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FONCTIONS ABÉLIENNES DU GENRE 3. 113

D'après Riemann, le déterminant

A/i), A/s), A/3)

A/D, A,«, A/3)

A/D, A/»), A/3),

doit être différent de zéro. Cette condition essentielle est encore
remplie, attendu que

2(l-i)K,, 0 4iK3

-2K, ,_2(l+i)K„-2(l-i)K3
2K, 2(l-i)K,, 2(l+i)K3

— 32 (2+i)K,K,K3

Intégrales normales de première espèce.

Les intégrales de première espèce w,, iu, u3 sont dites
normales quand elles possèdent les modules de périodicité
suivants :

Le long des coupures a, a, a3 6, bt b3

modules de périodicité de m, : T.l 0 0

0 Tîi 0

0 0 ¦ni

Pour les former, il suffit de poser

U, a/1) W, -+- a/i) w3 ft- a3n) w3,

M, a/3) u){ -f- a/2) w.2 ft- a/2) w3,

u3 a/3) w, ft- a/3) Uh. + a/3) w3,

et de déterminer les 9 constantes aftW à l'aide des conditions

Coupure a,

» a,

» a3

a/1) A/D-f-a/l) A/2) + a/1) A/3) ot

a/1) A/D + a/1) A/«) + a/1) A/3) 0

a/i) A/i) + a/i) A/2) + a,« A/3) 0
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Ua -

Coupure a,

» a,

» a3

Coupure a,

» a,

» a.

a/2) A/1».

a/2) A/1) ¦

a/2) A/D-

- a/2) A/2) ¦

- a/2) A/2)-

- a/2) A/2)-

u,.

- a/2) A/3) 0

aß) A/3) A
a/S) A/») 0

a/3) A/0 + a/3) A/2) + a/3) A/3) 0

a, (3) A/D + a/3) A/2)+ a/3) A/3) 0

a/3) A/D + a/3) A/2) + a/3) A/3) A

ce qui est possible, vu que le déterminant

Dzr2±A/I)A/ä)A/3)<0.
De ces équations on tire successivement

aß)

aß):

aß) rz

«/»)=-

«/2)

«Bw=—

7TI

D

Tri

D

ni
D

7U

D

7TÌ

D

ni
D

A/'3) A/3)
A5«A3(3)

A/') A/3)
A/1) A/3)

A/» A/5)

A/3) A/3)
A/2) A/3)

A/') A/3»

A/') A/«)

A,(1)A/2)
A/1» A/2)

— 2tt(2—Q
~~ 20 K, '

— ^ (2 — 0
~~ 20 K, '

_ TT (2 — j)
~~ 20 K3

;

_ 7t(1—3i)
~~ 20K, '

1—3i

aß) _ ni I A/2» A4(3)

~ D A,« A/3)

/3)—.

«/3)

ni
D

ni
D

A/1» A/3»

A/1'A/3'

A/« A/2)
A/1'A/2)

~~ 2 ' 20K3
;

_ n (3 + i)
~ 20K, '

_ (l-t)(3+0
"" 20K2 '

_n_ (l+0(3 + i)
— 2 ' 20K, '
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Par conséquent les intégrales normales sont maintenant

7r(2— pr aw4 w, wA
20 L ^K, "^

K2 r K3J

7r(l—3i)r u)t .to, l+iw3l
~~ 20

n (3 + i) T wi /1 -\w2 1 + i w

Hk.

3~ 20 L K,

Les modules a

Leur valeur est donnée par les équations

«IA

<'-f;+-ïJH

20

]¦
IT Bßl_ -B/2) l+iB/3)"]
L K4

" *
K2 + 2 K3 _T

_7r(2-i)r BfcO g/2) B/3)" 20 L " K, + K2 + K5

_7r(l— 3i) T B/» .B/5) l+iB/3)"
a2ft — ¦ '

En effectuant ces calculs on trouve

2 11a41zr—-rr(2—0, alsrr—-tu(3+0, a43rr -tt(3 + 0,12 1

«21 —5^(3+ 0. a22zr—-7r(2—0, «23rr—-tt(2 —i),

1 1 2
«si 5^(3+0. «5ä —5^(2—0» ö35rz— -tt(3 + i).

D'une part on constate que a^ a^, comme cela doit être
d'après un théorème démontré par Riemann. D'autre part, pour
que les fonctions S- qu'on peut former avec ces modules, existent,
il est nécessaire que la forme quadratique 2 2 aiaka'ik>

•=1,9,3 k= 1,2,3

où ex:, aft parcourent tous les nombres entiers de — -x, à-|- =o et
a'rt signifie la partie réelle du module a-k, puisse être décomposée

en une somme de trois carrés négatifs. A cet effet il suffit
que l'on ait

9
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a'lt<0, â
a J4, a
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>0, J
a tl,a'
a 2|, a 22, a 23

a 31! a 321 « 35

Or, les valeurs ci-dessus donnent effectivement

<0.

a zr — - ô=a'U\
5 ^

D'ailleurs on voit aisément qu'on peut écrire directement

22aiaka'.ik rr — n I-(or4 — -a, —^a.f +

Calcul direct des tangentes doubles à la courbe s+£l—1=0.

Chaque fonction cp devient infiniment petite du premier ordre
en quatre points de la surface 'F. Il y en a 28 dont les zéros se
confondent deux à deux. Les racines carrées de celles-ci ont été

appelées par Hiemann fonctions abéliennes. Ces 28 fonctions cp,

égalées à zéro et interprétées géométriquement, représentent
évidemment les tangentes doubles à la courbe s' ft- z1 — 1 0. Il
est du plus haut intérêt pour la suite de les connaître. Le
procédé suivant va les fournir avec la plus grande facilité.

En exprimant s et z en fonction d'une troisième variable t à
l'aide des formules

zzzycos/, s ysmt,
l'équation
(1) S' + 2" — 1 ZZ 0

est satisfaite identiquement pour chaque valeur de /. Mais il est

avantageux d'introduire des coordonnées tangentielles u, v,
moyennant les formules de transformation connues

ds dz
u rz — zds—sdz' v zr zds — sdz'

Il vient

— (cos t)2, v rr — (sin t)2.
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