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Bulletin de la Société Vaudoise des Sciences Naturelles.

Vol. XXIV. N° 99. 1888.

FONCTIONS ABÉLIENNES DU GENRE 3

UN GAS PARTICULIER
TAR

H. AMSTEIN

PI. VI à X.

Avec quelques-uns de mes camarades d'études, j'ai eu la bonne
fortune de suivre un cours général sur la théorie des fonctions
abéliennes que mon vénéré maître, M. H. Weber, a fait une seule
fois, en 1875, à l'Ecole polytechnique fédérale à Zurich. Ce n'est
que plusieurs années après que j'ai eu connaissance de son
remarquable ouvrage intitulé : Theorie der Abelschen Functionen
vom Geschlecht 3. (Berlin, 1876, chez Georg Reimer.) A la
page 4 de l'introduction, l'auteur s'exprime comme suit : « Es ist
damit nicht ausgeschlossen, dass es ausser den hyperelliptischen
Functionen noch andere besondere Fälle gibt, in denen die
Verzweigungspunkte eine wichtige Rolle spielen. Es würde dies
z. B. eintreten bei den Functionen, welche von der Gleichung
x1, -+- 2/4 -f- A 0 abhängen, welche überhaupt, obwohl (oder
vielleicht gerade weil) sie durch elliptische Functionen
vollständig dargestellt werden können, ein interessantes Beispiel
für unsere Theorie liefern würden. »

« Cela n'exclut pas l'existence, en dehors desfonctions hyper-
elliptiques, d'autres cas particuliers, dans lesquels les points de

ramification jouent un rôle important. Ce serait, par exemple, le
cas des fonctions dépendant de l'équation x4 + y1 -f- z1 0, qui
fourniraient un exemple intéressant à l'appui de notre théorie,
lors même que (ou peut-être justement parce que) elles peuvent
être représentées complètement par des fonctions elliptiques. »

Après avoir lu et relu cet ouvrage avec le plus vif intérêt, je
me suis décidé à traiter l'exemple proposé. Chemin faisant, j'ai
rencontré certaines difficultés, auxquelles il fallait d'ailleurs
s'attendre, de sorte qu'il m'a paru que ce travail, entrepris dans
l'unique but de me familiariser autant que possible avec une
théorie plus ou moins ardue, pourrait rendre quelque service à
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ceux qui ont l'intention d'aborder ces régions de la science. C'est
dans cet espoir, qu'encouragé par quelques amis, j'ose soumettre
le présent mémoire au public mathématique.

Je me représente un lecteur, en possession de la théorie des
fonctions S- à trois variables et des caractéristiques à six
éléments et ayant devant lui l'ouvrage de M. Weber; à l'aide de

ce travail, il lui sera aisé de suivre pas à pas l'ouvrage original.
Dans un second mémoire, je me propose de reprendre les

problèmes fondamentaux de Jacobi et de Riemann, en ramenant
ces questions sur le terrain des fonctions elliptiques.

Je saisis enfin cette occasion pour témoigner à mon vénéré
maître toute ma gratitude de ce qu'il a bien voulu, à plusieurs
reprises, s'intéresser aux efforts de son ancien élève.

Introduction.

L'équation qui sert de base à l'étude qu'on va entreprendre
est la suivante :

X" + if + 2* 0

ou

r'+ f +(!
Si l'on pose

et
x ' ' '

Z i~.- sfi,X '
elle prend la forme

(1) s" + 2* — 1 0,

d'où

(1«) s=\/l—z*.
On remarque tout d'abord que les variables set s entrent

d'une manière symétrique dans l'équation (1). Les relations entre
s et z seront donc parfaitement connues lorsqu'on aura étudié s
en fonction de z.
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Si, en premier lieu, on attribue à s et e des valeurs réelles et
que l'on rapporte ces variables à un système de coordonnées
rectangulaires, en choisissant, par exemple, z comme abscisse
et s comme ordonnée d'un point, l'équation (1) représente une
courbe du i"" degré, dépourvue de points doubles et qui, de ce

fait, appartient au genre 3 (fig. l,pl. VI). Cette courbe,
évidemment symétrique par rapport aux deux axes, possède aux
points z 0, s ±l; £ ± 1, s 0 des tangentes qui
forment avec elle un contact de l'ordre 3. Ces droites ont quatre
points infiniment voisins communs avec la courbe, et peuvent,
par conséquent, être considérées comme des tangentes doubles
dont les deux points de contact coïncident. Cette particularité,
la seule qui mérite d'être signalée ici, se reconnaît aisément, si
l'on développe s en série, ordonnée suivant les puissances
croissantes de z, par exemple dans le voisinage du point z=0, s= 1,

ce qui donne

s— 1= — \z\..
4

Mais si, d'une manière plus générale, on admet que z et s
puissent prendre des valeurs aussi bien imaginaires que réelles,
il faudra assigner aux points représentatifs de ces variables
deux plans que l'on désignera par (z) et (s). Lorsque z parcourt
une courbe quelconque dans son plan, le point représentatif
de s, à son tour, parcourra une courbe dans le plan (s). D'après
Gauss, on appelle volontiers cette dernière courbe l'image dont
la première serait l'original. Le plan (z) se compose de quatre
feuilles ou nappes superposées. Le plan (s), on l'a déjà reconnu,
se trouve exactement dans les mêmes conditions. Pour établir
les rapports qui existent entre les plans (z) et (s), il est utile
d'étudier brièvement la représentation du plan (z) sur le plan (s)

par l'intermédiaire de la fonction s. A cet effet, il suffit de
considérer les courbes dans le plan (s) qui correspondent à un
système de circonférences concentriques dans le plan (z) avec O

comme centre commun.
Soit

(z — xAyiz^ rei*.
(A) A

A l'aide de ces formules, l'équation (la) peut s'écrire

iwy A
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d'où l'on tire

(•* (cos 4 ip + i sin 4 xp) rr 1 — r" (cos 4 y + t sin 4 y),

puis en séparant les parties réelles des parties imaginaires

(?" cos 41// rz 1 — A cos 4 y,
ç>* sin 4 t/> zr — r* sin 4 y

et enfin

/ q rr \/1 — 2 r* cos 4 cf -f r8,

\ 1 — r* cos 4 œ C J rr o cos t//,
J cos4i//z= -4 21, -

f r* sin 4 y [ -ii^ig sin tó.
1 sin4t//zr -^—

Afin d'obtenir, par exemple, l'image de la circonférence dont
l'équation en coordonnées polaires est r a, on donnera, dans

ces formules, à r la valeur constante a, et on fera varier cp de 0

à 2n. (Voir les fig. 2 et 3, pl. VIL Pour les construire, on s'est servi
3 1 V 1 V V- 3 \

des valeurs r —, ~ V 15, 1, - Ç'17, V 2, -
A une valeur déterminée de £ correspondent, en général,

quatre valeurs différentes de s. Une fois pour toutes, on
conviendra que selon la feuille dans laquelle se trouve le point
représentatif de z, la fonction s prendra les valeurs suivantes :

\/l-A,Dans la 1" feuille s V 1— z\ s +l pour^ 0,

» 2'' » s i V 1 — A, s ft-i » z 0,

» 3e « s=—yl—- #', s——1 » £ 0,

« 4e » s=—iy 1—#*, s — i » ^ 0.

Ces quatre valeurs se confondent pour z ±l, z ±i. Il
s'ensuit que ces quatre points sont des points de ramification
pour la fonction s; ils satisfont, en effet, seuls aux deux
équations

F (s, z) — s* + z" — 1 rr 0

—- rr 4s5rr 0.
ds
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Chacun d'eux compte pour trois points de ramification simples

vu qu'en ces points, non-seulement deux, mais les quatre
valeurs correspondantes de s coïncident. Ainsi, la fonction s

possède douze points de ramification simples.
Pour transformer le plan (z) en une surface de Riemann, on

peut appliquer les lignes de passage de différentes manières.
Guidé par la représentation susmentionnée, on les conduira
dans les quatre nappes, le long des axes coordonnés, de l'origine

O jusqu'aux points z ± 1, z ± i, en reliant les quatre
feuilles de la manière indiquée dans les fig. 4, 5 et 6, pl. VI. Les

fig. 4 et 5 représentent des coupes à travers les quatre nappes, la
première perpendiculaire à la ligne de passage O -+-1, la dernière
perpendiculaire à la ligne de passage O ft-i. L'œil de l'observateur

se trouve au-dessus de la première feuille. Il va sans dire
qu'on aurait pu ajouter encore deux figures analogues relatives
aux lignes de passage O — 1 et O — i. Pour bien comprendre la
fig. 6, on remarquera que les quatre circonférences devraient
être superposées et se trouver chacune clans la nappe que lui
assigne le chiffre inscrit dans la figure. Afin d'augmenter encore
la clarté, on a mis en regard, le long des lignes de passage, dans
les fig. 2 et 3, pi. VII, les chiffres qui indiquent le passage d'une
feuille à l'autre. Ainsi, par exemple, le long de la ligne 0+1, le

point z peut passer du bord positif de la première nappe au bord
négatif de la quatrième, du bord positif de la deuxième nappe au
bord négatif de la première, etc. Obéissant aux exigences de la
représentation, la disposition des chiffres clans le plan (s) diffère
de celle adoptée pour le plan (z).

Ceci posé, s pourra être considéré comme une fonction
uniforme de z. On s'en convainc aisément à l'aide des fig. 2 et 3.

En effet, si z parcourt le 1er quadrant d'une circonférence de

rayon < 1, par exemple dans la lrc feuille, en partant du bord
négatif de l'axe O +1, le point s décrit un ovale complet.
Lorsque z, après avoir franchi la ligne de passage O ft-i, décrit
ensuite le second quadrant dans la quatrième nappe, le point s

parcourra une seconde fois le même ovale. A la circonférence
entière correspond donc quatre fois le même ovale. Dans le cas
où z serait parti de la seconde nappe, le point s aurait décrit un
autre ovale identique au premier, mais tourné contre celui-ci
d'un angle de + 90°. Et ainsi de suite.

Si le point z, tout en restant dans la première nappe, suit le
bord positif de l'axe des X de 0 à + 1, le point s longe le bord
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positif de l'axe des S" de + 1 à 0; mais au-delà du point + 1,

l'image de l'axe des X est la droite n \ de \ 0 jusqu'à
£ +=*>•

Pour une circonférence de rayon > 1, les lignes de passage
perdent leur influence. Par conséquent, à une telle circonférence
correspond uniformément une courbe fermée dans le plan (s).
La circonférence r 1 constitue le cas limite, en ce sens que la
courbe correspondante dans le plan (s) peut être considérée
indifféremment comme une courbe fermée ou comme l'ensemble de

quatre ovales allongés se rencontrant en O.

Incidemment, on reconnaît aussi que la fonction s sert
d'intermédiaire à la représentation conforme de l'extérieur du cercle
des unités sur l'extérieur de la courbe

ç* rr 2 cos 4 xp

ou

(r + Af 2 (r* — 6 g« a + A).

En vertu des lois qui régissent la représentation conforme, les

tangentes principales à cette courbe au point quadruple \ 0,
>3 0, doivent former avec l'axe positif des 5 des angles de

r±22i° et ±67|°.

Intégrales de première espèce.

La surface de Riemann, T, qui accompagne la fonction s, se

compose, on l'a vu, de quatre nappes superposées. Sa connexion
est de l'ordre 7, c'est-à-dire qu'elle peut, moyennant six coupures,

être transformée en une surface ï' à connexion simple. Dans
l'intérieur de cette nouvelle surface T', les intégrales de fonctions
rationnelles de s et de z sont des fonctions uniformes de leurs
limites supérieures. Le long des deux bords des coupures, elles

prennent des valeurs dont la différence est en général finie, mais
constante, et que l'on appelle les modules de périodicité de ces

intégrales. Par là, ne sont pas exclues d'autres lignes à
différence constante situées dans l'intérieur même de la surface.
(Intégrales de 3'" espèce.)

On conviendra d'appeler positif le bord d'une coupure qui se

trouve à gauche lorsqu'on la parcourt dans le sens positif, c'est-
à-dire dans le sens des angles croissants. Ceci posé, on peut éta-
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blir un système normal de coupures de la manière suivante:
D'un point A de la surface, on mène une coupure qui ne partage
pas la surface en plusieurs morceaux détachés et qui aboutit à

un point de son propre parcours. Cette coupure peut être considérée

comme une ligne fermée a,, reliée au point A par une
autre ligne c,. D'un point du côté positif de a„ on trace ensuite
une autre coupure b, qui vient rejoindre son point initial, mais
sur le bord négatif de a,. De la même manière, toujours en partant

du point A, on pourra mener encore deux autres couples
de coupures. (Comp. W., p. 63.) Il va de soi, qu'à l'exception de

a»è», a-iCy qui se coupent en un point, jamais deux coupures ne
doivent se croiser.

Dans le cas particulier qui fait l'objet de cette étude, une des

manières possibles d'appliquer les coupures est celle indiquée
dans la fig. 7, pl. VI, où les lignes noires pleines sont censées se

trouver dans la première nappe, les lignes noires pointillées
dans la deuxième, les lignes rouges dans la troisième, et enfin
les lignes bleues dans la quatrième. Sans doute, la surface dé

Riemann T', ainsi obtenue, n'est pas la plus simple; mais d'une

part elle a l'avantage d'être basée sur la surface T, adoptée déjà
précédemment pour l'étude de la fonction s; d'autre part, il est
à espérer que ce travail rendra d'autant plus de services au
lecteur studieux que les intégrales à considérer exigeront plus
de précautions.

Les intégrales de 1" espèce restent finies et continues dans
toute l'étendue de la surface T', à l'exception des coupures dont
les deux bords constituent la limite de la surface. Elles sont de

la forme

.=/*£»*.W.

ds

ou bien

w — —J ^p ds (puisque
dz

£F
dz ds

où F s4 ft- z* — 1 et cp (s,z) signifie une fonction entière et
rationnelle de s et de g qu'il s'agit de déterminer.
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Jxf(x) dx reste finie pour toutes les Va¬
rco

leurs finies de x, on sait que J f(x)dx •

J Xo
conserve aussi une

valeur finie, si la fonction /(x) pour x =*> tend vers zéro d'un
ordre supérieur au premier. Or, dans l'intégrale

'=/ (pdz
IL?"

la fonction s yï — z4 devient infinie du 1er ordre et, partant,
s3 du 3e ordre pour z= =». Il s'ensuit que la variable s (et pour
des raisons analogues aussi la variable z) entre dans la fonction

cp tout au plus au 1er degré. Les points de ramification
z -±zl, z ±i ne produisent pas de discontinuité. On peut
donc poser

(f rr A + Bz + Cs.

En disposant des constantes A, B, C de sorte que cp s'annule
en deux points arbitraires, on peut obtenir trois fonctions cp

différentes entre lesquelles il n'existe pas d'équation linéaire et
homogène. Par contre, il est aisé de démontrer qu'entre quatre
de ces fonctions, il existe nécessairement une équation linéaire
et homogène, à coefficients constants *.

Soient maintenant cp,, cp,, cp3 les trois fonctions en question,
satisfaisant à la condition de s'annuler

cp, pour \ ' ~ ' d'où B C 0 et cp, A,
s 0, z= »
s 0, £ 0

cp., pour \ d ou A C 0 et cp, tig,
s= 1, z 0

œ3 pour \ ' d'où A B 0 et ip3 Cs.
s 0, e= 1

* La géométrie analytique offre l'analogie suçante : Si gt 0, <"/, 0>

g3=Q, gt 0 sont les [équations de quatre droites dans un plan, il est
toujours possible d'établir l'identité ktg, + fe,jr, + k3g3 + fc4</4=0, à moins
que trois des droites données ne fassent partie d'un faisceau.
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Abstraction faite de facteurs constants, les trois fonctions cp

prennent la forme
cp, l, <ps £, cp3 s

et les trois intégrales de première espèce sont

r dz r zdz r dz
w,= JtP==i «»,= 1—=, Ws= -—=J \/(l — Zhf

U \/(l~Z»)» ^ /l .2*

dont la dernière est elliptique. (Comp. W., p. 47, et Riemann,
Gesammelte math. Werke, p. 459.)

Avant de procéder à la détermination des modules de
périodicité, il est utile d'étudier quelques intégrales dont on aura

souvent besoin. Il a déjà été dit que |/l—z' prend les facteurs
-f-1, i, — 1, — i suivant que z se trouve dans la 1", 2e, 3e ou
4e nappe de la surface T'. Par conséquent, dans ces mêmes

nappes, — sera affecté des facteurs ft-l, i, — 1, — i,
V{\—z')3

tandis que —- prendra les facteurs 1, — 1,1, — 1.

VI — z'
Dans la suite, la nappe dans laquelle la variable d'intégration

se meut, sera indiquée par un chiffre romain placé au-dessous
du signe f, et le signe (+) ou (—), appliqué en guise d'exposant
au haut de la fonction à intégrer, fera connaître le bord le long
duquel l'intégrale devra être prise.

Soient maintenant, dans la 1" nappe et prises le long du bord
positif,

f dwtM=K,, Ç dw<+) K,t f dw^=K-0;J 0 J 0 J 0
I I 1

conformément à la convention qui vient d'être rappelée, on aura
alors évidemment

P dw^zzzziK., P dwj+. zr tK,, P dw3<+>zr—K3;
J 0 J 0 J 0
II II II

fldw1(+) =—K,, f dw.M =—K,, f dwJ+) Kz;
J o ./ o o
m ni ni

Ç dw <-+)=:—iKt, f dw^=—tK,, f du>5<+) —_K3.
o J o J o

IV IV
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Dans ces intégrales, l'intervalle d'intégration s'étendait sur
le bord positif de l'axe des X, de 0 à ft-1. Une rotation de + 90°

autour de l'origine 0 le transporte sur le bord positif de l'axe
des Y, et la variable z a passé respectivement de la l" nappe à
la 4e, de la 2e à la 1", de la 3e à la 2e, et de la 4e à la 3e. L'équivalent

analytique de cette opération est la substitution g it,
où t prend toutes les valeurs réelles de 0 à + 1. Il s'ensuit que

P dwW i f' dl - - i P' div M - ;k,
Vv° -i v{\ — ty r°

et de même

f dws<+> — K„, C'dwJ.+> zz tK5 ;
J o J o
IV IV

CdwW—i fdwM=—K., Çldu).l+>=i P dw4(+)=—tK„
J o J o J o J o
i n n m

C'dwM rr e f dw/+) zr + Kf, etc.
J o J o
m iv

Si l'on fait faire à l'intervalle 0 -f-1 une rotation de -\-180°,
son bord positif viendra se confondre entre 0 et — 1 avec le bord
positif de l'axe des X négatifs, et la variable z passera respec-
tivment de la 1" nappe à la 3", de la 2e à la 4e, de la 3e à la l'e
et de la 4e à la 2". A cette opération correspond la substitution
g — t, où t se meut de 0 à + 1. On a, par conséquent,

r^+)==-f11-A===_.f1dB>l(+,=_Kll
m0 î V(i-iy i°

f
~

dw2(+) rrK2, f
~

diü5<+> rr — K3 ;
J o J o
m m

f "dWi(+)=— fldw <-+•=—tKj, f~W+)=— f dW+tK,,J 0 J o Jo Jo
V II I m

f_1dw,(+» — f </«»,(+) 1X4, etc.
J 0 J 00
II IV
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D'une manière analogue, on peut obtenir les intégrales prises
sur le bord positif de 0 à — i. En ce qui concerne les intégrales
relatives aux bords négatifs, il suffit de tenir compte de la
connexion des nappes le long des lignes de passage. Ainsi, par
exemple, le long de la ligne de passage 0 + 1, le bord négatif
de la 1" nappe se rattache au bord positif de la 2°. On en conclut

que

[ldu>ll-i= {ldwM iK,;
J o J o

de même

,i „i „i
o

f dwti-)=z f dWi(+)=—K,, f dto,H= f du>4(+) =—tK,,Jo Jo Je J 0

III III IV

r1dw4(-)=f1du>1(+) KM etc.
J o J 0
IV I

Au lieu d'employer le procédé indiqué pour la détermination
de ces intégrales rectilignes, on pourrait se servir avantageusement

de la représentation au moyen des fonctions wi,wî,w3.
A cet effet, on remarquera les particularités suivantes : La fonction

w, transforme les angles à l'origine en angles doubles.
Autour des points singuliers -t- 1, -t- à les angles de l'original
sont réduits au quart par les fonctions wt et wî et à la moitié
par la fonction w3. En tout autre point, les angles correspondants

de l'original et de son image sont égaux.
Pour plus de facilité, les valeurs des intégrales rectilignes

relatives aux intervalles de 0 à ± 1 et de 0 à ± i sont réunies dans
le tableau suivant (voir p. 12).

Détermination des modules de périodicité.

Soient A; et B; les modules de périodicité de Wh relatifs aux
coupures a., et &,, c'est-à-dire

A, Wh — wh le long de la coupure a-, et

B; wî — Wh le long de la coupure 6».
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W,

Cask

T
n

J'J 0 fJ 0
J"1
J 0 rJ 0

Bord pos. Bord nég. Bord pos. Bord uég. Bord pos. Bord nég. Bord pos. Bord nég.

K, iK, -K, -iKt K, iK, -K, -iK,
iK, -K, — «K, K, iK, — K, -iK, K,

m

Y
-K, — »K, K, iK, -K, —iK, K, iK,

-iK, K. iK, -iK, K, iK, -K,
w.

I K, iK, — iK, K, -K, -iK, iK, -K,
II iK, -K, K2 iK, -iK, K. — K, -iK,
III -K, -iK, iK2 -K, K, iK, — iK, K,

— iKjj K, — K, — iK, iK, -K, K, iK,

IV,

I

H

111

K, -K, -iK3 iK3 -K, K, iK3 -iK3
-K3 K3 iK3 -iK3 K3 -K, -iK3 «K,

K3 -K3 -ÌK3 iK, -K3 K3 iK3 -*K3
IV -K3 K3 iK3 -iK3 K3 -K, -iK3 iK3

La fig. 7, pl. VI, permet de reconnaître immédiatement que
l'on a

Af» zr Çdiuh et B(,ft) zr Cdwh.

(-bj (+ov)

En d'autres termes, A, est égal à la valeur que prend

f dwh, lorsque g parcourt le circuit entier bv dans le sens

négatif, et B; la valeur de Wh qui résulte d'un parcours positif du

circuit fermé a,. Pour faciliter le calcul de ces modules, on a, dans
les fig. 8°... 8f, pl. VIII, dessiné isolément les six coupures a, b,,
en modifiant leur forme de façon qu'elles suivent, d'aussi près que
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possible, les axes coordonnés, déformation permise en vertu d'un
théorème bien connu de Cauchy. Il vient ainsi successivement

A/1» rr f dw, zr f* dw/-» + f dw,<+> + f 'dwj-. +J J o J i J 0

(-6,) 1 I U

+ f dw,(+)rr 2(1— t)K4 (Fig. 8a.)
J —i

IV

A2(Drr fdw, zr f'dw^-f f°dw/+> + f dw4H +J J 0 Jj J 0
(-6,) IV III III

+ J°dio1(-)= — 2K, (Fig. 8\)
IV

A3W fdw1=: [dwJ-)+ {dw.Wft- f dw/-> +
(-b3) I I II

+ fdiv^ft-Cdwt-) -f- [0dwiW=2Kl (Fig.8c.)
J —i J o J —i

î

Bß)= fdu>4= fdw,(+)-r- fdw.H-r- f rfto,(+> +
J J 0 J 1 J 0

(+o,) I II I

+ J°dw1(-)rz4K1 (Fig. 8«».)

n

B.Mrr fdio, rr f*dw4<-) + f dio/-) + f dw/+)-f
J J 0 J i J 0

(+02) IV ni m

+ r0dw/+) zr — 2K4 (Fig. 8e.)

IV

B,<»>= \dw{= f dw/+)+ J dw/-)+ J dw/+) +
(+a3) Il H II

fdwj-) + f~dw,<+> + f^to.Hrr — 2K4 (Fig. #\)
J j J 0 J —i

I
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Pour obtenir les douze modules relatifs aux intégrales «o, et
w3, il suffit de remplacer dans les formules précédentes w, tour
à tour par w, et w3. Le tableau p. 12 fournit ensuite les valeurs
désirées.

Résumé des modules de périodicité.

w,

A/D 2(1--i)K, B/D 4K,

A,0) — 2K, B/i) —2K,

A,0) 2K, B/D — 2K,

w.

A/*) 0 B,(») 0

A,(2) -2(l+ i)K, Bß) 2(1 — i)K
A/s) 2(1--i)K, B/*> 2(l + i)K

w3

A,«») 4iK3 B,(8) 0

A,(3)=-2(l-i)K3 Bs(3) — 2(l+t)K,
A3(3) 2(l + i)K3 B,(3) -2(l—i)K3

Si l'on pose

A„(fc>zz «k<*> + i ßhW, B*W rr yhW + iôhW,

on sait que pour chacune des trois intégrales on doit avoir
3

2(ßhYh— «ä^ä)<0. Or, dans le cas actuel,

a/U 2K,

a/i) — 2K,

a/i) 2K,

d'où il suit

ß,(U —2K,

ß/D 0

ß/U 0

7,(i) 4K,

-2K,(D:¦y
•//!)=- 2K,

S/i) 0

5/1) 0

5,(D 0

2(ßy—aô) — 8K,2-

Pour w« et w3 on obtient par un calcul analogue

2{ßy — aô)=— 16K2% 2(ßy — aâ) - 16K3
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D'après Riemann, le déterminant

A/i), A/s), A/3)

A/D, A,«, A/3)

A/D, A/»), A/3),

doit être différent de zéro. Cette condition essentielle est encore
remplie, attendu que

2(l-i)K,, 0 4iK3

-2K, ,_2(l+i)K„-2(l-i)K3
2K, 2(l-i)K,, 2(l+i)K3

— 32 (2+i)K,K,K3

Intégrales normales de première espèce.

Les intégrales de première espèce w,, iu, u3 sont dites
normales quand elles possèdent les modules de périodicité
suivants :

Le long des coupures a, a, a3 6, bt b3

modules de périodicité de m, : T.l 0 0

0 Tîi 0

0 0 ¦ni

Pour les former, il suffit de poser

U, a/1) W, -+- a/i) w3 ft- a3n) w3,

M, a/3) u){ -f- a/2) w.2 ft- a/2) w3,

u3 a/3) w, ft- a/3) Uh. + a/3) w3,

et de déterminer les 9 constantes aftW à l'aide des conditions

Coupure a,

» a,

» a3

a/1) A/D-f-a/l) A/2) + a/1) A/3) ot

a/1) A/D + a/1) A/«) + a/1) A/3) 0

a/i) A/i) + a/i) A/2) + a,« A/3) 0
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Ua -

Coupure a,

» a,

» a3

Coupure a,

» a,

» a.

a/2) A/1».

a/2) A/1) ¦

a/2) A/D-

- a/2) A/2) ¦

- a/2) A/2)-

- a/2) A/2)-

u,.

- a/2) A/3) 0

aß) A/3) A
a/S) A/») 0

a/3) A/0 + a/3) A/2) + a/3) A/3) 0

a, (3) A/D + a/3) A/2)+ a/3) A/3) 0

a/3) A/D + a/3) A/2) + a/3) A/3) A

ce qui est possible, vu que le déterminant

Dzr2±A/I)A/ä)A/3)<0.
De ces équations on tire successivement

aß)

aß):

aß) rz

«/»)=-

«/2)

«Bw=—

7TI

D

Tri

D

ni
D

7U

D

7TÌ

D

ni
D

A/'3) A/3)
A5«A3(3)

A/') A/3)
A/1) A/3)

A/» A/5)

A/3) A/3)
A/2) A/3)

A/') A/3»

A/') A/«)

A,(1)A/2)
A/1» A/2)

— 2tt(2—Q
~~ 20 K, '

— ^ (2 — 0
~~ 20 K, '

_ TT (2 — j)
~~ 20 K3

;

_ 7t(1—3i)
~~ 20K, '

1—3i

aß) _ ni I A/2» A4(3)

~ D A,« A/3)

/3)—.

«/3)

ni
D

ni
D

A/1» A/3»

A/1'A/3'

A/« A/2)
A/1'A/2)

~~ 2 ' 20K3
;

_ n (3 + i)
~ 20K, '

_ (l-t)(3+0
"" 20K2 '

_n_ (l+0(3 + i)
— 2 ' 20K, '
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Par conséquent les intégrales normales sont maintenant

7r(2— pr aw4 w, wA
20 L ^K, "^

K2 r K3J

7r(l—3i)r u)t .to, l+iw3l
~~ 20

n (3 + i) T wi /1 -\w2 1 + i w

Hk.

3~ 20 L K,

Les modules a

Leur valeur est donnée par les équations

«IA

<'-f;+-ïJH

20

]¦
IT Bßl_ -B/2) l+iB/3)"]
L K4

" *
K2 + 2 K3 _T

_7r(2-i)r BfcO g/2) B/3)" 20 L " K, + K2 + K5

_7r(l— 3i) T B/» .B/5) l+iB/3)"
a2ft — ¦ '

En effectuant ces calculs on trouve

2 11a41zr—-rr(2—0, alsrr—-tu(3+0, a43rr -tt(3 + 0,12 1

«21 —5^(3+ 0. a22zr—-7r(2—0, «23rr—-tt(2 —i),

1 1 2
«si 5^(3+0. «5ä —5^(2—0» ö35rz— -tt(3 + i).

D'une part on constate que a^ a^, comme cela doit être
d'après un théorème démontré par Riemann. D'autre part, pour
que les fonctions S- qu'on peut former avec ces modules, existent,
il est nécessaire que la forme quadratique 2 2 aiaka'ik>

•=1,9,3 k= 1,2,3

où ex:, aft parcourent tous les nombres entiers de — -x, à-|- =o et
a'rt signifie la partie réelle du module a-k, puisse être décomposée

en une somme de trois carrés négatifs. A cet effet il suffit
que l'on ait

9
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a'lt<0, â
a J4, a

211
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>0, J
a tl,a'
a 2|, a 22, a 23

a 31! a 321 « 35

Or, les valeurs ci-dessus donnent effectivement

<0.

a zr — - ô=a'U\
5 ^

D'ailleurs on voit aisément qu'on peut écrire directement

22aiaka'.ik rr — n I-(or4 — -a, —^a.f +

Calcul direct des tangentes doubles à la courbe s+£l—1=0.

Chaque fonction cp devient infiniment petite du premier ordre
en quatre points de la surface 'F. Il y en a 28 dont les zéros se
confondent deux à deux. Les racines carrées de celles-ci ont été

appelées par Hiemann fonctions abéliennes. Ces 28 fonctions cp,

égalées à zéro et interprétées géométriquement, représentent
évidemment les tangentes doubles à la courbe s' ft- z1 — 1 0. Il
est du plus haut intérêt pour la suite de les connaître. Le
procédé suivant va les fournir avec la plus grande facilité.

En exprimant s et z en fonction d'une troisième variable t à
l'aide des formules

zzzycos/, s ysmt,
l'équation
(1) S' + 2" — 1 ZZ 0

est satisfaite identiquement pour chaque valeur de /. Mais il est

avantageux d'introduire des coordonnées tangentielles u, v,
moyennant les formules de transformation connues

ds dz
u rz — zds—sdz' v zr zds — sdz'

Il vient

— (cos t)2, v rr — (sin t)2.
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L'élimination de t entre ces deux équations conduit ensuite à

l'équation en coordonnées tangentielles de la courbe (1), soit

t>5+ V?— 1 rz 0

qui, rendue rationnelle, prend la forme

(«*+ v"— l)3 + 27ttV 0.

Or, les coordonnées u, v d'une tangente double satisfont
simultanément aux trois équations

f= (A + v"— t)3 + 27mV rr 0,

|£ — 12(u" + A — 1)V + 4.27wV'zr 0,

•|£ 12(m4 + v" — 1)V + 4.27«V zz 0

ou en supprimant dans les deux dernières équations les facteurs
12m3, 12«3

a) {A A »'" —1)"+ 27«V=0,
ß) {ift + v" — If + 9v" 0,

y) (A ft-A— Ifft- 9h"zz0.
Les facteurs supprimés correspondent aux huit couples de

racines
i —

MrrO, V — \ 1 zz 1,—1, /,—?',

f-/—
V rr 0, M zr \/ 1 zz 1, — 1, i, — i.

Par la comparaison des équations ß) et 7) on trouve la relation

v' u' qui, introduite dans a) et ß), donne

(2m* — l)3zz — 27tts,

(2m'1— 1)2zz— 9m*,

d'où par division
2?«" — 1 z. 3u"

ou encore
?("zz—1.

Ainsi u peut aussi prendre les valeurs

i« -Ui U -Ai,
U — e' U rr e

'

U rr — e?' tt zr — e '
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En combinant chacune d'elles avec les quatre valeurs
correspondantes de v, on obtient 16 autres couples de racines.

Pour déterminer enfin les quatre derniers couples il suffit de
diviser a) par v'3, ß) et y) par v" :

et l'on voit immédiatement que ces équations admettent les
racines

u yrtr \ ±i.V ZZ oo,
V

Si l'on pose pour abréger l'écriture

l-H
]/~2

s, Y-, /2
de sorte que

se _1, 7--»,? 1 — I t fs «

on a maintenant les 28 couples de racines suivants

0, 0,0, 0

1,— l,i,—i
1,-1, i,—i
0, 0,0, 0

f I

f,e,
-f.e'

v

— s —s

f-, —s,

u

-s, —s,
I-e, s

-e —e
/ r

e —e

u
8 - —

t)

f, —f, «',—s

lt u
V ' V ' V

En les substituant à tour de rôle dans l'équation

uz + vs + 1 zz 0,

modifiée pour plus d'uniformité en

S + -z + i zr 0,
t' t'
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on a finalement pour les 28 tangentes doubles à la courbe (1) les

équations en coordonnées ponctuelles

s+lrzO
s—lrzO
5— irrO
s + i rr 0

2+1=0
2—1=0
2—irrO
2 + i zz 0

S — ù + e'rzO
s A A — s' — 0

Sft- Z ft-s rrO
S — z ¦—s rr 0

sft- z +*'zzO
S—z—a'=0
s + izft-i rrO
S — iz — t rzO

S + Ì2 + s' — 0

s — Ì2 — t' rr 0

s—2 -|- * rrO
s + 2 —« rr 0

5— 2 +e' —0
S+ z—t' rrO
s — î'z + s zr 0

S + iz — e rr 0

s + sz rr 0 I

s— sz rr 0

s + i'2rr0
s — t'z=:0

Points de contact des tangentes doubles.

Dans la suite, on aura plus d'une fois besoin de connaître les

points de contact des tangentes doubles, soit les zéros des fonctions

abéliennes. Douze des 28 tangentes doubles dans l'exemple
choisi présentent cette particularité que leurs deux points de

contact se confondent, en sorte qu'elles forment un contact du
3e ordre avec la courbe s' + z* — 1 0. Ce sont les suivantes :

Tangente.

sft- 1 0

s — 1 0

s — i 0

s + i 0

sft- 1 0

z — 1 0

z — i 0

z-ft- i 0

sft- eg 0

s — tg 0

SA t'g 0

¦s'z — 0

Point de contact.

z 0, s=—1
z 0, s 1

z 0, s i
z 0, s=—i
g—-\, s 0

z=l, s 0

z i, s 0

z=—i, s 0

A l'infini d" la direction —135"

» » 45°

» » +135°

Nappe.

III

II
IV

D" toutes les 4.

III

— 45°
II
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Seuls les quatre derniers cas demandent une petite explication.

Soit à déterminer la nappe dans laquelle se trouve le point
de contact par exemple de la tangente

s + sz zz 0.

D'après cette équation, si g parcourt l'axe réel de +1 à ft--*°,
1

s décrira la droite •/; £ de \-=-y,-= — —r= à ?=>? =—=*>. Cette
} 2

correspondance, on l'a déjà vu, n'a lieu que dans la 3e nappe.
En ce qui concerne les 16 autres tangentes doubles, on peut

procéder de la manière suivante. Soit, par exemple, à
déterminer les points de contact de la tangente

sft- z + e'rr 0.

De cette équation on tire

i - (2 + S').

Cette valeur de s introduite dans l'équation s1 + z'' — 1 =0,
il vient

' (2 + s'f + 2* — 1 rr 0

ou bien, en développant et en supprimant le facteur 2,

z* + 2t'25 — diz- — 2«2—IrrO.
Or, si l'on désigne par g, et z., les racines doubles de cette

équation, on doit avoir identiquement

rft + Ç26'z3 __ 3^2 __ 2tz _ l _ (2 _ Ziy ç _ hy
ZU—2(24 + 22)-3 + (21'2 + 42,2, + 222)22— 2^2,(2,+ 2,)2+ 24V-
La comparaison des coefficients qu'affectent de part et d'autre

les mêmes, puissances de z, fournit ensuite les égalités

a) 24 +2, rr — e',

ß) l* + 42,22 + 222 rz — 3t,

y) 242,"(24+22) «,

O) 2, *, — 1

dont on tire, en divisant y) par a)

f
2,:2 rr -r — t.

c
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Connaissant maintenant la somme et le produit des quantités
z, et zt, on obtient celles-ci en résolvant l'équation quadratique

z2 ft- s'z — i rz 0

dont les racines sont

_ — 1 + i /3
24_* 2

,—1— 1/3
Za rr s

2

Mais

—1+i) 3 -5=' s«*
1 ' zz — e zz e
2

zz —e rre et :n e
—1—1/3 -«' --" -^'

2

on peut donc donner à #, et #, la forme

yT.i - T.l

z, — c
'

e'

2, rr e e rz e

Ces valeurs vérifient les quatre équations a), ß), y), 5). Les
valeurs correspondantes de s sont

1 4d ;

S2rz-(22+0 -(e"ill' + e~â,!l') rz

Ainsi les points de contact de la tangente considérée sont
donnés par
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s,-e 12*\

%a C/ ¦ Og C

Reste à savoir dans quelles nappes de la surface T' ces points
se trouvent. A cet effet, on remarque aisément, à l'aide des fig. 2

et 3, que si z, e12 était pris dans la 1" nappe, la valeur

correspondante de s serait s ed2 Or,
O ; 7 • A3 i 11 ¦

„ _Ï„_„Ï2 * ï* ** _ „Ï2 *»
__ -Â2**

s, zr ts zr e e zr e zz e

Il s'ensuit que le point z, est situé dans la 2e nappe. D'une
manière analogue, on reconnaît que le point gt se trouve dans
la 3e nappe.

Plus loin, lorsque cette étude sera un peu plus avancée, tout
ce qui concerne les 28 fonctions abéliennes sera réuni dans un
tableau. Incidemment, on peut constater dès à présent que
leurs 56 zéros se répartissent également sur les quatre nappes
de la surface T'.

Fonctions abéliennes correspondant à un système complet
de caractéristiques impaires.

La théorie des caractéristiques, traitée complètement dans

l'ouvrage de M. Weber (p. 17 à 33), est supposée connue. A chaque
tangente double on peut adjoindre une des 28 caractéristiques
impaires. Une caractéristique paire quelconque (p est
accompagnée de 8 systèmes complets de 7 caractéristiques impaires.
Les tangentes doubles répondant à un tel système se distinguent
par la propriété que jamais les six points de contact de trois
d'entre elles ne sont situés sur une conique. Dans la théorie
générale, on a la facilité d'attribuer à ces tangentes un système
complet quelconque de caractéristiques impaires. Il n'en est
plus de même lorsque l'équation de la courbe du 4e degré et
ses 28 tangentes doubles sont connues et que l'on a fait choix
de la surface T'. Dans ce cas, la difficulté essentielle consiste

précisément à trouver 7 tangentes doubles et leurs caractéristiques

satisfaisant à la condition indiquée. Ce problème résolu,
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les caractéristiques des 21 autres tangentes doubles sont données

par la théorie générale. Voici de quelle manière on peut
arriver à la solution désirée. (Comp. Riemann, p. 460 et suiv.)

D'après Riemann et Weber (p. 82), il est possible de mettre
l'équation de la courbe du 4' degré sous la forme

/=0 désignant l'équation d'une conique, et xt 0, £,=0,
x2 0, £, 0, exprimées en fonction des coordonnées z et s,
celles de quatre tangentes doubles à la courbe proposée, telles
que leurs points de contact se trouvent sur la conique/=0. Or,

s — lrzO, 5 + 1=0, 2—lzzO, 2 + lzr0
représentent évidemment quatre tangentes doubles dont les

points de contact sont situés sur la circonférence

52 + 2ä—lrzO.

Par conséquent, l'équation s1 + z' — 1 0 peut prendre la
forme

(«« + 22 — l)2 — 2(.s2— 1) (22 — 1) zz 0.

Il existe six couples de tangentes doubles pour lesquels la
somme des caractéristiques est la même et qui, de ce fait,
constituent un groupe. Si l'on considère, par exemple,

S— IrrO, S+lzzO; z— 1 rrO, 2 + 1 zr0

comme deux couples d'un groupe, il est intéressant de chercher
les quatre autres couples du même groupe. A cet effet, il est aisé
de voir que l'équation

«s(s*-l) + «(s2 + 22-l) + ^(22-l) 0,

où a. signifie un paramètre variable, représente une conique qui
touche la courbe du 4e degré en quatre points. Toutes les fois

que cette conique dégénère en deux droites, on obtient un couple
de tangentes doubles appartenant au même groupe, vu que leurs
points de contact, de même que ceux du couple s ft-1 0,
s—1=0 satisfont à l'équation

2«(s* — l) + (s* + 2s— l)rzO.
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La condition bien connue qui entraîne la dégénération de la
conique

aHz- + 2al22s + aitz* + 2a432 + 2a23s + aiZ rz

rz(« + !)2ä + «(« + lK + (— «2 — « — t\) =0
fournit la relation

1

c(„ fl,2 «!3

«2! «i» «23 rr

«3! «32 «33

« + |. o, 0

0, «(«+1), 0

0, 0, - «* + « +

_(B + |)B(«+l)(a + i=î)(a + l+î)=0
que l'on peut considérer comme une équation du 6° degré en a
dont une racine est =*>. A ses six racines répondent les couples
suivants :

y. Couples.

zx> s— 1 =0 s+ 1 =0
0 s — 1 =0 £+ 1 =0

— 1 g— i =0 g-\- i =0
1

_ 2 s— i =0 s+ i =0
— 1 + t

S — ££ 0 s ft- eg 0
2

1+t
2

s— e'z=0 sft-e'z—0

Ceci posé, on introduit un système de coordonnées homogènes,
en choisissant pour x,, x%, x'3 trois tangentes doubles telles que
leurs points de contact ne sont pas situés sur une conique. Les

tangentes

rr4rrA(s—1), rX2:=B(2+l), Xs rr C (2 — i)

remplissent cette condition, et les fonctions qui forment des couples

avec les précédentes sont
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?,:=«+!, £,ZT2 — 1, Çs z + i.

Les constantes A, B, C doivent être déterminées de telle sorte
que l'équation

f^Ji + Y^J, +/^F5zr0,
exprimée en fonction de s et de z et rendue rationnelle, produise,
à un facteur constant près, l'équation donnée s'ft-z* —1=0.
On trouve sans difficulté

A l, B l, Crz—i.

On posera donc provisoirement

1 1

Xi—S— 1, a:2rr-(2 + l), x-a zr —- (2 — 1),

fjzrs + 1, Ai—z—l, Çr zft-i.

Or, Riemann (1. c. p. 464) et Weber (p. 91) démontrent qu'entre
les six fonctions xt, xt, x3, £,, £,, ç3 il existe quatre équations
linéaires et homogènes de la forme

(1) «£, + /te2 + yx, + «'£,+ ß% + y"$.0 rr 0,

pourvu que les constantes a, ß, y, a', ß', y' satisfassent aux
conditions

aa' rz ßß' — yy'.

Une de ces équations est alors nécessairement une

conséquence des trois autres. Les quatre expressions}' axlft-ßxift--/x3
sont les fonctions abéliennes désirées, c'est-à-dire celles qui,

jointes à /a;,, } x,, Yx3 répondent à un système complet de

caractéristiques impaires.
Pour les déterminer, on partira des trois équations faciles à

vérifier

x. +2(1 — Oa-i + 2(1— 0*3—St 0,

2iLr2 — 2(1— 0*3— £2rr0,

2(l+i)a;2+ 2irr3 — ^ 0.
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En les multipliant respectivement par l,, lt, l3 et en ajoutant,
il vient une nouvelle équation que l'on peut identifier avec (1) :

ltx, + 2 ih (1 - 0 + hi + h (1 + 0] a» +
+ 2 rj4 (i—o - h (i - 0 + iA\ v*- *A—hh—hh

rz ax, + /5«, + yxz + a'£4 + /9'£, + /£„.
On en tire

«rzi4,
(2) i/ï 2[ZI(l-t) + J1.+ J,<l+t)],

y 2[/4 (1-0-^,(1-0 + ^'],

«' — /,,

y' — h-

Les conditions aa' ßß' yy' donnent lieu aux équations

— «,* =—2Ï, P, (1.—*) + *,«" + *. (1 4- 03

-2l,[J, (1-0-U1-0 + W
qui, à leur tour, servent à déterminer les rapports l,:li:l3.

Soit, à cet effet,

L zz wtZ,, h rz n/,.

Les équations précédentes, après la suppression du facteur
commun — l,* prennent maintenant la forme

(3)

(4)

m (1 — i) + m*i + mn (1 + 0 —

n(l—0+ n^i — mn(l—i) —

En les ajoutant il vient

(1 — i) (m + n) + i (m2 + n2) + 2i mn zr 1

ou bien

(m + n)2 — (1 + i) (wt + n) + i rr 0.

Il s'ensuit

m IH t /(i + O2 • i+* « / *

1+t l—i
2 — g '
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soit

a) m + n rr 1, b) mft-n i.

La substitution de n — 1 — m dans l'équation (3) donne

tandis que w i — m fournit

m zr ;

On a ainsi les quatre couples de valeurs

lm4z=l+^/|, m,=l-y/i,«t,=y=,
'

n, -\/|, n, zz \/i, «,z=t(l-v/i), n»=*'(l +
lesquelles, introduites dans les formules (2), conduisent aux
systèmes suivants :

i
/2'

m.rz- /2'
IL

2/'

/. =¦ _2^
/2

/ït 2l

V y' - /2

2ilt
^~ — /1

y, zr—2iZ:

•i'+v7!)

M)

ß'4=r —^

' _ A.
7 * _ /2
cc 2 ¦— tj

/î_ /2
a'3 — — ll

i
ß'3-~Jili
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a „:

I
/2

y*= —2tlf(l —\/|)

-J,

¦/»'.
il.
/2

''*=-» (i + V^)'.
Les valeurs de a, ß, y, a', ß', y' étant connues, on a maintenant

aussi, en vertu de l'équation (1),

«Aa AßAi + ya3 _ ce'A, + ß'A, + r'A3 _
h " i4

rrrr, + (2-/2)^-/23!, =*—1 + (l - y/|) (2+1) +
1 1+t+ -7= (2 —Î')ZZ5+ 2 p^ZZ.S + 2 —f/2 /2

et de même

"Ai +ßA°. AïArs __ «'.?, + /g't?s + /,?, _ c „
/1 ii

«»»* +^2 +y3*3 _ «'3?d + £'.£. + y'A*
h l. -.sft-izft-s',

>'.£«Ai+ßy«.+YA3 _ a'Ai + ß'A°. + Y\--3 _ „ •

7; - t; -sft-iz-s.
Ainsi qu'on l'a déjà fait remarquer, les fonctions

ry> rr> /yx'l ^2 ' ^3

;/°zzs + z—s, g —sft-z ft-e, g'=s ft-izft-s', g" =s + Ì2 — s ',

ou, pour mieux dire, leurs racines carrées forment un système
complet. Pour amener l'identité

g° zz x. + x,, + xz rz — (S, + £, + f,)
il est nécessaire de munir les fonctions x,, x,, rr3, £,, £,, r£3 de
certains facteurs constants; en d'autres termes, on remplacera

Xi, X.,, Xr., ç, 42>

par rr,,
2 _ |A2 ' j/g '

}'2
"/2 + 1

}2?3,
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de sorte que dorénavant

rr,z= i-1, ar,- (l _y/0(z +1), xt y^(t-i),

?,=-(, + i-2=-|l+y/0(2-l), ^ ~(z + i).

Ces six expressions, clans leur nouvelle acception, satisfont
également à l'équation

Y~äftTi+ Y^JÏ+ Y^ïh=o.
Cela posé, les équations (23) de M. Weber (p. 93) deviennent

maintenant

?i + £, + h + x, + x,ft-x:, 0.

ir + !r+\v + "« *« + «•*» + ««*¦ ^ + (/2 -1 )2 ?s- ?r> +ttj Wg ^*ì

+ ^ + (/2 + Ifx, — x-0 zz 0,

4- + 4- + 4- + «'A + «>, + «>, i"i + i (/2- J -
— i(/2—1)?s + «,-t"(/2 + IK +i(/2 + lK 0,

4+4 +-4 +«"^l+«".>.2:+«"3.T3=:i-l-i(}r2-1)i-.,-
a a « j

— t(/2 + l).?3+a;4 + i(/2 + l)a;ä+i(/2—l)rr3=0.

On en conclut

a, -1, «, rr (J2+1)2, or, =-1,
«',rzl, a'î=-ï(/f+l), a'7>= i(/2+l),
a", zzi, «",zz l(/2+l), «% i(/2-l).

Ces quantités ont été appelées par M. Weber modules de classe

(p. 103). Les modules dérivés a",, a",, a"3 dépendent des a et a'
et les formules (28), p. 95 de l'ouvrage de M. W., indiquent le

moyen de les déterminer. Bien qu'il ne soit pas nécessaire de

vérifier ces formules, l'esprit éprouve toujours une certaine
satisfaction lorsqu'en appliquant une théorie générale à un cas parti-
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culier il arrive à des résultats prévus. C'est à ce point de vue que
les quelques lignes suivantes figurent dans le présent mémoire.

Ecrivant, pour abréger,

t, 1, 1

('il ail K.

n'l, «'». i» 3

(«4,a„«3),

1, 1, 1

1 1

«n —
or, a.

1 1

or,,—-,— etc.

on trouve successivement

«o««..^) (^«.^) -«^(l+0(/« + l),

a.,—.a.
1 1A«, =-2/2(1 + 0(/2-l),

,«,,«5 r=(a,,«,,«3)r=-2/2(l-0(/2+l),

1 1 ill*4
' a, ' a3

-2/2(1-0 (/2 — 1).

Ensuite

r il i II il,a2 a re re, « 2 « or- « 3 a 3

"3" 3" 3

1 \ / 1 1

(/ ff \a2a s" a)

a.,ccy,
il \t > a3l \"1 3/ \«i

1 VI 1 \/ 1 1\/1 1 1

c.,,—,a, —,—,re„ H a,,—,—'" «.' VV«,' «'"VV"" «.'W V«/ «.' «,Hj/ \M4 K,

ana>»—j («i,«*><>* //2 + 1

i y/ i
" «.' V V " «.' a.

Hv^H^^
or.

«', rz - i(/2 + l)3, («, «',)* rr -(/2 + l)6,
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par conséquent,

«V -p^6 -(/2 + l)äet«''s ±i(/2+l).
De la même manière il vient

1 VI 1

— .«2. «3,,
(«3« 3« ft — —

.— ,«3) («i. «s. «3) («,,—,«

1 V 1 IVI 1\/1 1 1

Ut.cn,,— re.,—,— —,a.1' 2. /11. /\ )lt2. /\re5/\ «2 re3/\or, re3/\or4 «2 re3

("i.«j.«8)*(«i.;- ."a.\ "8 / i
1\V 11^'«1,— ,—

mais
(re3re'3)2 -(/2 + l)s,

par conséquent,

re3"2 rr- (/ï— l)2 et re3" zz ± i(/2 - 1).

Enfin on trouve

1 V 1 1\, A 1

or..—, re, re,̂ ~,-)(«l.«2,«3)(«„«2,~)
(re, « re _- — —— r71-rT-N - 1

«, /Vre, or3/\a4 re, /\re4 «2 re3

et puisque

(«,re',)2rrl, on a re",2 zr 1 et re", rr ± 1.

Ainsi, au signe près, les modules dérivés a",, a",, a5", sont
connus. Si, pour une raison ou pour une autre, on a choisi l'un
des signes, les deux autres ne sauraient plus être douteux. En
effet, soit par exemple a", + 1 ; alors l'égalité

1 \ / 1 1

re„,or, —,—, re.

_1 ' ^. "2 __ 1-
1 \ / 1 1 N — "f" L

«,,«„—) l«4,—,-
a-J \ re, oru

fournit
10
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"3" 3

et / 1 \ / 1 1

«,, — ,or, or.,—.—
or, or 4 or 4 \ ..„ / \ «. «_/

„ zz ?—_-L !__V — /1^2 _ l)*
re2or 2« 2 /1 \ /1 1 \ u j

ir, / Vre,

donne de même
' rt

or, or or
re", zr M V '(V 2 + 1)" rzi"0 2 + 1).

*»" 2

Les ^8 autres fonctions abéliennes.

Les 28 fonctions abéliennes ont déjà été trouvées précédemment.

On fera connaître plus loin un moyen qui permet de
déterminer leurs caractéristiques d'une manière directe; toutefois,
dans l'intérêt de la brièveté, il est préférable d'appliquer les
formules de M. W. (p. 96 et s.) qui donnent non-seulement la
forme de ces fonctions, mais encore les caractéristiques
correspondantes. On obtient successivement

yl°=xl + i-2 + ?3=s-l-(l+}/ï)(2-l) +
1

+ TA (« + *) *—« +f,
y 2

*¦¦*'-- ' ''-fào-l)-Ya =ai%i +—- + — rrs—1
or2 «3

- ^| (z + i)=S-Z~S,

,',=«>, +if+Ìf rz.-l- ^(2-1).

1-1^) (* + *) *--"

y't-«V1 + A + A-s_l+ -^(«-1)-
or » « 3 y 2

— t (l +)/!) (2 + 0 *—W + *',
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yA zz Si + x, + £, - [s - 2 + O
ï

y, zz-^+o^ + —zz —(s—; — t')
or, or3

/', zz ^i. + re>2 + ^-r zz — (.ç + Ì2 + s)

ci", ' "-'re'.y\_ -4 + «v, + -4 - (s + « - o
1

y.°= ï, + £, + rr. -— (s+ z—s')

*¦ =-^ + -^+ «»». =-(*+*+«')
re, a,,

y'. z-zzA- + —r + «'-3"-, zz— (s— tz — <¦)

r"3 rn -^ + Il + «"^ -_(,_« +

Les six dernières fonctions ne peuvent être autre chose que
trois des couples qu'on a déjà rencontrés p. 124. En effet

fc — £i fs
?u

«,(1—re2or3) re2(l — re3re,)
'

re,(l—re,or2)

— --LLVv^-0'
X-A i/-Q l/ _

Xf, — l-re,or3 1—a3a{ 1—«^

— K'-VT)^);
h=- fi

1 ¦

ä
\ A?

I(/2-!)(* + *'*),

At tXiay

x, — - If I l \ / f 1 J f f

zr-l(/2-l)(S-,'2);
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fc

«",(!-«VV '

«%(1

i. ï

ff ff \« 3« 1) or 3(1 —« d« 2)

+

(* + «)•

Si l'on désigne par

{YTft rr (ft), Q ffj zz (ft), (IVL) zz (ft), (/£*) zr (ft),
(/^=0».), (/7) =(/».),(//)=(ft)

les sept caractéristiques impaires formant un système complet,
en indiquant de cette façon en même temps la caractéristique et
la fonction à laquelle elle appartient, les autres sont (W. p. 100

et 101):

Or%)=(p + ßt + ßt)

(Y¥t)=(p + ß3 + ßft

(YI3)=z(P + ßt + ß,)

(/FI) (p + ft. + ft)
(Vy,) =(p + ß,+ßft'
(//,) (p + ft + ft)
(/Aft) (p + ft + ft)
(/F4) zz (p + ft -f ft)
(/F,) (p + ft + ft)
(/?,) (p + ft + ft)

(//,)
(p + ft + ft)
(p + ß, + ßt)

(YyA -(p + ft + ft)
(/p^)-(p+ft+ft)
(V7%)=(p + ft + ft)
(//J + /?, + &)
0V,) (p+ & + /»,)

(/A) (p + ft + ft)

(/57) rz (p + ft + ft)
(/*,)= (p +ft+ ft)
(/«.) (p + ßs + ßft

(p) rz (fi, + ft + ft + ft + ft + ft + ft).
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Détermination des caractéristiques.

11 s'agit seulement des sept caractéristiques (/-r,), (/a;,), [\ x3),

(Y9°)i (Yd). (ïV). (Yd") 1u^ forcent un système complet. M.

Weber, à la p. 79 de son ouvrage dit : « Lorsqu'une fonction abé-

lienne /a; s'annule dans les mômes points que ft()) I duh on

appellera («) la caractéristique de cette fonction abélienne et

on la désignera par (] x). » A ce propos, une observation
importante se présente tout naturellement. De même que l'égalité
de deux quotients n'entraîne pas nécessairement l'égalité des

dividendes d'une part et des diviseurs d'autre part, rie même

l'équation

f..(,u'ftvA
V xa

'-y

*w ffhih

ne permet pas de conclure que la fonction /a;, affecte exactement

le système de facteurs indiqué par la caractéristique

(/#,). En effet, lorsque la variable Ç, soit le point (z, s) franchit
les six coupures, les deux membres de cette équation prennent
bien le même système de facteurs, mais il se peut que, dans le

quotient, un certain nombre de facteurs (— 1) se soient détruits.
Ainsi donc, si l'on veut déterminer, par exemple, la caractéristique

(/a1,), en observant combien de fois la fonction ]V, s—i
change de signe, lorsque 'Ç traverse les coupures, la combinaison

de nombres, ainsi obtenue, ne donne pas directement ftfxft,
mais (Vxt)ft-(q), où (q) signifie une caractéristique encore
inconnue, qui d'ailleurs conserve toujours la même valeur.

Il est à peine besoin de rappeler ici qu'une racine carrée change
de signe toutes les fois que la variable, en parcourant une courbe
fermée quelconque, contourne un des points pour lesquels la
quantité sous le radical s'annule, pourvu que le zéro soit du
1" ordre ou d'une manière plus générale, d'un ordre impair.
Or, franchir la coupure a-, revient à décrire la coupure
complète b, ; l'effet produit est évidemment le même.
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Pour la fonction /rr, Yzft-l cette détermination est très
simple, attendu que dans ce cas la surface de Riemann T' fournit
tous les éléments nécessaires. En effet, il suffit d'observer combien

de fois chacune des coupures contourne le point z= — 1.

Un coup d'œil, jeté sur les fig. 8a 8f, montre que
la coupure «, fait 2 contours, la coupure b, fait 0 contour

» a« » 1 contour, » &, « 0 »

» a3 » 0 » « b-0 a 1 »

En réduisant encore ces nombres à 0 et 1 (mod. 2), on a ainsi

(y%) + O-
D'une manière analogue le point z i donne

(Y^)+(q)=C)-
Pour faciliter le contrôle ultérieur on peut ajouter

(/?j + (</) O ' fonction /2—1, point 2 rr 1,

{YK)+(ç) 0> » fï+i> » *=-»,
Afin d'obtenir la caractéristique de/r,=/s— 1, il est utile de

représenter les six coupures au moyen de la fonction s=y 1 —z4.

D'après ce qui précède, cette représentation n'offre aucune
difficulté. Cependant, il n'est peut-être pas superflu de rappeler que,
pour la fonction s, le point z 0 est un point singulier (Win-
dungspunkt), en ce sens qu'à un circuit de z autour de ce point
correspondent quatre circuits de s autour du point s =1. En
d'autres termes, dans le voisinage de ce point, les angles de

l'image sont 4 fois aussi grands que les angles correspondants
de l'original. On le reconnaît aisément à l'aide du développement

S-lzz-1**...
4

Il va de soi qu'il faudra tenir compte des différentes nappes
dans lesquelles le point z peut se mouvoir. Les fig. 9a... (3f, ainsi
établies (les chiffres appliqués sur ces contours se rapportent aux
points correspondants du plan (z)), on observera combien de fois
chacune de ces courbes contourne le point s= 1. De cette
manière, on trouve

(Yx\~) + (q) zr Q.
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Les mêmes figures donnent encore, pour contrôle

(/ID + O' fonction /s+ï, point szz —1,

(Yï,) +(q)=CÙ> » /^'. » S rr i,
(/*7) + O ' » /?+*', » srr —î.

La représentation des six coupures sur un plan (u), à l'aide de

la fonction u ,s ft-z, conduira facilement à la caractéristique
de Yg° Ysft-g — e, car cette fonction ne peut évidemment
s'annuler que pour s ft- z e.

Si l'on écrit

u rz 2 + m y 1—2*,

m prendra les valeurs ±1, ±t, suivant la nappe et le bord sur
lequel le point z se meut. A cet égard, les fig. 2 et 3 fournissent
tous les renseignements nécessaires. Pour plus de facilité on

pourra se servir du petit tableau suivant :

Bord +
01

1

i

—1

— i

01

i
—1

— i
1

+
Oi

i

—1

— i
1

Oi

—1

— i
1

i

+
0—1

—1

— +
0—i

1

i
—1

Chemin parcouru par g 0—1

— i

0—i

— i
1

i

I

II

III
IV

Facteur de s

dans la nappe

—-i

1

i

1

i

-1 —1 — i

Par exemple, lorsque z longe le bord négatif de l'axe Oi

dans la 4me nappe, la racine y \ —zs affecte le facteur i. Il est à

remarquer, en outre, que pour la fonction u les points z=± Vi»

z=±i\ï sont des points singuliers tels que, dans le voisinage

des points correspondants u ± 2 y 5 u— ± % y §, les

angles de l'image sont le double de ceux de l'original, car on a les

développements
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M—2t/- =— 6 (1) (2—l/ -J si s prend le facteur 1,

«—2*y g 6*(i)4(*~*v 2) '"sis * * *'

M+2Vi 6(j)*(z+V ï)",8i' ' * _1'
1 /T 2/ l /T\2

«+&y-z:^Q4(î+yi).„sw » » -i.
Dans les fig. 10a... 10/", construites d'après ces indications, les

points marqués ±n, zb«i répondent aux points singuliers

±\/â, drivi de l'original. Maintenant on voit immédiatement

que

(Yg°) + — (oîî)-, fonction Ys + z—81 point iirrt,
(/i) + ©> * Ys + Z + s, » tt=—e,

et pour contrôle

(/Ps) + Q, fonction /5+2—*', point u «',

(/£)+fo)=Q, » /J+i+7, » U--S'.

En dernier lieu, il s'agit de trouver les caractéristiques des

fonctions )/ g'' Ysft-izft-e' et /(/"=} sft-iz— e'. La voie suivie
déjà deux fois conduit encore au but, c'est-à-dire qu'on
représentera les six coupures sur un plan (v) moyennant la fonction

v zz s + iz zz iz + m y 1 — 2".

Au sujet du facteur m, l'observation relative au cas précédent
est encore applicable. La fonction v présente les mêmes
singularités que la fonction u, avec les modifications qui ressortent
des développements
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v—2t'l/-zr—6t/lV(z — i/ -rj si s prend le facteur i,

,-2\/^zr6 g^+i^)...^ » » 1.

Enfin, les fig. lla... llf donnent immédiatement

(/F^ + (îïî) ' fonction Ys + iz + e', point fzz—*',

(/7)+(?) Q» » /s+w-V, » « «',

(/Â)+(?) Q, » )/7+ù=ï, » « «,

(/77)+(?) ©> » /h-«-m, » «=—«.

En résumé, on vient de trouver

t/SD + O> (/7) + O, (/7) + O>

W) + (?)=D> (Yg) + - O> W) + Q>

(/7') + (ïîî)

et pour contrôle

(/7)+(?)=o> m+(?)=a> (/d+(?)=o »

(/rj+(?) zz o, (/7)+(?) zz q (//7°)+(?) o>
(/7) + Q, (Yfl) + (?)=Q, (//7) + (?)=Cl) •

Afin d'obtenir finalement la caractéristique (/a;, et avec elle
(q) et toutes les autres, on peut former les 6 groupes

(/777 (/777 /7F)' /77) » /77)^ /77)-
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Evidemment, ceux-ci ont une seule caractéristique commune,
à savoir (/a;, qui, de ce fait, est parfaitement déterminée. Or,
les tables de M. W. (p. 180 et suiv.), donnent

\\ a:4a;,)rz(0lu) + (ol0)rr(0O0)rr(10(l) + (lu0)rr(lll) + (1lj)^(oll) +
ì a 3

l /OO-l\ /010\_|_/001\ /101\ I /U0\ /101\ I /Ulli
' Voll/—\lH/~t~Mll/ — \10U/~I~'1IIO/—\01l/~t~\011/ '

4 5b(Y Xj Xs)=(0iJ + (i„,):::::(0Ol):r:(do0) + (l0l)zr(ll0) + (1li)rr(llo) +
i i

_i_/ni\ /oio\_i_/m. /on\ i/iio. /oii\_i_/iioi"T"Vin/ — \oii/*t~\oio/ Voio/~t"'on/— Viol/ i Vigo/
a :! « 5

(Vr rt°)— /010\ 1/010^ /000\ /100X i /100\ /100\l /100\ /010V
Vf x.g } — Voio/TAoH/1—Vooi/—fioo/^VioJ — ViW ^ Vm,>—Aa) T

_|_/010\ /010\ 1/010. /110. i /HO. /110\ i /110\
~t" v n/ Vno/ "t" Vin/ — moo/ ~r viol/— Voio/"l'on /.

3 û Ü

V *!?) —(oio) + (ooo) — (oio)— (ioo)~r"(no) — (m) + (ioi)— (no) "T"
1

_|_/101\ /0J0\_I_/101\ /001 \ I /110V /001 \ i /11 UN

' Vloo/— Voii/'Vooi/— Vooi/ ' von / — viii/""rvioi/ î
3 6 4

(l*!!? / —(oio) + (,„) —(io,) —(i»o) + (uoi) —UiJ+oio)—(no) +
1

+ /101V /010\ 1/101 \ /001\ i /110\ /001 i /110\
von/ — Von/"r(no/—vooi/"t"Vioo/ — vm/"f"'010/ '

3 5 4

(Vt a") — /•oio\ i /001\ /011\ /AOO\t_r\U\ /100\ i/lll\ /010\ i
Vr Jyi'J 1 Voio/"T"vni'—Vioi/—Vioo/'Vooi/—Viii/TVoio/—\oio/ ~t~

1

I/OOIV /010\_i_/001\ /101\ i /110\ /101\ I /110X
'Vin/— Vno/ t von/— \ooi/~t"f lool —Vno/ 'Von/

4 6 6

Il s'ensuit (7*m) — (ito)

7

et par conséquent (?)=0> (i»)=-(/?0=O-
i

On a ainsi

<« ©> »=0> (« 0. (VF) (Î»>

vW) C), vV7)=C7 vW0 O
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et pour contrôle

<^)=o> m=o, m=o,m=o, (v^o,
vVâmd, m=a> (n/pd=o. (^"r.)=o.

On est maintenant en état de dresser le tableau suivant,
contenant les 28 fonctions abéliennes avec leurs caractéristiques et
leurs zéros (voir p. 142 et 143 ci-après).

Transformation des intégrales w,, w8, w3.

Avant de continuer cette étude, il est bon de soumettre les
intégrales de première espèce à un examen un peu plus attentif.

dz
w,>. / \/(l-2*)3

On peut d'abord transformer l'intégrale proposée au moyen
de la fonction

s

Il vient successivement

2 zz e —, s zz y-, dz ei / l - ¦— \ / t — - :

yi-£* vi—? (i—O"
UC dt

w. 1
v/i—t»

La substitution

donne ensuite

'Ji=JYm>-
Pour ramener cette intégrale elliptique à la forme normale

de Legendre, on posera en premier lieu



IVs Solai. Expression. Caract. z. s, Nappe. Za ss Kappe.

1 K7 Vs-1 100
100 0 1 I 0 1 I

2

3

K7 Vzft-l in
100

001

101

100
101

- 1 0

0

I II
III IV — 1 0

I II
III IV

^7 ¦ z—i i
I II
III IV i

H ;

-e"™

0
I II

III IV

4

5

fi

7

- rà" H-e^ III - e
d2 IIVsft-z—e

OH
110 r*- e12 III e*" r^ IIhft-z + e

V7 OH
001

IH
001

HI
IH

100

HI

- e~& .*" IV
il«- e™

ii .•

IIIVs+izft-e'

e'*' 12*'
— e IV

u i
85-

11 ;

- r5- IIIVsft-tz—e

8

9

10

11

12

13

14

K Vs+1 0 — 1 III 0 — i III

^ Vz-\ 1 0
I II

III IV 1 0
I II

III IV

% Vgft-i. 010
HO — i 0

I II
III IV — i 0

1 II
III IV

Vr. 001

IH

5 ¦

e12 I
H

-e5- .-*' IVVs-gft-e

^ HO
100 ey -.»- I e12

5 •

- a"3- IVVs-z-e

W. HO
OH - A" -.*- II - ^ il ¦•

Iys—iz—e'

¥, 010

OH

5 .*- II
11

,• u ¦

-a- IVs—izft-e'



15

16

17

18

19

20

21

22'

23

24

77 010

HI -.*- e tì IV
11 ; A I

I

Vs—zft-e'

t; 101
100

e& -li«
-e 12 IV

h
r5- - e12Vs-z-e'

w. 101

OH
e^ r«rf III

-m«
e

12
il«
12

e IV

IV

Vsft-izft-e

Vr.

001
011 -e^ _ .-â- III

-Ü«- e
,2

il«- e12Vsft-iz—e

100
HO

011

101

011

oio

-fi* _ii«
— e ' II

-il«- e
12

5 ¦

IIIYsft-z-e'

va M -il«
e

12 II
-il«

e
12 «*" III

II

Vsft-zft-e'

J7L

v\\

VT,

e*" -7â" I
-lì« il«- e12YS—iz—£

111

010 - e*' 7^ I

II

II

-il«\r»
— e

il«
e12 liys—izft-e

110
101

110
010

010
oio

0 i 0 i IIVs-i
rrr^o de sorte que - — e' rrrx> de sorte que - — e' IIhft-e'z

25

26

27

VT,

VTh

=*> de sorte que - e I r» de sorte que - e Iy's — ez

101

110 0 — i IV

IV

0 — i IVys ft-i

V7 101

001
-*> de sorte que - e' 3<j de sorte que - e' IVh-e'z

28 VT«
001
001

r» de sorte que - — e III -*= de sorte que ; — e IIIVsft-ez
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2/-1 — Vdy
d

1V~y+V "''-'(y+l)v
d'où il suit

- Ç dy ç dy

'hif+ëf+ï- 2J /[*/8+(V2+i)2][t/2+(Vf-i)s]

dip
"g y, «y ——vai- Vj

ce qui conduit à la forme

y (V2+l)cotggp, dyzr-^+l)^,
(/y

— \A I -,_'" "J /0/2 + l)2cosV +(/2 — \f%m\

rr -Vf f7^==yJ K(V2 + i)2-/(V2 + I)2—4 Vising
Vf /" dcp

n+ V l—( -1 - Slll'(,
Vï+l

Afin de transformer cette dernière intégrale en une autre dont
le module est plus petit, on peut employer la substitution de

Landen, soit la formule

j ri-rsin> z
""o

dans laquelle les amplitudes cp et <p, sont reliées par l'équation

tg(îPi—<p) — k'tg<p, oh k' =} l — k-

et le nouveau module

Ä'-l + fc'

Appliquées au cas actuel, où

4

9}'9 Vç 1

;, _~L- /•' — -1 lh — ti=. h — r~z
K2 + 1 F2 + I
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ces formules donnent

1 1 r dcp
£,rr - et to, ^-g-+2 I — 2 / / îJ y/l-isin^,

Pour faciliter la détermination des limites, voici encore une
fois la série des substitutions employées :

y \*i h* z -A-A 1+»/i e - e ^=,V e ^y=^
COtgfpzz—7—AgAi—y (]'$— i)2tgy.

12 + 1

Ceci posé, on trouve, par exemple, en désignant par -*> le point
à l'infini de l'axe des X positifs et, d'une manière analogue,
par e.=o le point à l'infini de la droite y x du côté des X
positifs :

y — i
dz

- ft i di*
— l dt] _

J v7(i-^r J Vl-^ J yi+7
0 0

1 „co
d/7 / cfy

Kl+ry* / Vl+lj-*

Si, dans la dernière intégrale, on remplace r, par—, on re-
"/?

marque que

r drt Ç di]C dr, Ç

Jïl+rf JVl+7
par conséquent

K-^f1 di<

Aux limites 0 et 1 de r, correspondent les limites 1 et =o de y,
arctg (/2 +1) et 0 de cp. Reste encore à déterminer celles de cp,.

A l'aide de l'équation

tg (</>,-</>) (/2-l)*tgy,
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dont on tire

_ l+(f2+l)*
tgyi-1_(y2-i)2tg2çP gy'

il vient cp, — 7rpourtgcp=(l 2+ l) et cp, O pour cp 0, de

sorte que
o y_

1\ /* %i _ /*2 ^!/ IN

1—^sin2g, J yi—-sinV,

J2G?2
,7(1-2*

En introduisant s comme variable d'intégration, on a
immédiatement

./L i j ^ds Ç ds

2zz/l-5*,d2z=-1-?-ett,îzz-jï(i-/)l 2~ jyr
Puis la substitution

s=cosy, dsrz— sinyrfç/)
donne

1 r. dip
wa -n\ aI~\1—-sin'2<p

Il s'ensuit, par exemple,
i

d2
JÖ2

Il suffit de poser

zz cos ç), dz zr — sin y rfy
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pour ramener cette intégrale elliptique à la forme normale

dip
w- ^•fyi- 1

2-sin>
On en tire

i

K Ç dz 1 p dxp^ —JLir
J yi^Aft - n\ J7~T~t n v
0 ° y 1—-^sury

Ainsi, on vient de trouver

K* ~~ Ks ~~ Ta Kl'

Valeur numérique de K,.

En vue d'une représentation qui sera faite ultérieurement, il
est utile de connaître la valeur numérique de K,. Pour la
déterminer, on peut se servir de la méthode de Gauss.

Si l'on pose, pour abréger,

dipf{a,b,ip)-\ t
v Y a. cos2 ip + is sin8 <p

et que l'on soumette cette fonction n fois de suite à la transformation

de Landen, il vient

1 1

f(a,b,ip) - f(ai,bl,9i) jp f(a„ bt, 9l) rr...
1

gE /'(«nA.tpn), OÙ

(ti ^(a + b), bi=zY"âb tg(îP, — q>) zz-tgy,

«i «(«* +*i)i &i=/«Â, tg(ys— y,)zz-Hgcf4,
-^ w4

«3=ô (a* + ^)' &«== /«A tg(y3—çp.Jzz-^tgîpj,

il
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Le calcul doit être poussé jusqu'à ce que lim — =1. Alors,
Un

si l'on écrit encore lim / ^ j <P et lim an lim bn A, on

a /(a, b, cp) —r- Lorsque cp — n, <P est évidemment aussi
A. £

— Tr et par conséquent

Or, dans le cas actuel,

it «

K,
„

1
s '/ /2 cos2 cp + sinVo 1 —-rsurce °

2 ^

ou

a =/2 1,41421356, òrzi,
on trouve successivement

a. rr 1, 20710678, 6, zr 1, 18920722,

a2 zzi, 19815695, bt 1, 19812352,

a8 l, 19814023, 6, 1, 19814023.

Il s'ensuit

A zz 1,19814023, K, zz -^./2.0,83462684 zzi,85407468.

Il est intéressant de constater que les sommes

WAzz / dwhft- j dw/,,
o 'o

où x et ß signifient les zéros d'une fonction abélienne
quelconque, s'expriment d'une manière très simple au moyen des
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quantités K,, Ks, K3. A cet effet, et afin de faciliter le contrôle
des calculs par la vue, on opérera la représentation du cercle
des unités à l'aide des intégrales wt, wî: tv3. Pour mieux
distinguer les différentes nappes, on tracera chaque dessin quatre
fois. Dans les fig. 12a... 12m, pl. X, les chiffres ± 1, ± i se

rapportent aux points correspondants de la surface (g). Le cercle
des unités entre successivement dans chacune des quatre nappes.
Si l'on exigeait que le point g restât constamment dans la même

nappe, il faudrait fajre intervenir les modules de périodicité des

intégrales wu ', mais il n'y a aucune utilité de procéder de cette
façon.

Zéros de Yo°-

Soit à déterminer

dw.Wt= dwift-j
o *"o

in u

En soumettant l'intégrale ivt à la transformation Ç s—, on

c d'c
obtient l'intégrale indéfinie e' I-*-===• (comp. p. 141). Dans le

calcul des limites de Ç, on se servira des valeurs de s qui cor-
—« ——-i

respondent à z e12 dans la 3",e nappe et à z e
12 dans la

2me nappe.
On trouve

g =e^,s=e~^iA ebi + ^' + ^i=ß^ (Voiries
m fig. 2 et 3.)

-77,*»
g e

12 s= e12 Ç c'

Si l'on admet, en outre, que ÌI—'Cft + 1 pour Ç 0, le-

signe de V1—Ç * dépend de la relation
1

y 1—f*

Or, lorsque z se meut de 0 à e
'2 dans la 2me#nappe, s va

de i à e12 ,<r de — là e" Sur ce parcours, la partie réelle
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de s* est négative; il s'ensuit que, dans la 2"'0 des intégrales
proposées, yyyZ" affecte le signe —). Ainsi, il vient

W,zr-AÇ g _ f dj ]_1 LJ yjz^ J YxAAAA

rr .{ f-JL, + f^].L0J /1-f* i/ /1-f*
Grâce au théorème de l'addition des intégrales elliptiques de

première espèce, à savoir

rx dx py dy
J Y(l—X-)Ö^r7Ä) J Y'y(l-a?){l-k*a?) J 1 (\-f)(l-k*f-)

=7
0

dz

V(l_z»)(l-ÄV)
ou

_ a;^(l —y')(l-fc'y«) + y ]/ (1—gXl-fcV)
C _ ~

l—lfxhf
on peut réduire cette somme à une seule intégrale. Dans le cas
actuel

Ai -i J_ -iU1 zr — 1, a; rz e12
"

y rr e1-
"

«"> i _-<*>•' + e12 ' 1—e»e
c

1 + c« Me«7

Il ¦ l ¦ 7 l ¦ 3 ¦ 3 ,¦ :i ¦

_e'- e ° + e12 eu c + e4 _q>e
— fZTï — ô IP

en sorte que

W, rz s'

rt—.'ra
dt,

0
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Substituant encore Ç — st, il vient finalement

dt i dt

/l+f J /T+T
0 0

Observation. Dans le calcul de c, on choisira celle des deux

valeurs de y\—ex dont la partie réelle est positive.
Soit à déterminer

er-A e-TA
W2 zz J" dw„ + J dio,.

u,0 ,1°

Si l'on introduit s comme variable, on obtient l'intégrale
indéfinie

ds
w, f ¦ (Comp. p. 14G.)J/l — s»

Les limites de s se trouvent comme dans le cas précédent et
la relation

z» =/r=^?
montre que, lorsque # se meut de 0 à e12 £2 de 0 à e° Vl—s*
prend le signe —

Il s'ensuit

e~Â2T-* eïi"' e~~îïT-1 e~5Tl

- J/l—a» J/l—s* \Y\—s* J./l o«

e 12

J +J +J +J -wJO Jl J 0 J —i J Q JO

e~ î2"' e~ ~à~l

zr f + f - K. + iK,.
J o J 0

L'application du théorème de l'addition aux deux premières
intégrales donne

e~ïï~l e~u~l
f +f =•%,J o J o
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ensorte que

W. zz — K2 + iK, + e' K, zr - (1—i)^L + ~Kt zz 0.
/2 /2

Enfin, quant à la somme
j_ - a ¦

e.2"' e i2r'
W3= f o!w>3 + f dw-0,

J o J 0
m n

on remarque d'abord que dans la 2e nappe, le long de l'inter-
__L_r

valle rectiligne de 0 à e 12", le radical Yl—z* aft'ecte le signe
— Par conséquent

7 ; A_ ; 7 ¦ 11 ,•

ei2=* e A2~l cîîT-' eA-y
r dz ç dz ç dz ç dz

3 ~~ ] /î=? ~ J
/TAAft - J /fLZ^ J0 /ï=?'

Ensuite le théorème de l'addition fournit

f ck A dl

0 /1—2* o/l + <*

l-*',/5rz -*'K, rz —-7=r2K, -(l-i)K,
Les valeurs de W,, W2, W, relatives aux zéros de yg" une fois

établies par le calcul direct qui vient d'être fait, les fig. 12a... 12m

permettent de reconnaître immédiatement l'exactitude des
résultats suivants :

W, zz iK, pour les zéros de Y9° i Y9 > Yy°v Yyî

zz -k, » » » » YgT YgT /?7» YT

- — »k, » » » » /77 YyT, Yy°v Yn_
zz k, » » » » /P7, /PT, /77, /Â

W5 rz —(t—t)K, pour les zéros de /7", fgrt /p\, /p\
zz (i—ok, » » » » /<T> /ÎT> /rT> YyT

zz—(l+i)K3 » » » » /Ä, /P7, /y%. Yy\

- (l+i)K5 » » » » /yT, /PI, /y, Y71

et W, 0 pour les zéros de toutes ces IG fonctions abéliennes.

ô

T
2
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Seules les intégrales relatives aux zéros des fonctions V|5, Vi-6,

Yxs, yxe ne peuvent être traitées de cette manière sommaire.
Elles ne présentent d'ailleurs aucune difficulté nouvelle.

Zéros de /js.
Soit à déterminer

/—t'oo

llo
v^d-^)5

(On se souvient que les zéros de chacune des fonctions V£s, V|6,

Vx., Ka'u se confondent). Réduisant d'abord à la 1" nappe, il vient

2

o
^(i-^)5 J fti+zr

posant ensuite

' :,dz= *
cette intégrale prend la forme

1 *
J/l-r

ensorte que

iw, tVK3 eK3 =r Li^K,.

2t/2

t7(ï + 2f
'o o o

Substituant
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1-iriT f tdt,
on obtient ^-j— =-K3.

0V(i-n3
— r.'rm n—t.' rc ^oo

¦ 1,„ dz Ç dz \ dz
c) ttW, zz j zz—) r zz t 1 -= —

2 3 nJ0 /i—z* %Y\—2* #o;/r+^
zz e% zz (1—OK,.

D'une manière analogue, on trouve aisément :

A zXt A .'

Pour les zéros de /?6 : —W4 zr f dw, rz — ——K,,
2 J o 2

i

i\V2 zr fdw3zz -K2, ÌW3 zz J'dto, zr -(1 + i)K3

i i

Pour les zéros de /a;s: ^ W4zz f rfu>4 zz ¦ —K4,
2 J o Jt

IV
1 e' 30 1 „s'rro
-W2 J dw, zz -K,, JW3 rz J" ^t», -(1 -OK,.

IV IV

1 - — s» 1 J
Pour les zéros de y xe ¦ —W4 zr dwl zr ——-K4,

2 J o -2

m

ìw2 J~^2zz-Kä, ÌW8 J,X5=(1 +t)K,.
ni m

Valeur numérique de quelques intégrales normales.

A l'aide des formules

_tt(2 —pp w, ty2 w,~|
*' - 20 |_ IT + k7 + lj'

ît(1—30f" m>, w2 1+t w3~]
'2 - 20 L kT _ì~k3+^~kJ'

7r(3 + i)r w, to, 1+t t«
"L K4

(1 %2 + 2 |K3J3 "~ 20

(comp. p. 115) et du tableau p. 110 on construit sans difficulté le
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tableau suivant, ne contenant que celles des intégrales dont il
sera fait usage ultérieurement :

îiappes. r dutw
0 0

1 rfM3'+)

*0

I 0
Tri 7TÌ

T
II -ü<3+i>

7T

-1(4 + 80

III fo«2"« e^4+3^ fo«2"«

IV â«'-«) -l)^2-^ fo<2-')

Nappes.
I duß~)

0 0

1 dw,(-)
0

I -i<3+i> ^2-*> -1,(4 + 30

11 f„<2-> J(4+3i) §,^>
III 50 + «» -|^2-^ f«'2"«

IV 0
ui

1 ~ "4

7Tt

A
Il n'est peut-être pas sans intérêt de réunir aussi dans un

tableau les valeurs numériques des sommes TJh qui sont aux
intégrales Mh ce qu'étaient les Wh aux intégrales w\.. Dans ce

tableau, les intégrales qui se trouvent sur une ligne horizontale
ont pour limites supérieures les zéros de la fonction abélienne
placée en tête de cette même ligne. Par exemple clans la pre-

,y'1 y^'1
/e i.e

diih + I dun dans la deuxième

Je
12 r.e12

duh + J duh, etc.

m
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U, u,

YT -î(3 + 0 iL* (2 — i)
10 v ' -fo^)

YT -io-i) — (2 — »)
10 v 7 r„(2-0

YT ï (!—") 0 0

YT £(3 + 0

S<7~0

^ (3 + 0 -l0(3 + 0

YT -f0(2-1) -t^-ï) \

YT i(s + 0 -5<*-0 fo*2"*
YT _ IL (3 + i)

20 v ; -S(3+0 1,(3 + 0

YT
YT

-|d-^ 0 0

- f (i + O

-5(3+o

0 0

YT l(3 + 0 l(3+ i)

YT_

YT
-i>(j-i) -tv~* fo(2-^)

5(3+o >-0 T4yV-i)

YT Xo^ + 0 -l(3+0 -^(3 + 0

YT T<!+0 0 0

YT -ï(8+ 0 -To^2-^ 10
v '

VT
YT
YT

To(7-^ ^<2-0 -Tö(2-^
-^(4+3i) |«(2-0 ^(8 + 0

- £ (4+30 S (2-0 -^(4 + 30

YT
y xB

7TÌ Tri zzi

Tt
~2

77
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Dans la théorie des fonctions abéliennes, on a rarement l'occasion

de vérifier une formule générale par le calcul direct. Aussi
la saisit-on volontiers, lorsque, comme c'est ici le cas, elle se

présente tout naturellement. En effet, on est maintenant en état
de vérifier la formule II, p. 114 de l'ouvrage de M. Weber, à
savoir

[h (j dith + j duA \ rr L„ -w2, - û).5 I 1

où a, ß sont les zéros d'une fonction abélienne Vx,x', ß' les zéros

d'une autre fonction abélienne Va;' et wi, w2, w, un système de

périodes à la caractéristique (w) rz (Va;) + (ftx').

Vérification pour Y\t Y9-

Dans ce cas

(oft (YT + (Y9) 0 + 0 0,
l i.i.i i
2 «i g «h + 2 «i2 + g a« =— g* (2—0-

-^(3+0 + -^«(3+0=0

11111 1

2 «,= ¦§«»,+2«*s+gajs+g;7"^— -Jq ?rt(3+t) —

2 1 111~~ TÖ^^^O — -^^(2-0+2^=—i" + 2?rt

11111 1

2 »s g «31+ 2fl52 + 2«33+ g71* -Jö-^W+O—

et
III -ir,- II 11 -ie i* (»eia

dt/hzz J
7

d«ft + J
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Or, il est à remarquer qu'il ne serait pas exact d'écrire

/e~
«¦* në~ iî%l peîs"

III CÏ2T-1 IH0 UI

vu que les limites inférieures, 0, dans la surface de Riemann
adoptée, ne coïncident pas, mais sont séparées par des lignes

de passage. Cette remarque s'applique également à ^t<h et,J i
n e — « "l

en général, à toutes les intégrales de ce genre. Voici comment
on peut procéder. On fera décrire à la variable g une ligne

7

continue, partant de la limite inférieure eï?"' dans la 3",e nappe
et allant d'abord jusqu'à 0, puis de 0 à +1. Arrivé en +1, g
contournera ce point un certain nombre de fois jusqu'à ce qu'il
arrive dans la nappe voulue, ce qui est permis, attendu que les
intégrales relatives à ces courbes infiniment petites sont
négligeables. Ensuite z ira de -+-1 à 0 et enfin de 0 à la limite
supérieure e~ 42*'. De cette manière on obtient

,i ,.o f.e~ î5''po iti ..o ce 42

V, zz du. + du,(-) + dw,(+) + dw, +
7 J 0 l 0

nieïs« ivu m m

il i
..o ri (.o feiz*

+ J du, + J d«4(+) + J dti4<-) + J c/t«, zr
we-rA n° m4 n0

e-^ „eil* re^ri pe-«*1
zr[ dw4 + dît,] — [ d«, + dw,] +J o o o o

m il m n

+ fWt-)— f1dtt,(+)+ f1dM,(+)- f1dMl(-)
,v° m0 n0 m0

-1^(7-0 + 1^(3+0+0-^(2-0-
1 1 12— 2Q«(3+0 —2QWt(3+0 -g7T—g«!
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et de même

Les valeurs trouvées peuvent s'écrire

i; 12.
Vs

V,

1 1 4 7
7r+ 2^ + ~\T~-l)m'9

1 1 2 1

-7r+-yrt ft- -n --ni.
La formule en question est vérifiée si dans les trois intégrales

les expressions soulignées forment un système de périodes. On
peut donc poser, en supprimant le facteur rr

12 1

— ¦=¦ — -= izrm,t'H— (aa., + ba,, + ca,,) zr
5 5 n '

2 11rrm,t—-(2 —0 a—~i(3 + i) b ft-- (3 + i)c,

4 7 1

g
— -g i rzm3t+ - (aa31 + ba,*, + cöS3) zz

1 2 1

— mft— -t(3 + 0«— -^(2 —i) 6— -(2 —i)c,5 5 t>

9 1 1

- — - i —mzift- - (aau + ban + ca33) zz

zz m,i+ I (3 + 0 «— | (2 - 0 b — | (3 +1) c.

Les nombres entiers a, b, c, m„ tw2, tw3 doivent satisfaire aux
six équations résultant de la séparation des parties réelles et
imaginaires qui, après multiplication par 5, prennent la forme

-Irr— 4ö+ 6 +3c
4= a—ib — 2c

2rr 3a — Ib — 6c

— 2 rz m, + 2a - 36 + c,

— 7 rr m2 — 3a + 26 + c,

— lrrwt3+ a+ 6—2c.
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On en tire
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a zr

m4 rz-

0, b zr—1, c rzO,

-5, m2zz — 5, m, o.

Vérification pour \ g" Y9' •

On trouve successivement

(•) (YT + (Y<f) O + O - O y

1 11 1.1-M,--TU, -ft),
1

2 3 «"•
IV ?;/• ei-i- e 42'

J»
e 42 /^ e 42 p ei2 ^»e 42

dw, + d«, [ dw, + dw,]
1 " 1 J 0 «0n e-«7-1 nie«"' lv i"

fe
12 l n e™ y A
du, + dw,] + dw/'-) — du,(+)

0 »/,0 î/T 0 */, 0

Ì7r(l-0 + ^^(3+0+0— j^?r (2 — î) — lyr — Itfî,

V,

V,

1 1

5*-W™
1 1 3

3 3.1 13.
1

V3 TS^+î'«-- ä71 +-H7r + -E7r/.
10

lzz—4a+ 6+3c
1 zr a—46—2c

3 zr 3a—26—6c

2

-3=»t,+2a—36+c
-3=mä—3a+26+c

lzrm3+ a+ 6—2c

arz—1

6 rz 0

crz—1

rn, zr 0

m2=—5

m, zz 0
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Vérification pour Y9" Y9"•

Il vient

(-)=(Y¥)+(Y7')=a+a=(Z),
1 2,3.1 3 3
'"•" -n+ï?.711! \HmA= — g-w +Tr\m>2"1~~5'" ' 10""' 2~2~" 5'" '10

1

2 3

111 1L.; iv __5.r;

s'-ïô^'
(•e

i2 ntt ai r>e u ne 12

dw, + j du, rz [ j dw, + I du,]
•' 7 • 1J A «^ 0 ^* 0

m eï2*1 He-îi1" m iv"

pCT3M ne~^r'1 ni ,.\
— [ dw, + dw4]+ dw,<+'— d«,(+)

« 0 ,•/ 0 •' 0 ft 0

:±nA+ i)+±7rA+ i)-^n(3+ i)-±ni(3+ i)

1 1

5W-1Ö7"'

1 1 2,3.1 2

1
•

V2 zr ^~Tom:
3 3 4 2

5^+10^+5^-5^'
2 3 4 1 2 1

V3z=- -n- mrn=- -„--niA-n^^m,
-lzz—4a+ 6+3c
4 zz a—46—2c

2 rr 3a-26—6c

-2=m,+2a—36+c
-2zrm3—3a+26 + c

-lrrw5+ a+ 6—2c

a zz 0

6rr—1

C rr 0

ttt,rr— ,j

Wî2 rr O

m- rz 0
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Si fa:,, VE, ; Ka;,, VC, sont deux couples de fonctions abéliennes

appartenant au même groupe, c'est-à-dire satisfaisant à la
condition

(/a^)'zz (YxÂl),

une fonction de la forme

/«P zr a, YXi + a2 /«j J2,

où a, et a3 désignent des constantes, a été appelée par M. W.
(p. 114) une fonction-racine (Wurzelfunction) du 2'1 degré et du

2d ordre. Sa caractéristique est (/*P) rz (/a;, J4 et elle possède
quatre zéros du premier ordre dont un est arbitraire. Les

constantes a,, as peuvent être déterminées de manière que )' *P s'annule

en un des zéros x, ß d'une fonction abélienne/a, par
exemple en x. M.Weber démontre (p. 116 et suiv.) qu'alors les

trois autres zéros c,, c3, c3 de cette fonction /<P sont en même

temps les zéros de la fonction #[oi) diih), à la condition tou-
a

tefois que (m) — (/«P) + (Y~q)- Lorsque (m) est une caractéristique

impaire, Y *P dégénère en un produit de deux fonctions

abéliennes aux caractéristiques (/g) et (/*P)+(/a)- Il s'ensuit,
conformément à ce qui a été dit précédemment, qu'une fonction

&(») I dm) impaire s'annule pour 'Ç x et en outre pour les

zéros de la fonction abélienne qui porte la même caractéristique.

Détermination de c°,, c0.,, c°3.

Parmi les 36 systèmes de points c,, c3, c3, répondant aux
36 caractéristiques paires, il en est un qui mérite une
attention spéciale. C'est celui qui représente les zéros du

Ü- fondamental it- du\ft. Il correspond à (oft (°°°), soit
a.

(Y*P) (Yq) el sera désigné par c",, c%, c\. On peut le trouver
de la manière suivante :
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On choisira pour }'q la fonction ]A, Vs—1, en sorte que les

intégrales qui entrent comme arguments dans les fonctions it-

ont toutes pour limite inférieure le point z-=0, s=l. Ensuite
on établira le groupe

(Yq) rr (/^)rzQzz("jg)+0=0 +0—0+ (om)=

Cs ^5 y a /1 X- xs
/ooi\ i /loi) /un /oin /ni\ /on\

— \m/ + \ |—\oioL~T" Vno/—Vooi/~rVioi/

7°. /, 7% .9 / 73

On peut alors poser

Y~v=YT^+aYïT
à la condition que l'équation

}' x3A0 + yx^s + )'a,ï, rz 0

soit identique, à un facteur constant près, à s1 A z'— 1=0.
Or, on voit aisément qu'à cet effet il suffit d'admettre

x, rr s—1, -ïjzz—i, xs zz s — «'2,

£4 rz — «'(*+!). ?3 '(s + 0i i"s zz f(s + s'î)
et en conséquence

[ V (8_0(s-e'z) + a}/i(2 + 0(s+*'z).
Afin de pouvoir utiliser directement les formules finales de

M. W. (p. 118 et 119), à savoir:

(1) x,—2£2 zr 0, ïj-le, z: 0, J5z0
f r, r. — I"2!--

I 9 3 " t ir — /». t 1 r 'c ,». tV-^A ^l>2 ^iblT^^î J3'3

on remplacera x,, xy, '£,, £s, x3, £.

par a'3, a?5, £,, ç„, r;,, ar,

Par là, ces équations prennent la forme

a:3 — X§s rz 2—t —A«(s + 4'z)rr0
(la) Ja5s — ÎAi s— s'z—r\s(zft-i) zr 0

X, rr s—1 zz 0

X-0XS ZZ *'•£,£,
A" i-3i-ü rz a-3ï3 + ar5?B— &,£,.

(20

12
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Les équations (la) déterminent les deux valeurs de },, X' et '/!'

qui correspondent aux zéros de ix,. Mais dans le cas actuel ces
deux valeurs sont égales ; par conséquent l'élimination de s et g
entre ces trois équations devient superflue. En effet, en faisant
z 0, s 1 dans l'équation

z— i—li (s + s'z) zr 0,

on en tire

s

La valeur de /." introduite dans (2a), ces équations deviennent

(3) :(* + 0,

(4) /2s2—2«'s2+i/2(/2 + 1):2—2m—2z +ï/2 zr 0.

Géométriquement, l'équation (3) représente deux lignes droites
et l'équation (4) une conique. Les coordonnées de leurs points
d'intersection sont les valeurs cherchées. En rejetant la solution
g 0, s 1, on trouve aisément

c°, : r i\/2, .< — -f, nappe III,

c\ : z V 2, s rz -f, » IV,

cV¦ » — 0,i s — i, » II.

Détermination de quelques autres systèmes c,, c3, c3.

Il ne peut pas être question ici de déterminer tous les 36
systèmes de points c,, c„ c.. Quelques exemples suffiront, et on
donnera la préférence à ceux qui n'exigent pas des calculs trop
compliqués. D'ailleurs, le procédé employé étant toujours le
même, les calculs suivants peuvent se passer de commentaire.

Vi( fdMh)-
0

Dans ce cas

<•) - O. (YD OIS). (/*) («) + (Yq) O-
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Le groupe
/oou\ /oio\ | /oio\ _ /oio\ /oio\ /oon i /ooi\ /oon
Vioo/ — Voio/ + Vno/ — Von/ "r Vin/ — Vuoi/ ~ Vioi/ — Von/ ~r

?6 ?r> /"i y°2 ^ x-a y\
/001\ /011\ /011\ /011\ /011\+ Vl n / — M) 10/ + Vno/ — Vooi/ + VlOl/

y°i /'s <7 9' Yz

permet de poser

/¥=z/^ + a/fX,
}xj3 + 1 a?, J6 + YxA, =0,

où

rx3 zr 2—t, a'0rzrs + f2, ar4rzs—1,

£3rz*'(2 + 0, «'(*—«), — *(*+l).
Les trois équations de M. W.

a;, —Âi3 rzO, J - -2/1 £4£3 — a;4£, +x.Jt—x-J,
deviennent

X3 — /Jo zz 2 — i — ls'(s— sz) zz O,

X^X6 — A £3ç6,

2'- ?3?6 — *'3^3 + *C^C X,§,.

De la première on tire pour z 0, s 1 la valeur

/.' rz Â" zz « zz .-'

et les deux autres, après simplification, prennent la forme

z(s + s') 0,

(l+0s2+2isz+(l— i+2t')2s—2s+2« + l — irr 0.

En les résolvant on obtient

ct : z rr 0, s rz —/, nappe IV,

C2 : 2 zr « V 2, s zr —* » I,
4

c, : t/a, s zz —*', » m.



166 H. AMSTEIN

V0*/ dUh)-
Viol/ «^

0

Dans ce cas

(/¥)zz(/^+H C) + OrzQ,
/«P zr YTh + a/j.J3,

/ÏX +YxT +YTTi o,
1 1

«, «-1, xî =-(2 + 1), a;3 zz —-(2—t),

^ zz: 5+1, ï2 2—1, J3zr2 + i.

L'équation
ir. l.'ß- —

2

donne pour z 0,

xt—X$tzzhz+l)—X(t + i) 0

l zz X' zzzz X" zr a rz ——t

et des équations
0.22 + 2(l-î> rz 0

s2—t'22 + (l+0z—1 zzO
on tire

c4 : 2 zz 0, s zzz — 1, nappe III,
s T

c2 : 2 rr oo, — rr s, » 1,

c, : 2 zz oo, — zz —s, » III.

,'/\^dub).

ici (/¥) zr (/jy+ („) o + Q O,
Y^-YTh+aYTï^

YTh ft-YxT+YxT^o,

l l
£s 2»(*+ «'«). & =2* (s —")' ?i *(* + !)•
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L'équation

xr> — Xx6 rr s—sz—X(sft-sz) =0
fournit pour g 0, s 1 la valeur

a rz Â' rz Â" zr a rz 1

et les deux équations

sz — 0,
rSî + }/2s2 + 22—1 =0,

donnent

c4:2zz0, s zz —1, nappe III,
c2 : z zr 1, s zz 0

c,:z =—!,*= 0
toutes les quatre nappes.

»(A0A,(\duh).
VdOl' »/

Dans ce cas on a

</¥) (/?) + (») 0+0 0,
/v /^+o/œ[ï»>

/*,?S + /^Â +/*!?! 0,

a:srrz + l-, a;4rzs + t, i,r:s—1,

£, z—1, §„= — -g(s—i), f, rz_(j + l).

De l'équation

a?4—Âa:s rz s + i—X(z + 1) zz 0

il suit pour g 0, s 1 :

a rz Â' rz a" zz a zz 1 +1.

Les deux coniques deviennent

S2 + ÌS + 2 — i ZZ 0,
S8 — (l+t>2—22" (1 +0* —O"*> + *' °-
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Elles se coupent au point z 0, s 1 et en outre dans les
trois points

c4 : z -zzz i, s rz 0 dans les 4 nappes,

-i+/7 — l+t/7 „cy.zzzz - s rr nappe II,

— i—/7 — 1—iffcy-*-- —s—.s —»—¦ * L

Ino/ *J

ici (/^) (/?)+(«) 0 + QzzQ,
/JPzz/i^ + a/^",

/^i:+/^+/^i;=o,

^<«—1), Ï3 —|(* + t). £, *+!•
De l'équation

aî3—ax3 rr z+1—A(2 — i) rz 0

on tire pour g 0

a zz Â' zz a" zz a zr i '

et les coniques

0.22 + 2(l +i)z 0,

s8 + tV + (l— Oz—1 =0
se coupent bien en s 0, s 1 et de plus en

c, : 2 rz 0, s zz — 1, nappe III,

c, : z zz oo, — zz f', » IV,

S
TIc, : 2 zz oo — rz —6 » 11.

3
2
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Le problème de Riemann.

Au sujet de ce problème fondamental, M. Weber (p. 159 à 168),

indique dans tous leurs détails les calculs nécessaires. En les

suivant pas à pas, on arrivera sans difficulté aux résultats
désirés. Au lieu d'une traduction à peu près littérale de cette partie
de l'ouvrage de M. W., il sera plus utile de donner ici une
application des formules trouvées à des cas particuliers en n'insistant
que sur le commencement de la solution.

I. Les deux caractéristiques (k) et (k') sont paires.

Soit par exemple

(k) zz Q, k' zz Q, (A') + {k') zr 0 T) + {YT).

En formant les deux groupes

(k) + (kr) zz (000) zz AçA + dop) (m) + (hi) (q») + W) —
x, x, £, l, y", y".

— (m. _i_ (m) — (m\ _i_ (m\ — /101\ _l (m\— Vili/ "T" Vm^ — VlOO/ T VlOO/ ¦— Von/ T Voll/ »

7% 7"i 7s 7. /î 7'i

(*) + (i^)=0=0+0=0+0=0+0
7% ?3 5î 7% ^G 5"

/ooi\ /111\ M\l\ /101\ /011\ /101\
— Vm/ "r Vm/ — Wî/ t Vooi/ — Vno/ + Wo/

7°i ?i 9' x5 g xt
on remarque qu'ils possèdent les 4 caractéristiques communes

(YT,) (YT) (îîî), (] rT) (YT.) Q),
(Yz,) =(Yf,) C), (/z-2)=(/Â)zrQ-

Posant, en conséquence,

YT-YTÄ, YT=YTâ, YT-YTâ,
YT=Yz^ft, YT-Ys-z+s, YT=/*—«+«',
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on trouve aisément la formule

/Xioao\ "7ooi\ "Voio\ (^it^si Vs) i/ "7oio\ AlAîl ^5/
• / VlOO/ M00/

m

' 100^ W 1 VlOO/

X/ X/ooi-v ^/oio\ &iooi\(vnvtiv3) ^iooi\(vl,viAi)
Vioo/ Vioo/ VlOO/ VlOO/

Désignant par a|v), y^, g^ les valeurs que prennent les fonctions

Xi, yi, gi pour Ç Ç-,, soit s s,,2 ^,!ona ici

r/ A /010*1r Vioo/

rz 2± YTvTi, YT^yTT™' YTTiTT», YTTïTT» -.

W Z/ooi\ —' Vioo/

-2±YTyTv YTTvTTü, YTTTT^^YT^y^W^
et les arguments v,, vt, v3 sont déterminés par la congruence

(»i,»,,»,) (h 1 dwh + j dwh + P dw,, + j dwh

« p « p

où a et ß signifient les zéros d'une fonction abélienne quelconque.

II. Les caractéristiques (k) et (k') sont impaires.

Soit

(k) (YT,) (YT O, (*') (Yzt) (YT) O-
Alors on a

(YT^Ò (YTT)=(YT^Ù (*) +(*') G)
et les caractéristiques

(Yw)=(*)+(/^) - (A.)=O + C)+O=O,
(YTyT,) =(*')+ (/^) (*'.)=O + O + O=O.
sont paires. En admettant encore, comme dans le cas précédent,

/^zz/rî=î, /x,=/i+î, /y;=/i;=/î+î,
/£=/£=/ï=î, Yzì=YTa=Ys-z+s,

Y7t=yTi=Ys-z+s',
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on arrive à la formule

3C/ooi\ "'/ooi\ " t00'} \"l ^2 "b)
Vin/ — Uoo/ Vini

X /010\ ^ /01u\ /010\ VM ^2 ™5/
Vin' Viuo/ Vin/

dans laquelle

^T^zzzz 2ztx/z,, t/,(D/^ô), YxAAAhT, YvTvTT^

Y*^=s±xfà, yNT», /^x2'%,«2», ^,«W-
Les variables t>,, »s, t>5 conservent toujours la même signification.

III. La caractéristique (k) est impaire, (k') paire.

soit (*) (/S) C (*')=0-
Les deux groupes

/i/ \ /oin /ioo\ /un /ioo\ /m\ /oio\ /ooi\
Vf xixîl — (ooo/ — moo/ + Vioo/ — VmJ T Vm/ — Von/ t Von/ —

X, Xî Ça Ci 7 i 7 2

/oio\ /ooi\ /ion /no\ /ion /no\
— Vm/ "T VmJ — Vioo/ + Vioo/ — Von/ + Von/»

'A 7°. 7s 7. /» /i
/i/—~~\ /0H\ /100\ /Ul\ /100\ /1H\ _ /010\ /001\
Vr xii/i/ — Von/ — Vioo/ + Vm/ — Vin/ + Vioo/ — mho/ ~r Vom/ —

a;, ç, ç3 a;2 ç6 xe

/oio\ /ooi\ /ioi\ /no\ /ioi\ /no\
— Viio/ ~r Vioi/ — Vooij t Voio/ — Vno/ + Vioi/

S3 *^3 ^S SS *^4 ^4

font reconnaître qu'on peut poser

\/x. rr \/s—l, \/xt rz \fzft-\ \/t/, \/$. — /«+1

v/y. /îi=/2-i, v/z1 V/y01 V/s-2 + *,
y/x /x, \/z-i, \/y ¦- \/$, =\/z+i
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et qu'alors les deux caractéristiques

(kt) (v/^)=c)+c)+(î::
(*,o=(*')+(v/!f».)=(îîî)+D+a=(A)

sont paires. En introduisant ces fonctions et caractéristiques
dans les formules générales, il vient

/001\ /010)u) — Vioo/

/ X/ool\ "Vooiv &t00A\ \"t 1 ^3> ^3/
ZZfZ(\-l-i\à Viol/ —- Vioo) Viol/

V/ 3f/010\ "^/oio\ -"/MoyAli "ï» "s/
Viol/ Vioo/ Vioi/

OU

i/* zz2±x/x, ï/D/asCD, /yMœ.Wy,«, /?«>*,<%«>,' Uoi/

i/T~ 2±/aT^,/a;(')t/4(')j/i(i),/2/Wa;4(*)2/s(*),/t/(3)a:s(3)2/t(3).
Viol/

Il serait inutile d'insister encore sur -le problème de Jacobi,
attendu qu'à l'aide de ce qui vient d'être dit, le lecteur suivra
facilement jusqu'au bout l'ouvrage si souvent cité. Notre travail
peut donc s'arrêter ici, d'autant plus que les deux problèmes de

Jacobi et de Riemann seront repris, dans un second mémoire,
à un point de vue tout différent et spécialement approprié au
cas particulier qui a fait l'objet de cette étude.
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