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FONCTIONS ABELIENNES DU GENRE 3
et pour controle

WE)=(), VE)=(9), (E)=(0), (YE)=(, (Y =(),
W=, (=), W=, ()= (o

ou ou
On est maintenant en état de dresser le tableau suivant . con-

b
tenant les 28 fonctions abéliennes avec leurs caractéristiques et
leurs zéros (voir p. 142 et 143 ci-apres)

141

Transformation des intégrales w,, w,, W,

Avant de continuer cette étude, il est bon de soumettre les in-
tégrales de premiere espece a un examen un peu plus attentif

B d
“=Jyi=s

On peut d’abord transformer I'intégrale proposée au moyen
de la fonction

2
—gt —,
¢ S
Il vient successivement
il C 1 _%“i dg
BB e, S o , dz—e °
Vi Vi1

(1—*

La substitution

’ )\
donne ensuite

dy
o= [
Vi

Pour ramener cette intégrale elliptique a la forme normale
de Legendre, on posera en premier lieu
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FONCTIONS ABELIENNES DU GENRE 3.
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y—1 o 2dy
g d"""(y+1)*“
d’ou il suit
_ dy iy ™ dy
Ol b e SEN iy oy ey

puis

y=(2+ 1)cotgy, dy=—(12+ 1) 2%

sin*g’
ce qui conduit & la forme
— 8 j’ dy
V(V—-l- 1)*cos’g -|—(V°)—~1)251n (p

) J g _
Y2414 V"cisin‘%,o -

V_+1f\/

( ) sin®g
V9 41

Afin de transformer cette derniére intégrale en une autre dont
le module est plus petit, on peut employer la substitution de
Landen, soit la formule

g dy N
— Flie,g) =~ "Rk, o,
[‘Vl_kgsingg) ( q]) 9 ( n¥ )7

dans laquelle les amplitudes ¢ et ¢, sont reliées par I'équation
tg(g,—g) =k tgg, ot k' =) 1—k*

et le nouvean module



FONCTIONS ABELIENNES DU GENRE 3. 145
ces formules donnent

kiz% et w, = —

Qf\/ 1,
1—5sm*gpi

—d

Pour faciliter la détermination des limites, voici encore une
fois la série des substitutions employées :

.!.—f Z T -'—i’rb l_l_r
£ ——,r—=e * [, y= !
) ? y 1___7},!

Y
cotg @ = ————, tg( — (Vg —1)%tgq.
89 =75 7 &1~ g)=(2—1)

Ceci posé, on trouve, par exemple, en désignant par =o le point
a Dlinfini de l'axe des X positifs et, d’'une maniére analogue,
par e.> le point a I'infini de la droite y=x du coté des X po-

sitifs :
(lr
‘/ V1 —g“ Vi r" —
. B dy dr
“"f Vﬁ?ﬁf i
0 1

. G w 1
Si, dans la derniere intégrale, on remplace » par —, on re-
7

marque que

par conséquent

Aux limites 0 et 1 de » correspondent les limites 1 et > de y,

arctg (V )4 1) et 0 de . Reste encore & déterminer celles de o,.
A D'aide de 1’équation

tg(g,—y) = (V2—1)*igg,
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dont on tire .
14(V2 4-1)
1—J2—1)%tg*¢

tgg, = tgq,

- 1 Fr
il vient o, = 57 pour tgcp:(}' 241) et 9, =0 pour o =0, de

dy f
f\/l—sm ¢, \/1———5111 ¢,

sorte que

rul K1

Wi

IV
En introduisant s comme variable d’intégration, on a immé-
diatement

s3(ls ds
= V11— d=— ——etw,=—— | ———.
\/ (1—s")2 - Vi—s"

Puis la substitqtion

s=—cosq, ds =—singdg
donne

1 dg
_@fw11.2‘
‘—-QSID @

Il s’ensuit, par exemple,
1

mﬁf : J ‘?___%&.
\/(1 \/1——5811’1 ¢ -
" — dzm
S B Syl

Il suffit de poser
z=cosq, dz—=—singdyp
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pour ramener cette intégrale elliptique a la forme normale

Wy — — VQJ- —

—sm g

On en tire

f =75 \/f%*““‘ =75

Ainsi, on vient de trouver

1
KE:K‘%:—V_@KP

Valeur numérique de K,.

En vue d’une représentation qui sera faite ultérieurement, il
est utile de connaitre la valeur numérique de K, . Pour la dé-
terminer, on peut se servir de la méthode de Gauss.

Si Pon pose, pour abréger,

: 3
a, b, .':..f
A 2 ) Vatcos’y + b*sin’g

et que l’on soumette cette fonction » fois de suite & la transfor-
mation de Landen, il vient

1 1
f((&,b, @):E f(aubnq)i): é@ f(a-nbzagoe):"'

1 .
— @ f(alnbnsq)n)i ou

; __ b
=g +b), b=Yab , tglg,—9)=-tegy,

1 b
= 9 (a,+ b‘), by=1 a,b,, tg(g.—9,)= '&i tgg,,

b,
(a + b )a b aﬁbz ’ tg (qu,'_‘ (f'e): E: tg 2%

wl -

11
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