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FONCTIONS ABELIENNES DU GENRE 3
UN CAS PARTICULIER

PAR
H. AMSTEIN

PlL. VI a X.

Avec quelques-uns de mes camarades d’études, j’ai eu la bonne
fortune de suivre un cours général sur la théorie des fonctions
abéliennes que mon vénéré maitre, M. H. Weber, a fait une seule
fois, en 1875, & I’Ecole polytechnique fédérale a Zurich. Ce n’est
que plusieurs années aprés que j'al eu connaissance de son re-
marquable ouvrage intitulé : Theorie der Abelschen Functionen
vom Geschlecht 3. (Berlin, 1876, chez Georg Reimer.) A la
page 4 de I'introduction, I'auteur s’exprime comme suit : « Es ist
damit nicht ausgeschlossen, dass es ausser den hyperelliptischen
Functionen noch andere besondere Fille gibt, in denen die
Verzweigungspunkte eine wichtige Rolle spielen. Es wiirde dies
z. B. eintreten bei den Functionen, welche von der Gleichung
x* 4+ y' + 2* =0 abhingen, welche iiberhaupt, obwohl (oder
vielleicht gerade weil) sie durch elliptische Functionen voll-
stindig dargestellt werden konnen, ein interessantes Beispiel
fiir unsere Theorie liefern wiirden. »

« Cela n’exclut pas Uexistence, en dehors des fonctions hyper-
elliptiques, d’ autres cas particuliers, dans lesquels les points de
ramification jouent un role important. Ce serait, par exemple, le
cas des fonctions dépendant de Uéquation X' +y* +2'=0, qui
Sourniraient un exemple intéressant a Uappui de notre théorie,
lors méme que (ou peut-étre yustement parce que) elles peuvent
étre représentées completement par des fonctions elliptiques. »

Apres avoir lu et relu cet ouvrage avec le plus vif intérét, je
me suis décidé a traiter ’exemple proposé. Chemin faisant , j’ai
rencontré certaines difficultés, auxquelles il fallait d’ailleurs
s’attendre, de sorte qu’il m’a paru que ce travail, entrepris dans
Punique but de me familiariser autant que possible avec une
théorie plus ou moins ardue, pourrait rendre quelque service &
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ceux qui ont I'intention d’aborder ces régions de la science. C’est
dans cet espoir, qu’encouragé par quelques amis, j’ose soumettre
le présent mémoire au public mathématique.

Je me représente un lecteur, en possession de la théorie des
fonctions & a trois variables et des caractéristiques & six élé-
ments, et ayant devant lui 'ouvrage de M. Weber; a l'aide de
ce travail, il lui sera aisé de suivre pas & pas ’ouvrage original.

Dans un second mémoire, je me propose de reprendre les pro-
blémes fondamentaux de Jacobi et de Riemann, en ramenant
ces questions sur le terrain des fonctions elliptiques.

Je saisis enfin cette occasion pour témoigner & mon vénéré
maitre toute ma gratitude de ce qu’il a bien voulu, & plusieurs
reprises, s’intéresser aux efforts de son ancien éléve.

Introduction.

L’équation qui sert de base a I’étude qu’on va entreprendre
est la suivante :

' 4+t 42t =

ou

Si 'on pose

] I
H
=3

]
:D
H

T
N

et
2
z
elle prend la forme
(1) st 2t —1 =0,
d’ou ‘

(19) s =y 1—2~.

On remarque tout d’abord que les variables s et z entrent
d’une maniére symétrique dans I’équation (1). Les relations entre
s et z seront donc parfaitement connues lorsqu’on aura étudié s
en fonction de 2.
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Si, en premier lieu, on attribue & s et z des valeurs réelles et
que l'on rapporte ces variables & un systéme de coordonnées
rectangulaires, en choisissant, par exemple, z comme abscisse
et s comme ordonnée d’un point, ’équation (1) représente une
courbe du 4™ degré, dépourvue de points doubles et qui, de ce
fait, appartient au genre 3 (fig. 1, pl. VI). Cette courbe, évi-
demment symétrique par rapport aux deux axes, posséde aux
points 2=0,s==+1;2==+1, s=0 des tangentes qui for-
ment avec elle un contact de l'ordre 3. Ces droites ont quatre
points infiniment voisins communs avec la courbe, et peuvent,
par conséquent, étre considérées comme des tangentes doubles
dont les deux points de contact coincident. Cette particularité,
la seule qui mérite d’étre signalée ic1, se reconnait aisément, si
P’on développe s en série, ordonnée suivant les puissances crois-
santes de z, par exemple dans le voisinage du point 2=0, s=1,

ce qui donne
1

§—1 —=— Z Zu...

Mais si, d’'une maniére plus générale, on admet que 2 et s
puissent prendre des valeurs aussi blen imaginaires que réelles,
il faudra assigner aux points représentatifs de ces variables
deux plans que 'on désignera par (2) et (s). Lorsque z parcourt
une courbe quelconque dans son plan, le point représentatif
de s, & son tour, parcourra une courbe dans le plan (s). D’aprés
Gauss, on appelle volontiers cette derniére courbe I’image dont
la premiére serait 'original. Le plan (2) se compose de quatre
feuilles ou nappes superposées. Le plan (s), on I’a déja reconnu,
se trouve exactement dans les mémes conditions. Pour établir
les rapports qui existent entre les plans (2) et (s), il est utile
d’étudier brievement la représentation du plan (2) sur le plan (s)
par lintermédiaire de la fonction s. A cet effet, il suffit de con-
sidérer les courbes dans le plan (s) qui correspondent & un sys-
téeme de circonférences concentriques dans le plan (2) avec O
comme centre commun.

Soit _ _

= e,

(s =&+ 17 = ge¥.

A Paide de ces formules, I’équation (14) peut s’écrire

; 4 ;
ge¥t — \/1 — et

'
|l
=
_|_
=




102 H. AMSTEIN
d’'ou l'on tire

o' (cosdy + ¢sindy) =1—1"(cos g + ¢sin 4 ¢),
puis en séparant les parties réelles des parties imaginaires

" cosdy =1—r*cos g,

osindy = — r*sindg
et enfin
8
g:\/l*ﬂr"cosigo—ﬂ"s,
1—1r*cosd &—pcos vy,
) cosdyy — i (p’ === v
0
r* sin 4 — o sin .

Afin d’obtenir, par exemple, 'image de la circonférence dont
I’équation en coordonnées polaires est » = @, on donnera, dans
ces formules, & 7 la valeur constante a, et on fera varier ¢ de 0
a 27, (Voir les fig. 2 et 3, pl. VIL Pour les construire, on s’est servi

3 1 4%/ 1 4/ ‘4/_ 3
des valeurs » = T 15,1, 5 \/17, 2, 5 )

A une valeur déterminée de 2 correspondent, en général,
quatre valeurs différentes de s. Une fois pour toutes, on con-
viendra que selon la feuille dans laquelle se trouve le point re-
présentatif de 2, la fonction s prendra les valeurs suivantes :

4
Dans la 1 feuille s = \/1—-—3‘, s=+1 pour z=0,

4
» 2° » 3:@\/1———2"‘, §=1t » g=0,

iz
» 3¢ » S:—\/l—z’, §=—1 » 2=0

b

4
» 4c » S::—i\/l—ﬁ‘, §=—t¢ » 2=0.

Ces quatre valeurs se confondent pour z==41, g=+14. Il
s'ensuit que ces quatre points sont des points de ramification
pour la fonction s; ils satisfont, en effet, seuls aux deux
équations

F(,2)=s*"+2"—1=0

OF

— LigB —
os
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Chacun d’eux compte pour trois points de ramification sim-
ples, vu qu’en ces points, non-seulement deux, mais les quatre
valeurs correspondantes de s coincident. Ainsi, la fonction s
posséde douze points de ramification simples.

Pour transformer le plan (2) en une surface de Riemann, on
peut appliquer les lignes de passage de différentes maniéres.
Guidé par la représentation susmentionnée, on les conduira
dans les quatre nappes, le long des axes coordonnés, de I'ori-
gine O jusqu'aux points # = =+1, 2 ==+ 1, en reliant les quatre
feuilles de la maniére indiquée dans les fig. 4, 5 et 6, pl. VI. Les
fig. 4 et b représentent des coupes & travers les quatre nappes, la
premiére perpendiculaire 4 la ligne de passage O 4+ 1, la derniére
perpendiculaire & la ligne de passage O 4. L’ceil de 'observa-
teur se trouve au-dessus de la premicre feuille. Il va sans dire
quon aurait pu ajouter encore deux figures analogues relatives
aux lignes de passage O — 1 et O — ¢. Pour bien comprendre la
fig. 6, on remarquera que les quatre circonférences devraient
étre superposées et se trouver chacune dans la nappe que lul
assigne le chiffre inscrit dans la figure. Afin d’augmenter encore
la clarté, on a mis en regard, le long des lignes de passage, dans
les fig. 2 et 3, pl. VII, les chiffres qui indiquent le passage d’une
feuille & l’autre. Ainsi, par exemple, le long de la ligne 041, le
point z peut passer du bord positif de la premiére nappe au bord
négatif de la quatrieme, du bord positif de la deuxiéme nappe an
bord négatif de la premiére, etc. Obéissant aux exigences de la
représentation, la disposition des chiffres dans le plan (s) différe
de celle adoptée pour le plan (2).

Ceci posé, s pourra étre considéré comme une fonction uni-
forme de z. On s’en convainc aisément & l'aide des fig. 2 et 3.
En effet, si z parcourt le 1 quadrant d’une circonférence de
rayon < 1, par exemple dans la 1 feuille, en partant du bord
négatif de 'axe O+ 1, le point s décrit un ovale complet.
Lorsque 2, apres avoir franchi la ligne de passage O + ¢, décrit
ensuite le second quadrant dans la quatriéme nappe, le point s
parcourra une seconde fois le méme ovale. A la circonférence
entiere correspond donc quatre fois le méme ovale. Dans le cas
ou # serait parti de la seconde nappe, le point s aurait décrit un
autre ovale identique au premier, mais tourné contre celui-ci
d’un angle de + 90°. Et ainsi de suite.

Si le point 2, tout en restant dans la premiére nappe, suit le
bord positif de I’axe des X de 0 & 4 1, le point s longe le bord
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positif de ’axe des 5 de 4 1 & 0; mais au-dela du point + 1,
I'image de laxe des X est la droite n—=£ de £ =0 jusqu’a

Pour une circonférence de rayon > 1, les lignes de passage
perdent leur influence. Par conséquent, a une telle circonférence
correspond uniformément une courbe fermée dans le plan (s).
La circonférence » = 1 constitue le cas limite, en ce sens que la
courbe correspondante dans le plan (s) peut étre considérée in-
différemment comme une courbe fermée ou comme I’ensemble de
quatre ovales allongés se rencontrant en O.

Incidemment, on reconnait aussi que la fonction s sert d’in-
termédiaire & la représentation conforme de l’extérieur du cercle
des unités sur 'extérieur de la courbe

o' = 2cos 4y
ou

E+7) =2E—689+7".

En vertu des lois qui régissent la représentation conforme, les
tangentes principales a cette courbe au point quadruple £ =0,
rn =20, doivent former avec I’axe positif des 5 des angles de
-+ 2210 et 4+ 673°.

Intégrales de premiére espéce.

La surface de Riemann, T, qui accompagne la fonction s, se
compose, on I’a vu, de quatre nappes superposées. Sa connexion
est de 'ordre 7, c’est-a-dire qu’elle peut, moyennant six coupu-
res, étre transformée en une surface T’ & connexion simple. Dans
Pintérieur de cette nouvelle surface T’, les intégrales de fonctions
rationnelles de s et de z sont des fonctions uniformes de leurs
limites supérieures. Le long des deux bords des coupures, elies
prennent des valeurs dont la différence est en général finie, mais
constante, et que I'on appelle les modules de périodicité de ces
intégrales. Par 13, ne sont pas exclues d’autres lignes & diffé-
rence constante situées dans 'intérieur méme de la surface. (In-
tégrales de 3° espéce.)

On conviendra d’appeler positif le bord d’une coupure qui se
trouve & gauche lorsqu’on la parcourt dans le sens positif, c’est-
a-dire dans le sens des angles croissants. Cecl posé, on peut éta-
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blir un systeme normal de coupures de la maniére suivante:
D’un point A de la surface, on méne une coupure qui ne partage
- pas la surface en plusieurs morceaux détachés et qui aboutit a
un point de son propre parcours. Cette coupure peut étre consi-
dérée comme une ligne fermée @,, reliée au point A par une
autre ligne ¢,. D’un point du coté positif de a,, on trace ensuite
une autre coupure b, qui vient rejoindre son point initial, mais
sur le bord négatif de a,. De la méme maniere, toujours en par-
tant du point A, on pourra mener encore deux autres couples
de coupures. (Comp. W., p. 63.) Il va de soi, qu’a l'exception de
a.b,, a, ¢, qui se coupent en un point, jamais deux coupures ne
doivent se croiser.

Dans le cas particulier qui fait I’'objet de cette étude, une des
manieres possibles d’appliquer les coupures est celle indiquée
dans la fig. 7, pl. VI, ou les lignes noires pleines sont censées se
trouver dans la premiére nappe, les lignes noires pointillées
dans la deuxieme, les lignes rouges dans la troisiéme, et enfin
les lignes bleues dans la quatriéme. Sans doute, 1a surface de
Riemann T, ainsi obtenue, n’est pas la plus simple; mais d’une
part elle a ’avantage d’étre basée sur la surface T, adoptée déja
précédemment pour I’étude de la fonction s; d’autre part, il est
& espérer que ce travail rendra d’autant plus de services au
lecteur studieux que les intégrales & considérer exigeront plus
de précautions.

Les intégrales de 1™ espéce restent finies et continues dans
toute I’étendue de la surface T’, & ’exception des coupures dont
les deux bords constituent la limite de la surface. Elles sont de
la forme

sp(SZ)d

ou bien

¢ (s,2) dz _  ds
f ds  (puisque — 5F — 6F>’

as 8z

o F=s'~+42' — 1 et ¢ (s,2) signifie une fonction entiére et ra-
tionnelle de s et de # qu’il s’agit de déterminer.
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xr
En admettant que | f(x)dx reste finie pour toutes les va-
To

jr o]

leurs finies de z, on sait que | f(x)dz conserve aussi une va-
o

leur finie, si la fonction f(z) pour £ = > tend vers zéro d’un
ordre supérieur au premier. Or, dans l'intégrale

gdz
4s®

w

i
la fonction s = \/1— z* devient infinie du 1°* ordre et, partant,
s* du 3¢ ordre pour z = . Il s’ensuit que la variable s (et pour
des raisons analogues aussi la variable z) entre dans la fonc-
tion ¢ tout au plus au 1° degré. Les points de ramification
2=-+1, 2= -1 ne produisent pas de discontinuité. On peut
donc poser

¢ — A + Bz + Ce.

En disposant des constantes A, B, C de sorte que ¢ s’annule
en deux points arbitraires, on peut obtenir trois fonctions ¢ dif-
férentes entre lesquelles il n’existe pas d’équation linéaire et
homogéne. Par contre, il est aisé de démontrer qu’entre quatre
de ces fonctions, 1l existe nécessairement une équation linéaire
et homogeéne, 4 coefficients constants *.

Soient maintenant ¢,, ©,, @, les trois fonctions en question,
satisfaisant a la condition de s’annuler

, pourzs—;mC = , ot B=C=0¢et g,= A,
S:O =
Py pour;S—___O = , Aot A=C=0 et 9, = Bg,
ge=l, d=
=0 —_— %
0, pourg o, ¢ , A0 A=B =0 et ¢,=0Cs.
g =

* La géométrie analytique offre ’analogie suivante : Si g, = 0, g, = 0,
g, =0, g,=0 sont les Jéquations de quatre droites dans un plan, il est
t.OIl]OllI‘S possible d’établir 'identité k,g, + k3 ¢s + k395 + k; g4=0, & moins
que trois des droites données ne fassent partie d’un faisceau.
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Abstraction faite de facteurs constants, les trois fonctions o
prennent la forme
=1, =2 @=s
et les trois intégrales de premiere espéce sont

_(  d dz 2dz 3, = dz
Y Va—ay \/(1— f

1~——z

dont la derniére est elliptique. (Comp. W., p. 47, et Riemann,
Gesammelte math. Werke, p. 459.)

Avant de procéder a la détermination des modules de pério-
dicité, il est utile d’étudier quelques intégrales dont on aura

souvent besoin. Il a déja été dit que \4/1—-3* prend les facteurs
—+1,%, — 1, —4 suivant que z se trouve dans la 1%, 2¢, 3° ou
4° nappe de la surface 1". Par conséquent, dans ces mémes
, 4Tl__ sera affecté des facteurs +1,¢, — 1, —2,
(I1—=2")
1

nappes

tandis qu

— prendra les facteurs 1, — 1, 1, — 1.
1—2

Dans la suite, la nappe dans laquelle la variable d’mtegratlon
se meut, sera mdlquee par un chiffre romain placé au-dessous
du signe J , et le signe (+) ou (—), appliqué en guise d’exposant
au haut de la fonction & intégrer, fera connaitre le bord le long
duquel 'intégrale devra étre prise.

Soient maintenant, dans la 1" nappe et prises le long du bord
positif,

1 1
f dw M=K, J' dw =K, r dwH = K,;
i i

conformément a la convention qui vient d’étre rappelée, on aura
alors évidemment
rl ~l 1

. , (®
. dw,+) =K, , 0 dwy(+) = iK,, Odw5(+):——K5;
i 1 i
nl ] ~l
dw,H=—K,, dw, ) =—K,, dwyt) = K;;
T fir
1 ) l . 1
fﬂdwﬁ“: —1K,, Odw2(+):—zK2, fodw5f+):-—
Tv T Ty
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Dans ces intégrales, l'intervalle d’intégration s’étendait sur
le bord positif de 'axe des X, de 0 a 4 1. Une rotation de 4 90°
autour de l'origine O le transporte sur le bord positif de P’axe
des Y, et la variable z a passé respectivement de la 1* nappe a
la 4°, de la 2° 4 la 1%, de la 3° a la 2¢, et de la 4° & la 3°. L’équi-
valent analytique de cette opération est la substitution z =,
ou ¢ prend toutes les valeurs réelles de 0 & + 1. Il s’ensuit que

i .l di el
\f dw (+) = zf ey :zf dw,+) =
L g VL—ep  §°

et de méme
f dw Kf dw+)
jdw _zf dw (H=—K,, ]’dw, >-—zJ‘ duw,+)

II IMI

fdw _zrdwi = + K,, etec.

11

Si l'on fait faire a I'intervalle O 4- 1 une rotation de 4 180°,
son bord positif viendra se confondre entre 0 et — 1 avec le bord
positif de 'axe des X négatifs, et la variable z passera respec-
tivment de la 1% nappe a la 3°, de la 2° a la 4°, de la 3¢ 4 la 1"
et de la 4° a la 2°. A cette opération correspond la substitution
z2=—1,0u¢se meut de 0 & 4 1. On a, par conséquent,

- . 1
dw (_H:—— _— = — de‘):..__K ,
-I[IO 1 ‘(')[. {‘/(1 _ tu)s ‘!0 ! '
| —1 =
J‘ dw,H=K,, J‘ dw ()= —K,;
0 0

111 m

-1 1 . —1 1
J" dw,(+)—=— j dw,H—=—iK,, J‘ dip, s J‘ dw,H=K,,
0 0 0 0
| 1II
I

—1 1
[ dwo=—] dw,#)=iK, etc.
0 0
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D’une maniére analogue, on peut obtenir les intégrales prises
sur le bord positif de 0 & —¢. En ce qui concerne les intégrales
relatives aux bords négatifs, il suffit de tenir compte de la con-
nexion des nappes le long des lignes de passage. Ainsi, par
exemple, le long de la ligne de passage 0+ 1, le bord négatif
de la 1~ nappe se rattache au bord positif de la 2°. On en con-
clut que

1 1 _
I dw,—) = J' dw (t) =K, ;
0 0

de méme

1 1 1 1 .
Odwl e f Odwi('l‘)::—-K1 y ‘fﬂdw,(‘) =t J' Odwi(ﬂ =—1K,,
11 1 111

I dw, —)—I dw,(t) =K, , etc.

Au lieu d’employer le procédé indiqué pour la détermination
de ces intégrales rectilignes, on pourrait se servir avantageuse-
ment de la représentation au moyen des fonctions w, , w,, w,.
A cet effet, on remarquera les particularités suivantes : La fonc-
tion w, transforme les angles a l'origine en angles doubles.
Autour des points singuliers =41, 4= ¢ les angles de 'original
sont réduits au quart par les fonctions w, et w, et a la moitié
par la fonction w,. En tout autre point, les angles correspon-
dants de I'original et de son image sont égaux.

Pour plus de facilité, les valeurs des intégrales rectilignes re-
latives aux intervalles de 0 & == 1 et de 0 & =4 sont réunies dans
le tableau suivant (voir p. 12).

Détermination des modules de périodiciteé.

Soient A™ et B!" les modules de périodicité de 2wy relatifs aux
coupures a, et b,, c’est-a-dire

AR w% ) wﬁl ) 1e long de la coupure a, et

B — wﬁ; +) wﬁ, le long de la coupure b, .
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wl

J']. J’l!v 1"—1 n—'}:
(U 0 J 0

J 0

Nappe.

Bord pos.| Bord nég.|| Bord pos.| Bord nég.|| Bord pos.| Bord nég.{| Bord pos.| Bord néq.
K, | —K, | =K, || K, | K, | =K, |—K,
Iy K, |—K, |—K,| K, iK, | —K,|—K,| K,
m|—K, |—:iK,| K, | K |—K,|[—iK | K, | K,
Wi —iK,| K, | K |—K|—iK/| K, | K, |—K,

i

1| K, | K, |—iK,| K, |—K,|—iK,| K, |— K,
nl K, | —K,| K, | K, |—iK,| K, |—K,|—iK,
M| —K, |—iK, || K, |—K.| K, | iK, |—iK,| K,
W[ —K,| K, |—K,|—iK| K, |—K, | K, | iK,

- -

1| K, |—K,[|—iK,| K, || =K, | K, || iK, |—iK,
| —K,| K, | K, |—dK,| K, |—K,||—K,| K,
m| K, |—K,|—iK,| K, |[—K,| K, [ K, |—iK,

W|—K,| K, | K, |—iK,| K, | =K, |—iK,| K,

La fig. 7, pl. VI, permet de reconnaitre immédiatement que
I’on a

AN — f dwy, et BM — J‘dwh.
(<) (+a,)
En d’autres termes, A" est égal a la valeur que prend

f dwn, lorsque z parcourt le circuit entier b, dans le sens né-

gatif, et B™ 1a valeur de ws qui résulte d’un parcours positif du
circuit fermé a, . Pour faciliter le calcul de ces modules, on a, dans
les fig. 8 ... 8¢, pl. VIII, dessiné isolément les six coupures a, b, ,
en modifiant leur forme de fagon qu’elles suivent, d’aussi prés que
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possible, les axes coordonnés, déformation permise en vertu d’un
théoréme bien connu de Cauchy. Il vient ainsi successivement

— J‘dw4 = fldwd(“) +I0dw,(+) -+ j'—idwd(—) -
i 0
1 I it

0
+ f dw,H = 2(1—9)K, (Fig. 8%)

A,0= [dw, = f Q)+ [ oD [ )

(—by) 111 111

4 f dw,—) = — 2K, (Fig. 8.)
1

‘[dwl 5 j dw (=) - J' dw,(+) J":idwl{—) o
(—by) |
f duey) J“O_dwi(—) + | _fllww:QKl (Fig.8¢.)
1
Idw,*— I dw1 + J'dwi + I dw1+)+
(+ay)

I du)1 o (Fig. 84.)

B, = {dw, = J’dwi(—+ jdwl +f dw,+) +

(+as) 1 o

fdw1 — 9K, (Fig. 8¢.)

J'dwi j dw,(+) + J' dw, =) 4 f dw4(+ +

(+as)

J“ duw, =) + J‘—"dw,m + I dw,~) = — 9K, (Fig. 8'.)
i 0 -
I :

I
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Pour obtenir les douze modules relatifs aux intégrales w, et
w,, 1l suffit de remplacer dans les formules précédentes w, tour
a tour par w, et w,. Le tableau p. 12 fournit ensuite les valeurs
désirées.

Résumé des modules de périodicité.

L
A = 21— K, | Bl = 4K,
A0=—2K, B,l) = — 2K,
AN = 2K, B,l)=—2K,
W,
AR = 0 B2 = 0

A0=—2(1+)K, | B = 2(1—9)K,
A0 = 2(1—)K, | B® = 2(1+9)K,

W,
AB® = 4K, B,® = 0
AB=—2(1—9)K, | BA=—2(1419)K,
AR = 2(014+)K, | B@=-2(1—9K,
Si I'on pose
Ay = e 4§ g8, By = 3,0 4 9,8,
on sait que pour chacune des trois intégrales on doit avoir

% (Bnyn— e dy)<<0. Or, dans le cas actuel,

I
o

al = 2K, | Bh=—2K, | ») = 4K, | o, =
%(” T QKt 62(1) — 0 72(1) = — QKi 6,(1)
o) = 2K, (3,(1) 0 73 = 2K, | 9,0

|
|

d’ott 1l suit
3(fy—ad) =—8K,*

Pour w, et w, on obtient par un calcul analogue
S(fy —ad) =—16K,?, I(8y—ad)=—16K;".
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D’aprés Riemann, le déterminant
A, A, A®
A0, AL, AB
A, AQ, A8,

doit étre différent de zéro. Cette condition essentielle est encore
remplie, attendu que

2(1—)K,, 0 . 4K,
— 2K, , —2(1+4+) K, — 2(1—)K, | =—32 2+) K K.K,
9K, , 2(1—)K,, 2(14+9)K,

Intégrales normales de premiére espéce.

Les intégrales de premiére espece u,, u,, %, sont dites nor-
males quand elles possédent les modules de périodicité sui-

vants :
Le long des coupures a, a, a, b, b, b,

modules de périodicité deu, : =t 0 0 @, @
» » ug: 0 )
» » u,: 0 0 moay Gy O,

Pour les former, il suftit de poser
u, = ot,(Mw, 4 (N, 4+ 2,V w,,
U — O‘i(g) W, + “2(9) w,—+ “3(9) Wy,

wy = o, w, 4 ay B w, 4,8 w, ,
et de déterminer les 9 constantes =) & 1’aide des conditions

Uy -

Coupure a, | o,WA,0) 4 o,V A ) 4 2, A,B) =77
vooay | e WAL 4 20 ALR 4, (A,B) =0
» ay | o, (VAN 4= o,VAR) 4o, (VA B)=0
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Coupure a,
» Ay
»n a,

\
Coupure a,
» a.

=

» a;3

3 2, MA D a,BAD4aBAC=0
i o, A, 4 “2(3)Az(9)+“3(3) A,B=0
2D AW 42, DA 4 @A) =i

H. AMSTEIN

u!.

Uy«

ot DA, () 4 o, @) A, @) oA, =0
o, A L) 4 @ AR - o)A B) = 7
o @A 2, AR 2@ A, =0

ce qui est possible, vu que le déterminant

D=34A,0 A, A®<O0.

De ces équations on tire successivement

e, —

o) —=—

ot

o,V =—

7Tl
D

ol 3

A A®
ADAG
AMA®
AMAB
AMWA®
AWA®
A®A®
AOA®
ADA®
ADA®
AMAR
A WA
AP’.M'”
A AB)
AMA,®
AVAB
AMAQ
AVA)

:2.

27 (2—-—2)

—7 790K, '

_ r@—i)
20K,
m(2—1)
20K; ’

 (1—31)
20K, '’
. 1—3¢
— 7Tt 90K,

2" 20K,

7 (3 + 1)
20K, ’

—

20K,

20K,

_(1=)(3+i)

7w (140 (3+0)

7w (146)(1—3).

b)

4
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Par conséquent les intégrales normales sont maintenant

_ 2= 45 Wy ws |
W=""95 | "k T K, K,
g —TA=89r w, w1 42wy
=790 | K, K, " 2 K|

a3+ 9r W, . oWy _1_—_+—'w5‘
=9 | & Uk T2 K]

Les modules a,

Ol

Leur valeur est donnée par les équations

72— By B,® B,
Ay == et s B -+ 1L ,
. 20 - Ki K2 K3 =
_ a(1—3)[ Byl Bi® 144B,07
m—="90 L X “K, T K, I
3+ B Ba? 1 4+iB,®1

ap =——o—| ———(1—1 + ,h=—1.23.
S 20 L K, (I—)% 2 K, |

En effectuant ces calculs on trouve
2 . 1 . . 1 i
Ay =—¢m (2—72), aw:—gm(3+z), A= g7 (3 4 ),

1 . ; 2 . 1 ;
amzmgm(S—{—z), aﬂ:-—gn(ﬂ——z), a%:—gn(ﬂ—z),

2
%, = -;;n(3+ D), = —;—n @—1), a=—2m(@+i)
D’une part on constate que a;; = ay;, comme cela doit étre
d’apreés un théoréme démontré par Riemann. D’autre part, pour
que les fonctions % qu’on peut former avec ces modules, existent,
il est nécessaire que la forme quadratique I I oo a'y,
=1,2,3 k=123
ou «;, «j parcourent tous les nombres entiers de — > 44 > et
i1, signifie la partie réelle du module a;; , puisse étre décom-
posée en une somme de trois carrés négatifs. A cet effet il suffit
que ’on ait
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4 L r
A 19U joy A 43'

r r
gy, Qo . , ;
;| >0, A= Wy, @ g, 0 s

' )
a 219 (t 22| ’ 7 [
@ 51y A 559 A 55

a'yy <0, d= < 0.

Or, les valeurs ci-dessus donnent effectivement

! A TS 8 —
a _ — =7 d =+ —-n A = —
11 I~ ’ 5 '

3
s

1 S Co)

D’ailleurs on voit aisément qu’on peut écrire directement

vV ! 4 1 3 o
Sl iy = — | (g — o, — )

ik O 4 4
3 Loy 2 e]
+4(a2 +35’5) +§“3‘ .

Calcul direct des tangentes doubles a la courbe s'+2'—1=0.

Chaque fonction @ devient infiniment petite du premier ordre
en quatre points de la surface T'. Il y en a 28 dont les zéros se
confondent deux a deux. Les racines carrées de celles-ci ont été
appelées par Riemann fonctions abéliennes. Ces 28 fonctions o,
égalées & zéro et interprétées géométriquement, représentent évi-
demment les tangentes doubles & la courbe s* 4+ 2 — 1=0. II
est du plus haut intérét pour la suite de les connaitre. Le pro-
cédé suivant va les fournir avec la plus grande facilité.

En exprimant s et z en fonction d’une troisieme variable ¢ &

I’'aide des formules

z:\/cost, s:\/sint,
I'équation

(1) St —1=0

est satisfaite identiquement pour chaque valeur de . Mais il est
avantageux d’introduire des coordonnées tangentielles u, v,

moyennant les formules de transformation connues
ds  dz

R S .. B T W 1. A—
2ds — sdz’ zds—sdz

Il vient

a 3
4 = —(cost)’, v = —(sint)".
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L’élimination de ¢ entre ces deux équations conduit ensuite &
I’équation en coordonnées tangentielles de la courbe (1), soit-

A 1

v o’
qui, rendue rationnelle, prend la forme
("4 v"—1)> 4+ 27u"" = 0.
Or, les coordonnées u, v d’une tangente double satisfont simul-

tanément aux trois équations
f= "+ " — 1) 4+ 27" =0,

1 =)

& 5,0
Tf;, = 12(u" + v' — 1) + 42Tu"" =0,
(Af % n 2,5 ] 5

= = 12(u* + o' —1)*0° + 4270y’ =

ou en supprimant dans les deux dernieres équations les facteurs
124, 1207

«) (u* + v"—1)> + 27u"" = 0,
3) (" + 0" — 1) + 9 =

(w*+ v"— 1)+ ' =

Y)
Les facteurs supprimés correspondent aux huit couples de

racines
b
gy, v=y 1 =1, ==1, 0 =,

-
v=0, v—=y1—=1,—1,i —
Par la comparaison des équations 3) et <) on trouve la rela-
tion v = ' qui, introduite dans «) et (), donne
(20" —1)° = — 270",
2u"*— 1) = — Yu",
d’ou par division
2u*—1 — 3u*

ou encore '
A e ]

Ainsi # peut aussi prendre les valeurs

.!.'_, —‘-,—T:-‘,

A

w—c , Uw=—e , U=
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En combinant chacune d’elles avec les quatre valeurs corres-
pondantes de v, on obtient 16 autres couples de racines.

Pour déterminer enfin les quatre derniers couples il suffit de
diviser «) par ¢'%, 3) et 7) par v*:

S\ 171 27/u\"
(a) =g+ v—u(a) =0
FOAN 1712 9

) +1—5]+5 =0
‘,wtt 2 9/% lt__
() +1—] + (%) =0

et I’on voit immédiatement que ces équations admettent les ra-
cines X

(1 3
U._'::)o, Q—}:i‘/iz.

Si ’on pose pour abréger I’écriture

~ 141 g  1—
| —t —¢, V=i= =
Ve V2
de sorte que
f
” & . € ¥ 1 1 P . 'o .
g =)y — ey sy 5 e — = = E
] & ’\’:’ 1 E’ ,6 b) b

on a maintenant les 28 couples de racines suivants

|0, 0,0, 0/1,—1,¢,—1]e, &6 &|—e—e —e —e
.. . ,
v|1l,—1,i,—2¢|0, 0,0, O0|¢,—e,8'y—e'| & —e, & ,—¢
! 14 ! Il ! ! /
&, &, &|—¢,—&,—&', —¢
! ! ! !
& —&, &, —¢ & —e, & ,—¢
u u u ,w )
V—=oo|l——¢, ———¢g, ——"¢&, —= —¢
v v v v

En les substituant a tour de role dans 1’équation
uz +vs +1 =0,

modifiée pour plus d’uniformité en

U 1
S’l‘,b_“‘_i_;-——os
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on a finalement pour les 28 tangentes doubles & la courbe (1) les
équations en coordonnées ponctuelles

FONCTIONS ABELIENNES DU GENRE 3.

s+1—=0|241=0|s+ 2+ =0]s—2+4+¢ =0
§—1—0]|2—1—0|s—2—&=0js4+ z—& =0
s—1i—0|2—t—=0|s4+1z24¢ =0 |s—iz+¢e =0
s+i=0|24+¢i=0|s—iz—e =0 |s+iz—e =0
s—iz+e'=0|s+i2+& =084+ e2=0
s+iz—e =0 |s—iz—¢& =0]|s—e2=0
s+ z4+e —0|sg—z+e —=0|s+&'2=0
s$—2—e =0 |s+2—e =0 |s—&'2=0

Points de contact des tangentes doubles.

" Dans la suite, on aura plus d’une fois besoin de connaitre les
points de contact des tangentes doubles, soit les zéros des fonc-
tions abéliennes. Douze des 28 tangentes doubles dans I’exemple
choisi présentent cette particularité que leurs deux points de
contact se confondent, en sorte qu’elles forment un_contact du
3° ordre avec la c,ourbe s' 4+ &' — 1=0. Ce sont les suivantes :

Tangente. Point de contact. Nappe.
s+ 1 =0 g =10, §=—I1 111
s—1=0 z=0, s=1 I

- §— ¢ =0 g = {, s =1 I1
s+ 1 =0 g = U, S=—1 1V
24+ 1=0 p=—1, § =20
i %=0 e B L Dr toutes les 4.
2— 1 =0 e . § =10
241 =0 g=—1, s =20
S+ ez=0 Al’mhmd"la direction —185° 111
§—ez =0 » » 45° I
s+¢z2=0 » » —+135° I1
s—ecz=0 » » — 4bH° IV
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Seuls les quatre derniers cas demandent une petite explica-
tion. Soit & déterminer la nappe dans laquelle se trouve le point
de contact par exemple de la tangente :

s+ ¢35 = 0.
D’apres cette équation, si ¢ parcourt 'axe réel de 41 a 40,
1
s décrira la droite v =~; de E=r=— ],rz a £ =y =— . Cette

correspondance, on ’a déja vu, n’a lieu que dans la 3° nappe.
En ce qui concerne les 16 autres tangentes deubles, on peut

procéder de la maniere suivante. Soit, par exemple, & déter-

aminer les points de contact de la tangente :

' s+ 24+ & =0.
~ De cette équation on tire
s = — (24 ¢).

Cette valeur de s introduite dans 1’équation s' 4 2 — 1 =0,
il vient

4y +2"—1=0
ou bien, en développant et en supprimant le facteur 2,
| 2t | D¢’ 4% — 32— ez —1 =0,
Or, si 'on désigne par 2, et z, les racines doubles de cette
équation, on doit avoir identiquement
' 262" — 302" — Q22— 1 =(2—12,) (2 —2,)° =
=28 —2(z,42,) 2+ (2,2 + 42,2, + 2,2) 22— 22,2,(2, 4+ 2, )2+ 2,2,

La comparaison des coefficients qu’affectent de part et d’autre
les mémes puissances de z, fournit ensuite les égalités

) %t ==
) 2, + 42,2, + 2z," = — 34,
Y) 2,2, (2, 2,) = &,
J) Comrie— i,
dont on tire, en divisant ) par «) |
c
20y = — — — — L.
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Connaissant maintenant la somme et le produit des quantités
z, et z,, on obtient celles-ci en résolvant I’équation quadratique

2l gt—i=0
dont les racines sont
_ o—144Y3
e - ,
, —1—1)3

~
~1

(8]
(1

&

“Mais

5 =4 e — g

2, = ¢ e —

Ces valeurs vérifient les quatre équations «), f3), %), 9). Les
valeurs correspondantes de s sont

Ainsi les points de contact de la tangente considérée sont
donnés par
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-1-'?-1:5 —_1‘1 )
2 =¢ y §=¢ "

11 _ . 5
Tl

—_— I |
=€ , Se—e

[

Reste a savoir dans quelles nappes de la surface T’ ces points
se trouvent. A cet effet, on remarque aisément, 4 ’aide des fig. 2

—

. T L, . .
et 3, que si 2, =e€'®  était pris dans la 1* nappe, la valeur cor-

: 15
respondante de s serait s=e'* . Or,

Il s’ensuit que le point 2, est situé dans la 2° nappe. D’une
maniere analogue, on reconnait que le point 2, se trouve dans
la 3° nappe. |

Plus loin, lorsque cette étude sera un peu plus avancée, tout
ce qui concerne les 28 fonctions abéliennes sera réuni dans un
tableau. Incidemment, on peut constater dés & présent que
leurs 56 zéros se répartissent également sur les quatre nappes
de la surface T'.

Fonctions abéliennes correspondant a un systéme complet
de caractéristiques impaires.

La théorie des caractéristiques, traitée complétement dans ’ou-
vrage de M. Weber (p. 17 a 33), est supposée connue. A chaque
tangente double on peut adjoindre une des 28 caractéristiques
impaires. Une caractéristique paire quelconque (p) est accom-
pagnée de 8 systémes complets de 7 caractéristiques impaires.
Les tangentes doubles répondant a un tel systeme se distinguent
par la propriété que jamais les six points de contact de trois
d’entre elles ne sont situés sur une conique. Dans la théorie gé-
nérale,; on a la facilité d’attribuer a ces tangentes un systeme
complet quelconque de caractéristiques impaires. Il n’en est
plus de méme lorsque P’équation de la courbe du 4° degré et
ses 28 tangentes doubles sont connues et que ’on a fait choix
de la surface T’. Dans ce cas, la difficulté essentielle consiste
précisément & trouver 7 tangentes doubles et leurs caractéristi-
ques satisfaisant & la condition indiquée. Ce probléme résolu,
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les caractéristiques des 21 autres tangentes doubles sont don-
nées par la théorie générale. Voici de quelle maniere on peut
arriver & la solution désirée. (Comp. Riemann, p. 460 et suiv.)

D’aprés Riemann et Weber (p. 82), il est possible de mettre
I’équation de la courbe du 4° degré sous la forme

[*— &, 2,5, =0,

f=0 désignant I’équation d'une conique, et xz,=0, £ =0,
2,=0, £, =0, exprimées en fonction des coordonnées z et s,
celles de quatre tangentes doubles & la courbe proposée, telles
que leurs points de contact se trouvent sur la conique f=0. Or,

$—1=0, s4+1=0, 2—1=0, 2z41=0

représentent évidemment quatre tangentes doubles dont les
points de contact sont situés sur la circonférence

24 22—1.=0.

Par conséquent, 1’équation s'+ z* — 1 =0 peut prendre la

forme
(s 4+ 22 —1)2—2(s*—1) (2*—1)=0.

Il existe six couples de tangentes doubles f)our lesquels la
somme des caractéristiques est la méme et qui, de ce fait, cons-
tituent un groupe. Si 'on considére, par exemple,

§—1=0, s+1=0; 2—1=0,z24+1=0

comme deux couples d’un groupe, il est intéressant de chercher
les quatre autres couples du méme groupe. A cet effet, il est aisé
de voir que 1'équation

®(s*—1) 4+ a(s? -I—zﬂ-—l)—l—é(z’——l):O,

ou « signifie un parametre variable, représente une conique qui
touche la courbe du 4° degré en quatre points. Toutes les fois
que cette conique dégénére en deux droites, on obtient un couple
de tangentes doubles appartenant au méme groupe, vu que leurs
points de contact, de méme que ceux du couple s+1=0,
s— 1 =0 satisfont & I’équation |

2e(s*— 1)+ (s* + 22— 1) =0.
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La condition bien connue qui entraine la dégénération de la
conique
@,,2% + 20,528 + A992* + 20,52 + 20458 + 055 —
1N . | . . 1
= (a—}—§ 2+ a(e+1)s* + ——a—g =4)

-

fournit la relation

* 1
gy gy g e 0, 0
i —
i gy (yy oz | — 0, a(e+1), 0 =
| ; 1
gy (g Oy 0, 0, — (al 4+« + 5

ad

:-—-(a+%>a(u+l)(a—[——1—§_—i) (a—|—1;-i) st )

que l'on peut considérer comme une équation du 6° degré en o
dont une racine est ==-. A ses six racines répondent les couples
suivants :

o Couples.
D0 §—1=0is4+1=0
0 z2— 1 = 2+ 1=0
—1 z— 1t =024 1 =0
1 . y
—5 — } = s+ 1+ =0
— 144
2+% R S+ cz =0
g
— ;_Z §—ce'z=0|s4:2=0

Ceci posé, on introduit un systeme de coordonnées homogenes,
en choisissant pour z,, x,, x, trois tangentes doubles telles que
leurs points de contact ne sont pas situés sur une conique. Les
tangentes

ry,=A(—1), x,=B@E+1), z=C@Er—1)

remplissent cette condition, et les fonctions qui forment des cou-
~ples avec les précédentes sont
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g, —=s+1, &=z2—1, &=z+41.

Les constantes A, B, C doivent étre déterminées de telle sorte
que ’équation

Va&, + Ve, + VasE =0,

exprimée en fonction de s et de z et rendue rationnelle, produise,
a4 un facteur constant pres, I’équation donnée s* 424 —1=0.
On trouve sans difficulté

A—1, B =
On posera donc provisoirement

1 :
,=s—1, x2:§(z+1), xaz—g(z—-z),
g=s+1, .&=2z—1, Eszz—l—i.

Or, Riemann (1. c. p. 464) et Weber (p. 9 1) démontrent qu’entre

les six fonctions z,, z,, #,, &,, &,, &, 1l existe quatre équations
linéaires et homogenes de la forme

§)) ox, 4 Br, +yxs +e'E + '8+ E=0,

pourvu que les constantes «, 3, v, &, 8/, /" satisfassent aux con-
ditions
P e . '
e =5 =yy .

Une de ces équations est alors nécessairement une consé-

quence des trois autres. Les quatre expressions V oty ~+[3x, 2,
sont les fonctions abéliennes désirées, c’est-a-dire celles qui,

jointes a ]/x,, }fxz, }/ x, répondent & un systéme complet de
caractéristiques impaires.

Pour les déterminer, on partira des trois équations faciles a
vérifier

2, +2(1—da, +2(1 —i)z,—E5, =0,
Qigy—2(1 —i)a;— E,=0,

21+ )z, + 2z, — &, =0,
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En les multipliant respectivement par I,,1,, 7, et en ajoutant,
il vient une nouvelle équation que 'on peut identifier avec (1):

Lo, + 2L, (1 —d + L4 L1 4 0)]z, +

+ 20,1 —2)—1, (1 —o) + Li]ag — L&, — L&, — L&, =
—eaz, + Bz, + yr; + a's 4 8'E 4 v'&s.

On en tire

a=l,, o =—1,,
(@) =2l —0)+Li+ (1 +0)], |8 =—1,
y =200 —i)— L, (1—) +hil, | ¥ =—b.

Les conditions «o’ = 8’ = 77" donnent lieu aux équations
— P =—2L [, A—)+ i+ 1;(1 +2)]=
= — 9l [l (1 — ) — 1y (1 — i) + &s]

qui, & leur tour, servent & déterminer les rapports 7, : l,: {,.
Soit, & cet effet,

l,—=ml,, by — 1l

Les équations précédentes, apres la suppression du facteur
commun — /,* prennent maintenant la forme

(3) m(l—)+m24+mn(l +0)=

bl

LO| ==

L]

(4) n(l—2)+ n2r—mn(l—i)=

| =

En les ajoutant il vient

(1—i)y(m4n)+i(m+n2)+Umn=1,
ou bien
(m4+n)?—(1+17)(m+n)+i=0.

Il s’ensuit

14 (14142 . 144 \/—?_
M= i\/—4 T'=g kY —3=

C14d 11—
_@ig—,

a—d
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s0it
a) m+n=1, b) m+4n—=q.
La substitution de 2= 1—m dans I’équation (3) donne

1
s _+_
m=1 \/—2 )
tandis que n =t — m fournit

0
— 4+ =
On a ainsi les quatre couples de valeurs

mi_1+f 2_1___\/_1m,m‘,,__ ]/7’3)"’ My, —=——= VG’

—J

O i R (e

lesquelles, introduites dans les formules (2), conduisent aux sys-
témes suivants :

/alzli ey, ——1,
=2 (1— 1 f—= 1 \/T l
B1 =2 ) Fa=—\1+V3g)h
2, N
\712'"_ g ' — §
a, =, o'y —=—1,
1 ; 1
ﬂz:2l4(1+\/§) 182:“‘““(1_\/_)l4
! - Qli ro_ _ti_
\J‘Iz — V’g y:—_]/§
Ca, =1, a ,=——I,
2l , 0
53:__7.0): ﬁsz_ﬁli
Y, =—21l, (1+\/%) gl == (1—--—\/%)!1



198 H. AMSTEIN

/ ay =1, o'y=—I,
\ _2il, ;i
u——- VG) 'ﬁa — ]/~2—

sV | eV

Les valeurs de «, 3, 7, &', 3, /' étant connues, on a mainte-
nant aussi, en vertu de 'équation (1),

@y + 5, To + 742, “,451 +18’l'§2 ‘|‘71453

L - L B
=z, +C—)VDw,—) 22, =s—1+ (1—- \/35) (z41)+
SRR Lo L SN
]/C)(Z—“l) s+z2 V3 s+z2—e

et de méme

¢y Ty —|—ﬁc_,322 —}—}’25[33 e “’2-51 + 13’2:5‘2 + }’f2§3

- — . Z E
l,l ll, + + {'7
653515’,1 +183m° +Y3m3 — (5’3;“4 + 18,35?2 —I_ y’3;£3 : !
= .  — — 12 ;
l'j li + +é b4
Ty + 34, +Yuac3 ¢ W s uw‘i‘}’u*a — st ir—s
l l )

1 1
Ainsi qu’on ’a déja fait remarquer, les fonctions
Lyy Loy Ty
g°=sF+z—e, g=s+2+4¢ g =s+uz+¢, 9" =s+iz—¢,

ou, pour mieux dire, leurs racines carrées forment un systéme
complet. Pour amener 'identité

g° =@ a2y =— (5, + &+ )
il est nécessalre de munir les fonctions x,, z,, x., £, &, £, de
certains facteurs constants; en d’autres termes, on remplacera

xl? mi’ m5'.' -E’I b 527 ES?
=
» xQ xg 4 1 E)" te Sy o
l)al x[’ —_—_—f—_’ T T —E:‘l’ -____—_é } 2—55’

2—)2 V2 ‘ V41"
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de sorte que dorénavant

\wdz et TR e (l——\/z)(z—l-n, xs.:}—/%_(z—-i),
5=+ 52_"'(1“/1) 1) &= g(z-l-i).

Ces six expressions, dans leur nouvelle acception, satisfont
¢galement & 1’équation

Ve, & + Va5, + Va, & =0.

Cela posé, les équations (23) de M. Weber (p. 93) deviennent
maintenant

& —l—if., +E3+x.+:vg+a“—3:0-

——-I— + + oz, gz, + g0, =&, —{—(]fc)—l) &, — &+

((1 o

+a,+ 2+ 1), —a, =0,

T - , , : e D e
4 e e =5 (218, —
€, @, «;,
— iy 2—N)E+ o, —i(V2 + D, +i() 24+ 1)z, =0,
—|— ,, + S —|—a X+’ e’ s —E,
——z(}' 2—|—1),3+m4 i() 24 1)z, +i() 2-—1)2,=0.

On en conclut

(e, =1, @, = (]'rg—l— 1)%, «; = —1,
o, =1, «,=—i(J2+1), «;= i(J2+1),
" =1, «,— (Y241, «.— i(y2—1).

Ces quantités ont été appelées par M. Weber modules de classe
(p. 103). Les modules dérivés «",, &",, 2”5 dépendent des « et o
et les formules (28), p. 95 de 'ouvrage de M. W., indiquent le
moyen de les déterminer. Bien qu’il ne soit pas nécessaire de
vérifier ces formules, 'esprit éprouve toujours une certaine satis-
faction lorsqu’en appliquant une théorie générale a un cas parti-
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culier il arrive & des résultats prévus. C'est a ce point de vue que
les quelques lignes suivantes figurent dans le présent mémoire.

Ecrivant, pour abréger,

1’ 1’ 1 = 1, ], 1
y, O, 5| = (a,a,05),|c, L . L =\ «,,—,—|, etc.
: : a, oy o, Oy
’ ! r r 1 1
€ gy &4y Gy o uafas afs

on trouve successivement

1\ _ /1 1
ai!aga_ — _aaga_
Ufz a‘ 05

)
(a, al as) = (i,l, aﬁ) — —9)/3(1 + i) 2—1),

«a, «,

— 9214+ (24 1),

(o @ 8) = (00, ) = — 2 BU—) (24 1),

1

(s l,l):(i,i,i) ——9)3(1 — i) (Y 2—1).

" . (44
N T N T TN
1y a; 3 alva; 3 19 a:’as “4,“2,55

or, .
i, ey == -—i(']/_gm—l— 1 Pdees) e ""(V-OT‘F 1)



FONCTIONS ABELIENNES DU GENRE 3. 131

par conséquent,
"oa___ (]/g_l— 1)8 o 2 " e1423
o, _—'—(—1——31—1;6 :-—(] 2—‘!—1)" eta g:iz(]/g_]"l)-

De la méme maniere 1l vient

1 )(1 1 )( ) 1
— Oy O | —, — x| (e, ,, )| 2, —, ¢
0»’4’ 25 ”1’“2’ 5 ) Mgy e U3 n%v 3

ace' e’ ) —= —
(aze’30") 1)(0: 1 1)(1 1)(1 1 1
o, , e, ,— —_—— -, — | —, —, —
( 1y Yoy o 19 (XQ’ a, “1’ 29 @, a{s C(Q’ ey
1 2
(ceyy ety 15)° (“u — “5)
Xy
p— . -— 1
1V - BT !
auaﬂs“a_:;) ), ;Qsa{'
mais B
(c5c’3)* = — (VQ + 1),
par conséquent,
"t = —(V2—1) et o = +=i()2—1).

Enfin on trouve

( 1 )( 1 1 )( )( 1 )
o, —, o, — — |lo,, e, )\, 00, —
11 b ) 3 ‘11({‘230{5 11 21 o 17 2?({3/

oS 2
105

: ‘(1 )(1 1)(1 1 )(1 1 i):1
Ty gy Ug || —y gy — —y Ty g Ty T
, , AN iy, ey

et puisque

(e, e’

r

(ye'))* =1, ona «" =1 et ", = +1.

Ainsi, au signe prés, les modules dérivés ", 2”,, .”, sont
connus. Si, pour une raison ou pour une autre, on a choisi 'un
des signes, les deux autres ne sauraient plus étre douteux. En
effet, soit par exemple &, = —+ 1; alors I'égalité

/
(1 ) (1 1 }
GO [ S i ——
' " e Y TSNS Y h Rkt
(—Y_S(Z 5({ 5 ((1 (44 {{2 /

s — .1 ¥}

f ! == P P
a o e 1 1 1
), &, , Oyy ——y—
s Ol Wy

. 1

fournit
10
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"

2

a, e,

1

=i(2—1)

g

et ( 1 1 1
' " 0.’”—,(15 Oy,
aia 1a 1 0(2 (Y2 Df3

s [
— 5) - +
ayc (1 ) (1 ) = 1)
— gt ) | —, ey, —
“1’ a5 0-’4’ 29 a5.
donne de méme
a, e o
a”, :M—*——-d 1 1( —{—1)"*2(} G’—I—l)
@, .

Les 18 autres fonctions abéliennes.

Les 28 fonctions abéliennes ont déja été trouvées précédem-
ment. On fera connaitre plus loin un moyen qui permet de dé-
terminer leurs caractéristiques d’'une maniére directe; toutefois,
dans Vintérét de la brieveté, il est préférable d’appliquer les
formules de M. W. (p. 96 et s.) qui donnent non-seulement la
forme de ces fonctions, mais encore les caractéristiques corres-
pondantes. On obtient successivement

ylo —/ + 52 + 55 —s—1— <1+l/v£>(2h-]) +

+ ]’7 (z+1t)=s—2 ¢,

Y1 — Ty +_—+ 3—'3"_1—(1_1/1)(‘”“1)_

)’a — '

( V1> 241 =s—iz—z¢',

&, )
71—a 1‘T1+an+ " '——S_'l+ ]7:—-67(2-“-1)-“*

u‘)

_7:<1 +|/§) (4 i) =s—iz + &,
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[o R [ . C I . _.'
=8+ ¢, + E=—@—2+4¢)
£

N | T .
7. = —= - Uydy _—“_(‘S— __"’)
o, N
! é':d ! ;-:5 o
Y, == 4+ a'ow, + = =— (s + 2+ ¢)
(154 a5.
W s ‘:":-1 /. 5'; _
Y o — 7 + oTs + — ————(S"}‘l”—"é)
= & + & 4+ vy =—(s+ 2 —¢)
Q - (\{1 (tﬂ 2770 T -
& | &
¥ = =ty —=—(§—te—=)
=y 2
" £ o " - .
53— I + " "I"a 55135——(3—?~+é)
1 @

Les six derniéres fonctions ne peuvent étre autre chose que
trois des couples qu’on a déja rencontrés p. 124. En effet

e 51 ;‘:2 + S-753 —_—
=8 a, (1 — o) tto(1—ce ) ,(l—eyy)
L (1—y/5) =
— (1 —\/ ) (s—1
— 2( 9, (s=2),
. T4 . TQ 3:13 .
S 1—a,c, T 1—e, e, T 1—ea,a, o
1/ \/T :
— (1 —A/Z)(s+2);
9( ez)( F el
. _E! _E-_-g '5":3 mmng
s = e« (1—a'se’) i « ,(1—e' ) + o (1—a'ya'y)
| g -
= 2T—1) s+ ),
" . .’L‘i xf} [L‘S ey
Y= 1—a' e’ T l—e' e, T l—e' e,
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'51 g, £
d: : ff 1 ." + 4 = /4 " + [/ : I s —
1( SEE gt 3) 144 2(1_“ a2t 1) c 3(1_“ 1)
1
e “65(8 el ("2),
1] z, B,
L T = - =
O 1_(’#2(‘!!3 + 1__(_(!}‘3(‘!!1 + l—a,,l(xﬂi
o 1(s + £2)
5 .

S1 l'on désigne par

Vo) =30, (Vo) = (32,0 25) = (3:), (V' 9°) = (3),
V)= (2., 19" =), V9" = ()

les sept caractéristiques impaires formant un systéme complet,
en indiquant de cette facon en méme temps la caractéristique et
la fonction a laquelle elle appartient, les autres sont (W. p. 100

et 101):

ué" = (p+ 8, +5,) k Vo=@ + 8, + 8,
V&) =p+p,+38) L Vy) =(p+8,+8s)
(J'E, —(p+ 3,480 | (V') =@+ 8+ 86
Vr D) =p+i+80 | (17 =@+8+8)
Vrve) =(p+8.+80) | Ore) =48, +8)
Vro=m+s+8) | 7 )=@p+5+3)
1“W_p+ﬂ+ﬂm V") =(p+8,+8,)

—
oy

(V'E) —(p+p + 3 | (Vo) =(p+ 8, + 8)

VE)=@p+p ) V) =(p+ 8+ 8)
s '\ P =
VE) =(p+3,+3) | Te) = (p+ 35+ 5)

()= (B, + P+ 5, + 7, + 8, + B¢ + 3,).
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Détermination des caractéristiques.

I1 s’agit seulement des sept caractéristiques ()'z,), () ,), (} @,),
Ve), V), Vg, (Vg') qui forment un systéme complet. M.
Weber, ala p. 79 de son ouvrage dit: « Lorsqu’une fonction abé-

lienne }/z s’annule dans les mémes points que Po) (I duh), on

appellera (w) la caractéristique de cette fonction abélienne et

on la désignera par (}'z). » A ce propos, une observation im-
portante se présente tout naturellement. De méme que 'égalité
de deux quotients n’entraine pas nécessairement 1’égalité des
dividendes d’une part et des diviseurs d’autre part, de méme
I’équation

C \/fg e g ;1"'“”")
ma ( f :
2 Py ( I J(luh)

ne permet pas de conclure que la fonction |, affecte exacte-
ment le systéme de facteurs indiqué par la caractéristique

(V #,). En effet, lorsque la variable £, soit le point (#, s) franchit
les six coupures, les deux membres de cette équation prennent
bien le méme systéme de facteurs, mais il se peut que, dans le
quotient, un certain nombre de facteurs (— 1) se soient détruits.
Ainsi donc, si 'on veut déterminer, par exemple, la caractéris-

tique (}/z,), en observant combien de fois la fonction | 2, =} s—1
change de signe, lorsque Z traverse les coupures, la combinai-
son de nombres, ainsi obtenue, ne donne pas directement (]/ Z,),
mais () z,) 4+ (q), ot (¢) signifie une caractéristique encore in-
connue, qui d’ailleurs conserve toujours la méme valeur.

Il est & peine besoin de rappeler ici qu'une racine carrée change
de signe toutes les fois que la variable, en parcourant une courbe
fermée quelconque, contourne un des points pour lesquels la
quantité sous le radical s’annule, pourvu que le zéro soit du
1 ordre ou d’une maniére plus générale, d’un ordre impair,
Or, franchir la coupure «, revient a décrire la coupure com-
pléte b, ; leffet produit est évidemment le méme.
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Pour la fonction ],-"az — Vz —+ 1 cette détermination est trés
simple, attendu que dans ce cas la surface de Riemann T’ fournit
tous les éléments nécessaires, En effet, il suftit d’observer com-
bien de fois chacune des coupures contourne le point 7= —1.
Un coup d’eeil, jeté sur les fig. 8¢..... 8/, montre que

la coupure a, fait 2 contours, la coupure b, fait 0 contour
» a, » 1 contour, » b, » 0 »
» a;, » 0 » » b, » 1 »

Q

En réduisant encore ces nombres a 0 et 1 (mod. 2), on a ainsi

(Vas) + () = G-
D’une maniere analogue le point 2 =+ donne
(Vz5) 4+ (9) = Gn)-
Pour faciliter le controle uitérieur on peut ajouter
(VE) + (= (), fonction }2—1, point z = 1,
V&) +@ =G > Vati, >

Afin d’obtenir la caractéristique de 2, =) s — 1, il est utile de

D=1

L]

b

représenter les six coupures au moyen de la fonction 3:\7 1—2°.
D’apres ce qui précede, cette représentation n’offre aucune diffi-
culté. Cependant, il n’est peut-étre pas superflu de rappeler que,
pour la fonction s, le point z=0 est un point singulier (Win-
dungspunkt), en ce sens qu'a un circuit de z autour de ce point
correspondent quatre circuits de s autour du point s=1. En
d’autres termes, dans le voisinage de ce point, les angles de
I'image sont 4 fois aussi grands que les angles correspondants
de l'original. On le reconnait aisément a ’aide du développe-
ment

s —1 :w—lz“...
4

Il va de soi qu’il faudra tenir compte des différentes nappes
dans lesquelles le point z peut se mouvoir. Les fig. 9¢... 97, ainsi
établies (les chiffres appliqués sur ces contours se rapportent aux
points correspondants du plan (2)), on observera combien de fois
chacune de ces courbes contourne le point s = 1. De cette ma-
niére, on trouve

(0z) + (@) = Gu)-



FONCTIONS ABELIENNES DU GENRE 3. 137

Les mémes figures donnent encore, pour controle

(V&) + () = (u)), fonction }'s+1, point s=—1,
Ve) +@ =G> > Vs—i, > s = 1,
Vo) + (=G> > Vetd, » s=—i

La représentation des six coupures sur un plan («), a’aide de
la fonction w = s+ #z, conduira facilement & la caractéristique

de Vgo =V s4z—¢ , car cette fonction ne peut évidemment s’an-
nuler que pour s 4z =¢:
S1 l’on écrit

i
u—2z+m \/l—z“,

m prendra les valeurs =+ 1, ==, suivant la nappe et le bord sur
lequel le point 2 se meut. A cet égard les fig. 2 et 3 fournissent
tous les renseignements nécessaires. Pour plus de facilité on
pourra se servir du petit tableau suivant :

Bord 4+ — 4+ — 1+ -4+ | —
Chemin parcouru par 2 | 01 | O1 | 0z | O¢ |0—1{0—1|{0— 40—

| 1 i ¢ |—1 |—1 |—¢ |—2 1

Bactenrdes | 14 t =1 =1 |—t |—2 1 1 )

dansla nappe | III |—1 |—%¢ |—¢ | 1| 1 0 v [—1

IV |—< 1 1 1 ¢t |—1|—1 |—2¢

Par exemple, lorsque 2z longe le bord négatif de 1'axe Oi

4
dans la 4™ nappe, la racine \/l — 2" affecte le facteur 7. 1l est &
1

4

remarquer, en outre, que pour la fonction « les points 2=+
4

s==1 % sont des points singuliers tels que, dans le voisinage
4

des points correspondants u ==+ 2 \/% , U= 0 \/%, les an-

gles de I'image sont le double de ceux de I'original, caron a les

développements
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2 /1

u + §~
£ ;=

: 1 /1

u+21\/—2— ——61 (@2

Dans les fig. 102... 107, construites d’apres ces indications, les
points marqués = #n, & ne répondent aux points singuliers

1
lop)
/‘[-\

-+ \/_% —+——a\/ de l'original. Maintenant on voit immédiate-
ment que

(V9°) + (9 = (> fonction Vs+2—e, pointu=¢,
(]/57) + (9 = (383 J ¥ Vm; »  U——¢,
et pour controle
(]/;65) + (g) = (853 , fonction ]/m , point w—==¢",
V) +@=Gws> > Vstetes > u=—e
En dernier lieu, il s’'agit de trouver les caractéristiques des
fonctions Vg =V s+iz+¢ et Vg'=) s+iz—¢' Lavoie suivie

déja deux fois conduit encore au but, c’est-a-dire qu’on repré-
sentera les six coupures sur un plan (v) moyennant la fonction

&
v::s—l—z'z:iz-]—m\/l—z".

Au sujet du facteur m, I'observation relative au cas précédent
est encore applicable. La fonction » présente les mémes singu-
larités que la fonction u, avec les modifications qui ressortent
des développements
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.
Q
bSO | =

||

™

3 b\
%5) l(z—l—z\/—Q“) .. 818 > » 1.

Enfin, les fig. 11¢... 117 donnent immédiatement

(V9" + (9) = (1)) » fonction }'s+iz+<, point v=—s¢,
V) +@=CD> > Vstiz—d, » v =2¢,
Vy"D+ @="0Gw> >  Vstiaz—s > v =&,
Vyio+ =00, >  Vstizte, » v=—.
En résumé, on vient de trouver

V) + @)= 0z) + @) = () 0z + @ = (i
V) +@="Guw)> Vg) + (9= (w)> Vg + @ =G>

V9") + (@) = (i)

et pour controéle

VE)+@=Gn)» VE)+@=Gw) VE)+@= G-
VED + @@= G Vaw) + (@ =G> 7:°)+@ = Goo)>
Vrs) +@= > V") + @ =) » 72+ (@)= (o) -

Afin d’obtenir finalement la caractéristique (', ) et avec elle
(gq) et toutes les autres, on peut former les 6 groupes

(Vwixﬂ)’ (V%xz)n V‘TJQO)? }/5‘319)5 Vrﬁcagf)a Vxlg”)-
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Evidemment, ceux-ci ont une seule caractéristique commune,

a savoir (]/E,- ) qui, de ce fait, est parfaitement déterminée. Or,
les tables de M. W. (p. 180 et suiv.), donnent

T \ ’
(¥ mum)=(oi0) + o) = (oen (iﬁ?,)-l- 100) = (i21) - iii —(2if)+
+(3Yi)$(¥§l’)+(i’fi 133)+(13,?, “i)+(f,15’),
= 10°
(V @y 25) = (1) + () =(oo) = (i?i?.)Jr(‘fti;‘ (ii’ﬂ)+(‘i?i) (110) +
+ (fii‘i) + (éié)“‘“(ﬁié)-% (éi?)~—(i’éi)+ (31?.) :

.-._..

f o el Ve
(V2,9°) =)+ Gy =(e0)= (133)+(33?)—(ii'3)+(3§’? (o10) T
(?ii’)——(‘fiﬁ)+(i’ii’) (133 (100)=Coro) F+(0i1) »
6
Vag) =Ci)+Go)= (éii):@(QH‘ﬁé) () F Con) =) +
+(i00)= f’.ii’)+(3,31)“($§3i)+(éii’)— ?Z’i)+ 101)

Vag ) =C+-E == (133)+(3ii)—(i 1) (oa0) =) +
+ ()= fii?) + ()= (331) Gron) =) F0io)
4

(Vo= G+ CN=C=CaH+CI=CD HE =0 +
+ED=CD+C _(:,:::)+(::;3) G+,

4
Il s’ensuit (\/x == (igg
ot par conséquent (9)=(110), ()=3(:)=(1%).
On a ainsi
We) =G> Wo)=Gu)s Vo) = (s Vo) = ()
Vo) = () Vo) =G> Vg7) = G
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et pour controle

WE)=(), VE)=(9), (E)=(0), (YE)=(, (Y =(),
W=, (=), W=, ()= (o

ou ou
On est maintenant en état de dresser le tableau suivant . con-

b
tenant les 28 fonctions abéliennes avec leurs caractéristiques et
leurs zéros (voir p. 142 et 143 ci-apres)

141

Transformation des intégrales w,, w,, W,

Avant de continuer cette étude, il est bon de soumettre les in-
tégrales de premiere espece a un examen un peu plus attentif

B d
“=Jyi=s

On peut d’abord transformer I'intégrale proposée au moyen
de la fonction

2
—gt —,
¢ S
Il vient successivement
il C 1 _%“i dg
BB e, S o , dz—e °
Vi Vi1

(1—*

La substitution

’ )\
donne ensuite

dy
o= [
Vi

Pour ramener cette intégrale elliptique a la forme normale
de Legendre, on posera en premier lieu
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142

1240

H .ﬁ?w.w.l% HE.WWQ HH wummwm 1 mmw I% 0F0 ﬁﬁ.\ﬁ ah\l.\.\— 4!
I ?Ei@ o \E.mm o I ﬁ@m Emvlm w“m \Iwulm.slm. Mm\— €l
8 _ . . 8
AL | a2 | e’ I it o587 o eme—sy | Myl Bl
q A A g
AT | s ? IR ik 8 o | 2HETS | A |
g i a G .
AT TII 0 ¢ — | AI IO 0 ? 00 e | 5|l ot
T Im I s
AT TII 0 I AL TII 0 [ s =2 | 31 | 6
1M I I 1

ITI I — 0 I I 0 i 1+ | "3 || 8
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y—1 o 2dy
g d"""(y+1)*“
d’ou il suit
_ dy iy ™ dy
Ol b e SEN iy oy ey

puis

y=(2+ 1)cotgy, dy=—(12+ 1) 2%

sin*g’
ce qui conduit & la forme
— 8 j’ dy
V(V—-l- 1)*cos’g -|—(V°)—~1)251n (p

) J g _
Y2414 V"cisin‘%,o -

V_+1f\/

( ) sin®g
V9 41

Afin de transformer cette derniére intégrale en une autre dont
le module est plus petit, on peut employer la substitution de
Landen, soit la formule

g dy N
— Flie,g) =~ "Rk, o,
[‘Vl_kgsingg) ( q]) 9 ( n¥ )7

dans laquelle les amplitudes ¢ et ¢, sont reliées par I'équation
tg(g,—g) =k tgg, ot k' =) 1—k*

et le nouvean module
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ces formules donnent

kiz% et w, = —

Qf\/ 1,
1—5sm*gpi

—d

Pour faciliter la détermination des limites, voici encore une
fois la série des substitutions employées :

.!.—f Z T -'—i’rb l_l_r
£ ——,r—=e * [, y= !
) ? y 1___7},!

Y
cotg @ = ————, tg( — (Vg —1)%tgq.
89 =75 7 &1~ g)=(2—1)

Ceci posé, on trouve, par exemple, en désignant par =o le point
a Dlinfini de l'axe des X positifs et, d’'une maniére analogue,
par e.> le point a I'infini de la droite y=x du coté des X po-

sitifs :
(lr
‘/ V1 —g“ Vi r" —
. B dy dr
“"f Vﬁ?ﬁf i
0 1

. G w 1
Si, dans la derniere intégrale, on remplace » par —, on re-
7

marque que

par conséquent

Aux limites 0 et 1 de » correspondent les limites 1 et > de y,

arctg (V )4 1) et 0 de . Reste encore & déterminer celles de o,.
A D'aide de 1’équation

tg(g,—y) = (V2—1)*igg,
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dont on tire .
14(V2 4-1)
1—J2—1)%tg*¢

tgg, = tgq,

- 1 Fr
il vient o, = 57 pour tgcp:(}' 241) et 9, =0 pour o =0, de

dy f
f\/l—sm ¢, \/1———5111 ¢,

sorte que

rul K1

Wi

IV
En introduisant s comme variable d’intégration, on a immé-
diatement

s3(ls ds
= V11— d=— ——etw,=—— | ———.
\/ (1—s")2 - Vi—s"

Puis la substitqtion

s=—cosq, ds =—singdg
donne

1 dg
_@fw11.2‘
‘—-QSID @

Il s’ensuit, par exemple,
1

mﬁf : J ‘?___%&.
\/(1 \/1——5811’1 ¢ -
" — dzm
S B Syl

Il suffit de poser
z=cosq, dz—=—singdyp
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pour ramener cette intégrale elliptique a la forme normale

Wy — — VQJ- —

—sm g

On en tire

f =75 \/f%*““‘ =75

Ainsi, on vient de trouver

1
KE:K‘%:—V_@KP

Valeur numérique de K,.

En vue d’une représentation qui sera faite ultérieurement, il
est utile de connaitre la valeur numérique de K, . Pour la dé-
terminer, on peut se servir de la méthode de Gauss.

Si Pon pose, pour abréger,

: 3
a, b, .':..f
A 2 ) Vatcos’y + b*sin’g

et que l’on soumette cette fonction » fois de suite & la transfor-
mation de Landen, il vient

1 1
f((&,b, @):E f(aubnq)i): é@ f(a-nbzagoe):"'

1 .
— @ f(alnbnsq)n)i ou

; __ b
=g +b), b=Yab , tglg,—9)=-tegy,

1 b
= 9 (a,+ b‘), by=1 a,b,, tg(g.—9,)= '&i tgg,,

b,
(a + b )a b aﬁbz ’ tg (qu,'_‘ (f'e): E: tg 2%

wl -

11
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o oa L . . . b
Le calcul doit étre poussé jusqu’a ce que lim b—" = 1. Alors,
n
si 'on écrit encore lim (%) =@ et lim ay, = lim b, = A, on

1 . .
a f(a,b,0) = —(; . Lorsque ¢ = 37 @ est évidemment aussi

=57 et par conséquent

1 . 37
f(a-, b —2- 7T) - 'K .
Or, dans le cas actuel,
K, = f _ﬁ__._ — ) L ,
T e S T R

2

ou
a :}/—g_—:l, 21421356, b—=1,
on trouve successivement
a, — 1, 20710678, b, — 1, 18920722,
a, — 1, 19815695, 0, — 1, 19812352,
a, — 1, 19814023, b, = 1, 19814023.

Il s’ensuit

A—1,19814023, K, —

1

7.} 2.0,83462684 —1,85407468.

19| =

Il est intéressant de constater que les sommes

« 6
Wh:f dw,, -+ ’1 dwy, ,
0 ‘0

ol « et (3 signifient les zéros d’une fonction abélienne quel-
conque, s'expriment d’une maniére trés simple au moyen des
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quantités K, , K,, K,. A cet effet, et afin de faciliter le controle
des calculs par la vue, on opérera la représentation du cercle
des unités a I'aide des intégrales w,, w,, w,. Pour mieux dis-
tinguer les différentes nappes, on tracera chaque dessin quatre
fois. Dans les fig. 12a...12m_ pl. X, les chiffres == 1, == ¢ se rap-
portent aux points correspondants de la surface (). Le cercle
des unités entre successivement dans chacune des quatre nappes.
S1 I'on exigeait que le point 2 restit constamment dans la méme
nappe, il faudrait fajre intervenir les modules de périodicité des
intégrales ) ; mais 1l n’y a aucune utilité de procéder de cette
facon.

Zéros de ]/f_._

Soit a déterminer

12ﬂf: il
. '16 12
W, :J dw,—l—[ dw,.
[ 8
0 0
1 I

En soumettant 'intégrale w, & la transformation § = ¢35y on

»
obtient l'intégrale indéfinie a’jv.ld_"? (comp. p. 141). Dans le

calcul des limites de £, on se servira des valeurs de s qui cor-
7 1

Y . ‘):i LY __):i
respondent & 2 = ¢'* dans la 3 nappeeta z =¢ '* dansla

2me nappe.
On trouve

7 . 1 - ' - 7 1 . 11 .
T5 T ——'_';'.':l Tﬂb—l""—:')-:l,—{—‘:ﬁl T T _ .

2 =¢% [s=e 2 =g V1 =g l.(\on' les

11 hg Qet 3)

1 2 i f e 1 g . b .

—— =i il Wb o il — ==

2 — e 12,S=81_,C=~"8 12 1 —p

Si Pon admet, en outre, que VI—Z' = 41 pour £ =0, le-
signe de V1—Z* dépend de la relation
1

Yy

§2

1 .
% e 1 «
Or, lorsque z se meut de 0 a ¢ " dans la 2" nappe, s va

=t

]

o

T % . o T
de ta e, 88 de—1ae’ . Sur ce parcours, la partie réelle
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de s? est néegative: il s’ensuit que, dans la 2™ des intégrales pro-
g ; ) p

posées, 1—Z* affecte le signe (— ). Ainsi, il vient

1642" e 12
\Va—_—é’[‘j dg [dé. e
v Y1=C" yi=¢*
el—;z.-t eﬁff;
— ‘c”[ f—dg + f *‘Lg&
o) 11— 0 }"1'—?‘

Grace au théoreme de 'addition des intégrales elliptiques de
premiere espece, a savolr

Y £z d dy .
{,fl’f(l—w?)(l—k"’w*) +J1”r(1---fy2)(1—lﬁ'y") -

”f] a —29)(1 k2%

on

_ o/ A=) (A—F ) + y ) =) i—Fa)
c — - 9
1— k2% y?

on peut réduire cette somme & une seule intégrale. Dans le cas
actuel

[
(=

a 2 p
9 . E'ﬂb -
= —1,z=e2", y e,

eh ]I—c* —l—e“ Vl—e‘”

1 4 g% g™
14 .4 n =i =i 3 3 ni
e el:l 8 G __I__ el.’ ct . en __I_ et L Qe-’l
B 1—1 — o "0




FONCTIONS ABELIENNES DU GENRE 3. 151

Substituant encore £ = — ¢'t, il vient finalement

oC 0

. di : dt :
\Vi:ér(——é ) T——— . } -[—* = ZK,.
Y1+ J V14
0 0
Observation. Dans le calcul de ¢, on choisira celle des deux
valeurs de JT—e* dont la partie réelle est positive.
Soit a déterminer

= A .
g5 e~ o™
W, = Jldwg + I dw,.
m? i °

Si I'on introduit s comme variable, on obtient T'intégrale in-
définie

. ds ‘
Wy = —fm ((-Jomp. p. 146.)

Les limites de s se trouvent comme dans le cas précédent et
la relation

£
22 =1 =3
Zoi R —
montre que, lorsque # se meut de 0 4 ™, 2> de 0 a e* ,V1—s"
prend le signe (—).

Il s’ensuit

i)

._-;l.--. i—' _L ] [PV
e 1o 2 €12 wl e '121‘.1 e 12‘1".1'.

s ds ds ds
!}'[1 sl A }-‘flms‘ ) y1—s" “[.}fi — s

—31

¢ i i e—_{f_z:i i .
:fo+~r1 +~ro +«[—f. __J.o_»fo -

e_%“’. e 13
=0l R,

L’application du théoréme de I'addition aux deux premiéres
intégrales donne



152 H. AMSTEIN

ensorte que '
; —1
W, =K + K+ 6K, =—(1—¢ —=K, = 0.
2 s+ 1Ko+ ¢ K, = —( )}[2 Vo) =0
Enfin, quant & la somme
ez’ 2 e 1z -
VVS::‘[ dwa—l—f dw
1l
on remarque d'abord que daus la 2° nappe, le long de l'inter-

valle rectiligne de 0 a ¢ = ' le radical VYI—2" affecte le signe
(—). Par conséquent

7 4 s _—i_ . o
81’ T €12

dz d.z
W= OH fVl =l

I / "I'
—2 ¥ 1l—2

Ensuite le théoreme de 'addition fournit

11
e12

lv

W, = [dz — rdt ==
o) 1—2* o) 140
, 1—1, =~ :
= —¢ K, = — 3 ]‘[."ZK3 — —(1—2)K,.

Les valeurs de W,, W,, W, relatives aux zéros de Vg° une fois
établies par le calcul dirvect qui vient d’étre fait, les fig. 12a...12m
permettent de reconnaitre immédiatement I'exactitude des ré-
sultats suivants :

W,= K, pourles zéros de V'¢°, Vg V7% Vs
= —K, » » » o » }"/9’ ’ Vg” ) V)”za Vi’ﬂa
=—K, » » » o » V}’ioa V Y1 o VJ’OE.’ V)’a
K, » » » oo» l/}”l ’ V}'”v V}”v V}’”g
W, — —(1—4)K; pour les zéros de } ' ¢°, V9" > Vi V1"
(1—)K; » » > » Vg ’ Vgr ) ]"f}’a > VY’A
—(14+9)K; » » » » VYOQ'! V)’fgn Vyosv V}”s
— (149K, » > > > Vi VY Vs Vs
et W, = 0 pour les zéros de toutes ces 16 fonctions abéliennes.

[l

I

Il
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Seules les intégrales relatives aux zéros des fonctions VE,, VE,,

Vi,, Vs ne peuvent étre traitées de cette maniére sommaire.
Elles ne présentent d’ailleurs aucune difficulté nouvelle.

Zéros de V&

Soit & déterminer

—_— e’o’a

\/(1 u)z

(On se souvient que les zéros de chacune des fonctions VE,, VE,,
Va,, Va, se confondent). Réduisant d’abord & la 1t nappe, il vient

@)

I.\9|I-d

f w(l—z“)* ¢(1+z“)5

posant ensuite

5 5
—Q___’ dz — ds paB?
1—¢&" (1—8x

o —

Y%

cette intégrale prend la forme

ensorte que

2 i 2
1, _gZdz . Ja;dz ) zdz
SCh "&Ti_z“)ﬁz_zf Ji—y J yarey
IIO 0 0
Substituant
. T
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b orde

— — —K,.
If\/( l-u)s =

on obtient

w|

l\9| —

J dz J" dz _,r dz
Vi wVixe
= ¢'K, = (1—)K..
D’une maniere analogue, on trouve aisément :

Pour les zéros de J'&,: %Wl :‘fsolwl S v
2 0

=1

K,,

1 Hi's} 1 e o] .

g Wa= J Odwﬂ =—K;, 5W; = jodws ——(1+9)K;.
I

°° 1 —l—zK

19
2

Pour les zéros de }/ z,: 2 i “J

E)—Wﬂ — f Odw2 =—K,, gwa — j Odwa = —(1—0K,.

Pour les zéros de V2, —W J'_afsfz;l 1;—%Ki,
11

1 —ew
—Wngod%_ ~K,; Qws_j dw,s__(l-i—z)K

111 I1I

Valeur numérique de quelques intégrales normales.

A Paide des formules

[ w(2—i ,w w W;|
W="9 |7k, T X, T Tl
_ a(1=3y)r w, cw, 147wy
| =55 X, 'K 2K
_a@B+9r w, . L wy 1410 wa]
T 720 | K =9 +3 &,

(comp. p. 115) et du tableau p. 110 on construit sans difficulté le
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tableau suivant, ne contenant que celles des intégrales dont il
sera fait usage ultérieurement :

1 *] i 1 =
Nappes. fdu1(+> ‘j duy(+) fdu3’+)
0 0 '0
I 0 _ & T
4 4
T . T . T )
II —%(8—1—'&) 20(2_@). —%(4+33)
T . T . T .
; T , 3 _ . .
on — —n(2— — (2 —
1 1 a1
Nappes. dety ) du,—) du,(—)
d l-O .(l 4
7T , R o o :
I | —56+9 55 (2 — %) 5 (430
T ; T . T .
i : 3 _ = _
III 5B+ | —5T2—9) | 5 (2 —9)
T i)
IV 0 —= T

Il n’est peut-étre pas sans intérét de réunir aussi dans un
tableau les valeurs numériques des sommes Uy qui sont aux in-
tégrales un ce qu’étaient les W aux intégrales wn. Dans ce ta-
bleau, les intégrales qui se trouvent sur une ligne horizontale
ont pour limites supérieures les zéros de la fonction abélienne
placée en téte de cette méme ligne. Par exemple dans la pre-

1
—— T —=t
e-lz 12

14
miere ligne Uy signiﬁef (Zuh+J dun , dans la deuxiéme
L}

0 0
IT1 IT

11
13 eEﬁE
+J' dun, etc.
0
11

5
12

e 1

Uh —_ J. duh
0
111

-
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U, U, U,
— £ (341) Le—d | —5@—0)
T T o » T
— 55 (T—1) 52— 5 2—1)

‘E-:(l—'i) 0 0
= (B+1) L6+ | — T3+
(=) 5= | —2e—i
S+ | —He—1) e CE)
T . T ‘ 7 i
— L3+ 2349 T B+

78 .

_E(l-———z) 0 0

— 7 A+ 0 0
— 23 +1) = (3+1) )
! ___%(7—/5) — Z@2—19) @—1)
ZB+1) o (@2—9) 2 @—9
) . T ; it} ;
%(34‘1) ——-1-6(3"}'7/) —76(3'1_3)

+ (1+9) 0 0
_%(3-;-@') — 5 @—1) _%(2—4)
25 (1—19) Le—9 | —F@—9
I (4+3i) 3 z@—i Z (8+1)
7 . v} - 7ri :
— 2 (4+30) Re—) | —T+30)

k) i) 714}

2 2 2

/o) e T

Bl 2 H]
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Dans la théorie des fonctions abéliennes, on a rarement 1’occa-
sion de vérifier une formule générale par le calcul direct. Aussi
la saisit-on volontiers, lorsque, comme c’est ici le cas, elle se
présente tout naturellement. En effet, on est maintenant en état
de vérifier la formule II, p. 114 de 'ouvrage de M. Weber, a
savolr

(i) = (f o)

ol e, (3 sont les zéros d’une fonction abélienne Vz,o’, 3’ les zéros
d’une autre fonction abélienne V" et w,, w,, w, un systéme de

périodes & la caractéristique (w) = (VEE ) + (Vz?).

Vérification pour ]/5‘7 Vg.

Dans ce cas
(@) = (V) + (Vg) = (o) + (T10) = Goa) »
1 1 1 1 1 )
‘Q"OJ] — Eall —]“'3)‘0512 "I" aals :m“‘gﬂf(gmz)—

(3—[—z)+ n(S—I—z):O

1 1 1 1 1 . 1 . ;
-ngz—g-am-}—éaﬂ—]—ga%—l— éﬂ:z:-—-——m—m@—l— 1) —

g 1 . 1 . 1 1 .
—m—ﬂ'(d l)_Tan(-' '&)+—2'TEZ__——2):7T+§7T’I
1 1 :
-2—%:5 -+ = a52—|- a55—|— m-*' 7r(3—|—z)—
---%n(“)—z —-———n(?+z)+ m————ﬂf-l- m,
et

11 -
Ml 5 M

Vh —_ j dllh + J d‘llh .

-

e iz™ e~
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Or, il est & remarquer qu’il ne serait pas exact d’écrire
HI i

(T

I eﬁ"l 110 i ¢

vu que les limites inférieures, 0, dans la surface de Riemann

adoptée, ne coincident pas, mais sont séparées par des lignes

nm 44 _.
eiz™

de passage. Cette remarque s’applique également & j duh et,
e 1
en général, a toutes les intégrales de ce genre. Voici comment
on peut procéder. On fera décrire & la variable z une ligne
continue, partant de la limite inférieure ez dans la 3™ nappe
et allant d’abord jusqu’a 0, puisde 0 & 4+ 1. Arrivé en 41, 2 con-
tournera ce point un certain nombre de fois jusqu’a ce qu’il ar-
rive dans la nappe voulue, ce qui est permis, attendu que les
intégrales relatives & ces courbes infiniment petites sont négli-
geables. Ensuite 2z ira de 4+ 1 a O et enfin de 0 & la limite supé-

rieure e~ 127, De cette maniére on obtient

= f du,—{—f du, )—|-Idu(+ +I ;u4—|—

g 157 v ? i i’

+ [ +f du D+ [ dul(—)+1942d1¢4“

e~ TR I m’

41 g

=i du4+je&2u,]—[f

III Ill

1 .
(342 =

du, +j du]+

I jdu -->—j du,+ +J" duﬁ)-—j du, )
I]I llI
= 1 .
507 (T—1) —l— 75(3-{—@) -I—O—- n(@——z) —

1 1 9
.__.2_07;( +3)— 7r?,(3—|—z)__—-57r——57n
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et de méme
v, _130 1—967ri, V= — 1’I-|—-—7Tl
Les valeurs trouvées peuvent s’écrire
vV, :H%n_——%mj,
V,=—— -%ﬂ:—l— %mﬁ + %n——%ﬂri,

La formule en question est vérifiée si dans les trois intégrales
les expressions soulignées forment un systéme de périodes. On
peut donc poser, en supprimant le facteur =

1 2.

— 5 gz—m z—l— (aa“ + ba,, + ca,5) =

=m z-——(@—z)a-~—-z(3—|—z)b+ (3+1¢)c,

4 7. . —
—m z-_lz'<3+i>a—g<°’-—z“ h— 52—
=myi— < 1 —=(2—19) 5 )e,

: L =M+ — (cmm + bas, + casy) =

: . 1 . 2 ;
—=my+ -5(3 —|—z)a-——5(2—z)b——g(3+z)c.

Les nombres entiers a, b, ¢, m,, m,, m, doivent satisfaire aux
six équations résultant de la séparation des parties réelles et
imaginaires qui, apres multiplication par 5, prennent la forme

—1=—4a+ b+3c| —2=m, + 2a — 3b + ¢,
4= a—4b—2% | —7T=m,— 3a+ 20+ c,
2— 3a—20—6¢c | —1=m,+ a+ b— 2.
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On en tire

a = 0, b =—1, ¢ =0,

m,=—2>5, my=——5, m,=y.
Vérification pour }J'¢° Vg’

On trouve successivement,

@ =0g) + Vg =0 + Got) = (oo »

v o3 11} G W

» 12 € 12 eu T
V,= du, + du, _[ du, +I du,] —

] 3™ 111(312” LB

e 12. ) eaz
— dui +J dui] —l—f du,(— -——J Gl F ==

[
It III III

= g7 (1 —i) + go 7 (3+i) +0— s @ — i) = gm— 1o,
¥, = —é—n—%mﬁ = 17(2—!— ’T—-g—?’[’l,
V‘_,:—%n—gni:—%n —l——;;yt——z—ni,

1
1
3

1 1 . 1 3 1
V, = -1—-(—)7r—|—-5nz:——-—§75 +—5n+gju

—=—4a+ b+3c|—3=m;+2a—3b+c |a=—1|m, = O
= a—40—2¢ | —3=m,—3a+2b0+c¢c |b = O|m,——5
— 3a—20—6¢ 1—=m,+ a+ b—2jc=—1|m; = O
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Vérification pour V¢° Vg”.

I1 vient
(=Fg)+ Vg") = (o) + Gor) = Goo)>
1 1 3
a)—(r)!__—YT—I——-—T{Z 3P —=—g7 -+
i = =By L
A T
Il Ad.s —Z 1P St ok
e 12 g1z’ e 127
¥, = l du, + ’1 du =4 | du, + du,] —
e 15 g — 55w i ° v ©
- e-;—,m .1
m—~[r du, + dul] 4+ [‘ du,(+— du,(+):
0 0 .

1l ey

1 : 1 . 1
:%n@—}-z)—l—g—on(?’-}-?) O)On(3+z)——m:(3—|—z

:571'——-1—6711,
.1 1 2 3 1 2
\'l s —5—71’—-1—0-7I2_ -—71'—'— i‘(—)'ﬂ'l—-—gﬂ 571'2,
1 1 . 3 3 4 g .
Y = —Sn—mnz_—gn—l— F)ﬂz—!— BT,
V"“—-Q—rr—- ini_ﬂ—én———l—nz —%n—m-i— )
= 5" 10 57710 5 5

—{=—4a-+ b+3c|—2=m,+2a—3b+c [a = Om;=—5
4 = a—4b—2c|—2=m,—3a+2b+c ‘b:——l m, — O
0

2 = 3a—-2b—6¢c|—1=m;+ a+ b—2cc — Ojm; =
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Si Vay, VE; Va, , VE, sont deux couples de fonctions abélien-
nes appartenant au méme groupe, c’est-a-dire satisfaisant & la

condition
V&) = (Vwk,),

une fonction de la forme

Va: ay ]’fxa S ’/55'2 &>
ol a, et a, désignent des constantes, a été appelée par M. W.
(p. 114) une fonction-racine ( Wurzelfunction) du 24 degré et du

24 ordre. Sa caractéristique est (@) = (Vx, &) etelle possede
quatre zéros du premier ordre dont un est arbitraire. Les cons-

: : .. 4 5 i
tantes a,, a, peuvent étre déterminées de maniére que J & s’an-

nule en un des zéros «, 8 d’une fonction abélienne }/ q, par
exemple en «. M. Weber démontre (p. 116 et suiv.) qu’alors les

trois autres zéros ¢,, c,, ¢, de cette fonction ]/ @ sont en méme
temps les zéros de la fonction Y, (Jﬂ; duy), & la condition tou-
tefois que () = () @) + (}/q). Lorsque (w) est une caractéris-

b i * [_ 4 ” a * 2
tique impaire, } & dégénére en un produit de deux fonctions

abéliennes aux caractéristiques (]/a ) et (Vﬁf)+(]/5) Il s’ensuit,
conformément 3 ce qui a été dit précédemment, qu’une fonction

Ha) (J“ dun) impaire s’annule pour £ =« et en outre pour les

zéros de la fonction abélienne qui porte la méme caractéris-
tique.

Détermination de e°,, c°,, c°,.

Parmi les 36 systémes de points ¢,, ¢, ¢,, répondant aux
36 caractéristiques paires, 1l en est un qui mérite une at-
tention spéciale. C’est celui qui représente les zéros du

& fondamental 9 ( fgduh). Il correspond & (w)= (), soit

000

@)= (VE) et sera désigné par ¢y, ¢"y, ¢,. On peut le trouver
de la maniére suivante :
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On choisira pour Vg la fonction Yz, = Vs—1, en sorte que les
intégrales qui entrent comme arguments dans les fonctions &
ont toutes pour limite inférieure le point 2 =0, s=1. Ensuite
on établira le groupe

V) = V) = Goo)=Chia) +Coto) = Cid) + (i) =)+ lowt) =

2 :'25' % Y. @y %
= (1) + ("= (0) + (100 = (o0 + (o

r #

A 9" 7

On peut alors poser

e

V&=V asz; +a)'s

S5Y

ey

a la condition que 'équation

r P T s =
Vagss + Vagsy + Va8, =0
soit identique, & un facteur constant pres, a s'+z'—1=0.
Or, on voit aisément qu'a cet eftet il suffit d’admettre

= s—1, T, — 2—1, Ly = s—&'z,
E, = —e(s41), & =+«z419), & =<«s+¢2)
et en conséquence
e i - Z Yior 5
J® =) (z—0)(s—e'z) + a)i(z40)(s+'z).

Afin de pouvoir utiliser directement les formules finales de
M. W. (p. 118 et 119), & savoir:

P N X P
24" 5,8 = ;8 F 2,5 — a5
on remplacera By B S5 ten ¥y P
; £ E.. E. z.
par Ly  Lyy 3y Cyy  Cpy Xy

Par 1a, ces équations prennent la forme

Xy—AEy —2—1 —Ae(s+¢'2) =

(12) Ly—Af; = s—&z—Ale(z+1) =0
P, =8—1 =10
( B = & 5,

b
b
=
f"’r‘-
(53 ]
r[r‘
|l

5 T3&5+ TsSy—, 5,
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Les équations (12) déterminent les deux valeurs de 7, 2" et 3"

. , [~ .
qui correspondent aux zéros de J'z,. Mais dans le cas actuel ces
deux valeurs sont égales; par conséquent I’élimination de s et 2
entre ces trois équations devient superflue. En effet, en faisant
2 =0, s =1 dans I'équation

t—i—Le(s+¢'2) = 0,
on en tire
; ; ) )
A=A =A"—=a = —— = —-=.
”

La valeur de »” introduite dans (22), ces équations deviennent

(3) 2(s+¢) =0,
5 o T y S

4) V2s®—2&'s2+4e) 2() 2+1)2—2es—22 4+14)2 = 0.

Géométriquement, I'équation (3) représente deux lignes droites
et I’équation (4) une conique. Les coordonnées de leurs points
d’Intersection sont les valeurs cherchées. En rejetant la solution
z2=0, s=1, on trouve aisément

A
¢z = V2, s = —e¢, nappe III,
o e
(8 9 g R _"'_Zv\/ = 4 S — _{'., 2 IV,
6% 1 == 0 ¥ = 1y » 1L

Détermination de quelques autres systémes c,, c,, C,.

Il ne peut pas étre question ici de déterminer tous les 36 sys-
temes de points c,, ¢, C.. Quelques exemples suffiront, et on
donnera la préférence a ceux qui n'exigent pas des calculs trop
compliqués. D’ailleurs, le procédé employé étant toujours le
méme, les calculs suivants peuvent se passer de commentaire.

lm) f duh)
UUU
Dans ce cas

(@) = (oo (V'q) = (i) V@) = (@) + ' q) = Goo)-
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Le groupe
(i=lng) = Gige= le = B0 = 0 4 G = ) +
£, &5 Y Y% Lg Ly Y

GW~®D+$D:%D+%D
™y 7 g q' Vi

permet de poser
V& =V u,z; + a) &, &,
Va6, + Vs + Va &, =0,

[l

Ty — 2—1, ry = $+ ¢z, z,—=s—1,
£, = ¢'(241), & = &'(s—e2), & = —s&(s+1).
Les trois équations de M. W,

deviennent
L,—AEg = 2—1—Ae'(s—e2) = 0
Bl == 85,
QA" & & = 255 F 2 E—x, &y

De la premiére on tire pour 2 =0, s =1 la valeur
A= =a=¢
et les deux autres, aprés simplification, prennent la forme
:(s+¢)=0,
(140 4+2es24+(1—0426")2* —25 +2e24+1—12 = 0.
En les résolvant on obtient

gy s 33— $ — —t, nappe IV,
4
Giz= V2, s=—¢, » I,

== ———i\/;, s ——=¢', » L

)
2]
2
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o J duy).

104

Dans ce cas _
V&) = (Vq) + (@) = (o) + (Gor) = (o)
V& =V, + o) &, 5,
Vi, &, +Vw5 +VaoE =0,

1 1
r,=s—1, =z, =4@+1), %= m—a;(z—wz),

&=s+1, & —=12—1, & — 24
[’équation
x,—AE, — —é(z—}— )—A(z4+12) =0
donne pour £ =0,
A=A =A" —a=—=1

et des équations
0.224+2(1—12)2 =0

s*—i22 4+ (1 +9)2—1 =0

on tire
¢:2=0, §s=—1, nappe llI,
S
€g 23 —=290, —= &, » I,
A
S
Cp 3 @ =200y L= =, » 111

i (V)= q)+ @ = (o) + (11) = Gon)s
VO = V&, +af 25y,
V33555 '|—V956§6 +V501§1: 0,

T, — s—¢'2, Xy =— 8§+ ¢z, r, =s—1,

& = —;—i(s—{— £a) & = -;:i(smez), & = s+ 1).
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I’équation
Ty— ATy —= S—&'2—A(s+¢2) =0
fournit pour z =0, s=1 la valeur
A=A — A" =—=a=1
et les deux équations
sz — 0,
24+ 2sz422—1 =0,

donnent
¢:2=0, s=—1, nappe I,
Gis=l, §= 1 -
R toutes les quatre nappes.

'3 101 )(f;duh)'
101 0

Dans ce cas on a
V@) = V) + (@) = Goo) + Gor) = Gar)»
V& =Yg, +a) 2,5,
Vﬂfgé‘a -+ qu‘}:u +Vx1§4 =0,

mQIZ—I—l‘, xu:S-l_i, xizs_l’

g, —=z2—1, &, :—%(S———i), £, :-;—(s—l—l).

De I’équation
z,—Aiz, = s+1—A(z+1) =0
il suit pour 2=0,s=1:
A=A =1 =a=1+4".
Les deux coniques deviennent
sz4is+2—t =0,
s*—(1+)sz2—2*— (1 4+9)s—(1—2)z42 = 0.
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Elles se coupent au point z=0, s=1 et en outre dans les
trois points

i =1, s — 0 dans les 4 nappes,
(N Jene :i%-—]/—_f, § ez :1——%—@.}/7_, nappe II,
ca:z:“i;ﬂ,s:—lgﬂ » L
-3(001 (f; dup).
110) o

Iei (V&) =(/q) + (@) = () + (1) = (350,
V& =V 2,5 + a %%,
Va &, +Vasés + Ve, &, =0,

x, =241, X; — 2—1, x, —s—1,

1 L .z =
Ez-:@(z'“_l)s 53:"’“‘2'(:"{‘1)1 & =s+1.

De ’équation
x,—Ax, =24+1—A(z—1) =0

on tire pour 2 =0

A=A =l —a=1"
et les coniques

0.2 4+2(1 412 =0,

41+ (1—2)2—1 =0

se coupent bien en z=0, s=1 et de plus en

¢,:2=0, §=—1, nappe IlI,
§ .
i2=20, - = &, » IV,

s
¢, =00, —— —¢, » IL
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Le probléme de Riemann.

Au sujet de ce probleme fondamental M. Weber (p. 159 4 168),
indique dans tous leurs détails les calculs nécessaires. En les
suivant pas & pas, on arrivera sans difficulté aux résultats dé-
sirés. Au lieu d’une traduction a peu pres littérale de cette partie
de 'ouvrage de M. W, il sera plus utile de donner ici une appli-
cation des formules trouvées & des cas particuliers en n’insistant
que sur le commencement de la solution.

I. Les deux caractéristiques (k) et (k') sont paires.
Soit par exemple p
B =Go)r & =), B +E)=0"z)+ z,)-
En formant les deux groupes

(k) + (&) = Goo) = (ioo) 4 Gioo) = G) + Gian) = Gan) 4 Gog) =

Xy o £a & 7y v
= (1) + (1) = Goo) + Go) = @) + (1) »
/T U (R S
(k) + (' ) =Coo0) = i) + (o) = i) + Ga) = Gon) + Gat) =
73 £a & Ve Lg g
=G+ G =0 16D = Gy 4 (i
A9 s g xy
on remarque qu’ils possédent les 4 caractéristiques communes
Vi) =0E)=), 0m=05=@),
V) =0r)=00)> Ve =0r)=(D-
Posant, en conséquence,
Vo, =Vs—1, Ve, =Vad1,  Vy,=Vs+1,
Vy.=Vi—1, Vi, =Vs—z2+te, Vzo=Vs—2te,
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on trouve aisément la formule

x(om) L PR | P (U“’UQ, Vs) 4 — l"L(om (%,’UQ, 'Us)

100) — Y100/ 100 1. Moo

V4 00:1) 2 010y %001 ('U,,’U,,U ) 004 (Ulsvmva)
100 100 100 100

Désignant par 28, 4, & les valeurs que prennent les fonc-
tions z:, ¥i, 2; pour £ =&, smt §=3$,,8= #0081

\/x 010y —
100

e o o Va’i YrZyo Vwi(l)%(l)z:m? ]/mg(g)yl(-z; 2,0, sz(a) Y2, ,

=SV, o, Va,Vy, 02,0, p 2,0y 02,0, Yz, By,B 2,0,
et les arguments »,, v,, v, sont déterminés par la congruence

3 pred &) tg s
(v, 03) = (b ( J duy, + f duy, + J’ duy, + f dup ),

ou « et 3 signifient les zéros d’une fonction abélienne quelconque.

II. Les caractéristiques (k) et (k') sont impaires.
Soit
®=z)=0r)=0, &) =0u)=0r) =)
Alors on a
(Vwa 902) — (]/yi yz) (Vza Z )—‘ (I’) + &)= (0“
et les caractéristiques
Vaeyiz) = &)+ V) = (k) =) + Qo) + i) = Cioo)»
Vayaz) =0)+ (Voo y) = (k)= (111) + o) + Gar) = (o)
sont paires. En admettant encore, comme dans le cas précédent,
Vo, =Vs—1, Ve, =Vat+1, Vy,=VE =Vs+1,
Vy.=VE =V—1, Va=Vri=Vs—2+e,
Vi, =V, =Vs—2+¢,
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on arrive & la formule

001 J 001 ‘} 001 (Ud vﬂ Vs )
(111) _ mo 411)

s (U U, Us) !
(010) 010 ((1)“)( 2 5)

1414 100

dans laquelle

VX(OOI) — "+de"|’ yi Vzi(l 1 ] :c (2 Z.,“; 1 yi 3)?/ 22(”

144

Yoy = T2 5 4OV 5T, VETo T, V550,

144

Les variables v,, v,, v, conservent toujours la méme significa-
tion.

III. La caractéristique (k) est impaire, (k') paire.

Soit ® = =) =) &)y={x)-
Les deux groupes
(1 2, 2,) = (500) = (io0) + Goo) = (ity) + (1) = () + Q1) =
£y Ly Ee £y '/”1 “/”2
=0+ )= )+ G =3 + )
7% 7% 72 71 7’2 '/’1
(100) + Gan) = (30 + (o) = G10) + Gor) =

(le yl) g:i)

Xy & £e Lo Es L
= (130) + Gor) = Gor) + Q1) = (o) + ot
Es Ly Xy gs O &

L]

font reconnaitre qu’on peut poser

Var=Vs—1, Va,=Vatt, Vy,=VE =Vs+1.
Vi =VE =Vait, Va=Vr=Vs—ite,
\/;:\/m—zz‘/zei, \/g;':.:\/g:\/z—l—i
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et qu’alors les deux caractéristiques

k) = Vayz) = () +00) + (%) = (29,
(k') = Ky 4 (V yz) = (80) + (19) - (20) = (40)

sont paires. En introduisant ces fonctions et caractéristiques
dans les formules générales, il vient

Y o b v,,V )
ST L (AP W i
X 010 J 010 (01:))(”11”«"” )
101 100 101

O\

\/ X(O(n) —+—:c]/ x, 2,0} "M ]/y(ﬁ)m @y @), ]"‘ry(s)wﬁ)yz(‘*),
101

‘/ X (ot — Ei]/maciacg 9}”’%(1)91(”%“)al/y('")}ma(Q)ye(g)avry(g)me(3)%(3}'

101

Il serait inutile d’insister encore sur-le probléeme de Jacobi,
attendu qu'a l'aide de ce qui vient d’étre dit, le lecteur suivra
facilement jusqu’au bout I'ouvrage sisouvent cité. Notre travail
peut donc s’arréter ici, d’autant plus que les deux problémes de
Jacobi et de Riemann seront repris, dans un second mémoire,
a un point de vue tout différent et spécialement approprié au
cas particulier qui a fait I'objet de cette étude.
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