

En tenant compte des relations

W=V,

i=sn (w,), s = sn (w',)0), zi=sn (w,)),i=1,2,3,
on peut écrire encore

Z = sn [(w)V) 4 (w,)?) 4 '] =

Vi—e J Vi—e

VI —2, L 48]

g

)V 1-¢,

2
2

V1—, +E (11—,

&'

:'.V]_'

1— 4 4L

(1+C!Q:22} [CiV

=3

(14222204 5V 1—¢, 545V

l
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et les quantités S et Z s’obtiennent en substituant, dans 1'ex-
pression précédente, aux quantités {; respectivement les quan-
tités s; et ;. Aprés avoir fait toutes les substitutions indiquées,
on arrive finalement & des équations de la forme

; (U’i b U’S 7. U ’5)
{
)

= X{8y 8a; 853 8y oy 25);

ou F désigne une fonction algébrique. Elles résolvent le pro-
bléme de Riemann dans toute la généralité voulue, car si 'on y
attribue aux variables U’; des valeurs absolument arbitraires,
les points 2;, s; sont également déterminés en vertu des équa-
tions de définition (20), que l'on doit, & vrai dire, considérer
comme des congruences.

Remarque. Dans ce qui précéde, on n’a pas eu besoin des
multiplicateurs a;, b;, ¢; et des modules de périodicités trans-
formés C; (0, D;(); mais il peut étre intéressant et utile de les
connaitre. Or, en mettant en regard les équations.

/ 1—3%
w, = “—Vg w'y | wy=aw',+ b+ cuw's+ g,

w, =K — w | w, = a0, 4+ bsw's + c;t0's + g

ws = wW's Wy = asw’y ~+ bw's < cswW's + g,
on en conclut qu’ll est permis d’admettre que

P . .
/at"____"}’ = 0,¢=0,¢9,=0
\ e

) a; =0 ybhi=—1,¢=0,¢g,=K
(\as_——_() bs=  0,c=1, gs=0.
Des équations (9) on tire ensuite
C,(0=C,0=C;®=4K y C,@0=C,=0, C,=C,8=0, C;)=C;@=0
D,(0=D,®==Dy®=2(144)K,D,B=D,&)=0,Dylt}==D,8)=0, D3 (l=D,#=0.

00— —O-
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