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FONCTIONS ABELIENNES DU GENRE 3. 113
D’aprés Riemann, le déterminant
A, A, A®
A0, AL, AB
A, AQ, A8,

doit étre différent de zéro. Cette condition essentielle est encore
remplie, attendu que

2(1—)K,, 0 . 4K,
— 2K, , —2(1+4+) K, — 2(1—)K, | =—32 2+) K K.K,
9K, , 2(1—)K,, 2(14+9)K,

Intégrales normales de premiére espéce.

Les intégrales de premiére espece u,, u,, %, sont dites nor-
males quand elles possédent les modules de périodicité sui-

vants :
Le long des coupures a, a, a, b, b, b,

modules de périodicité deu, : =t 0 0 @, @
» » ug: 0 )
» » u,: 0 0 moay Gy O,

Pour les former, il suftit de poser
u, = ot,(Mw, 4 (N, 4+ 2,V w,,
U — O‘i(g) W, + “2(9) w,—+ “3(9) Wy,

wy = o, w, 4 ay B w, 4,8 w, ,
et de déterminer les 9 constantes =) & 1’aide des conditions

Uy -

Coupure a, | o,WA,0) 4 o,V A ) 4 2, A,B) =77
vooay | e WAL 4 20 ALR 4, (A,B) =0
» ay | o, (VAN 4= o,VAR) 4o, (VA B)=0
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Coupure a,
» Ay
»n a,

\
Coupure a,
» a.

=

» a;3

3 2, MA D a,BAD4aBAC=0
i o, A, 4 “2(3)Az(9)+“3(3) A,B=0
2D AW 42, DA 4 @A) =i

H. AMSTEIN

u!.

Uy«

ot DA, () 4 o, @) A, @) oA, =0
o, A L) 4 @ AR - o)A B) = 7
o @A 2, AR 2@ A, =0

ce qui est possible, vu que le déterminant

D=34A,0 A, A®<O0.

De ces équations on tire successivement

e, —

o) —=—

ot

o,V =—

7Tl
D

ol 3

A A®
ADAG
AMA®
AMAB
AMWA®
AWA®
A®A®
AOA®
ADA®
ADA®
AMAR
A WA
AP’.M'”
A AB)
AMA,®
AVAB
AMAQ
AVA)

:2.

27 (2—-—2)

—7 790K, '

_ r@—i)
20K,
m(2—1)
20K; ’

 (1—31)
20K, '’
. 1—3¢
— 7Tt 90K,

2" 20K,

7 (3 + 1)
20K, ’

—

20K,

20K,

_(1=)(3+i)

7w (140 (3+0)

7w (146)(1—3).

b)

4
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Par conséquent les intégrales normales sont maintenant

_ 2= 45 Wy ws |
W=""95 | "k T K, K,
g —TA=89r w, w1 42wy
=790 | K, K, " 2 K|

a3+ 9r W, . oWy _1_—_+—'w5‘
=9 | & Uk T2 K]

Les modules a,

Ol

Leur valeur est donnée par les équations

72— By B,® B,
Ay == et s B -+ 1L ,
. 20 - Ki K2 K3 =
_ a(1—3)[ Byl Bi® 144B,07
m—="90 L X “K, T K, I
3+ B Ba? 1 4+iB,®1

ap =——o—| ———(1—1 + ,h=—1.23.
S 20 L K, (I—)% 2 K, |

En effectuant ces calculs on trouve
2 . 1 . . 1 i
Ay =—¢m (2—72), aw:—gm(3+z), A= g7 (3 4 ),

1 . ; 2 . 1 ;
amzmgm(S—{—z), aﬂ:-—gn(ﬂ——z), a%:—gn(ﬂ—z),

2
%, = -;;n(3+ D), = —;—n @—1), a=—2m(@+i)
D’une part on constate que a;; = ay;, comme cela doit étre
d’apreés un théoréme démontré par Riemann. D’autre part, pour
que les fonctions % qu’on peut former avec ces modules, existent,
il est nécessaire que la forme quadratique I I oo a'y,
=1,2,3 k=123
ou «;, «j parcourent tous les nombres entiers de — > 44 > et
i1, signifie la partie réelle du module a;; , puisse étre décom-
posée en une somme de trois carrés négatifs. A cet effet il suffit
que ’on ait
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4 L r
A 19U joy A 43'

r r
gy, Qo . , ;
;| >0, A= Wy, @ g, 0 s

' )
a 219 (t 22| ’ 7 [
@ 51y A 559 A 55

a'yy <0, d= < 0.

Or, les valeurs ci-dessus donnent effectivement

! A TS 8 —
a _ — =7 d =+ —-n A = —
11 I~ ’ 5 '

3
s

1 S Co)

D’ailleurs on voit aisément qu’on peut écrire directement

vV ! 4 1 3 o
Sl iy = — | (g — o, — )

ik O 4 4
3 Loy 2 e]
+4(a2 +35’5) +§“3‘ .

Calcul direct des tangentes doubles a la courbe s'+2'—1=0.

Chaque fonction @ devient infiniment petite du premier ordre
en quatre points de la surface T'. Il y en a 28 dont les zéros se
confondent deux a deux. Les racines carrées de celles-ci ont été
appelées par Riemann fonctions abéliennes. Ces 28 fonctions o,
égalées & zéro et interprétées géométriquement, représentent évi-
demment les tangentes doubles & la courbe s* 4+ 2 — 1=0. II
est du plus haut intérét pour la suite de les connaitre. Le pro-
cédé suivant va les fournir avec la plus grande facilité.

En exprimant s et z en fonction d’une troisieme variable ¢ &

I’'aide des formules

z:\/cost, s:\/sint,
I'équation

(1) St —1=0

est satisfaite identiquement pour chaque valeur de . Mais il est
avantageux d’introduire des coordonnées tangentielles u, v,

moyennant les formules de transformation connues
ds  dz

R S .. B T W 1. A—
2ds — sdz’ zds—sdz

Il vient

a 3
4 = —(cost)’, v = —(sint)".
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