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BSSAT D°UNE APPLICATION DES PRINCIPES DE LA MECANIQUE

A

[ ECOULEMENT DES GLACIER

PAR LE :
Dr A.-A. ODIN,

Professeur agrégé a ’Académie de Lausanne.

PL II et IIL

En aoiit dernier, nous eiimes, M. le prof. D* Forel et moi, un
entretien sur la question si controversée de I’écoulement des
glaciers; M. Forel ayant soulevé la difficulté de trouver les causes
de la périodicité des phases de crue et de décrue, me demanda
si je croyais qu’ll fit possible d’y arriver par voie mathématique.
Au premier abord, la chose me parut trop hasardée pour I’entre-
prendre, mais en y réfléchissant miirement, je me persuadai
qu’il serait utile d’examiner de prés une question aussi intéres-
sante. Je I’al fait, et, aprés de nombreuses tentatives, je suis
arrivé, non & résoudre la difficulté elle-méme, mais & en dégager
la, question primordiale des lois qui président & ’écoulement d'un
glacier. Quant au probléme lui-méme posé par M. le prof, Forel,
je crois nécessaire, pour chercher a le résoudre, d’attendre que
les résultats des observations du C. A. S. surle glacier du Rhéne
alent été publiés et qu’on ait pu juger du degré d’exactitude des
formules que j’ai établies.

Avant d’entrer dans le sujet, j'ai cru devoir développer les
hypothéses sur lesquelles je me base pour mettre en équations
le probleme si complexe de 1’écoulement d’un glacier.

J’exprime ici & MM. les professeurs I'.-A. Forel, & Morges, et
Hagenbach, & Bale, toute ma reconnaissance pour les bienveil-
lantes indications qu’ils m’ont données, ainsi que pour le grand
intérét qu’ils ont apporté a cet « Essai ».

HYPOTHESES

L’écoulement d’'un glacier étant un phénoméne excessivement
complexe, il ne peat étre étudié mathématiquement qu’en négli-
geant plusieurs phénomenes accessoires et en faisant certaines
hypothéses sur la forme et la constitution du névé et du glacier.
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34 A.-A. ODIN

Les glaciers ont toujours une forme tres irréguliére qui ne se
préte pas & un calcul exact; par contre, si ’on se contente d’un
résultat approximatif, on peut supposer que tout glacier, sauf
quelques exceptions, se compose de deux ou de plusieurs canaux
prismatiques a profils rectangulaires; I'un de ces canaux, large
et rapide, représentera le névé; sa profondeur ira en croissant
de la partie supérieure a la partie inférieure; un autre canal,
en général plus long, moins large et moins rapide, représentera
ie glacier; la profondeur de la glace dans ce canal ira en dé-
croissant de la partie supérieure a la partie inférieure. Si le
glacier fait un coude, ce qui est fort souvent le cas, on le sup-
posera formé de deux canaux droits.

I’étude de I’écoulement d'un glacier est donc ramenée i
celle de ’écoulement d’'une masse de neige ou de glace ren-
fermée dans un canal prismatique rectangulaire; 1’épaisseur de
cette glace est variable, mais comme elle est tres petite com-
parativement & la longueur du canal, nous pouvons considérer
la surface supérieure et la surface inférieure de la glace comme
étant sensiblement paralleles entre elles; ceci nous permettra
de considérer la surface supérieure comme plane et de la prendre
comme 1’un des plans d'un systéeme de coordonnées.

En remplacant le glacier par un simple canal rectangulaire ,
nous faisons tacitement abstraction des crevasses; bien qu’il y
en ait de tres grandes, elles n’atteignent guere la moraine pro-
fonde et ne peuvent ainsi modifier d’'une maniére appréciable la
marche du glacier.

On sait que la vitesse de la glace est plus forte au milieu
quau bord; les mesures prises sur le glacier du Rhone ont
montré que la relation des vitesses a différentes distances des
bords se conserve tres exactement sur toute la longueur du
glacier, et que les trajectoires des particules de glace sont sen-
siblement paralleles a son axe. Ceci étant admis comme parfai-
tement exact et la glace étant regardée comme incompressible,
la vitesse devrait étre constante pour tous les points d’un méme
filet parallele & l'axe; mais, comme 1l y a un enlévement de
matiere causé par 'ablation, la vitesse des différents points d’un
mémé filet va en décroissant de la partie supérieure & la partie
inférieure !. Toutefois, 1l n'y a dans le sens de la longueur de
grandes variations de vitesse que pres du front du glacier, ¢’est-

1 1A, Foren, Archives de Geneve, tome VI, juillet 1881.
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~ a-dire dans la partie qui a le moins d’influence sur le mouve-
ment général. Nous ne commettrons donc pas une grande erreur
en supposant que la vitesse est constante pour tous les points
d’un méme filet.

Ce que nous venons de dire de la vitesse du glacier, nous
pouvons aussi le dire de celle du névé, quoique & la vérité avec
moins de raison et moins de certitude; en effet, nous avons ici
a4 compter avec le tassement des neiges, mais comme ce phéno-
meéne n’a pas encore été étudié jusqu’a présent d’une maniere
suffisante, il nous est impossible d’en tenir compte; s'il le fallait
absolument, nous regarderions le névé comme formé non pas
d’un seul canal, mais de deux canaux ou d’un nombre plus
grand encore et il n’y aurait de cette maniére rien de changé
dans nos formules.

Les deux grands facteurs qui président aux mouvements des
glaciers sont la pesanteur et les frottements. Nous n’avons rien
a dire sur la pesanteur; par contre, il est nécessaire que nous
soyons fixés au sujet des frottements,

Lorsqu’une masse visqueuse coule, elle est soumise & deux
espéces de frottements: le frottement externe, soit contre les
parois du canal dans lequel la masse se meut et le frottement
interne.

Dans le glacier, le frottement externe est celui de la glace
contre les moraines, c’est le frottement d'un corps solide contre
un autre corps solide. Comme on le fait en général, nous admet-
trons que pour des variations minimes de la vitesse relative des
deux corps, le frottement est proportionnel a la vitesse et en
méme temps a la pression totale que les deux corps exercent I'un
sur 1'autre. Nous ne nous éloignerons guére de la vérité en ad-
mettant que cette pression est semblable & une pression hydro-
statique, c’est-a-dire qu’elle est proportionnelle a 1’épaisseur du
glacier au point donné. Nous considérerons le coefficient de
frottement externe comme variant avec la vitesse et avec la dis-
tance du point considéré au front du glacier, mais comme étant
le méme pour tous les points d’'une méme section transversale
du glacier ou du névé.

L’écoulement des glaciers n’étant pas autre chose qu’une dé-
formation tres lente produite sous I'influence de forces considé-
rables, le frottement interne est toujours immense, surtout si on
le compare a celui des liquides. Pour nous rendre un compte
exact de sa valeur, considérons (fig. 1) une tranche de glace
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AB A’B’ prise dans l'intérieur du glacier et supposons qu’elle
soit soumise & deux forces tangentielles égales et de sens con-
traires ; soient P la valeur de chacune de ces forces par unité de
surface; sous leur influence, la glace se déforme et le déplace-
ment de AB par rapport & A’B’ pendant le temps dt sera vdt,
v étant la vitesse relative de AB par rapport a A'D’; tant que
la force P restera la méme, la vitesse v pourra étre regardée
comme indépendante du temps et comme proportionnelle a la
force P; c’est au moins ce qu’il est le plus vraisemblable d’ad-
mettre et que les expériences faites jusqu’a présent confirment,
Il est de plus facile de démontrer que la vitesse relative v est
proportionnelle & I’épaisseur 7 de la tranche de glace.

En effet, supposons que nous ayons # plaques semblables
(fig. 2) superposées les unes aux autres de maniére a fo mer une
plaque unique de méme surface que la précédente, mais d’une
épaisseur totale n/, soient A;B; AeBs ... Ap—1Bn—1 les sépara-
tions fictives de ces plaques, et Ag By AnB, les forces extrémes;
nous supposons ces derniéres soumises & deux forces tangen-
tielles égales et de sens contraires; soient — Py et 4 P, ces
forces et soit P leur intensité par unité de surface. Si nous fai-
sons abstraction des allongements que peut subir la glace dans
les sens AxByx, nous pourrons regarder les surfaces AxBx comme
des surfaces matérielles solides et nous pourrons leur appliquer
les deux forces — Px et + Px respectivement égales et paralleles
a — Py et 4+ Pn; chacune des n tranches de glace étant en équi-
libre (nous faisons abstraction du mouvement de rotation),
les forces qui agissent sur elles doivent donner une résultante
nulle; par conséquent, les forces qui agissent sur les différentes
tranches doivent étre accouplées de telle facon que I’élément
Ax—1Bx—1AxBy sera regardé comme soumis aux forces —Px—1, Py;
il se déformera et la vitesse relative de ses deux faces aura une
certaine valeur »’; mais cette valeur doit étre la méme pour
chacune des n tranches, car elles sont toutes soumises a des
forces identiques et la vitesse relative des deux faces A¢By et
A, B, sera donc nv', ce qui signifie qu’elle est proportionnelle au
nombre % ou, ce qui revient au méme, proportionnelle a I’épais-
seur AgAn.

En résumé, une tranche de glace soumise a deux forces tan-
gentielles égales et de sens contraire agissant sur ses faces, se
déforme de telle maniére que ces dernieres acquiérent une vi-
tesse relative qui est proportionnelle a I'intensité P par anité de
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surface de chacune des deux forces et proportionnelle a ’épais-
seur & de la tranche; elle est donc donnée par la formule

1

F est une constante dépendant uniquement de la nature de la
glace; nous 'appellerons coefficient de frottement interne.

Nous avons supposé jusqu’'a présent que la plaque de glace
n’était soumise en chacune de ses faces qu’a une seule force. En
général, §’il y a différentes forces appliquées aux différents
points ou s1 P est une fonction continue de 1’épaisseur, nous
devrons restreindre notre formule a une partie assez minime de
la plaque pour qu’il n'y ait & considérer que deux forces sen-
siblement égales et de sens contraire agissant sur les deux faces;
solent dh ’épaisseur de la partie ainsi considérée et dv la diffé-
rence de vitesse de ses deux faces; nous avons alors:

1
dv = T Pdh.

Cette différence de vitesse produite dans la direction de la force
P ne sera pas changée, si, conjointement & cette force, ily a
d’autres forces Q, R, etc., qui agissent dans des plans obliques
par rapport & celui dans lequel agit P, pourvu que ces forces
soient comme P proportionnelles aux surfaces des sections dans
lesquelles elles agissent ; ceci est évident, car nous pouvons choi-
sir 1'épaisseur dh assez petite pour que ’action de ces forces soit
négligeable en présence de leffet que produit P.

En tirant la valeur de P de 1’équation ci-dessus, nous obte-
nons la formule suivante :

dv
O P=ra
qui est applicable & la partie d’'une tranche de glace voisine de
sa surface et donne la force qui doit agir le long de cette sur-
face pour déformer la glace.

Le coefticient de frottement interne F varie probablement peu
avec la vitesse et ne dépend guere que de la nature de la glace,
mais de quelle maniére en dépend-il, ¢c’est ce que nous ne savons
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pas; dans tous les cas, il doit étre en relation avec les différentes
pressions qui agissent sur la glace et qui par leurs variations en
modifient assez rapidement la consistance, vu que dans un gla-
cler, la glace est le plus souvent tres prés de son point de fu-
sion. Malgré cela, nous admettrons, comme pour le frottement
externe, qu’a un moment donné et pour une méme section trans-
versale du glacier ou du névé, F est constant. Cette hypothése
nous est indispensable pour arriver & un résultat final et les
erreurs qu’elle peut entrainer nous paraissent devoir étre de
beaucoup inférieures & celles qui résultent des irrégularités de
la forme de tout glacier.

Il est bon de remarquer que F aura toujours pour la partie
supérieure du névé une valeur considérablement plus petite que
pour la glace dure du glacier proprement dit.

Ce sont 14 les hypothéses principales sur lesquelles nous nous
baserons pour les calculs généraux qui suivent; nous serons
toutefois obligé, lorsqu’il s’agira de calculer le débit du glacier,
de faire encore quelques restrictions de moindre importance;
nous les indiquerons et les motiverons plus loin.

EQUATIONS DU MOUVEMENT DE LA GLACE
DANS UN CANAL RECTANGULAIRE

D’aprés ce qui précéde, I’étude de I’écoulement de la glace
d’un glacier se raméne & celle de ’écoulement d’une masse de
glace renfermée dans un canal prismatique rectangulaire. Rap-
portons ce canal & un systéme de coordonnées cartésiennes rec-
tangulaires Ozyz (fig. 3), choisi de telle fagon que ’axe Ox par-
tage la surface supérieure — de laquelle nous avons vu qu’elle
peut étre considérée comme plane — en deux parties, dans le
sens de la longueur, et que I’axe Oy se trouve dans la section
supérieure du canal. Soit « 'angle que forme 1'axe Oz avec
I'horizontale, autrement dit, ’angle de pente de ’axe du canal.

Considérons maintenant (fig. 4) un élément de glace ayant la
forme du parallélipipede rectangle ABCDEFGH, dout le centre
O a pour coordonnées (zyz) et dont les arétes paralleles aux
axes ont pour longueurs dx dy dz. Ce parallélipipéde qui se
meut, comme nous le savons, parallelement & Oz, c’est-a-dire,
parallélement & quatre de ses arétes, est actionné par diverses
forces donnant des composantes paralléles & I'axe des z; ce
sont :
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1° Son poids; en appelant g la gravité et .7 la densité de la
glace, ce poids est:
g A4dxdydz

et sa composante dans la direction des x positifs est :
g 4sin e dxdy dz.

2° La pression de la glace contre les faces du parallélipipéde.
Soit p la pression en O (pression par unité de surface contre un
plan paralléle & yOz est dans le sens de Oz); p est fonction de
x, y et z, en sorte que la pression par unité de surface est au

centre de la face ABFE

oxr 2

La pression totale contre ABFE est donc:
op dx
o~ 2%) iy

valeur exacte jusqu’aux infiniment petits du 4° ordre. On ver-
rait de méme que la pression contre la face DCGH est égale a

- (p op da:') dy de.

La résultante de ces deux pressions est donc:

]9 da" dy dz.

Nous n’avons pas & considérer les pressions contre les autres
faces du parallélipipede, car elles ne donnent point de compo-
santes dans la direction Oz du mouvement.

3° Les forces agissant tangentiellement sur les faces du paral-
lélipipede et qui occasionnent les différences de vitesses. Remar-
quons d’abord que les faces ABFE et DCGH ne sont soumises &
aucune force de ce genre et prenons les deux autres faces deux
a deux.

Soit v la vitesse de la glace en O; au centre de la face BCGF,
cette vitesse sera

dv dy
oy 2
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sa dérivée par rapport a ’épaisseur du parallélipipede et dirigée
contre l'extérieur de celui-ci sera :
v  dwvd
0 T 5 y'
y oy 2
La force par unité de surface qui agit au centre de gravité de
BCGF et dans la direction des z est donce, d’aprés la formule (1)

ov 0% dy
P (5 + e )
par conséquent, la force tangentielle totale agissant sur BCGF

a la valeur suivante qui est exacte jusqu’aux infiniment petits
du 4° ordre.

ov 0% dy
¥ (8y e

)dmdz.

La force agissant sur la face opposée du parallélipipéde sera
par analogie égale &

ov | o*wdy
g (_" Y T oy 2 )dxdz
et leur résultante est:
2
F ;yt dz dy dz.

Les déformations de la glace résultent aussi de forces agis-
sant sur les faces ABCD et EFGH, forces qui ont pour résul-
tante :

~2
F g-;:da: dy dz.

La résultante de toutes les forces qui occasionnent une varia-
tion de vitesse de la glace d’'un point & un autre est donc:

v %
F (ayg + mg) dz dy dz.

La résultante définitive de toutes les forces qui agissent sur
I’élément de glace que nous avons choisi, est par conséquent:

: ) v | 8%
gAsinedrdydz — -(ﬁ-dazdydz + F(a?ﬁ + 6z2)da:dydz.
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Cette résultante est, d’autre part, égale & la masse 4/ dxdydz
du parallélipipéde multipliée par I’accélération Z—;}de son centre

de gravité; si nous égalons ces deux valeurs en les divisant par
dx dydz , nous avons:

o
=4

, op o | 0%
s B == o + F(ay“’ + 8z’)

Divisons les deux membres de cette équation par g .7 et posons :

F
(2) ¥ K
elle devient :
ina— A K(0 Y=L
Le second membre .
1o
g ot

peut étre négligé. En effet, chez les glaciers qui se meuvent le
plus rapidement, on doit regarder comme impossible un chan-
gement de vitesse de 10 metres en 1 minute (la vitesse étant
donnée par heure). Ce changement correspond a

lovw 1
g 6t 211680’
valeur toujours négligeable en présence de sin a qui représente

la pente du glacier.
L’équation générale du mouvement de la glace est donc

v . 0w\ _
oYy* T 62’) R

(3) sina—giffiJrK(

Elle est vraie pour tous les points du glacier, mais ne pourra
étre intégrée que lorsque nous aurons fixé les conditions aux
limites; occupons-nous donc de trouver celles-ci d’apres les
données du probléme.

La limite supérieure comprend les points pour lesquels 2= 20;
en tous ces points, la glace est en contact uniquement avec de
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Pair et n’est soumise dans le plan 2 = 0 & aucune force capable
de la déformer, ce qui veut dire, & cause de la formule (1), que
pour tous ces points, ’on doit avoir

ov
(4) pour z — O 5—2—_0.

Si nous appelons 4 la hauteur de la glace dans le canal, sa
surface inférieure sera caractérisée par ’équation 2 = A, A va-
riant du reste avec x. Considérons un élément quelconque de
cette surface: il frotte contre le fond du canal (moraine pro-
fonde) qui exerce sur lui une force de frottement qui, par unité
de surface, est égale au produit du coefficient de frottement f
multiplié par la vitesse v et par la pression par unité de surface
de la glace sur le fond du canal ; nous avons déja dit que nous
regarderions cette pression comme analogue & une pression hy-
drostatique, ce qui fait que dans le cas particulier, elle est égale
& gA hcos «; la force de frottement est donc

— fgAhcose.v

elle est la seule qui agisse dans le plan 2 = 4 et ¢’est donc elle
seule qui déforme la couche la plus inférieure de la glace; nous
avons donc, en appliquant la formule (1)

ov
— fgdhcosaev = F-&—Z
ou

5 our 2 = h K@--{—fhcosm::().
P 52

Il nous reste & nous occuper des faces latérales du canal.
Considérons d’abord celle pour laquelle y = + y,, 2y, étant la
largeur du canal, et considérons un élément de cette surface
ayant pour coordonnées («y,#). Nous pouvons dire sur cet élé-
ment tout ce que nous venons de dire pour un élément choisi
dans la surface inférieure, seulement ici nous manquons de
données sur la pression. Comme le frottement contre les sur-
faces latérales du canal n’a pour la solution pratique de notre
probléme qu’une importance tout & fait secondaire et comme la
pression de la glace contre les parois latérales du canal ne varie
pas énormément d’un point & un autre, nous supposerons cette
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pression, par unité de surface, constante et égale & g ./ ¢ cos «;
remarquons que ¢ sera toujours de beaucoup inférieur & .
D’aprés cette hypothése, la force de frottement doit étre égale a

— fg4qcosav

ce qui donne 'équation
0
(6) pour ¥ = ¥, Ka—;—[—chosau:O.

Pour passer de cette équation & 1’équation limite se rappor-
tant & 'autre surface latérale, nous n’avons qu’a remplacer y
par — ¥, ce qui donne:

(7) pour ¥y —= —7, K@—-quOSav_,O.

Les équations 2, 3, 4, b, 6 suffisent pour déterminer compléte-
ment v lorsque 'on connait p. Or, en réalité, p est une fonction
inconnue, mais qui peut étre éliminée dans ’application pra-
tique, si I'on se contente de la vitesse moyenne du glacier. Nous
allons donc nous occuper de 'intégration de 1’équation (3) ac-
compagnée des équations 4, 5,6 et 7 en supposant que p est une
fonetion connue quelconque de z ¥ et 2.

VITESSE EN UN POINT QUELCONQUE

La vitesse en un point quelconque du canal est donnée par
Pintégration de ’équation aux dérivées partielles:

: 1 op o 6”0) .
3) sina— 28 —|—K<W +2) =0,
accompagnée des équations aux limites :
ov
(4) pour z =0 'E"—O
ov
(5) pour z — h KF + fhcosav =0
, - oV .
(6) pour y = ¥, KE-%-I——{—chosav._O
ov
(7) pour ¥y = —1, Ka—y—-chosavzo.

Dans toutes ces équations, nous supposons p connu et v inconnu.



44 _ A.-A. ODIN

Remarquons d’abord qu’aucune dérivée de » par rapport a x
ne se trouvant dans les équations ci-dessus, nous les intégre-
rons en regardant x comme constant. En conséquence, si nous
posons

1 dp

(8) | sma—-——d—(%__KP,
I’équation (3) deviendra :

d2
©) P + dy T aE = =0

et P devra étre regardé comme une fonction connue de y et de 2.
Si nous supposons que cette fonction est continue dans les limites
du canal , nous pouvons la mettre sous la forme suivante:

(10) P = E[Z cos ( %) + Z'psin (r A Z)]

7, et 7/, étant des fonctions de z seulement et », et #’, des para-
metres quelconques; cette somme peut se composer d’un nombre
fini ou infini de termes.

S1 nous substituons cette valeur de P dans ’équation (9), elle
devient

dz / :
(11) dyi; + = s + [ZH cos(r%) + Z', cos (r " z>] =0

tandis que les équations (4, b, 6 et 7) n’éprouvent aucun chan-
gement.

Ceci posé, cherchons une valeur W de v qui satisfasse 4 I’équa-
tion aux dérivées partielles

y BV d*W Y foin (o0 Y —
(12) dyﬁ 3 —]—Zcos( E)+Z sm('r Tz) =0

et aux équations (4 et 5). Une telle valeur aura la forme
(13)

_ Y\'3” ( 3) - ,g)““ , ( ,_Z_)
W _cos<r h)1£0 W COS mlh —+ sm(r 3 liow acos| m vy
Si nous la substituons dans 1’équation (10) et égalons & O le

coefficient de cos (r%) et celui de sin (r'%), nous obtenons :
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A=00 2 2
S 4+ m
ol 10
=00 n'2 r e
r m z
> wjg—w’mcos<m’1—— =7
2 =0 h h
L’équation (4) est d’elle-méme satisfaite. Il reste encore I’équa-
tion (5); en faisant 2 =4 et en égalant 4 O les coefficients des
mémes cos et sin que ci-dessus, nous obtenons :

W, COos (ml}—i) = 7

(14)

A= K
= (-—-— Tlmlwlsmml—l— fhcose. w;\cosml) —0

=0

A=wm
20 (-— 7 m',w'ssinm’;, 4+ fhecose.w's cos m’l) = 0.
A=

Comme ce sont les seules équations qui lient les m et #’, nous
pouvons donc choisir ces derniers arbitrairement pourvu qu’il
soit encore possible de satisfaire les équations (14); nous les dé-
terminerons en égalant a O les coefficients de w, et de w', dans
les deux dernieres équations, ce qui a 'immense avantage de
rendre les m indépendants des . Nous poserons donc:

m', — m, :
et
K :
-—TLmlsmml + fhcose.cosm, =0
ou
my tgmy, = M.
K

Les m sont donc simplement les racines positives de 1’équation
transcendante

fh*cose

(15) milgm = =

Maintenant que nous avons trouvé les m;, les w; se détermi-
nent aisément au moyen des équations (14). Reprenons la pre-
miére de ces équations en faisant

rt -+ m,?
h‘!

U — M.
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Elle prend la forme trés simple :

=0

= N, cos| ms i) — 7.
N0 h

Multiplions les deux membres de cette équation par

coS ( h) dz

et intégrons de 0 & A, c’est-a-dire, sur toute I’épaisseur de la
glace, nous avons:

A= h
= n;fcos(m; h)cos( )dz chos( )
A=0 0

Si Pon observe que, & cause de (15):
ms lgm, — m,lgm, — 0

on vérifie aisément que si % et v sont différents,

" 2 dz = 0.
fﬂcos<m1h>cos (m h) z

Par contre, si v = 2,

h ' !
J" cos? (m1%> dy — h (m; + sin m, cos m;)

0 2m1

n, peut donc étre calculé par le moyen de 1'équation

g h(m, + sinm, cosm,) f R s ( ) 2

De 14, nous tirons en remplagant v par J:

2m, h Zcos (mA})dz

0

- (r* 4 m,?) (ma -+ sinms cos m, )

Nous trouverions de méme ;

& 2
2 m;, h.f 7' cos (fml—) dz
"o 0 h

W= o § . Ty
(r"* + ma*) (mx 4 sin mi, cos m,)
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En résumé, I’équation
d! QW , y) .
-+ e + Z, cos(ilh)—I—Z cos( v, ==J

accompagnée des équations :

aw,
pour 2 = 0 e =
pour z = h dW . =0

admet pour intégrale

y 1—*0 y r=a Z
WP:cos(rHﬁ) 2 wwcos(ml )—I— cos(r ”h) 2w iﬂ\cos(mzh)

=0
ke z
2m, hf 7., cos (m —) dz
0 h

ou

W,y = -
(*h (?‘P,! o 'mf) ('rn«A -+ sinm cos mx)
h
Qm;\hJ" Z', cos (’mli> dz
’ - a h
pA — (TP.IQ, + m 9)(m1 --I— Sinm cosm ).

Par conséquent, les équations (11, 4 et 5) admettront 1'inté-
grale

W==W,

W est donc une double somme. Si nous la transformons de ma-
niére & la séparer en deux groupes et si nous intervertissons les

=, elle devient
)\:m[ 2m; h cos (m 7)

wW=2=3
m, -+ sin m; cos m,,

(16) szz COS( )IZ cos (ml )dz:l

—cos( ) ]
Sh=2| e fZ cos(ml )d

.
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Maintenant que nous avons une intégrale de 1’équation (11)
qui satisfait aux équations (4 et 5), il nous est possible d’en
trouver une qui satisfasse aux quatre équations (4, 5, 6 et 7). A
cet effet, posons:

(17) v=W+4+ V.
L’équation (11) devient:

d®Vv d’V.
(18) A

Les équations (4 et 5) ne subissent aucun changement ; elles
sont :

av
(19) pour z =0 T =
(20) pourz — h K%—Z:thOSaV:O.

Les équations (6 et 7) deviennent apres réductions :

(21) poury =y, K?—]—chosaV:—Kd—W——chosaW
y dy
(22) poury::—yoK%—chosaV:—K%Y-;——[—chosaW.

Les équations (18, 19 et 20) seront satisfaites quels que soient
m, A et A’ sil’on pose:

— A ' s y i
¥ o= [A coshyp(m h) + A’sin hyp (mh)]cos(m h)'

Pour que (21) le soit, il faut et il suffit que

-—K%sinm—{—fhcosacosm =0
_ fhPcosa
milgm — —x =

ce qui n’est autre que I’équation (15). Les différentes valeurs
que m est susceptible d’avoir sont, par conséquent, les mémes
m,. que nous avons déja trouvées. Nous savons donc que si nous
posons ;
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2m; h cos <ml%)

A=w
V= B T T"
x=0 |_Mm 4 sin m;, cos m, A )_
(23) T, — A,coshyp (m; %)

’

T', = A’;sinhyp (?m%>
les équations (18, 19 et 20) seront satisfaites. Restent les équa-
tions (21 et 22); nous remplacerons dans ces équations W et V
par leurs valeurs; nous égalerons les termes qui ont le méme
indice 2 et nous diviserons ensuite par le facteur commun

2m; h cos (mm %)

. ’
m, + sin m, cos m.,

enfin, nous rameénerons en méme temps pour l'équation (22)
toutes les fonctions de ’argument — ¢, aux mémes fonctions de
I’argument 4+ y, en remarquant que
6’8,)\ 6T'1
~ T7 ~

oY oY
sont des fonctions paires, et

r 65]\ / 8T7\

S’ T 7

oy cy
des fonctions impaires. Nous obtiendrons ainsi les deux équa-
tions :

Si

K (6:1\ LA 1) + fqeos (T, +T") =

oY oy
. 88, aS&) L ar
— — (@y -+ 57 —[qcosa(S.+S')

K (—- of, ot ”“) +fqeosa(— T, +T) =

ay oY

—_— K(*—- aSA—l— i h) ——f(]COSa(-— 7Y = S’)).

ay oy

4
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Prenons membre a membre la demi- dlﬁerence et la demi-
somme de ces deux équations :

T

+f(]COb(‘€T? =

aT’, : , 68’ ,
= —K—2—fqcosaS',.
&Y

Si I'on remplace dans la premiere de ces équations T, S, et
leurs dérivées par leurs valeurs en faisant y = #,, on obtient
ainsi une équation qui permet de calculer les coefficients A,;
les A, se détermineraient d’une maniere analogue. On trouve
alsément, en utilisant I’équation (15), que si I'on pose

q Yo Yo
B, —=s 7, €08 (1 h) 7, sin ( h)
| A— L] : Wi Y . o+ Yo
B’ — s, 8in (9 - )—I—? ucos( h)
Ch = &8 ’fcoshyp<7m _ ) -+ M syn hvp( 3;6)

_ 4 Yo
Ch=s+ 7 sinhyp (m, ) ~+ m;, cos hyp ( h)

Ai et A5 sont donnés par les équations

B. h
b 7 p— E = o A
G A, = [%2 T OZ, cos (m h) dz]
B z
" = — E ,:. "
CLA = [r’.,ﬂ T L : cos(ml h) dz ]

En introduisant ces valeurs dans les équations (23), on trouve
V, aprés quoi, en effectuant la simple addition indiquée dans
I'équation (17), et en rassemblant convenablement les termes,
on obtient la valeur de la vitesse cherchée » telle que l'indique
la formule suivante:
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2
2m, h cos (wh —)
= h

) g
=0

(20) [f Z, cos (mA )dz “ J
LATIE. Y ]
ot [cos(m,) C. coshyp(m h)

[J‘ Z'.cos m, )d | B | ’
— A Y
.__f +?’m [sm(f‘ i %) C’ smh\p(m, h)]

Cette formule donne donc la vitesse en un point quelconque
du canal; elle est tout a fait générale et absolument exacte si
les lois sur les frottements externes et internes dont nous som-
mes partis sont exactes.

La valeur générale de v prend une forme plus simple si l'on
suppose que Z, et Z’, sont développés en série comme suit :

Z,— 3 [z‘.ﬂ, cos(?m —z—)] = 2 (Z,.) ;

7', =3 [U uh cos(m %)] = =2 (Z'y)

Z. et 2/, étant des constantes. On peut déterminer ces cons-
tantes comme nous avons déterminé w,, et l'on trouve alors que:

s ( y) B. ( Iy
J— - I [ X - — i
v—=h* = [Tf o [cos ") G, €08 hyp ( m, h)] +

(27)

A 2 (o y) B’ Y
+ h E[ S m [sm(r}&h o fsmhyp(m, ,) ]]

Les X doivent s’étendre sur tous les p. et sur tous les 7 de 0 & .
Remarquons que pour des valeurs trés grandes de indice 7,
on a

(R, + R').)]

M, -+ sinm; cos m;,

'8
h

(26)

m, — A .

Ceci nous montre que les deux séries dont se compose v doivent
rapidement converger, d'autant plus que, pour que les formules
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(26) aient lieu, les Z,; doivent former des séries convergentes en
les ordonnant d’apres le 2¢ indice.

Cas particulier. — Supposons que la pression p ne soit pas
fonction de 'ordonnée y; nous pouvons alors poser:

fymiFy =90
2he =L =P

ou Z est une fonction quelconque de z, et les formules (24 et 25)
donnent :

h
Z cos (mA )dz i
SEPY | A T |
2x=0] M, (M, < sinam, cosm, ) ( “h C, P by
—gi
B=§ 0

Ce cas particulier ne pourra guére se rapporter a un glacier,
car V'effet des frottements contre les moraines latérales peut en
général étre négligé, ce qui se traduit dans nos calculs par

=0 et B=0 et 'on voit que » n'est pas fonction de y; or,
cela est contraire a toutes les observations faites jusqu’ici. Nous
devons cependant nous étendre un peu sur ce cas spécial qui
nous permettra d’établir la formule générale du débit du glacier.

Supposons que non-seulement p ne soit pas fonction de y, mais
qu’il ne soit non plus fonction de 2z, en d’autres termes, qu’il ne
varie qu'avec z; Z = P devra étre regardé comme constant dans
la formule ci-dessus, et si nous faisons en outre ¢ =0, elle de-
vient:

" 2
- Sin 1, Cos (m;.\ TL)
=9 pP>3 . - .
»=0§ M, (m; + sin m, cosm,)_

Cette formule peut étre mise sous une forme tres simple ; mais
les m, étant les racines d’une équation transcendante, sa trans-
formation directe n’est pas tres facile. Par contre, on trouve aisé-
ment la forme finie de v en intégrant directement 1’équation

ot o

©) P+ T+ 5x =0.

zi

)
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(dans laquelle on suppose P constant) avec les conditions (4, b,
6, 7) dans lesquelles nous faisons g =0 et qui sont:

_ o _
(4) pourz =20 6z"_0
(5) pourz =h KZ—Z—I—fhcosa v=20
ov
(6et7) poury = =+y, 6-_3/:0

On voit immédiatement que I'on peut satisfaire & toutes ces con-
ditions avec une fonction » de ia forme

a 4+ b2?
et si I’on détermine les coefficients @ et b, on trouve

P/ 2K
v — '5).—<f005a+ h’—-zz)

ou en introduisant la valeur de s donnée par la formule (15)

o= e[(1+3)- ()

Cette expression une fois trouvée, on vérifie aisément qu’elle
est bien égale & la premiére établie; il suffit pour cela de la dé-
velopper en série suivant les

Cco (m E)
] A h,

ce que l'on fait sans la moindre difficulté comme nous I’avons
indiqué plus haut.

Revenons & la formule générale (25). Si nous voulons I'appli-
quer & l'étude de I'écoulement des glaciers qui n’ont pas de
changements brusques dans leur direction, nous pouvons sans
inconvénient faire abstraction du frottement contre les moraines
latérales, c’est-a-dire contre les faces latérales du canal dans
lequel coule la glace; nous pouvons donc poser

= 0,

La formule (25) n’éprouve aucune simplification, mais on & par
contre :
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B. — —r«sin (m y—,{’)
B'.= r',cos (r’ﬁ—_ﬁ)
- : Yo
G, = m,sinhyp (wm h)
r_ Y
G’y =  mycoshyp (mA 7;) :
Il est bon de remarquer que la supposition ¢ = 0 entraine
: . 0
d’aprés les équations (6 et 7), pour le bord du glacier : -—,\3 =),
Ly

la vitesse v pouvant, elle, du reste, avoir au bord du glacier une
valeur quelconque.

La formule (25) ne peut évidemment pas étre appliquée dans
toute sa généralité a I’étude d’un glacier; il suffira méme pro-
bablement dans toute application de considérer une ou deux
fonctions Z, et Z', (formule 10) et il suffira de méme de prendre
peu de termes pour la sommation par rapport a A, vu que cette
série est trés convergente. On entrevoit ainsi que la formule (25)
doit pouvoir étre transformée et ramenée a une forme beaucoup
plus simple qui permette de Pappliquer & des observations faites
sur la marche d'un glacier. Nous laisserons ici cette transforma-
tion completement de c6té, nous réservant d’y venir plus tard
§'1l y a lieu et nous passerons directement a la recherche du
débit qui est le but principal de notre calcul.

DEBIT, VITESSE MOYENNE

Les formules (25 et 27) donnent la vitesse en un point quel-
conque d'une section transversale d’un canal rectangulaire dont
la largeur est 2y, et la profondeur %; si nous appelons U le
débit du canal en un point de cette section, ou autrement dit le
volume de la glace qui traverse cette derniere pendant 'unité de
temps, nous savons que

h (Yo
U= J ‘J vdzdy.
0 — Yo
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Remplacons » par sa valeur tirée de ’équation (25); nous avons

h Yo
. f M, COS (’m,A h)dZ f
U=4h = Ri 4+ R%)dy.
=0 |/ o M, sinm,cosm, ——yo( TRy _

Effectuons d’abord l'intégration par rapport & z; il vient:

sin Y110

U =4k > [— J'_JD(RH-R’ ) dy. ]

2=0 | M -+ sinm, cosm,

Ici, nous sommes obligé de faire une restriction pour arriver a
un résultat simple : nous négligerons le frottement contre les
moraines latérales et ferons en conséquence :

g —= 0.

Opérons maintenant l'intégration de R, dy par rapport a y en
employant les formules (25 et 28); nous trouvons aprés réduc-

tions :
+Yo
f _ [cos(h ) cos hyp(mx )] dy =

€.l yo
’Uo sm( - )
(m 4+ r?) — ‘
“h

Substituons cette expression dans la valeur de R ; 1l vient:

sin(rﬁyf) B cos(ml %)
TR, dy =1 Z. dz.
—1o % J JO o y{) fo ) m,

2
T!,; FrgTee
“h

Par contre

+a
R'ydy = 0.

-—_JU
U a donc pour valeur

A sin (TF Yo ) q
h A
U=4h*y, J > Z.

Yo
/

~
sin M, cos (m1 h)dz

I
3

b4

m,? (M -+ sin m;, cos m,)

i
<

0 Ty
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Appelons S I'aire de la section du canal; elle est égale &
5= 24,h-
Nous avions posé

(10) = [Zucos (m%)]—l— = [Z’Fsin (fr',;%)]

Si nous considérons une valeur déterminée de z, la valeur
moyenne de P pour toute la largeur du canal est :

sin (rlﬁy—")
1 yoP d Z h
Q yo — Yo J [+ ¢ yo

g,

En introduisant les notations S et P dans la valeur de U, celle-ci
devient :

P e

h ) 2
e sin m, cos (m.-,\ 7};) dz
(29) U—=2h Sf F P

0 »=0|_ m,*(m, + sinmicosm,) _

L’épaisseur d’un glacier est toujours tres faible relative-
ment & sa largeur; les variations de vitesse et de pression
suivant ’épaisseur 2z seront donc peu sensibles et auront beau-
coup moins d’influence sur le débit que les variations sui-
vant y. Nous ne commettrons donc pas une erreur sensible en

remplagant P qui est fonction de ¢ par la valeur moyenne P de
P pour toute la section S. Cette hypothése revient & supposer que
la pression ne varie pas avec 2z tandis qu’elle est une fonction
quelconque de y. Ceci étant admis, nous pouvons effectuer I'in-
tégration par rapport & z et nous avons:

= 2sin®*m,
2
(30) U=#h'SP E [ml ®(m, + sinm; cos m>,)]'

Rappelons que les #;, sont les racines positives de I’équation (15)
mlgm — s.

La série renfermée dans la valeur de U est donc une fonction
bien déterminée de la seule variable s et nous pouvons poser

]

e [ 92sin®m,
a=0

v PR
m,® (m, -+ sin m; cos m-h)] =g 8
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Cette fonction est trés facile & déterminer au moyen des don-
nées mémes de notre probléme. Pour y arriver remarquons
d’abord que I'équation (30) est absolument exacte comme for-
mule mathématique résultant de 1'équation (9), si P est indé-
pendant de z, et a plus forte raison si P est constant. Mais pour
le cas ou P est constant, nous avons trouvé une autre forme de v,

SavoIr :
2 z\*
”—-E"P[(’-*‘?)“(?{) |

Nous tirons de la une nouvelle expression du débit:
+Yo h
U= f dy | vdz =
i i
1

. 1
= 21 ,P 5+ )

o, 1 1
U=k SP(§+E>'

Cette valeur de U doit étre identique & celle qui est donnée
par la formule (33); il s’ensuit que :

1 1

¢(s) = 37T 3

quel que soit (s). En substituant cette valeur dans I'’équation (30),
elle devient :

= /1 1
R = k'SP <§ +-é-).
Mais d’apres la formule (15),
__[hPcose
=5
Par conséquent :
= (h K
U =SP (—3— + m)

Nous avions posé

8) sinz_giﬂ'i_—:KP
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, ; ; Op
Si donc, nous représentons par p’ la valeur moyenne de oq BOUS

aurons :

!

. —-p—— i~
sin « gJ_KP

et U est en définitive représenté par la formule

[k 1 ) ( : p')
(31) U= (SK_I_ Fovse smoe-ugd S.
Le quotient du débit U par l'aire S de la section donne la vi-
tesse moyenne » *; donc

h? 1 ) ( p’
2 ¥ ine—-"—|.
W) v <3K + fcos a St e q /I)
La simplicité de ces deux derniéres formules est remarquable,
étant donnée leur généralité; pour les établir, nous avons en

effet supposé que la pression était une fonction quelconque de ¥,
mais il est vrai qu’elle ne variait pas avec z.

Nous allons appliquer ces derniers résultats a 1’écoulement de
la glace renfermée dans un canal rectangulaire droit de section
constante S. Soit (fig. 5) ABCD A’B'C’D’ ce canal. Nous repré-
senterons par [ sa longueur, par %4 sa hauteur, par s la surface
ABCD, par « son angle d’inclinaison. U étant son débit, il est
exprimé par la formule (31):

[k 1 : p’
(31) U= (3K+fcosa) (Slnoc—gd>S.

Rappelons que fet I = g .7 K sont les coefficients de frotte-
ment interne et externe, ./ la densité de la glace et g la gravité.
Dans notre cas particulier, nous savons que toutes les quantités
qui entrent dans la formule ci-dessus, a I’exception de p’, sont
des constantes; p” doit donc lui-méme étre constant. Il s’ensuit
que si nous représentons par P, et P, les poussées totales qui
agissent sur les extrémités ABCD et A'B’C’'D’, p’ est donné par
la relation :

et la formule (31) devient
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U= (e k) (e BSR).

La vitesse moyenne aura alors pour valeur

@) 0" = (g + o) (ne— )

ou 7 représente le poids total de la glace renfermée dans le
canal.

Si la glace était un corps absolument solide, c’est-a-dire in-
déformable, K serait infini et U serait donc inversement propor-
tionnel & f.

Si la glace, étant considérée comme une masse visqueuse, ne
glissait pas, c’est f qui deviendrait infini et la vitesse moyenne
serait dans ce cas proportionnelle au carré de l'épaisseur % de la
glace.

Dans les applications, c’est toujours un cas intermédiaire
entre ces deux qui se présente.

CONCLUSION

Si 'on veut appliquer la loi d’écoulement que nous avons
établie a ’étude de la marche des glaciers et obtenir un bon ré-
sultat, on se trouve arrété par l'interprétation mathématique de
deux phénomenes qui n’ont été jusqu’a présent qu'insuffisam-
ment étudiés; ce sont le tassement des neiges formant le névé,
tassement qui est produit en partie par simple compression et
en partie par le « regel » et I’ablation qui fait particuliérement
sentir ses effets sur le glacier. 8’il ne s’agit que de déterminer
la vitesse moyenne, on peut faire abstraction des différences
de vitesses occasionnées par I'ablation et se servir uniquement
de la vitesse moyenne de chaque filet du glacier; méme sl le
fallait absolument, il serait possible de tenir compte de ces dif-
férences. Il n’en est plus tout & fait de méme du tassement des
neiges ; ce phénomene ne peut pas encore a ’heure présente étre
soumis au calcul et la seule issue qui se présente a nous est,
comme nous l'avons déja dit plus haut, de passer outre, c’est-a-
dire d’admettre que le névé est formé d’une matiére incompres-
sible et qu’il a pour toutes ses sections la méme vitesse moyenne.
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Nous obtiendrons par ce moyen la théorie mathématique d’un
phénomene qui se rapprochera beaucoup de I’écoulement d’un
glacier, mais dont les formules ne pourront cependant pas servir
a des mesures exactes sans avoir été préalablement complétées
de maniére a tenir compte de phénomeénes que nous sommes
pour le moment obligé d’écarter et qui n’exercent pas moins une
certaine influence sur le mouvement.

Supposons le névé de forme rectangulaire et soient /, sa lon-
gueur, s, son épaisseur, S5, sa section moyenne, 7, sa densité,
i et K, ses coefficients de frottement, U, son débit, v, sa vitesse
moyenne, P, la pression totale que la neige exerce contre la sec-
tion limite inférieure. Le névé forme un simple canal rectangu-
laire auquel nous pouvons appliquer la formule (33) qui nous
donne le débit :

U= ?];zllii—l_ f,cos e, )(S sine, + j)l)

Ici, nous n’avons qu’une seule pression P. Multiplions cette équa-
tion par g 4,1, et représentons par M, la masse g 7,1, S, du névé,
nous avons :

h,? 1 :
g4,1,U, = (BK ey )(Mlsmal—}-P).
Mais
U, = 8S,v,
et par suite
>
M,v, = (3K,+f cosa )(M sine, + P).

En faisant des suppositions tout a fait analogues pour le gla-
cier, et en remarquant que la pression P sur la couche inférieure
du névé est lJa méme que celle qui agit sur la couche supérieure
du glacier, nous trouverions pour ce dernier la formule suivante:

hy? 1 :
Mo, = (gk +7 COSag)(M’ sin e, — P).
Eliminons P entre les deux derniéres équations; il vient :
3 __Mw Wb oy sing, + M,sing,.
h, n 1 h, 1

3K, ' f,cose, 3K, T f.cos e,
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Un certain rapport doit toujours exister entre les vitesses v,
du névé et v, du glacier; sans ’ablation ce rapport serait simple-
ment 'expression du fait que le débit en masse (masse de neige
qui traverse une section pendant I'unité de temps) du névé est
égal & celui du glacier. Nous ne nous éloignerons donc pas beau-
coup de la vérité en admettant qu’il en est ainsi. Nous poserons
par conséquent :

A4,5,v, = A4,5,v,.
Cette égalité peut étre écrite comme suit:
M, v, _ M, v, —Q
[, [,

d’ou Don tire
M. o, =0/
M,v, = QL.
L’équation (35) devient ainsi:
- ! [ ~ : :
Q} e i 7 -+ X : 1 l:M,sma,ﬂ—M,smaz
3K, T

en remplacant Q par ses valeurs, on obtient les deux formules
suivantes :

ficose, 3K, ' fycos cze_J

Ui M

J' 3 2 .

NT —sine, + =2sina,
1

M,
(36)
v, M, . :

Nl_, i Esm e, + sin e,

dans lesquelles :
N = g + :
h® n 1 h,? n 1
3K,  [,cose, 3K, [, cose,

Les formules (36) sont le résultat final de nos calculs; elles
permettent de calculer la vitesse moyenne du névé et du glacier
lorsqu’on connait leurs dimensions et la nature des matiéres qui
les composent.
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Pour se faire une idée claire de la signification de ces for-
mules, il est utile de rechercher ce qu’elles deviendraient pour
le cas ou la neige du névé aurait la méme consistance que la
glace du glacier et ou le névé et le glacier anraient des sections
transversales égales; nous interpreterons cette supposition en
posant

K, =K, =K
h=fk=T

=2 0, =

2 =

Les deux formules (36) se condensent alors en une seule qui
aprés réductions devient :

(37) b= (3K fcoscc)Sina

f et K représentent ici les valeurs moyennes & un moment donné
des coefficients de frottement externe et interne pour tout le gla-
cier accompagné du névé; i représente I’épaisseur moyenne et o
Pinclinaison moyenne du glacier et du névé.

La formule (37) ne donne qu’une idée trés imparfaite du mou-
vement d’'un glacier puisqu’il n’arrive jamais que la matiére qui
constitue le névé soit identique & celle dont est formé le glacier.
Si, malgré cela, on cherche & l'interpréter, on voit :

1° Que la vitesse moyenne est indépendante de la longueur du
glacier;

2° Qu’elle est proportionnelle & la pente du glacier;

3° Qu’elle augmente avec I’épaisseur du glacier et cela d’au-
tant plus rapidement que cette épaisseur est plus grande.

Ces déductions concordent en gros avec ce que 1'on connait
actuellement du mouvement des glaciers et nous font croire que
les hypothéses dont nous sommes partis sont fondées. Lorsque
les résultats des observations faites sur le glacier du Rhone
seront connus, il nous sera possible, nous l'espérons, de leur
appliquer nos calculs et d’en déduire des données encore incon-
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nues jusqu’a présent, comme les coefficients de frottement,
I’épaisseur du glacier, etc. La formule (25) simplifiée et la for-
mule (36) paraissent devoir étre les plus propres & une telle
application.

Nous ne nous faisons cependant pas d’illusion; comme nous
I'avons déja dit, ce mémoire est un premier essai sur la théorie
mathématique du mouvement des glaciers, et comme tel, il ne
peut étre que trés imparfait, étant donné le peu de connaissances
que l'on possede sur la matiére. Il peut cependant devenir le
point de départ de nouvelles études qui donneront la clef d'une
théorie exacte du mouvement des glaciers. Pour arriver & ce ré-
sultat, vu la difficulté de ces études, il faudrait la coopération
de beaucoup de forces. Les recherches et observations isolées
des glaciologistes peuvent sans doute augmenter la liste des con-
naissances acquises, mais elles n’arriveront que trés lentement
et trés partiellement & des découvertes certaines; il faudrait un
concours d’études raisonnées faites simultanément en plusieurs
points et sur plusieurs glaciers et névés. Le C. A. S. est le mieux
placé pour cela et il serait fort & désirer qu'il continuat au moins
les études commencées sur le glacier du Rhone et qu’il prit en
mains les travaux qui seuls pourront permettre d’appliquer et
de vérifier ou de corriger les formules que nous venons de don-
ner, la phase de crue qui se prépare devant fournir des observa-
tions qui se préteront mieux & cette application. Nous comptons
sur des voix autorisées pour soutenir son ardeur et son zéle pour
une cause d’un si grand intérét pour la science moderne.
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