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FONCTIONS ABÉLIENNES DU GENRE 3. 157

Dans la théorie des fonctions abéliennes, on a rarement l'occasion

de vérifier une formule générale par le calcul direct. Aussi
la saisit-on volontiers, lorsque, comme c'est ici le cas, elle se

présente tout naturellement. En effet, on est maintenant en état
de vérifier la formule II, p. 114 de l'ouvrage de M. Weber, à
savoir

[h (j dith + j duA \ rr L„ -w2, - û).5 I 1

où a, ß sont les zéros d'une fonction abélienne Vx,x', ß' les zéros

d'une autre fonction abélienne Va;' et wi, w2, w, un système de

périodes à la caractéristique (w) rz (Va;) + (ftx').

Vérification pour Y\t Y9-

Dans ce cas

(oft (YT + (Y9) 0 + 0 0,
l i.i.i i
2 «i g «h + 2 «i2 + g a« =— g* (2—0-

-^(3+0 + -^«(3+0=0

11111 1

2 «,= ¦§«»,+2«*s+gajs+g;7"^— -Jq ?rt(3+t) —

2 1 111~~ TÖ^^^O — -^^(2-0+2^=—i" + 2?rt

11111 1

2 »s g «31+ 2fl52 + 2«33+ g71* -Jö-^W+O—

et
III -ir,- II 11 -ie i* (»eia

dt/hzz J
7

d«ft + J
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Or, il est à remarquer qu'il ne serait pas exact d'écrire

/e~
«¦* në~ iî%l peîs"

III CÏ2T-1 IH0 UI

vu que les limites inférieures, 0, dans la surface de Riemann
adoptée, ne coïncident pas, mais sont séparées par des lignes

de passage. Cette remarque s'applique également à ^t<h et,J i
n e — « "l

en général, à toutes les intégrales de ce genre. Voici comment
on peut procéder. On fera décrire à la variable g une ligne

7

continue, partant de la limite inférieure eï?"' dans la 3",e nappe
et allant d'abord jusqu'à 0, puis de 0 à +1. Arrivé en +1, g
contournera ce point un certain nombre de fois jusqu'à ce qu'il
arrive dans la nappe voulue, ce qui est permis, attendu que les
intégrales relatives à ces courbes infiniment petites sont
négligeables. Ensuite z ira de -+-1 à 0 et enfin de 0 à la limite
supérieure e~ 42*'. De cette manière on obtient

,i ,.o f.e~ î5''po iti ..o ce 42

V, zz du. + du,(-) + dw,(+) + dw, +
7 J 0 l 0

nieïs« ivu m m

il i
..o ri (.o feiz*

+ J du, + J d«4(+) + J dti4<-) + J c/t«, zr
we-rA n° m4 n0

e-^ „eil* re^ri pe-«*1
zr[ dw4 + dît,] — [ d«, + dw,] +J o o o o

m il m n

+ fWt-)— f1dtt,(+)+ f1dM,(+)- f1dMl(-)
,v° m0 n0 m0

-1^(7-0 + 1^(3+0+0-^(2-0-
1 1 12— 2Q«(3+0 —2QWt(3+0 -g7T—g«!
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et de même

Les valeurs trouvées peuvent s'écrire

i; 12.
Vs

V,

1 1 4 7
7r+ 2^ + ~\T~-l)m'9

1 1 2 1

-7r+-yrt ft- -n --ni.
La formule en question est vérifiée si dans les trois intégrales

les expressions soulignées forment un système de périodes. On
peut donc poser, en supprimant le facteur rr

12 1

— ¦=¦ — -= izrm,t'H— (aa., + ba,, + ca,,) zr
5 5 n '

2 11rrm,t—-(2 —0 a—~i(3 + i) b ft-- (3 + i)c,

4 7 1

g
— -g i rzm3t+ - (aa31 + ba,*, + cöS3) zz

1 2 1

— mft— -t(3 + 0«— -^(2 —i) 6— -(2 —i)c,5 5 t>

9 1 1

- — - i —mzift- - (aau + ban + ca33) zz

zz m,i+ I (3 + 0 «— | (2 - 0 b — | (3 +1) c.

Les nombres entiers a, b, c, m„ tw2, tw3 doivent satisfaire aux
six équations résultant de la séparation des parties réelles et
imaginaires qui, après multiplication par 5, prennent la forme

-Irr— 4ö+ 6 +3c
4= a—ib — 2c

2rr 3a — Ib — 6c

— 2 rz m, + 2a - 36 + c,

— 7 rr m2 — 3a + 26 + c,

— lrrwt3+ a+ 6—2c.
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On en tire
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a zr

m4 rz-

0, b zr—1, c rzO,

-5, m2zz — 5, m, o.

Vérification pour \ g" Y9' •

On trouve successivement

(•) (YT + (Y<f) O + O - O y

1 11 1.1-M,--TU, -ft),
1

2 3 «"•
IV ?;/• ei-i- e 42'

J»
e 42 /^ e 42 p ei2 ^»e 42

dw, + d«, [ dw, + dw,]
1 " 1 J 0 «0n e-«7-1 nie«"' lv i"

fe
12 l n e™ y A
du, + dw,] + dw/'-) — du,(+)

0 »/,0 î/T 0 */, 0

Ì7r(l-0 + ^^(3+0+0— j^?r (2 — î) — lyr — Itfî,

V,

V,

1 1

5*-W™
1 1 3

3 3.1 13.
1

V3 TS^+î'«-- ä71 +-H7r + -E7r/.
10

lzz—4a+ 6+3c
1 zr a—46—2c

3 zr 3a—26—6c

2

-3=»t,+2a—36+c
-3=mä—3a+26+c

lzrm3+ a+ 6—2c

arz—1

6 rz 0

crz—1

rn, zr 0

m2=—5

m, zz 0
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Vérification pour Y9" Y9"•

Il vient

(-)=(Y¥)+(Y7')=a+a=(Z),
1 2,3.1 3 3
'"•" -n+ï?.711! \HmA= — g-w +Tr\m>2"1~~5'" ' 10""' 2~2~" 5'" '10

1

2 3

111 1L.; iv __5.r;

s'-ïô^'
(•e

i2 ntt ai r>e u ne 12

dw, + j du, rz [ j dw, + I du,]
•' 7 • 1J A «^ 0 ^* 0

m eï2*1 He-îi1" m iv"

pCT3M ne~^r'1 ni ,.\
— [ dw, + dw4]+ dw,<+'— d«,(+)

« 0 ,•/ 0 •' 0 ft 0

:±nA+ i)+±7rA+ i)-^n(3+ i)-±ni(3+ i)

1 1

5W-1Ö7"'

1 1 2,3.1 2

1
•

V2 zr ^~Tom:
3 3 4 2

5^+10^+5^-5^'
2 3 4 1 2 1

V3z=- -n- mrn=- -„--niA-n^^m,
-lzz—4a+ 6+3c
4 zz a—46—2c

2 rr 3a-26—6c

-2=m,+2a—36+c
-2zrm3—3a+26 + c

-lrrw5+ a+ 6—2c

a zz 0

6rr—1

C rr 0

ttt,rr— ,j

Wî2 rr O

m- rz 0
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Si fa:,, VE, ; Ka;,, VC, sont deux couples de fonctions abéliennes

appartenant au même groupe, c'est-à-dire satisfaisant à la
condition

(/a^)'zz (YxÂl),

une fonction de la forme

/«P zr a, YXi + a2 /«j J2,

où a, et a3 désignent des constantes, a été appelée par M. W.
(p. 114) une fonction-racine (Wurzelfunction) du 2'1 degré et du

2d ordre. Sa caractéristique est (/*P) rz (/a;, J4 et elle possède
quatre zéros du premier ordre dont un est arbitraire. Les

constantes a,, as peuvent être déterminées de manière que )' *P s'annule

en un des zéros x, ß d'une fonction abélienne/a, par
exemple en x. M.Weber démontre (p. 116 et suiv.) qu'alors les

trois autres zéros c,, c3, c3 de cette fonction /<P sont en même

temps les zéros de la fonction #[oi) diih), à la condition tou-
a

tefois que (m) — (/«P) + (Y~q)- Lorsque (m) est une caractéristique

impaire, Y *P dégénère en un produit de deux fonctions

abéliennes aux caractéristiques (/g) et (/*P)+(/a)- Il s'ensuit,
conformément à ce qui a été dit précédemment, qu'une fonction

&(») I dm) impaire s'annule pour 'Ç x et en outre pour les

zéros de la fonction abélienne qui porte la même caractéristique.

Détermination de c°,, c0.,, c°3.

Parmi les 36 systèmes de points c,, c3, c3, répondant aux
36 caractéristiques paires, il en est un qui mérite une
attention spéciale. C'est celui qui représente les zéros du

Ü- fondamental it- du\ft. Il correspond à (oft (°°°), soit
a.

(Y*P) (Yq) el sera désigné par c",, c%, c\. On peut le trouver
de la manière suivante :
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