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ESSAI DUNE APPLICATION DES PRINCIPES DE LA MÉCANIQUE

A

L'ÉCOULEMENT DES GLACIERS

D* A.A. ODIN,
Professeur agrégé à l'Académie de Lausanne.

Pl. II et III.

En août dernier, nous eûmes, M. le prof. Dr Forel et moi, un
entretien sur la question si controversée de l'écoulement des

glaciers; M. Forel ayant soulevé la difficulté de trouver les causes
de la périodicité des phases de crue et de décrue, me demanda
si je croyais qu'il fût possible d'y arriver par voie mathématique.
Au premier abord, la chose me parut trop hasardée pour
l'entreprendre, mais en y réfléchissant mûrement, je me persuadai
qu'il serait utile d'examiner de près une question aussi intéressante.

Je l'ai fait, et, après de nombreuses tentatives, je suis
arrivé, non à résoudre la difficulté elle-même, mais à en dégager
la question primordiale des lois qui président à l'écoulement d'un
glacier. Quant au problème lui-même posé par M. le prof. Forel,
je crois nécessaire, pour chercher à le résoudre, d'attendre que
les résultats des observations du C. A. S. sur le glacier du Rhône
aient été publiés et qu'on ait pu juger du degré d'exactitude des
formules que j'ai établies.

Avant d'entrer dans le sujet, j'ai cru devoir développer les
hypothèses sur lesquelles je me base pour mettre en équations
le problème si complexe de l'écoulement d'un glacier.

J'exprime ici à MM. les professeurs F.-A. Forel, à Morges, et
Hagenbach, à Bâle, toute ma reconnaissance pour les bienveillantes

indications qu'ils m'ont données, ainsi que pour le grand
intérêt qu'ils ont apporté à cet « Essai ».

HYPOTHÈSES

L'écoulement d'un glacier étant un phénomène excessivement
complexe, il ne peut être étudié mathématiquement qu'en négligeant

plusieurs phénomènes accessoires et en faisant certaines
hypothèses sur la forme et la constitution du névé et du glacier.
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Les glaciers ont toujours une forme très irrégulière qui ne se

prête pas à un calcul exact ; par contre, si l'on se contente d'un
résultat approximatif, on peut supposer que tout glacier, sauf
quelques exceptions, se compose de deux ou de plusieurs canaux
prismatiques à profils rectangulaires ; l'un de ces canaux, large
et rapide, représentera le névé; sa profondeur ira en croissant
de la partie supérieure à la partie inférieure ; un autre canal,
en général plus long, moins large et moins rapide, représentera
le glacier; la profondeur de la glace dans ce canal ira en
décroissant de la partie supérieure à la partie inférieure. Si le
glacier fait un coude, ce qui est fort souvent le cas, on le
supposera formé de deux canaux droits.

L'étude de l'écoulement d'un glacier est donc ramenée à
celle de l'écoulement d'une masse de neige ou de glace
renfermée dans un canal prismatique rectangulaire; l'épaisseur de

cette glace est variable, mais comme elle est très petite
comparativement à la longueur du canal, nous pouvons considérer
la surface supérieure et la surface inférieure de la glace comme
étant sensiblement parallèles entre elles ; ceci nous permettra
de considérer la surface supérieure comme plane et de la prendre
comme l'un des plans d'un système de coordonnées.

En remplaçant le glacier par un simple canal rectangulaire
nous faisons tacitement abstraction des crevasses ; bien qu'il y
en ait de très grandes, elles n'atteignent guère la moraine
profonde et ne peuvent ainsi modifier d'une manière appréciable la
marche du glacier.

On sait que la vitesse de la glace est plus forte au milieu
qu'au bord; les mesures prises sur le glacier du Rhône ont
montré que la relation des vitesses à différentes distances des
bords se conserve très exactement sur toute la longueur du
glacier, et que les trajectoires des particules de glace sont
sensiblement parallèles à son axe. Ceci étant admis comme
parfaitement exact et la glace étant regardée comme incompressible,
la vitesse devrait être constante pour tous les points d'un même
filet parallèle à l'axe; mais, comme il y a un enlèvement de
matière causé par l'ablation, la vitesse des différents points d'un
même filet va en décroissant de la partie supérieure à la partie
inférieure '. Toutefois, il n'y a dans le sens de la longueur de
grandes variations de vitesse que près du front du glacier, c'est-

1 F.-A. Fokel, Archives de Genève, tome VI, juillet 1881.
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à-dire dans la partie qui a le moins d'influence sur le mouvement

général. Nous ne commettrons donc pas une grande erreur
en supposant que la vitesse est constante pour tous les points
d'un même filet.

Ce que nous venons de dire de la vitesse du glacier, nous

pouvons aussi le dire de celle du névé, quoique à la vérité avec
moins de raison et moins de certitude ; en effet, nous avons ici
à compter avec le tassement des neiges, mais comme ce phénomène

n'a pas encore été étudié jusqu'à présent d'une manière
suffisante, il nous est impossible d'en tenir compte; s'il le fallait
absolument, nous regarderions le névé comme formé non pas
d'un seul canal, mais de deux canaux ou d'un nombre plus
grand encore et il n'y aurait de cette manière rien de changé
dans nos formules.

Les deux grands facteurs qui président aux mouvements des

glaciers sont la pesanteur et les frottements. Nous n'avons rien
à dire sur la pesanteur; par contre, il est nécessaire que nous
soyons fixés au sujet des frottements.

Lorsqu'une masse visqueuse coule, elle est soumise à deux
espèces de frottements : le frottement externe, soit contre les

parois du canal dans lequel la niasse se meut et le frottement
interne.

Dans le glacier, le frottement externe est celui de la glace
contre les moraines, c'est le frottement d'un corps solide contre
un autre corps solide. Comme on le fait en général, nous admettrons

que pour des variations minimes de la vitesse relative des

deux corps, le frottement est proportionnel à la vitesse et en
même temps à la pression totale que les deux corps exercent l'un
sur l'autre. Nous ne nous éloignerons guère de la vérité en
admettant que cette pression est semblable à une pression
hydrostatique c'est-à-dire qu'elle est proportionnelle à l'épaisseur du
glacier au point donné. Nous considérerons le coefficient de

frottement externe comme variant avec la vitesse et avec la
distance du point considéré au front du glacier, mais comme étant
le même pour tous les points d'une même section transversale
du glacier ou du névé.

L'écoulement des glaciers n'étant pas autre chose qu'une
déformation très lente produite sous l'influence de forces considérables,

le frottement interne est toujours immense, surtout si on
le compare à celui des liquides. Pour nous rendre un compte
exact de sa valeur, considérons (fig. 1) une tranche de glace



36 A.-A. ODIN

AB A'B' prise dans l'intérieur du glacier et supposons qu'elle
soit soumise à deux forces tangentielles égales et de sens
contraires ; soient P la valeur de chacune de ces forces par unité de

surface; sous leur influence, la glace se déforme et le déplacement

de AB par rapport à A'B' pendant le temps dt sera vdl,
v étant la vitesse relative de AB par rapport à A'B' ; tant que
la force P restera la même, la vitesse v pourra être regardée
comme indépendante du temps et comme proportionnelle à la
force P; c'est au moins ce qu'il est le plus vraisemblable
d'admettre et que les expériences faites jusqu'à présent confirment.
Il est de plus facile de démontrer que la vitesse relative v est

proportionnelle à l'épaisseur h de la tranche de glace.
En effet, supposons que nous ayons n plaques semblables

(fig. 2) superposées les unes aux autres de manière à fo mer une
plaque unique de même surface que la précédente, mais d'une
épaisseur totale nh, soient AiBi A2B2 An—iBn_i les séparations

fictives de ces plaques, et AnBo A„Bn les forces extrêmes;
nous supposons ces dernières soumises à deux forces tangentielles

égales et de sens contraires; soient — Po et -f- Pn ces
forces et soit P leur intensité par unité de surface. Si nous
faisons abstraction des allongements que peut subir la glace dans
les sens AkBk, nous pourrons regarder les surfaces AkBk comme
des surfaces matérielles solides et nous pourrons leur appliquer
les deux forces — Pk et -+- Pk respectivement égales et parallèles
à —Po et +Pn; chacune des n tranches de glace étant en équilibre

(nous faisons abstraction du mouvement de rotation),
les forces qui agissent sur elles doivent donner une résultante
nulle; par conséquent, les forces qui agissent sur les différentes
tranches doivent être accouplées de telle façon que l'élément
Ak—îBk—iAkBk sera regardé comme soumis aux forces — Pk—1, Pk ;

il se déformera et la vitesse relative de ses deux faces aura une
certaine valeur v' ; mais cette valeur doit être la même pour
chacune des n tranches, car elles sont toutes soumises à des

forces identiques et la vitesse relative des deux faces A0B0 et
AnBn sera donc nv', ce qui signifie qu'elle est proportionnelle au
nombre n ou, ce qui revient au même, proportionnelle à l'épaisseur

AoAn.
En résumé, une tranche de glace soumise à deux forces

tangentielles égales et de sens contraire agissant sur ses faces, se
déforme de telle manière que ces dernières acquièrent une
vitesse relative qui est proportionnelle à l'intensité P par unité de
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surface de chacune des deux forces et proportionnelle à l'épaisseur

h de la tranche; elle est donc donnée par la formule

v i Ph.

F est une constante dépendant uniquement de la nature de la
glace ; nous l'appellerons coefficient de frottement interne.

Nous avons supposé jusqu'à présent que la plaque de glace
n'était soumise en chacune de ses faces qu'à une seule force. En
général, s'il y a différentes forces appliquées aux différents
points ou si P est une fonction continue de l'épaisseur, nous
devrons restreindre notre formule à une partie assez minime de

la plaque pour qu'il n'y ait à considérer que deux forces
sensiblement égales et de sens contraire agissant sur les deux faces ;

soient dh l'épaisseur de la partie ainsi considérée et dv la
différence de vitesse de ses deux faces ; nous avons alors :

1

dv zr -=r Pdh.
F

Cette différence de vitesse produite dans la direction de la force
P ne sera pas changée, si, conjointement à cette force, il y a
d'autres forces Q, R, etc., qui agissent dans des plans obliques
par rapport à celui dans lequel agit P, pourvu que ces forces
soient comme P proportionnelles aux surfaces des sections dans
lesquelles elles agissent ; ceci est évident, car nous pouvons choisir

l'épaisseur dh assez petite pour que l'action de ces forces soit
négligeable en présence de l'effet que produit P.

En tirant la valeur de P de l'équation ci-dessus, nous obtenons

la formule suivante :

<» p Ft '

qui est applicable à la partie d'une tranche de glace voisine de

sa surface et donne la force qui doit agir le long de cette
surface pour déformer la glace.

Le coefficient de frottement interne F varie probablement peu
avec la vitesse et ne dépend guère que de la nature de la glace,
mais de quelle manière en dépend-il, c'est ce que nous ne savons
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pas ; dans tous les cas, il doit être en relation avec les différentes
pressions qui agissent sur la glace et qui par leurs variations en
modifient assez rapidement la consistance, vu que dans un
glacier, la glace est le plus souvent très près de son point de
fusion. Malgré cela, nous admettrons, comme pour le frottement
externe, qu'à un moment donné et pour une même section
transversale du glacier ou du névé, F est constant. Cette hypothèse
nous est indispensable pour arriver à un résultat final et les
erreurs qu'elle peut entraîner nous paraissent devoir être de

beaucoup inférieures à celles qui résultent des irrégularités de
la forme de tout glacier.

Il est bon de remarquer que F aura toujours pour la partie
supérieure du névé une valeur considérablement plus petite que
pour la glace dure du glacier proprement dit.

Ce sont là les hypothèses principales sur lesquelles nous nous
baserons pour les calculs généraux qui suivent; nous serons
toutefois obligé, lorsqu'il s'agira de calculer le débit du glacier,
de faire encore quelques restrictions de moindre importance;
nous les indiquerons et les motiverons plus loin.

ÉQUATIONS DU MOUVEMENT DE LA GLACE
DANS UN CANAL KECTANGULAIKE

D'après ce qui précède, l'étude de l'écoulement de la glace
d'un glacier se ramène à celle de l'écoulement d'une masse de
glace renfermée dans un canal prismatique rectangulaire.
Rapportons ce canal à un système de coordonnées cartésiennes
rectangulaires Oxyz (fig. 3), choisi de telle façon que l'axe Ox
partage la surface supérieure — de laquelle nous avons vu qu'elle
peut être considérée comme plane — en deux parties, dans le
sens de la longueur, et que l'axe Oy se trouve dans la section
supérieure du canal. Soit a. l'angle que forme l'axe Ox avec
l'horizontale, autrement dit, l'angle de pente de l'axe du canal.

Considérons maintenant (fig. 4) un élément de glace ayant la
forme du parallélipipède rectangle ABCDEFGH, dont le centre
O a pour coordonnées {xyz) et dont les arêtes parallèles aux
axes ont pour longueurs dx dy dz. Ce parallélipipède qui se

meut, comme nous le savons, parallèlement à Ox, c'est-à-dire,
parallèlement à quatre de ses arêtes, est actionné par diverses
forces donnant des composantes parallèles à l'axe des x; ce
sont:
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1" Son poids: en appelant g la gravité et J la densité de la
glace, ce poids est:

g Jdxdy dz

et sa composante dans la direction des x positifs est :

g J sin a dxdydz.

2" La pression de la glace contre les faces du parallélipipède.
Soit p la pression en O (pression par unité de surface contre un
plan parallèle à yOz est dans le sens de Ox) ; p est fonction de

x, y et z, en sorte que la pression par unité de surface est au
centre de la face ABFE

dp dx
P ~~"dxAT'

La pression totale contre ABFE est donc :

dp dx\
P-râT)dydZ>

valeur exacte jusqu'aux infiniment petits du 4" ordre. On verrait

de même que la pression contre la face DCGH est égale à

La résultante de ces deux pressions est donc :

— -r-dxdydz.dx ''

Nous n'avons pas à considérer les pressions contre les autres
faces du parallélipipède, car elles ne donnent point de composantes

dans la direction Ox du mouvement.
3° Les forces agissant tangentiellement sur les faces du

parallélipipède et qui occasionnent les différences de vitesses. Remarquons

d'abord que les faces ABFE et DCGH ne sont soumises à

aucune force de ce genre et prenons les deux autres faces deux
à deux.

Soit v la vitesse de la glace en O ; au centre de la face BCGF,
cette vitesse sera

dv dv
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sa dérivée par rapport à l'épaisseur du parallélipipède et dirigée
contre l'extérieur de celui-ci sera :

dv d*v dy
Ay + diflT'

La force par unité de surface qui agit au centre de gravité de
BCGF et dans la direction des x est donc, d'après la formule (1)

tdv_ Ô*vdy\
\dy "*"

dy3 2 /'
par conséquent, la force tangentielle totale agissant sur BCGF
a la valeur suivante qui est exacte jusqu'aux infiniment petits
du 4e ordre.

„ (dv d*v dy\
\dy dy* % J

La force agissant sur la face opposée du parallélipipède sera
par analogie égale à

'(- dv d-v dy\,
-—p- ri Ar )dx dz
dy dif 2 /

et leur résultante est :

F •—-dxdndz.
dy* J

Les déformations de la glace résultent aussi de forces agissant

sur les faces ABCD et EFGH, forces qui ont pour résultante

:

F —-dxdydz.
dz* J

La résultante de toutes les forces qui occasionnent une variation

de vitesse de la glace d'un point à un autre est donc :

F{w+Sòdxdydz-
La résultante définitive de toutes les forces qui agissent sur

l'élément de glace que nous avons choisi, est par conséquent :

dv d2v d2v \
g Jsinadxdydz — -A-dxdydz + Fl-r-y + ^Yjdxdydz.
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Cette résultante est, d'autre part, égale à la masse J dxdydz
dv

du parallélipipède multipliée par l'accélération —de son centre
dt

de gravité ; si nous égalons ces deux valeurs en les divisant par
dxdydz, nous avons :

dp ~(dh d*V\ dv
qJsma AL + F (—j ft- —?¦) J—.J dx \dyft dz* dt

Divisons les deux membres de cette équation par gj et posons :

F
(2) -i- K

gj
elle devient :

gJdx ' "\dy'
Le second membre

„

1 dv

J~df

peut être négligé. En effet, chez les glaciers qui se meuvent le

plus rapidement, on doit regarder comme impossible un
changement de vitesse de 10 mètres en 1 minute (la vitesse étant
donnée par heure). Ce changement correspond à

1 dv 1

dp „(d*V d*v\ 1 dv
sma __ + K(_ + — - —.

g dt — 211680'

valeur toujours négligeable en présence de sin a qui représente
la pente du glacier.

L'équation générale du mouvement de la glace est donc

(3) sin a -ft- + K ——- + -—-¦ =z 0.K ' gJdx \dy* dz*/

Elle est vraie pour tous les points du glacier, mais ne pourra
être intégrée que lorsque nous aurons fixé les conditions aux
limites; occupons - nous donc de trouver celles-ci d'après les
données du problème.

La limite supérieure comprend les points pour lesquels z 0 ;

en tous ces points, la glace est en contact uniquement avec de
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l'air et n'est soumise dans le plan z 0 à aucune force capable
delà déformer, ce qui veut dire, à cause de la formule (1), que
pour tous ces points, l'on doit avoir

(4) Pourz 0 |£=0.
Si nous appelons h la hauteur de la glace dans le canal, sa

surface inférieure sera caractérisée par l'équation z h, h
variant du reste avec x. Considérons un élément quelconque de
cette surface : il frotte contre le fond du canal (moraine
profonde) qui exerce sur lui une force de frottement qui, par unité
de surface, est égale au produit du coefficient de frottement /
multiplié par la vitesse v et par la pression par unité de surface
de la glace sur le fond du canal ; nous avons déjà dit que nous
regarderions cette pression comme analogue à une pression
hydrostatique, ce qui fait que dans le cas particulier, elle est égale
à gjhcosœ; la force de frottement est donc

— fgJhcosa. v

elle est la seule qui agisse dans le plan z h et c'est donc elle
seule qui déforme la couche la plus inférieure de la glace ; nous
avons donc, en appliquant la formule (1)

r a L -nÔV
— fqjhcosctv rr h ——1J dz

ou

dv
(5) pour z zzz h K—- + fh cosav rr 0.

o%

Il nous reste à nous occuper des faces latérales du canal.
Considérons d'abord celle pour laquelle y + y0, 2y0 étant la
largeur du canal, et considérons un élément de cette surface
ayant pour coordonnées (xy0z). Nous pouvons dire sur cet
élément tout ce que nous venons de dire pour un élément choisi
dans la surface inférieure, seulement ici nous manquons de
données sur la pression. Comme le frottement contre les
surfaces latérales du canal n'a pour la solution pratique de notre
problème qu'une importance tout à fait secondaire et comme la
pression de la glace contre les parois latérales du canal ne varie
pas énormément d'un point à un autre, nous supposerons cette
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pression, par unité de surface, constante et égale h, g J q cos a. ;

remarquons que q sera toujours de beaucoup inférieur à h.

D'après cette hypothèse, la force de frottement doit être égale à

— fg J q cos a v

ce qui donne l'équation
dv

(6) pour y y0 K— + fqcosav rr 0.

Pour passer de cette équation à l'équation limite se rapportant
à l'autre surface latérale, nous n'avons qu'à remplacer y

par —y, ce qui donne :

dv
(7) pourj/rz—y0 K- fqcosav rr 0.

Les équations 2, 3, 4, 5, 6 suffisent pour déterminer complètement

v lorsque l'on connaît p. Or, en réalité, p est une fonction
inconnue, mais qui peut être éliminée dans l'application
pratique si l'on se contente de la vitesse moyenne du glacier. Nous
allons donc nous occuper de l'intégration de l'équation (3)
accompagnée des équations 4, 5, 6 et 7 en supposant que p est une
fonction connue quelconque de x y et z.

VITESSE EN UN POINT QUELCONQUE

La vitesse en un point quelconque du canal est donnée par
l'intégration de l'équation aux dérivées partielles :

accompagnée des équations aux limites :

(4) pour z rrO ^rrO
dz

(5) pour z zzzh
dv

K— 1- fhcosav rr 0
oz

(6) pour y r-y0 K — h fa cos a v zzi 0

(7) pour y rr— Vo K- fqcosav rr 0.
dy IH

Dans toutes ces équations, nous supposons p connu et v inconnu.



44 A.-A. ODIN

Remarquons d'abord qu'aucune dérivée de v par rapport à x
ne se trouvant dans les équations ci-dessus, nous les intégrerons

en regardant x comme constant. En conséquence, si nous
posons

<8) Sin*-^|HKP'
l'équation (3) deviendra :

<*> * + $+£=•
et P devra être regardé comme une fonction connue de y et de z.
Si nous supposons que cette fonction est continue dans les limites
du canal, nous pouvons la mettre sous la forme suivante :

(10) P rr z[z,cos (r,|) + Z',sin (r',|)]
Z^ et Z'n étant des fonctions de z seulement et r^ et r\ des
paramètres quelconques; cette somme peut se composer d'un nombre
fini ou infini de termes.

Si nous substituons cette valeur de P dans l'équation (9), elle
devient :

<n> %+S+?[z'cosH)+z>°*(r'4)]=°
tandis que les équations (4, 5, 6 et 7) n'éprouvent aucun
changement.

Ceci posé, cherchons une valeur W de v qui satisfasse à l'équation

aux dérivées partielles

,12, « + ™ + z„s(r|) + z.s,-„H) o

et aux équations (4 et 5). Une telle valeur aura la forme

(13)

W rr cos (rj-j 2 vh cosi w*rr) + sin (r'j-) 2 w\coslm,\-r\

Si nous la substituons dans l'équation (10) et égalons à 0 le

coefficient de cos r-f et celui de sin r~ nous obtenons :
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»fr' + ffl1 / z\x tfxcos mxr rr Z

(14) ^ *' V h/

2 rj wxcosl m xt-) rr Z'.

L'équation (4) est d'elle-même satisfaite. Il reste encore l'équation

(5); en faisant z h et en égalant à 0 les coefficients des
mêmes cos et sin que ci-dessus, nous obtenons :

x=oo / K \v ' — -r wh Wx sin m-,, -f /"A cos «. w* cos mx 1 rr 0

x=x / K \v ' — -r m'xw'xsinm'x + fh cos a. w'xcosm'x j rr 0.

Comme ce sont les seules équations qui lient les m et m', nous
pouvons donc choisir ces derniers arbitrairement pourvu qu'il
soit encore possible de satisfaire les équations (14); nous les
déterminerons en égalant à 0 les coefficients de toi et de w\ dans
les deux dernières équations, ce qui a l'immense avantage de
rendre les m indépendants des w. Nous poserons donc :

m x rr mk

et

ou

AT

¦ -t mx sin mx + fh cos a. cos mx rr 0

fa'2 cosi
mjgnix rr K

Les m sont donc simplement les racines positives de l'équation
transcendante

fh* cos ce

(15) m tg m — ' - <¦

K ~~ '

Maintenant que nous avons trouvé les mx, les W\ se déterminent

aisément au moyen des équations (14). Reprenons la
première de ces équations en faisant

r* ft- m-ft
£i—wx-n-,.
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Elle prend la forme très simple :

X=oo / z\2 H,Acos(mxr-j rr Z.

Multiplions les deux membres de cette équation par

cos fm,Tj dz

et intégrons de 0 à h, c'est-à-dire, sur toute l'épaisseur de la
glace, nous avons :

X=oo ph
2 nx

x=o
I cosimx j\cosim,-Adz zzz j Z cos mv-r Wz-

Si l'on observe que, à cause de (15) :

m-Ag mt — m» tg mv rr 0

on vérifie aisément que si X et v sont différents,

r. cos rnx-r cos m„ -r dz rr 0.

n.

o

Par contre, si v X,

Jh mf z\ j A(mx-fsinmxcosmx)
0COS {m*h dz

¥mTx

nx peut donc être calculé par le moyen de l'équation

him, + sinmvcosmv) rh„ z\
,— —y- -= Zcos mvT- )dz.

2 m, J o Va/
De là, nous tirons en remplaçant v par / :

2mAAj Zcos(m.-jAdz
w\ —

(r* A m-,*) (nix ft- sin mx cos m,.

Nous trouverions de même :

2mxA j Z'cos (mx-T-)dz
w'xzz-

(r'* + mx*) (mx + sin m-,, cos m-,)'
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En résumé, l'équation

-V+-^-+z-cos \r4)+z ^cos lr -V=°
accompagnée des équations :

pour z zz 0 ' rr 0

dW.
pour z rr h K—p^ + fh cos a WF rr 0

admet pour intégrale

W^rrcosfr^^j 2 uvxcos(mx-r-) -fcosfr'Jr) -2 wV>.C0S(Wir

ou

t/ o

2 mx A | Z^ cos m -r dz

«Vx rr
(rv1 + nix*) (nix + sin m cos mx)

ZN
2mxA I Z'.,coslmx-r\dz

w'px ZZZ ;

(r/2 + m 2)(mA + sinm cosm

Par conséquent, les équations (11, 4 et 5) admettront l'intégrale

W est donc une double somme. Si nous la transformons de
manière à la séparer en deux groupes et si nous intervertissons les

2, elle devient

r 2mx/icos(mx|) I

W 2 \ — -(Sx + S'x)
x=o Ljwx + sin m,, cos nix J

|"cos(rV|) h
1

ìrA + mx*jyc0S(m^)dz\S\ 2\
A
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Maintenant que nous avons une intégrale de l'équation (11)
qui satisfait aux équations (4 et 5), il nous est possible d'en
trouver une qui satisfasse aux quatre équations (4, 5, 6 et 7). A
cet effet, posons :

(17) »rW + V.

L'équation (11) devient:

<18> w + ^ 0'

Les équations (4 et 5) ne subissent aucun changement ; elles
sont :

dV
(19) pour z rr 0 -^ zzz 0

dV
(20) pourzrrA K-j-z=fhcosaVzzzO.

Les équations (6 et 7) deviennent après réductions :

dV dW
(21) pourj/rr«/0 K-j- + fqcosaV —K— — fqcosaW

dV dW
(22) pour y zz — 2/0K j fqcosaVzzz—K--—\-fqcosaW.

Les équations (18, 19 et 20) seront satisfaites quels que soient
m, A et A' si l'on pose :

V rr Acoshypfm-^1 + A' sin hyp mj Icosim-y

Pour que (21) le soit, il faut et il suffit que

m
— K-T-sinm -f- fh cos a cos m zz 0

fh*cos a
m tg m rr -—= rr s

ce qui n'est autre que l'équation (15). Les différentes valeurs

que m est susceptible d'avoir sont, par conséquent, les mêmes

mx que nous avons déjà trouvées. Nous savons donc que si nous
posons :
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1 00

Vrr 2
x=o

2 mx h cos m
A

_mx + sin Wx cos mx
(Tx + T'x)

(23) Tx rr Axcoshyplmx-^-

T\ A'xsinhyp(mx|

les équations (18, 19 et 20) seront satisfaites. Restent les équations

(21 et 22); nous remplacerons dans ces équations W et V

par leurs valeurs; nous égalerons les termes qui ont le même
indice X et nous diviserons ensuite par le facteur commun

2 nix A cos mA
h

mx + sin ni-,, cos nix

enfin, nous ramènerons en même temps pour l'équation (22)
toutes les fonctions de l'argument —y„ aux mêmes fonctions de

l'argument ft-yo en remarquant que

~ <5S'x „ <5T'x

A
sont des fonctions paires, et

o/ »Sx
T'x

dy

dTx

dy cy
des fonctions impaires. Nous obtiendrons ainsi les deux équations

:

K(f+^r)+"c°s«<T>+r>>=

K

rr — K

d'Y- dT'- \

<9Sx dS'-,

dy dy
fq COS a (— Sx + S'x).
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Prenons membre à membre la demi-différence et la demi-
somme de ces deux équations :

dT- dS-,
K —- + fg cos a Tx rr — K-—- — fq cos a Sx

dy ' ' dy ' l

K^ + fqcosaT'xzzz—K-^A—fqcosaS'x.
dy '' ?y

Si l'on remplace dans la première de ces équations Tx, Sx et
leurs dérivées par leurs valeurs en faisant y y„, on obtient
ainsi une équation qui permet de calculer les coefficients Ax;
les A'x se détermineraient d'une manière analogue. On trouve
aisément, en utilisant l'équation (15), que si l'on pose

B,rrS|cos(r,|)-r,sin(,v|

BV ^ain(rVÇ) + rVco.(rVÏ

Cx rr SjCoshyp( mA j5) + mx syn hyp (m, ~

C'x rr s jsinhyp m-, ^ + ™x cos hyp mx ~

Ax et A'x sont donnés par les équations

&A> -^[77f7„-rJ>,cos(,».|)*]

C'-A'>=-%fe/5c°sKH
En introduisant ces valeurs dans les équations (23), on trouve

V, après quoi, en effectuant la simple addition indiquée dans

l'équation (17), et en rassemblant convenablement les termes,
on obtient la valeur de la vitesse cherchée v telle que l'indique
la formule suivante :
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f 2mxAcos(mxyj j
v =~s\ —— — (Rx + R',)

x=oLmx + sin nix cos m>. J

^" TI Z|Acos(mx-i-)c?2; 1

Rl U
°

rS + mS [COS^!)-|COShyP(m!)]J

I Z'pCosfmxT-ldz 1

Cette formule donne clone la vitesse en un point quelconque
du canal ; elle est tout à fait générale et absolument exacte si
les lois sur les frottements externes et internes dont nous sommes

partis sont exactes.

La valeur générale de v prend une forme plus simple si l'on
suppose que Z,A et Z',» sont développés en série comme suit :

Z, rr 2 [ z,-,. cos(mx £)] 2 (Z„.

(26)

Z',z=2 [z',x cos(mx|)] rr - (Z',-,.

Zf.1. et z'px étant des constantes. On peut déterminer ces
constantes comme nous avons déterminé w.^x et l'on trouve alors que:

(27)

v=hi 2 [77+^ [cos H) -1cos hyp (mi !)]] +

+h'2 [^^[sin(^!)-Ssinh^Km'l)-]j
Les 2 doivent s'étendre sur tous les g. et sur tous les X de oà^.
Remarquons que pour des valeurs très grandes de l'indice X,

on a

m-,, zz 'In.

Ceci nous montre que les deux séries dont se compose v doivent
rapidement converger, d'autant plus que, pour que les formules
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(26) aient lieu, les Z.iA doivent former des séries convergentes en
les ordonnant d'après le 2e indice.

Cas particulier. — Supposons que la pression p ne soit pas
fonction de l'ordonnée y; nous pouvons alors poser:

r,, zzr\ 0

2Z»=zZzzP

où Z est une fonction quelconque de z, et les formules (24 et 25)
donnent :

vzzzz 2A
Jho'[I

Zcos(mx4)d2 IJo \ h) z\\, B / h\]\
—; 7~- \Cos mx-r 1—j^-coslivo mx-l I 1

mx(mx-l-sinmxcosmx) \ n/ L Cx \ J//JJ

/i

Ce cas particulier ne pourra guère se rapporter à un glacier,
car l'effet des frottements contre les moraines latérales peut en
général être négligé, ce qui se traduit dans nos calculs par
q 0 et B 0 et l'on voit que v n'est pas fonction de y; or,
cela est contraire à toutes les observations faites jusqu'ici. Nous
devons cependant nous étendre un peu sur ce cas spécial qui
nous permettra d'établir la formule générale du débit du glacier.

Supposons que non-seulement p ne soit pas fonction de y, mais
qu'il ne soit non plus fonction de z, en d'autres termes, qu'il ne
varie qu'avec x ; Z P devra être regardé comme constant dans
la formule ci-dessus, et si nous faisons en outre 2 0, elle
devient :

x-xX sinwxcosl mx-r
Vzzlh*P~2

x=oj_mx2 (mx -f- sin mx coswix)_

Cette formule peut être mise sous une forme très simple; mais
les mx étant les racines d'une équation transcendante, sa
transformation directe n'est pas très facile. Par contre, on trouve
aisément la forme finie de v en intégrant directement l'équation
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(dans laquelle on suppose P constant) avec les conditions (4, 5,
6, 7) dans lesquelles nous faisons q 0 et qui sont :

dv
(4) pour z rr 0 — rr 0

dv
(5) pour z zzz h K — + fh cos a î; —0

dv
(6 et 7) pour?/rr±y0 — rr 0.

On voit immédiatement que l'on peut satisfaire à toutes ces
conditions avec une fonction v de la forme

a + bz*

et si l'on détermine les coefficients a et b, on trouve

P/_2K
V J\fÄoJd + h-

ou en introduisant la valeur de s donnée par la formule (15)

•=MK)-G)1
Cette expression une fois trouvée, on vérifie aisément qu'elle

est bien égale à la première établie ; il suffit pour cela de la
développer en série suivant les

z
cosImKj

ce que l'on fait sans la moindre difficulté comme nous l'avons
indiqué plus haut.

Revenons à la formule générale (25). Si nous voulons l'appliquer

à l'étude de l'écoulement des glaciers qui n'ont pas de

changements brusques dans leur direction, nous pouvons sans
inconvénient faire abstraction du frottement contre les moraines
latérales, c'est-à-dire contre les faces latérales du canal dans

lequel coule la glace ; nous pouvons donc poser

qzzO.
La formule (25) n'éprouve aucune simplification. mais on a par
contre :
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C'x — m-x cos hyp (m,
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Bx rr — r.*sin (r.xy

B',= r',cos(r',y-£

h.
A

h.
h

Il est bon de remarquer que la supposition q 0 entraîne
dv

d'après les équations (6 et 7), pour le bord du glacier : — =0,
8y

la vitesse v pouvant, elle, du reste, avoir au bord du glacier une
valeur quelconque.

La formule (25) ne peut évidemment pas être appliquée dans
toute sa généralité à l'étude d'un glacier ; il suffira même
probablement dans toute application de considérer une ou deux
fonctions Z^ et Z\. (formule 10) et il suffira de même de prendre
peu de termes pour la sommation par rapport à X, vu que cette
série est très convergente. On entrevoit ainsi que la formule (25)
doit pouvoir être transformée et ramenée à une forme beaucoup
plus simple qui permette de l'appliquer à des observations faites
sur la marche d'un glacier. Nous laisserons ici cette transformation

complètement de côté, nous réservant d'y venir plus tard
s'il y a lieu et nous passerons directement à la recherche du
débit qui est le but principal de notre calcul.

DÉBIT, VITESSE MOYENNE

Les formules (25 et 27) donnent la vitesse en un point
quelconque d'une section transversale d'un canal rectangulaire dont
la largeur est 2y0 et la profondeur h; si nous appelons U le
débit du canal en un point de cette section, ou autrement dit le
volume de la glace qui traverse cette dernière pendant l'unité de

temps, nous savons que

j vdzdy.
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Remplaçons v par sa valeur tirée de l'équation (25); nous avons

Z \ /» + -/„

(Rx + R'x) dy
X rx>

\Jzz4rh2
X=0

/mxCosim-.-Adz
A

o mx-(-sinmxCOsmx«ymx + sin nix eus -nixv —y«

Effectuons d'abord l'intégration par rapport à z; il vient :

sinmx1=00 r-
zzih* 2 \- ¦f+y°(Rx + R'x)^.l

¦ J — lh -ix=o \_m.i + sm mi. cos mx J -y.
I ci, nous sommes obligé de faire une restriction pour arriver à
un résultat simple : nous négligerons le frottement contre les
moraines latérales et ferons en conséquence :

q=0.
Opérons maintenant l'intégration de Rx dy par rapport à y en
employant les formules (25 et 28); nous trouvons après réductions

:

ntK-vf -1™=M"-1)]iy=

'(Af)sin
2-%(mxs + rvs)

m-.
r y±

* h

Substituons cette expression dans la valeur de RA ; il vient

7>i „u
r+v.

J —y«
Rx dy rr y0 2

¦ / i/o

r y±
z.,.

cos(mx|)

m-,.
dz.

Par contre

f+y«
R'xcfyrrO.

U a donc pour valeur

sin r,
!/o

-Z,,
rv:~

5
x=o

sinmx cosi mx-Hofz

mx2 (mx + sin mxcos nix)
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Appelons S l'aire de la section du canal ; elle est égale à

S rr 2?/0/,.

Nous avions posé

(10) P=^[z,cos(^|)]+^[z',sin(rV|)]
Si nous considérons une valeur déterminée de z, la valeur
moyenne de P pour toute la largeur du canal est :

PzzJLf+v'Pdyzz 2
^2/oJ -y» t.

sm

Z,

ry°
Ai

r*x
En introduisant les notations S et P dans la valeur de U, celle-ci
devient :

(29) U 2ASJ o >.=c

sin nix cos mxjjdz

ni,. (mx + sin nix cos nix) _
L'épaisseur d'un glacier est toujours très faible relativement

à sa largeur; les variations de vitesse et de pression
suivant l'épaisseur z seront donc peu sensibles et auront beaucoup

moins d'influence sur le débit que les variations
suivant y. Nous ne commettrons donc pas une erreur sensible en

remplaçant P qui est fonction de z par la valeur moyenne P de
P pour toute la section S. Cette hypothèse revient à supposer que
la pression ne varie pas avec z tandis qu'elle est une fonction
quelconque de y. Ceci étant admis, nous pouvons efl'ectuer
l'intégration par rapport à z et nous avons :

2 sin1 mA
(30) U rr h* S P 2

'

\ asm'^ 1
x=ç\mx (m,. + sin mx cos mx)J

Rappelons que les nix sont les racines positives de l'équation (15)

m tg m rr s.

La série renfermée dans la valeur de U est donc une fonction
bien déterminée de la seule variable s et nous pouvons poser

2sin2 mxA X r-

x=o L mx5 (nix + sin nix cos m%)_ 9 00-
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Cette fonction est très facile à déterminer au moyen des données

mêmes de notre problème. Pour y arriver remarquons
d'abord que l'équation (30) est absolument exacte comme
formule mathématique résultant de l'équation (9), si P est
indépendant de s, et à plus forte raison si P est constant. Mais pour
le cas où P est constant, nous avons trouvé une autre forme de v,
savoir :

•=w(*4)-an-
Nous tirons de là une nouvelle expression du débit :

dy I vdz rr
—y» J o

M*y0p(l + l
\3 s

Cette valeur de U doit être identique à celle qui est donnée

par la formule (33) ; il s'ensuit que :

1 1»«=4 + 7

quel que soit (s). En substituant cette valeur dans l'équation (30),
elle devient :

R htsP(ï + ]ù-

Mais d'après la formule (15),

fh*cos a

Par conséquent :

u sp(^ + 73\3 /cos a

Nous avions posé

(8) sin/ -^zzKP.v ' gJ dx
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dr)
Si donc, nous représentons par p' la valeur moyenne de — nous

aurons :

P' •

sin a — -±—- rr K P
g*

et U est en définitive représenté par la formule

(31) Urr (£+ jJ—) (âna-jQ S.
\3K /cosa/ \ g Al

Le quotient du débit U par l'aire S de la section donne la
vitesse moyenne v * ; donc

(32) v * rr (£ + r^—) (sin a - -H
\3K /cosa/ \ giz/

La simplicité de ces deux dernières formules est remarquable,
étant donnée leur généralité; pour les établir, nous avons en
effet supposé que la pression était une fonction quelconque de y,
mais il est vrai qu'elle ne variait pas avec s.

Nous allons appliquer ces derniers résultats à l'écoulement de
la glace renfermée dans un canal rectangulaire droit de section
constante S. Soit (fig. 5) ABCD A'B'C'D' ce canal. Nous
représenterons par l sa longueur, par h sa hauteur, par s la surface
ABCD, par a son angle d'inclinaison. U étant son débit, il est
exprimé par la formule (31) :

(31) Vzzzf—ft-^—)(s[aa-P-v ' \3K /cosa/ \ g/i
Rappelons que / et F g j K sont les coefficients de frottement

interne et externe, J la densité de la glace et g la gravité.
Dans notre cas particulier, nous savons que toutes les quantités
qui entrent dans la formule ci-dessus, à l'exception de p', sont
des constantes; p' doit donc lui-même être constant. Il s'ensuit
que si nous représentons par P, et Ps les poussées totales qui
agissent sur les extrémités ABCD et A'B'C'D', p' est donné parla

relation :

P —P
sP' -V^

et la formule (31) devient
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(33) U rr (£ + -J-) (Ssina- F* ~P'
V3K /cosa/ \ gJl/

La vitesse moyenne aura alors pour valeur

(34) V*=(J*+ *-) (an«- Pl~P'
\3K /cosa/ \ n /

où w représente le poids total de la glace renfermée dans le
canal.

Si la glace était un corps absolument solide, c'est-à-dire
indéformable, K serait infini et U serait donc inversement proportionnel

à/.
Si la glace, étant considérée comme une masse visqueuse, ne

glissait pas, c'est/ qui deviendrait infini et la vitesse moyenne
serait dans ce cas proportionnelle au carré de l'épaisseur h de la
glace.

Dans les applications, c'est toujours un cas intermédiaire
entre ces deux qui se présente.

CONCLUSION

Si l'on veut appliquer la loi d'écoulement que nous avons
établie à l'étude de la marche des glaciers et obtenir un bon
résultat, on se trouve arrêté par l'interprétation mathématique de
deux phénomènes qui n'ont été jusqu'à présent qu'insuffisamment

étudiés; ce sont le tassement des neiges formant le névé,
tassement qui est produit en partie par simple compression et
en partie par le « regel » et l'ablation qui fait particulièrement
sentir ses effets sur le glacier. S'il ne s'agit que de déterminer
la vitesse moyenne, on peut faire abstraction des différences
de vitesses occasionnées par l'ablation et se servir uniquement
de la vitesse moyenne de chaque filet du glacier ; même s'il le
fallait absolument, il serait possible de tenir compte de ces
différences. Il n'en est plus tout à fait de même du tassement des
neiges; ce phénomène ne peut pas encore à l'heure présente être
soumis au calcul et la seule issue qui se présente à nous est,
comme nous l'avons déjà dit plus haut, de passer outre, c'est-à-
dire d'admettre que le névé est formé d'une matière incompressible

et qu'il a pour toutes ses sections la même vitesse moyenne.
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Nous obtiendrons par ce moyen la théorie mathématique d'un
phénomène qui se rapprochera beaucoup de l'écoulement d'un
glacier, mais dont les formules ne pourront cependant pas servir
à des mesures exactes sans avoir été préalablement complétées
de manière à tenir compte de phénomènes que nous sommes

pour le moment obligé d'écarter et qui n'exercent pas moins une
certaine influence sur le mouvement.

Supposons le névé de forme rectangulaire et soient l, sa

longueur, ht son épaisseur, S, sa section moyenne, Jt sa densité,
/, et K, ses coefficients de frottement, U, son débit, v, sa vitesse

moyenne, P, la pression totale que la neige exerce contre la
section limite inférieure. Le névé forme un simple canal rectangulaire

auquel nous pouvons appliquer la formule (33) qui nous
donne le débit :

U, rr (AjL+ ^—- (S, sin«, + -j-r).\3K, /,cosa, / V ' g^Ai'
Ici, nous n'avons qu'une seule pression P. Multiplions cette équation

par gjt ll et représentons par M, la masse gjt l, S, du névé,
nous avons :

^.'.U, (^ + ^~7|)(Mf8ta«l + P).

Mais

U.rrS.V,
et par suite

M, vt (£ù + 7-î—) (M, sin a, + P).' ' \3K4 /,cosa,/ v ' i'.»
En faisant des suppositions tout à fait analogues pour le

glacier, et en remarquant que la pression P sur la couche inférieure
du névé est la même que celle qui agit sur la couche supérieure
du glacier, nous trouverions pour ce dernier la formule suivante :

M>v> (lfe + /L^L;)(MiSinai-p)-
Eliminons P entre les deux dernières équations; il vient:

(35) M,«, U.V. ,Tv ' ———H — rr M. sina. + M. sin a..
hft 1 hft_ 1 ' ' '

'
• a- „„ OTZ I

3K, ^cosa, 3K, /Leos "s
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Un certain rapport doit toujours exister entre les vitesses v,
du névé et vt du glacier; sans l'ablation ce rapport serait simplement

l'expression du fait que le débit en masse (masse de neige
qui traverse une section pendant l'unité de temps) du névé est

égal à celui du glacier. Nous ne nous éloignerons donc pas beaucoup

de la vérité en admettant qu'il en est ainsi. Nous poserons
par conséquent :

J, S, v, rr Jî S3Va_.

Cette égalité peut être écrite comme suit :

M, f, M. vt
I, ~ h ~ Q

d'où l'on tire

M,v, zzzQl,

M.v.rrQJ,.
L'équation (35) devient ainsi :

Q
h*- 1 K* 1

_3 Kj /L cos a, 3 Kä f% cos a._

i
rr M, sin a, + M2 sin at

en remplaçant Q par ses valeurs, on obtient les deux formules
suivantes :

v M
N A — sin a, + —ï sin a.lt ^ M,

(36)

at v. M.
Ny rr^isina, + sinas

dans lesquelles :

N
h* i A32 i

3K4 ^cosa, 3K2 fïcosal

Les formules (36) sont le résultat final de nos calculs ; elles

permettent de calculer la vitesse moyenne du névé et du glacier
lorsqu'on connaît leurs dimensions et la nature des matières qui
les composent.
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Pour se faire une idée claire de la signification de ces
formules, il est utile de rechercher ce qu'elles deviendraient pour
le cas où la neige du névé aurait la même consistance que la
glace du glacier et où le névé et le glacier auraient des sections
transversales égales; nous interpréterons cette supposition en

posant

K, rr K2 rr K

fi f. rr f
A.rr K — h

Ma

M,
—

v, rr v, rr v.

Les deux formules (36) se condensent alors en une seule qui
après réductions devient :

(37) v= (^A-A- )sin«
v ' \3K /cosa/

/ et K représentent ici les valeurs moyennes à un moment donné
des coefficients de frottement externe et interne pour tout le glacier

accompagné du névé ; h représente l'épaisseur moyenne et a.

l'inclinaison moyenne du glacier et du névé.

La formule (37) ne donne qu'une idée très imparfaite du
mouvement d'un glacier puisqu'il n'arrive jamais que la matière qui
constitue le névé soit identique à celle dont est formé le glacier.
Si, malgré cela, on cherche à l'interpréter, on voit :

1° Que la vitesse moyenne est indépendante de la longueur du
glacier ;

2° Qu'elle est proportionnelle à la pente du glacier;
3° Qu'elle augmente avec l'épaisseur du glacier et cela d'autant

plus rapidement que cette épaisseur est plus grande.
Ces déductions concordent en gros avec ce que l'on connaît

actuellement du mouvement des glaciers et nous font croire que
les hypothèses dont nous sommes partis sont fondées. Lorsque
les résultats des observations faites sur le glacier du Rhône
seront connus, il nous sera possible, nous l'espérons, de leur
appliquer nos calculs et d'en déduire des données encore incon-
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nues jusqu'à présent, comme les coefficients de frottement,
l'épaisseur du glacier, etc. La formule (25) simplifiée et la
formule (36) paraissent devoir être les plus propres à une telle
application.

Nous ne nous faisons cependant pas d'illusion ; comme nous
l'avons déjà dit, ce mémoire est un premier essai sur la théorie
mathématique du mouvement des glaciers, et comme tel, il ne
peut être que très imparfait, étant donné le peu de connaissances

que l'on possède sur la matière. Il peut cependant devenir le

point de départ de nouvelles études qui donneront la clef d'une
théorie exacte du mouvement des glaciers. Pour arriver à ce

résultat, vu la difficulté de ces études, il faudrait la coopération
de beaucoup de forces. Les recherches et observations isolées
des glaciologistes peuvent sans doute augmenter la liste des
connaissances acquises, mais elles n'arriveront que très lentement
et très partiellement à des découvertes certaines; il faudrait un
concours d'études raisonnées faites simultanément en plusieurs
points et sur plusieurs glaciers et névés. Le C. A. S. est le mieux
placé pour cela et il serait fort à désirer qu'il continuât au moins
les études commencées sur le glacier du Rhône et qu'il prît en
mains les travaux qui seuls pourront permettre d'appliquer et
de vérifier ou de corriger les formules que nous venons de donner,

la phase de crue qui se prépare devant fournir des observations

qui se prêteront mieux à cette application. Nous comptons
sur des voix autorisées pour soutenir son ardeur et son zèle pour
une cause d'un si grand intérêt pour la science moderne.
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