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et pour contrôle

<^)=o> m=o, m=o,m=o, (v^o,
vVâmd, m=a> (n/pd=o. (^"r.)=o.

On est maintenant en état de dresser le tableau suivant,
contenant les 28 fonctions abéliennes avec leurs caractéristiques et
leurs zéros (voir p. 142 et 143 ci-après).

Transformation des intégrales w,, w8, w3.

Avant de continuer cette étude, il est bon de soumettre les
intégrales de première espèce à un examen un peu plus attentif.

dz
w,>. / \/(l-2*)3

On peut d'abord transformer l'intégrale proposée au moyen
de la fonction

s

Il vient successivement

2 zz e —, s zz y-, dz ei / l - ¦— \ / t — - :

yi-£* vi—? (i—O"
UC dt

w. 1
v/i—t»

La substitution

donne ensuite

'Ji=JYm>-
Pour ramener cette intégrale elliptique à la forme normale

de Legendre, on posera en premier lieu
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2/-1 — Vdy
d

1V~y+V "''-'(y+l)v
d'où il suit

- Ç dy ç dy

'hif+ëf+ï- 2J /[*/8+(V2+i)2][t/2+(Vf-i)s]

dip
"g y, «y ——vai- Vj

ce qui conduit à la forme

y (V2+l)cotggp, dyzr-^+l)^,
(/y

— \A I -,_'" "J /0/2 + l)2cosV +(/2 — \f%m\

rr -Vf f7^==yJ K(V2 + i)2-/(V2 + I)2—4 Vising
Vf /" dcp

n+ V l—( -1 - Slll'(,
Vï+l

Afin de transformer cette dernière intégrale en une autre dont
le module est plus petit, on peut employer la substitution de

Landen, soit la formule

j ri-rsin> z
""o

dans laquelle les amplitudes cp et <p, sont reliées par l'équation

tg(îPi—<p) — k'tg<p, oh k' =} l — k-

et le nouveau module

Ä'-l + fc'

Appliquées au cas actuel, où

4

9}'9 Vç 1

;, _~L- /•' — -1 lh — ti=. h — r~z
K2 + 1 F2 + I
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ces formules donnent

1 1 r dcp
£,rr - et to, ^-g-+2 I — 2 / / îJ y/l-isin^,

Pour faciliter la détermination des limites, voici encore une
fois la série des substitutions employées :

y \*i h* z -A-A 1+»/i e - e ^=,V e ^y=^
COtgfpzz—7—AgAi—y (]'$— i)2tgy.

12 + 1

Ceci posé, on trouve, par exemple, en désignant par -*> le point
à l'infini de l'axe des X positifs et, d'une manière analogue,
par e.=o le point à l'infini de la droite y x du côté des X
positifs :

y — i
dz

- ft i di*
— l dt] _

J v7(i-^r J Vl-^ J yi+7
0 0

1 „co
d/7 / cfy

Kl+ry* / Vl+lj-*

Si, dans la dernière intégrale, on remplace r, par—, on re-
"/?

marque que

r drt Ç di]C dr, Ç

Jïl+rf JVl+7
par conséquent

K-^f1 di<

Aux limites 0 et 1 de r, correspondent les limites 1 et =o de y,
arctg (/2 +1) et 0 de cp. Reste encore à déterminer celles de cp,.

A l'aide de l'équation

tg (</>,-</>) (/2-l)*tgy,
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dont on tire

_ l+(f2+l)*
tgyi-1_(y2-i)2tg2çP gy'

il vient cp, — 7rpourtgcp=(l 2+ l) et cp, O pour cp 0, de

sorte que
o y_

1\ /* %i _ /*2 ^!/ IN

1—^sin2g, J yi—-sinV,

J2G?2
,7(1-2*

En introduisant s comme variable d'intégration, on a
immédiatement

./L i j ^ds Ç ds

2zz/l-5*,d2z=-1-?-ett,îzz-jï(i-/)l 2~ jyr
Puis la substitution

s=cosy, dsrz— sinyrfç/)
donne

1 r. dip
wa -n\ aI~\1—-sin'2<p

Il s'ensuit, par exemple,
i

d2
JÖ2

Il suffit de poser

zz cos ç), dz zr — sin y rfy
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pour ramener cette intégrale elliptique à la forme normale

dip
w- ^•fyi- 1

2-sin>
On en tire

i

K Ç dz 1 p dxp^ —JLir
J yi^Aft - n\ J7~T~t n v
0 ° y 1—-^sury

Ainsi, on vient de trouver

K* ~~ Ks ~~ Ta Kl'

Valeur numérique de K,.

En vue d'une représentation qui sera faite ultérieurement, il
est utile de connaître la valeur numérique de K,. Pour la
déterminer, on peut se servir de la méthode de Gauss.

Si l'on pose, pour abréger,

dipf{a,b,ip)-\ t
v Y a. cos2 ip + is sin8 <p

et que l'on soumette cette fonction n fois de suite à la transformation

de Landen, il vient

1 1

f(a,b,ip) - f(ai,bl,9i) jp f(a„ bt, 9l) rr...
1

gE /'(«nA.tpn), OÙ

(ti ^(a + b), bi=zY"âb tg(îP, — q>) zz-tgy,

«i «(«* +*i)i &i=/«Â, tg(ys— y,)zz-Hgcf4,
-^ w4

«3=ô (a* + ^)' &«== /«A tg(y3—çp.Jzz-^tgîpj,

il
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