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FONCTIONS ABELIENNES DU GENRE 3. 157

Dans la théorie des fonctions abéliennes, on a rarement 1’occa-
sion de vérifier une formule générale par le calcul direct. Aussi
la saisit-on volontiers, lorsque, comme c’est ici le cas, elle se
présente tout naturellement. En effet, on est maintenant en état
de vérifier la formule II, p. 114 de 'ouvrage de M. Weber, a
savolr

(i) = (f o)

ol e, (3 sont les zéros d’une fonction abélienne Vz,o’, 3’ les zéros
d’une autre fonction abélienne V" et w,, w,, w, un systéme de

périodes & la caractéristique (w) = (VEE ) + (Vz?).

Vérification pour ]/5‘7 Vg.

Dans ce cas
(@) = (V) + (Vg) = (o) + (T10) = Goa) »
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Or, il est & remarquer qu’il ne serait pas exact d’écrire
HI i

(T

I eﬁ"l 110 i ¢

vu que les limites inférieures, 0, dans la surface de Riemann

adoptée, ne coincident pas, mais sont séparées par des lignes

nm 44 _.
eiz™

de passage. Cette remarque s’applique également & j duh et,
e 1
en général, a toutes les intégrales de ce genre. Voici comment
on peut procéder. On fera décrire & la variable z une ligne
continue, partant de la limite inférieure ez dans la 3™ nappe
et allant d’abord jusqu’a 0, puisde 0 & 4+ 1. Arrivé en 41, 2 con-
tournera ce point un certain nombre de fois jusqu’a ce qu’il ar-
rive dans la nappe voulue, ce qui est permis, attendu que les
intégrales relatives & ces courbes infiniment petites sont négli-
geables. Ensuite 2z ira de 4+ 1 a O et enfin de 0 & la limite supé-

rieure e~ 127, De cette maniére on obtient
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et de méme
v, _130 1—967ri, V= — 1’I-|—-—7Tl
Les valeurs trouvées peuvent s’écrire
vV, :H%n_——%mj,
V,=—— -%ﬂ:—l— %mﬁ + %n——%ﬂri,

La formule en question est vérifiée si dans les trois intégrales
les expressions soulignées forment un systéme de périodes. On
peut donc poser, en supprimant le facteur =

1 2.

— 5 gz—m z—l— (aa“ + ba,, + ca,5) =

=m z-——(@—z)a-~—-z(3—|—z)b+ (3+1¢)c,

4 7. . —
—m z-_lz'<3+i>a—g<°’-—z“ h— 52—
=myi— < 1 —=(2—19) 5 )e,

: L =M+ — (cmm + bas, + casy) =

: . 1 . 2 ;
—=my+ -5(3 —|—z)a-——5(2—z)b——g(3+z)c.

Les nombres entiers a, b, ¢, m,, m,, m, doivent satisfaire aux
six équations résultant de la séparation des parties réelles et
imaginaires qui, apres multiplication par 5, prennent la forme

—1=—4a+ b+3c| —2=m, + 2a — 3b + ¢,
4= a—4b—2% | —7T=m,— 3a+ 20+ c,
2— 3a—20—6¢c | —1=m,+ a+ b— 2.
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On en tire

a = 0, b =—1, ¢ =0,

m,=—2>5, my=——5, m,=y.
Vérification pour }J'¢° Vg’

On trouve successivement,

@ =0g) + Vg =0 + Got) = (oo »
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— 3a—20—6¢ 1—=m,+ a+ b—2jc=—1|m; = O
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Vérification pour V¢° Vg”.

I1 vient
(=Fg)+ Vg") = (o) + Gor) = Goo)>
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Si Vay, VE; Va, , VE, sont deux couples de fonctions abélien-
nes appartenant au méme groupe, c’est-a-dire satisfaisant & la

condition
V&) = (Vwk,),

une fonction de la forme

Va: ay ]’fxa S ’/55'2 &>
ol a, et a, désignent des constantes, a été appelée par M. W.
(p. 114) une fonction-racine ( Wurzelfunction) du 24 degré et du

24 ordre. Sa caractéristique est (@) = (Vx, &) etelle possede
quatre zéros du premier ordre dont un est arbitraire. Les cons-

: : .. 4 5 i
tantes a,, a, peuvent étre déterminées de maniére que J & s’an-

nule en un des zéros «, 8 d’une fonction abélienne }/ q, par
exemple en «. M. Weber démontre (p. 116 et suiv.) qu’alors les

trois autres zéros ¢,, c,, ¢, de cette fonction ]/ @ sont en méme
temps les zéros de la fonction Y, (Jﬂ; duy), & la condition tou-
tefois que () = () @) + (}/q). Lorsque (w) est une caractéris-

b i * [_ 4 ” a * 2
tique impaire, } & dégénére en un produit de deux fonctions

abéliennes aux caractéristiques (]/a ) et (Vﬁf)+(]/5) Il s’ensuit,
conformément 3 ce qui a été dit précédemment, qu’une fonction

Ha) (J“ dun) impaire s’annule pour £ =« et en outre pour les

zéros de la fonction abélienne qui porte la méme caractéris-
tique.

Détermination de e°,, c°,, c°,.

Parmi les 36 systémes de points ¢,, ¢, ¢,, répondant aux
36 caractéristiques paires, 1l en est un qui mérite une at-
tention spéciale. C’est celui qui représente les zéros du

& fondamental 9 ( fgduh). Il correspond & (w)= (), soit

000

@)= (VE) et sera désigné par ¢y, ¢"y, ¢,. On peut le trouver
de la maniére suivante :
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