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D’une maniére analogue, on peut obtenir les intégrales prises
sur le bord positif de 0 & —¢. En ce qui concerne les intégrales
relatives aux bords négatifs, il suffit de tenir compte de la con-
nexion des nappes le long des lignes de passage. Ainsi, par
exemple, le long de la ligne de passage 0+ 1, le bord négatif
de la 1~ nappe se rattache au bord positif de la 2°. On en con-
clut que

1 1 _
I dw,—) = J' dw (t) =K, ;
0 0

de méme

1 1 1 1 .
Odwl e f Odwi('l‘)::—-K1 y ‘fﬂdw,(‘) =t J' Odwi(ﬂ =—1K,,
11 1 111

I dw, —)—I dw,(t) =K, , etc.

Au lieu d’employer le procédé indiqué pour la détermination
de ces intégrales rectilignes, on pourrait se servir avantageuse-
ment de la représentation au moyen des fonctions w, , w,, w,.
A cet effet, on remarquera les particularités suivantes : La fonc-
tion w, transforme les angles a l'origine en angles doubles.
Autour des points singuliers =41, 4= ¢ les angles de 'original
sont réduits au quart par les fonctions w, et w, et a la moitié
par la fonction w,. En tout autre point, les angles correspon-
dants de I'original et de son image sont égaux.

Pour plus de facilité, les valeurs des intégrales rectilignes re-
latives aux intervalles de 0 & == 1 et de 0 & =4 sont réunies dans
le tableau suivant (voir p. 12).

Détermination des modules de périodiciteé.

Soient A™ et B!" les modules de périodicité de 2wy relatifs aux
coupures a, et b,, c’est-a-dire

AR w% ) wﬁl ) 1e long de la coupure a, et

B — wﬁ; +) wﬁ, le long de la coupure b, .
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wl

J']. J’l!v 1"—1 n—'}:
(U 0 J 0

J 0

Nappe.

Bord pos.| Bord nég.|| Bord pos.| Bord nég.|| Bord pos.| Bord nég.{| Bord pos.| Bord néq.
K, | —K, | =K, || K, | K, | =K, |—K,
Iy K, |—K, |—K,| K, iK, | —K,|—K,| K,
m|—K, |—:iK,| K, | K |—K,|[—iK | K, | K,
Wi —iK,| K, | K |—K|—iK/| K, | K, |—K,

i

1| K, | K, |—iK,| K, |—K,|—iK,| K, |— K,
nl K, | —K,| K, | K, |—iK,| K, |—K,|—iK,
M| —K, |—iK, || K, |—K.| K, | iK, |—iK,| K,
W[ —K,| K, |—K,|—iK| K, |—K, | K, | iK,

- -

1| K, |—K,[|—iK,| K, || =K, | K, || iK, |—iK,
| —K,| K, | K, |—dK,| K, |—K,||—K,| K,
m| K, |—K,|—iK,| K, |[—K,| K, [ K, |—iK,

W|—K,| K, | K, |—iK,| K, | =K, |—iK,| K,

La fig. 7, pl. VI, permet de reconnaitre immédiatement que
I’on a

AN — f dwy, et BM — J‘dwh.
(<) (+a,)
En d’autres termes, A" est égal a la valeur que prend

f dwn, lorsque z parcourt le circuit entier b, dans le sens né-

gatif, et B™ 1a valeur de ws qui résulte d’un parcours positif du
circuit fermé a, . Pour faciliter le calcul de ces modules, on a, dans
les fig. 8 ... 8¢, pl. VIII, dessiné isolément les six coupures a, b, ,
en modifiant leur forme de fagon qu’elles suivent, d’aussi prés que
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possible, les axes coordonnés, déformation permise en vertu d’un
théoréme bien connu de Cauchy. Il vient ainsi successivement

— J‘dw4 = fldwd(“) +I0dw,(+) -+ j'—idwd(—) -
i 0
1 I it

0
+ f dw,H = 2(1—9)K, (Fig. 8%)

A,0= [dw, = f Q)+ [ oD [ )

(—by) 111 111

4 f dw,—) = — 2K, (Fig. 8.)
1

‘[dwl 5 j dw (=) - J' dw,(+) J":idwl{—) o
(—by) |
f duey) J“O_dwi(—) + | _fllww:QKl (Fig.8¢.)
1
Idw,*— I dw1 + J'dwi + I dw1+)+
(+ay)

I du)1 o (Fig. 84.)

B, = {dw, = J’dwi(—+ jdwl +f dw,+) +

(+as) 1 o

fdw1 — 9K, (Fig. 8¢.)

J'dwi j dw,(+) + J' dw, =) 4 f dw4(+ +

(+as)

J“ duw, =) + J‘—"dw,m + I dw,~) = — 9K, (Fig. 8'.)
i 0 -
I :

I
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Pour obtenir les douze modules relatifs aux intégrales w, et
w,, 1l suffit de remplacer dans les formules précédentes w, tour
a tour par w, et w,. Le tableau p. 12 fournit ensuite les valeurs
désirées.

Résumé des modules de périodicité.

L
A = 21— K, | Bl = 4K,
A0=—2K, B,l) = — 2K,
AN = 2K, B,l)=—2K,
W,
AR = 0 B2 = 0

A0=—2(1+)K, | B = 2(1—9)K,
A0 = 2(1—)K, | B® = 2(1+9)K,

W,
AB® = 4K, B,® = 0
AB=—2(1—9)K, | BA=—2(1419)K,
AR = 2(014+)K, | B@=-2(1—9K,
Si I'on pose
Ay = e 4§ g8, By = 3,0 4 9,8,
on sait que pour chacune des trois intégrales on doit avoir

% (Bnyn— e dy)<<0. Or, dans le cas actuel,

I
o

al = 2K, | Bh=—2K, | ») = 4K, | o, =
%(” T QKt 62(1) — 0 72(1) = — QKi 6,(1)
o) = 2K, (3,(1) 0 73 = 2K, | 9,0

|
|

d’ott 1l suit
3(fy—ad) =—8K,*

Pour w, et w, on obtient par un calcul analogue
S(fy —ad) =—16K,?, I(8y—ad)=—16K;".
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D’aprés Riemann, le déterminant
A, A, A®
A0, AL, AB
A, AQ, A8,

doit étre différent de zéro. Cette condition essentielle est encore
remplie, attendu que

2(1—)K,, 0 . 4K,
— 2K, , —2(1+4+) K, — 2(1—)K, | =—32 2+) K K.K,
9K, , 2(1—)K,, 2(14+9)K,

Intégrales normales de premiére espéce.

Les intégrales de premiére espece u,, u,, %, sont dites nor-
males quand elles possédent les modules de périodicité sui-

vants :
Le long des coupures a, a, a, b, b, b,

modules de périodicité deu, : =t 0 0 @, @
» » ug: 0 )
» » u,: 0 0 moay Gy O,

Pour les former, il suftit de poser
u, = ot,(Mw, 4 (N, 4+ 2,V w,,
U — O‘i(g) W, + “2(9) w,—+ “3(9) Wy,

wy = o, w, 4 ay B w, 4,8 w, ,
et de déterminer les 9 constantes =) & 1’aide des conditions

Uy -

Coupure a, | o,WA,0) 4 o,V A ) 4 2, A,B) =77
vooay | e WAL 4 20 ALR 4, (A,B) =0
» ay | o, (VAN 4= o,VAR) 4o, (VA B)=0
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