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Bulletin de la Société Vaudoise des Sciences Naturelles.

Vol. XXI. N° 93. 1885.

MÉMOIRE

BAROMÈTRE-LEVIER DE M. H. DUFOUR
PAR

A.A. ODIN
élève (le l'Ecole polytechnique fédérale.

Théorie du baromètre-levier, la température étant supposée
constante.

Le baromètre-levier, inventé par M. Henri Dufour, professeur
à l'Académie de Lausanne, se compose d'un tube en verre ABCD
(Pl. IV, fig. 1) dont les branches AB et CD doivent être
parfaitement parallèles, cylindriques et de même diamètre intérieur;
la partie BC du tube peut avoir une forme quelconque. Etant
fermé en D, ce tube, une fois plein de mercure, devient un
baromètre et, si on le rend mobile dans le plan ABCD autour d'un
point O, il est facile de voir que tout changement de pression
fera passer du mercure d'une branche du tube dans l'autre et
occasionnera un déplacement de l'appareil tout entier; ce

déplacement peut être enregistré par une plume sur une feuille
de papier se déroulant verticalement. L'expérience et le calcul
montrent que le déplacement de la plume n'est pas proportionnel
à la variation de la pression atmosphérique qui l'a produit, ce

qui devrait avoir lieu pour que le baromètre-levier donnât des

indications commodes à interpréter; ce défaut se laisse corriger
en faisant agir sur le baromètre un poids par l'intermédiaire
d'un fil coudé, ainsi que nous le décrirons plus bas. Pour arriver
à comprendre et à calculer cette disposition, il est nécessaire

que nous recherchions quel moment de rotation doit agir sur le
baromètre dans chacune de ses positions, pour rendre les

déplacements de la plume proportionnels aux changements de

pression.
Pour atteindre le but que nous nous proposons, nous pouvons

supposer les colonnes de mercure dans les branches AB et CD

remplacées par des fils pesasts, inflexibles et infiniment minces
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(PI. IV, fig. 2). Supposons que la pression atmosphérique agissant

en un moment donné soit la pression moyenne et que le tube
prenne la position représentée dans la figure 2. Soit ß l'angle que
forment les branches principales AB, CD avec la verticale et G
le centre de gravité de tout l'appareil. Celui-ci ne peut être en
équilibre que sous l'action d'un moment de rotation parfaitement
déterminé M0 dont la valeur est :

M0 Q,g sin y.

Supposons maintenant que la pression diminue ; le mercure
tendra à monter dans le tube AB et à descendre dans le tube
CD, ce qui fera tourner l'appareil de gauche à droite; il prendra
alors, après quelques oscillations, une position d'équilibre représentée

dans la figure 3 et faisant avec la position primitive un
angle 9. Les branches AB et CD étant supposées de même
diamètre intérieur, les longueurs B, B,' et B2B.' dont le mercure
sera monté ou descendu sont égales; nous les représenterons
par l et nous remarquerons que l s'annule en même temps
que 9; B,B,' est une colonne de mercure ajoutée à l'appareil,
tandis que Bä B2' est une colonne de mercure retranchée. Soit q
le poids du mercure par unité de longueur dans les branches
AB et CD, et M le moment additionnel agissant sur le baromètre
et destiné à produire la proportionnalité. On voit que l'équation
des moments est :

— Qg sin (7 + 9) + (b,' + W) lqft-M 0,

d'où
M Qg sin (7 + 9) — q (&,' + W) l.

La figure 3 nous donnant les relations :

by — a, sin cp + b, cos 9 -f- —- sin (ß ft- 9)

b,' — a, sin 9 + bt cos 9 + — sin (ß ft- 9),

il s'ensuit que si l'on pose :

a, -+- a2 a

biftrbi b,

la valeur de M devient :

(1) M Q<7sin(7+9) — q[— a sin 9 + b cos 9 ft-l sin (ßft-9)] I.
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M est le moment additionnel dont l'action doit avoir la
propriété de rendre les déplacements de la plume, ou mieux, les

projections sur un plan horizontal de ces déplacements,
proportionnels aux variations de pression qui les ont produits. En
conséquence, si H0 représente la pression moyenne, H la pression

dans la nouvelle position du tube, on doit avoir pour toutes
les pressions H :

H — H0 — c sin 9.

c étant une constante positive (la pression doit diminuer pour
que 9 augmente). Mais :

H — 2 l cos (ß + 9) -+- a cos 9 + b sin 9

E0 a.

On doit donc avoir :

— 2 l cos (|3 + 9) + a cos 9 + b sin 9 — a — c sin 9

l _ (5 -+- c) sin 9 — a (1 — cos 9)
1 } 2cos(ß + 9)

En remplaçant l par cette valeur dans l'équation (1), on trouve
l'expression de M en fonction de 9. Si l'on parvient donc, au

moyen d'un artifice quelconque, à produire sur le tube un
moment de rotation ayant pour chaque position de l'appareil la
valeur donnée par la formule (1), on aura acquis la proportionnalité

désirée ; on peut en outre régler l'amplification selon les
besoins.

Ce problème n'a pu jusqu'à présent être résolu que d'une
manière approximative, mais qui n'en est pas moins amplement
suffisante dans la pratique. La solution est de M. Dufour,
inventeur du baromètre-levier. Son procédé consiste à faire agir
un poids sur un fil dont une extrémité est fixe et dont l'autre
est adaptée au baromètre (Pl. IV, fig. 4). Le moment produit
par ce système est aussi une fonction de 9 ; cette fonction aura
pour de petits angles 9 la même valeur que M, si le poids et le
fil sont calculés de manière que, pour la pression moyenne,
soit pour 9 0, les moments soient égaux, leurs premières et
leurs secondes dérivées par rapport à 9 soient respectivement
égales. La première chose que nous ayons donc à faire est de
calculer ces dérivées pour le moment M ; à cet effet, nous
développerons cette fonction suivant les puissances croissantes de 9.
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En faisant ß 0, condition qui sera toujours assez exactement

réalisée dans la pratique, nos formules deviennent :

(3) M Qg sin (7 + 9) — q [— a sin 9 -+- b cos 9 +1 sin 9] l
(& + c)sin9—a(\ — cos 9)

'
2 cos 9

Nous développerons d'abord l en série, en nous arrêtant aux
termes en 9' :

i=l[(b+c)9-?f-btc <p3]D+^]

Développons la seconde partie de M en série ; nous aurons après
réductions :

— asin9 + 6cos9+ /sin 9 6 — a<?ft-—,T —' Tô?3 —
•u 1Aj

A) M Q#sin(7 + 9) — ^qb(b + e)<f +

i2a(|6 + r)92-^[«2+(&+c)(|&H-c)]?3

Ê* =- Q g cos (y+ <?) - ±qb (b ft-c) ft-

+ •

+ S«(| & + c)<p- | q [a2 + (bft-c) (J 6 + c)] 9l-

tf-'M

rf9'2

d'"'M - Q# sin (7 + 9) + q a fê b + c\

lq[a*ft-(bft-c)(^bft-cj^
Pour 9 0, nous avons :

M„ Q# sin 7

'™\ =Q?C08y-i2ft(6+C)

Ä =_Q^sin7 + ga(|6 + c
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Si nous posons :

V 9 si" 7 V

g COSy X,

ces valeurs deviennent :

M0 Qy

AM\
_ Qx — -^qb(bft-c]

d-M\
_

Affo Q,yft-qa(-^bft-c

Le système servant à produire la proportionnalité demandée
se compose, comme nous l'avons déjà dit, d'un fil ABC ayant
un point fixe C et étant assujetti en A au tube barométrique
(Pl. IV, fig. 4); en un point déterminé B du fil, est suspendu un
poids P. P, regardé comme force, se laisse décomposer en deux
autres forces P, et P2, dont les directions sont celles des branches
du fil AB et BC. Nous supposerons, pour le calcul, qu'il n'y ait
aucun frottement, que les branches du fil soient sans poids et
qu'elles ne puissent pas être déformées, quelles que soient les
forces qui agissent sur elles; d'après ces hypothèses, P2 n'a
aucun effet, tandis que l'action de P, se reporte en A et exerce

par conséquent sur le baromètre un moment de rotation :

Jf=P, D.

Pour transformer cette expression en une fonction de 9, nous

pouvons utiliser la règle des sinus, relative aux triangles
rectilignes; cette règle nous donne dans le cas actuel :

P P, P,

sin (x -Aß) sin(| + ß) cos

p cos ß

sin (a-t-ß)

ß

Nous avons de plus

D L COS (a + 9),
d'où

1W — P r cos ß cos (a+ 9)
sin (« -f- p)
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Considérons la pression moyenne pour laquelle 9 0 (Pl. IV,
fig. 1); la force P, se décompose en deux forces dont l'une
d'entre elles, P,", a pour seul effet de nuire à la sensibilité de

l'appareil; nous obtiendrons donc les meilleurs résultats pratiques

en construisant le système de telle sorte que pour 9 0
on ait aussi x 0, car dans ce cas P," sera aussi nul. Cette
supposition faite, on a pour 9 0:

M0 PL T H

sin ß

ou en posant :

cotg ß B

(7) M„ PLB.

Maintenant que nous avons l'expression générale de M en

fonction de 9, a, ß, il nous faut chercher à exprimer -7— en

fonction des mêmes variables 9, «, ß.
Les longueurs L, lt, Z2 étant constantes, a. et ß sont déterminés

dès que 9 est fixé, d'où nous voyons que a et ß sont des
fonctions de 9; la première opération à faire consiste donc à

chercher les valeurs de — -r- en fonction de 9, a, ß. Deux
dy dip

relations entre 9, a, ß sont données par les deux équations
suivantes qui expriment que les projections de la ligne brisée
OABC sur l'horizontale et sur la verticale sont constantes, ce

qui a nécessairement lieu, puisque les points O et C sont fixes :

L sin 9 + lt cos a + Zs cos ß constante.

L cos 9 + ly sin x — l, sin ß constante.

Différentions ces équations par rapport à 9 :

1 7 • dx dß _L cos 9 — l, an«- L sin ß —f- O
dy «9

r • r doc „ dß ~— L sin 9 ft- I, cos x cos ß A- O.
dy dtp

En résolvant ces deux équations par rapport à —, -j-, nous

avons :
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dx L (cos ß cos 9 + sin ß sin 9)

dy

dß

dy

I, (sin x cos ß + sin ß cosa)

L (cos a cos 9 — sin a sin 9)

L (sin x cos ß -+- sin ß cos x)

da L cos (9 — ß)

«ftp l, sin (a -+- ß)

dß_ L cos (9 + «)

dy h sin (a + ß)

Nous poserons pour abréger :

L L
— m — n,
ly lt

ce qui nous donne pour les valeurs cherchées :

(8) fe=meos(9-ß)
dy sin (a + ß)

(9)
dß nCQs(yftrx)
dy sin (a + ß)

En utilisant ces valeurs, la formule (7) devient :

M= P-cosß-^,
n dy

équation qui, écrite sous la forme

M d y — P lt cos ß d ß,

exprime que, dans notre système, le travail mécanique de la
puissance est égal au travail mécanique de la résistance. En
intégrant cette dernière équation, on a :

(10) Cm dy ¥1, sin ß.

Nous pourrions exprimer sin ß en fonction de 9 et de là tirer
les trois premières dérivées de / M dy par rapport à 9,
lesquelles ne sont autre chose que les deux premières dérivées de

M par rapport à 9 ; mais cette méthode conduit à des calculs
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tout aussi compliqués que celle qui consiste à différentier
directement l'équation :

G) M _ pL
eoa ß cos Qp+aQ^

sin (a+ ß)

C'est cette dernière méthode que nous emploierons. Une
première differentiation donne :

dAI
dy

PL

sin (a-f-ß)
— sin ß cos (9 + x)

dß

dy

— cos ß sin (9-f-a) (1 +
l do.

dx

dy

dß\
— cos (a-f- ß) cos ß cos (9-f-a)( -

\dy dy/

dM
dy

—PL

sins (a + ß)

sin (a + ß) cos ß sin (9 -f- x) +
dx /cos ß sin (a -f- ß) sin (9 -f- a) +
dy \+ cos ß cos (a -f- ß) cos (9 -f- a)

dß /sin (a -f- ß) sin ß cos (9 -f- x) +
dy \ft- cos (a -f- ß) cos ß cos (9 -f- x)

dM
dy

— PL

+ ÎW —

sin* (a + ß)

sin (a -f- ß) cos ß sin (9 -f- a)

cos (9 — ß)
sin (a+ß)
COS (9 -f- a)
sin (a-f-ß)

cos ß cos (9 — j3) +

cos a cos (9 + a)

dM
dy

-PL

sin2 (a + ß)

cos ß sin (9 + a) +

+

sin (a + ß)

m cos ß cos5 (9 — ß) + n cos a cos2 (9 + a)
sin3 (a + ß)"

1
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Pour 9 O et a O, on a :

/dM\ _ p m cos3 ß ft- n

\ dy)a
J

sin3 ß

/dM\ T,T / T„ n
— PL m B3 + -V dy /o \ sin3 ß/1

Remarquons que, pour la position moyenne du tube, on a, en

K cos ß.

faisant — K :

/
(11) tt

L L

/
cos ß

Il s'ensuit que ::

/dM\
__

V dy /0
— PL (ml

cos ß

sin3 ß

<7JH\ / K
1 -— PLB «î. B- +

mais

dy /0 V sin2 ß

sin2 ß :=

(12)

1 + cotg2 ß 1 + B2

—) - PLB [m B2 + K (1 + B2)]
dyj,

(—\ — PLB [K + (m + K) B2].
\ dy J0

Passons au calcul de -=---: nous obtiendrons cette seconde
dy

dérivée en différentiant —— que nous écrirons d'abord sous la
dy

forme abrégée :

dM m i x—- — PL (x + y)
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en posant :

mu + nvy- t
cos ß sin (9 + x)

sin (a + ß)

ti cos ß cos* (9 — ß)

t; COS a COS2 (9 + a)
i1 sin3 (a + ß).

Nous aurons donc :

dM „T / mu ft- n v

~dy-=-FL[x + —r-

[.( du dx\ dt
t[m-—\rii~)— -j-(muft-nv)dx \ dy dy) dyx

dy F
Nous avons à former les expressions :

dx
_

du
_

<fo
_

tftf

cf«p
' dp '

(?9
' dy

cos ß sin (9 + a)^- sin (a + ß)

f I — sin ß sin (9 + a) -j- ¦

I \ 09\ sin (a+ß)'

]

+ cos ß cos (9 + a) 1 + — /
^

^ ^
v - cos (a + ß) cos /? sin (9 + a) (g + gj /

<?9 sin2 (a + ß)

sin (a -|- /3) cos ß cos (95 + x) + \
Ja cos ß cos (ç? + a) sin (a +/9 —
dip I — cos/3 sin (tp ft- a) cos (aft- ß)

dß sin (a + /3) sin ß sin (^ + a) + 1

dr V d<p\-\- cos (a + ß) cos /3 sin (ç> + x)
Ü<p~ sin2 (a + /3)
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sin (a + /9) cos ß cos (cp + a) + \
COS (CI-- ß)+ m -r—r-—^ cos /3 sin (ß—cp)-
sin (a + /3) ^ v/^ r;
cos Up + a)

^ \— w~—/ - ' cos a sm (y+ et)
d« \ sin (aft-ß)
dip sin2 (a + /3)

da; cos ß cos (<p ft-a) m cos /3 sin 2 (ç> —/3) w cos a sin 2 (cpft-a)

dcp~ sin (a+/3) "2 sin3 (a+ /3) 2 sin3 (a+/3)
M COS /3 COS* (ip — /3)

dw d/3— — sm /3 cos- (ç> — /3) —!
d^> dip

— 2 cos/3 cos (ç> — /3) sin (a — ß\(l—*E
\ dip

du T - 2 cos ß sin — /?)+ T

— cos (cp—ß) I +/sin/3cos (p_/3)+2 cos/3 sin (p—j9))^J

dM T —2cosßsin(^-ß)+ T

# COS(^)[+«^^(2cos^iI1(^)-S^coS(,-/3))J

v cos ß cos* (cp ft- a)

dv
v s'obtient en changeant dans u, ß en — a ; -=— s'obtiendra donc

dcp

au moyen de — par la même transformation, à la condition

toutefois que -~ n'ait pas encore été remplacé par sa valeur ;

nous aurons donc :

2 cos a sin (cp ft- a)
dv / x- coS(f+a)

— 2 cos a sin (cp ft- a) ~i

+1 sinacos(^+a)+2cosasin(ç'+a) 1 —-=— I I

[2 cos a sin (ç> + a) ft- i
cos(ç>—S)/ \

+m^-y—-~i 2cosasin(ç5+a)+sinacos(f+a) 1 I

2 cos a sin (cp ft- a) +da P

—= — cos(ç>+a)



174 A.-A. ODIN

t sin3 (a ft- ß)

dt n n-, i n\ / da dß \— 3 sin2 (a + ß) cos (a + ß) — + -f-
dcp \dcp dcp /

dt „ „. „, r cos(</> —/3) cos(w+ß)"i— =3 sin2 (a + /3) cos (a-\-ß)\m ———+n ^—-—-
dcp

v ^ v r;L sin(ß + /3) Sin(a+/3)J
d£ 3
— — sin 2 (ß + /3) [mcos (cp — ß)+n cos(cp +ß)].
dcp 2

/d-M\mais seulement de ——- nous ferons directement
\dcpi J„'

Comme nous n'avons pas besoin de la valeur générale de
d'-M /d2Jf^
dç>* '

if O, ß O dans les valeurs que nous venons de calculer,
et nous aurons :

/dx \ cos ß m cos /3 sin 2 /3 _ _.— - + — r - B + «B!
vdç> /0 sin /3 2 sm3 /3

t(0 COS3 ß

(—Ì =cos/3 |2cosßsin/3-|—r—A— 2cos/3sin/3 — sinßcosß)
\dcp/0 L sin/3 J

(—\ 2 sin ß cos2 /3 — 3 m cos* ß
\ dip )0

A =-o

^ sin3 ß

(—"\ — sin 2 /3 (m cos /3 + n)
\dcpla 2

En substituant ces valeurs dans la formule (13), on a :

/ (sin3ß.m(2sinßcossß — 3wcos*ß)-

,cVM\ _ p,
1 \ 3

\ dcp'-
—

J
/—-sin2ß(wcosß+«)(mcos3ß+w)1

'B+fflB+^ ,-—¦sin6 ß
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/ B + m B- +
i „ cos2 S j

mur \ 2cosîp-3n-r-A id*M\ pT
' sinjS f

"TV =-"l'< + m — — >
d<p- /o j sin- /3

f „COS S/ COSß M \/ COS3ß B \]\—3-r-H»»^—C + - m-^+-l r-r-|]
\ sin ß\ sm ß sinö/V sin3ß sm3ß//'

i B + m B2 + \

/d'-3I\ m\ +TO('2Bä-3^)- i
(#2)=-PL V SmP;

i

l-3B(mB+^)(WiB3 + ^);
B + 3iMBs-3fflB! —cos S

n cos ß

/d"-M\ __p]! cosß sin ß

^w,r~ -3bLb+^;4(tob3+^^4,ì|
l, \ cosß sin ß/\ cosß sui ßsiirß/,

/dïMA _
V B + 3wBs— 3mKB' — n

\ dcpi)a~ L — 3B(mB+KB) [wB' + KB (1 +B2)] J

/d*M\ _PIRr l + 3mB — 3wKBs— "l
V dcp*)~ L - 3 B2 (m + K) [(» + K) B* + K] J

(u,(dftM\_V -1-3«B+ ]K \ dcp'- )a~~ L + 3K (2m+K) B2+ 3 (m + K)2 B'J

Les conditions à remplir pour que les moments M et M soient
égaux dans le voisinage de la position moyenne sont :

M0 M0

/dM\ _ /d_M\
\ dcp a \ dcp a

/d2M\ _ /d*M\
V dcp- 0~~ \ dcp"- / 0

car si l'on représente les valeurs de M et de M par les ordonnées

de deux courbes dont les valeurs correspondantes de cp
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sont les abscisses, ces deux courbes s'osculeront au point dont
l'abscisse est cp O ; ces dernières équations sont donc les
équations de condition qui doivent être satisfaites pour que les
déplacements latéraux de la plume du baromètre soient
proportionnels aux variations de pression qui les ont produits;
écrites explicitement, elles deviennent :

Qy PLB

Qx — - qb (b + c) — PLB [K + (m + K) B*]
Là

3 \— Qy+qa(^-b + cj

PLB [— 1 — 3 m B + 3 K (2 m + K) B2 + 3 (m + K)2 B4]

En additionnant membre à membre la première et la
troisième de ces équations, et en remplaçant PLB par Q«/, on
trouve :

qa (-b + c\ =3Q2/B[-m+K(2m+K)B + (m+K)2B3]

b
I)

(15) Qy x" ''¦«° » 2
¦ -s;

B[—WÎ+K(2w+K)B+ (>w+K)2B3]

La deuxième équation de condition peut s'écrire sous la
forme :

(16) Qx -= ~ qb (b + c)-Qy[K+ (m + K)B2]

et la première :

Il nous reste à voir de quelle manière ces formules peuvent
être employées pour calculer les diverses parties d'un baromètre-
levier bien conditionné.

a étant la pression moyenne, en millimètres de mercure, au
lieu où doit fonctionner le baromètre, est par cela même donné.

q est le poids de la colonne de mercure par unité de longueur ;
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il devra être choisi comme pour un bon baromètre ordinaire,
pour que, d'un côté, le ménisque n'ait pas une trop grande
influence et que, d'un autre côté, l'appareil ne soit pas trop lourd.
Afin que le mouvement du tube dépende le moins possible du

fil, et qu'il soit provoqué par les plus petites variations de pression

il sera nécessaire de prendre b aussi grand que possible,
c'est-à-dire aussi grand que les dimensions d'un appareil bien
conditionné le permettent ; b est donc aussi donné jusqu'à un
certain point par les circonstances. Il en est de même de

l'amplification de laquelle dépend directement c.

Afin de faciliter la construction du baromètre-levier, on forme
celui-ci d'un tube coudé en quatre places différentes, et toujours
à angle droit (Pl. IV, fig. 2) ; à la branche horizontale supérieure
est adapté un curseur dont le poids, qui est calculé après la
construction du tube, sert à régler la position du centre de gravité

de l'appareil ; celui-ci est suspendu au moyen d'un collier O

que l'on peut fixer en un point quelconque du tube. Par un
choix convenable du poids additionnel, de sa position et du

point de suspension, on peut donc faire de telle sorte que le

centre de gravité du baromètre ait des coordonnées x et y données

d'avance, pourvu naturellement que ces coordonnées restent
comprises entre certaines limites données par la pratique. Ceci

pour montrer que l'on peut disposer, pour le calcul de l'instrument

des valeurs de Qx et de Qy. L. devra être choisi aussi

grand que possible, afin que P soit aussi petit que possible;
L sera donc parfaitement déterminé dès que le point de

suspension sera lui-même fixé, car L ne sera autre chose que OE.
Avant même d'avoir calculé exactement la position de O, on
connaîtra L à quelques centimètres près, d'après la forme du
tube. L'amplification étant aussi connue d'avance, il sera facile
de calculer approximativement quelle sera la position extrême
de F pour les pressions les plus faibles; on pourra donc savoir
quelle devra être la valeur minima de/, et cette valeur minima
devra être peu éloignée de la vraie valeur, car/doit être aussi

petit que possible, afin que le moment de rotation exercé en E
le soit également, ce qui est nécessaire, afin que le frottement
au point de suspension soit, lui aussi, un minimum./pourra

donc être déterminé d'avance, de sorte que K — a une valeur

bien déterminée.
Les quantités dont nous diposons sont donc m, B, Qx, Qy
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lesquelles sont liées par les deux équations (15) et (16); on
pourrait donc assujettir ces quatre quantités à deux nouvelles
conditions ayant pour but une proportionnalité plus exacte,
mais en vue de la sensibilité et de l'exactitude de l'appareil, il
vaut mieux ne se laisser guider pour leur choix que par des
considérations purement de pratique. Nous regarderons dès
maintenant ces quantités comme connues.

Il nous reste à voir comment on peut déterminer, au moyen
de Qx et Qy, le poids additionnel, sa position et la position du

point de suspension (Pl. IV, fig. 3). Q est le poids de l'appareil,
y compris le poids additionnel q ; le poids de l'appareil seul est
donc Q — q; soit G' son centre de gravité; nous avons :

Qy qX + (Q - q) y'
qY Qy-(Q-q)y'.

Qy est donné par les formules, Q — q s'obtient en pesant
l'appareil, et y' se trouve facilement en le suspendant à un fil
de manière à ce qu'il soit vertical : on pourra donc calculer qï
et par là même q ; Y devra être égal aux deux tiers environ de

la branche du tube sur laquelle il est mesuré; on ne pourra le
connaître très exactement qu'après avoir terminé complètement
le baromètre.

La hauteur du centre de gravité du baromètre ne dépend pas
<lo Y, mais seulement de q; pour la déterminer, on mettra le
poids q aussi exactement que possible à la place qu'il doit
occuper, puis on immobilisera le mercure, et l'on suspendra
l'appareil au moyen d'un fil, de manière que les branches
principales soient horizontales; on obtiendra ainsi la projection G,
du centre de gravité sur la branche centrale du tube, et le point
de suspension O sera déterminé par la longueur x OG,', qui
sera connue, puisque Qx et Q auront déjà été trouvés.

Ces opérations préliminaires étant faites, on pourra suspendre

l'appareil et l'on réglera la position du poids q de manière

que les branches principales soient verticales pour la pression
moyenne. On ne pourra se servir du baromètre ainsi monté
qu'après l'avoir gradué expérimentalement, car l'amplification
n'aura pas exactement la valeur choisie, et, de plus, les
déplacements de l'aiguille ne seront pas rigoureusement proportionnels

aux variations de pression pour toutes les pressions
auxquelles pourra être soumis l'instrument.
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Influence de la température sur les indications
du baromètre-levier.

Pour qu'un baromètre-enregistreur soit pratique, il faut que
ses indications soient indépendantes de la température. Ainsi
que nous allons le voir, ce n'est pas le cas pour le baromètre-
levier tel que nous l'avons décrit. Pour arriver à corriger ce

défaut, nous emploierons le même procédé que pour la
proportionnalité. Nous calculerons le moment de rotation qu'exerce
sur l'appareil une élévation de température de t°, pour une pression

quelconque; ce moment étant trouvé, nous chercherons à

adapter à l'appareil un système qui, pour chaque position du
tube et pour chaque température, produise un moment de rotation

égal et de sens contraire au premier.
Pour calculer le moment de rotation produit panine élévation

de température de 0° à t", nous rechercherons quel est le
déplacement du centre de gravité du mercure contenu clans l'appareil,
lorsque la température monte de 0" à t". Pour y arriver, nous
calculerons d'abord les coordonnées de ce centre de gravité
pour le cas où le mercure est à 0". A cet effet, nous supposerons
au tube barométrique la forme régulière représentée dans la
figure 4 de la plancha V ; soient V0 le volume du mercure à 0°,

s et s'les sections intérieures du tube ; alors on a :

V0 X„ (C, — Ca) S ~

1 b
•To y" (Ci — cà) 'S

g

vo y* — g (a* — Os' + -5
(a°- ~ a>) hs' +

+ [c,(a,+ cf)+cl(-ai+ci)]s
I 1
1

— s' (a. — a,) (a + b) +
Vo

+ s a» c, — (1,0,+ - (c,2 + cft)

Considérons l'espace occupé maintenant par le mercure ; cet

espace étant limité par du verre, se dilate comme celui-ci; si

12
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donc x't et y\ représentent les coordonnées de son centre de

gravité à f, et si y est le coefficient de dilatation cubique du
verre, on devra avoir :

x\ x\ (1 + 11)
à

y\ y\ (1 + | t)

ou

X't= -J- (Cy — C,) S - (1 + | t)

!l
1

--- s' (a% — ay) (a + b)

[(1 + -^
+ s [a, c2 — a, ct + -: (c,- + cft)]}

z I

Considérons maintenant la dilatation du mercure lui-même.
Comme il se dilate plus que le verre, il est à prévoir qu'il montera
dans les deux branches du tube, de certaines longueurs À, et ),2 ;

par X, et Àa, nous désignons les longueurs mesurées avec une
échelle en verre, exacte à0°; c'est pourquoi nous les appellerons

longueurs réduites, les longueurs réelles étant À, (l+-^£),
3

''•j (1 + o 0- Le nouvel espace de mercure, regardé comme es-
3

pace de verre dilaté, doit donc avoir un centre de gravité dont
les coordonnées Xt, yt s'obtiennent en remplaçant, dans les
valeurs de x\, y't, c, par c, +/,t, et c2 par c, + '/.s. Nous devons
donc avoir :

xt y- (c, + 1, — c2 — /2) s - (1 + 11)

f-s'(a2 — aft (a + b)+ \

yt—w] ix
°(+s[a2 (c2+X2)-a1(c,+}.1)+i((c+À1 )2+(cä+),)2) J J

x (i +10-
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Remarquons, avant d'aller plus loin, que les variations de

température sont toujours faibles, de sorte que dans tous nos
calculs, nous négligerons les termes en t113, etc. Nous pourrons
aussi, pour ce calcul, remplacer sin cp et tg cp par cp, et cos <p

par 1.

Nous avons en premier lieu les longueurs 1, et}., à calculer;
soit H la hauteur barométrique réduite à 0°; la hauteur
véritable de la colonne de mercure sera :

H(l + ß0,
a étant le coefficient de dilatation du mercure. Si nous la supposons

mesurée sur du verre à t", cette longueur réduite à 0°

sera :

E(l + at)

l + lt
H [l+(«-!)«]

3

Mais cette hauteur n'est autre chose que :

H + ().s — /,) cos cp.

Donc, en remplaçant cos cp par 1 :

H + - H [l + (ß - fjtj
li-ly R(a-l)t.

Le volume du mercure est à 0° V0, à t" V0 (1 + a t) ou

LV„+()., + /,) s] (1 + 7 0,

car V0 + + X2) s est le volume réduit à 0° qu'occupe le mercure

après la dilatation ; nous avons donc la deuxième équation :

V0 (1 + a t) [V, + (>., + '/..) s] (1 + 71)

Va [1 + (a - y) t] V0 + (1, + Ift s

_Vo (»-/)*¦
/,, -f A2
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La valeur de xt devient :

xt tt [(c, - C) + (>-. - X,)] s - (1 + 2 0-
V0 2 3

rt.= ^[(r,-«.)-H(«-|)*](l + |()

^[(C,-Cl)|-H („-Z)],_
6S

Comme 7 est plus petit que — et que c, — c, ne dépassera
6

guère —, nous pouvons négliger le terme (c, — c2) — de sorte
10 " 3

que :

bs H (a - |)
Xt X0 ^-y f.

Afin de pouvoir calculer aisément yt — y0, nous formerons
d'abord les expressions suivantes :

a2 Xs - a, 1, C±=^± ().2 + )„) + * + * _

a^-^WAa-yA aE/ _7\t
2 s 2 V 3'

i [ail (a- |) + (a, - a,) ^ (a - 7)] *

c2 x, + cy 1. Cy^ (h + ly) + c-^ (x2 - x,)

c» + c, V0 (a — 7) t Ca — c, II (-!)'•
ct + Cy est une constante que nous appellerons A ; l'équation

devient :

c,Xt + c1X1=ì[A^(«-y) + (ci-ct)H(a-|\]*.
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X, et X, devenant nuls en même temps que t, nous aurons, en
négligeant les termes en t* :

-s'(aì-ai)(a +b)lt + \
A à

\~0)+s[aicü-aicl + - (Cy3 + c22)] 11 +

+ s [a, X, — a, X, + c, X, + c, X2]

et en remplaçant X, et X2 par leurs valeurs :

-s' (aî — at) (a + b)l +Z o

1
+ S tt. C, — UyCy + - (C,' + C,2) -| +

aH (a--|J+(a2 —a,)y (a —7)]

"2) v /v+ A-^(a_7)+ (c2-Cl)H(a—L

- s' (o. — a,) (a + 6) -| •

yi—Vo —

¦s\a,c2 — (iyC,+- (c,2 + c22)

v„
(a + c2 — c,)H(a_-0 +

2 / V
+ (A + a2 — a,) -2 (a — 7)

Un simple calcul numérique fait voir que les deux premiers

termes du facteur de -y t sont négligeables en présence du troi-
0

sième ; nous pouvons donc poser :

yt-y0 l[(a+c\oC<)Es(«-~ |)+(A+c,-a,)(«-y)]*
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Pm étant le poids du mercure contenu dans le tube barométrique,

le moment de rotation produit par ce mercure autour du
point de suspension, était pour la température 0° :

M0 Pm (x0 cos cp + ya sin cp);

il est après la dilatation :

Mt Pm (xt cos cp + yt sin cp),

en sorte que le moment qu'il s'agit de compenser est :

M Pm [(xt — x0) cos cp + (yt — y0) sin cp]

ou
M Pm [(art — x0) + (yt — ya) <p~\.

En remplaçant xt—x0 et yt—y0 par leurs valeurs, nous avons :

P

bsRix— l
M=^ V0 U

9
~{a + c2—cftlls/ y

V. («—g) +(A.+«-«,) A-y)\ <

Nous négligerons, comme nous l'avons déjà dit, les termes
en cp*, cp%, etc. Remarquons de plus que c2 — c, s'annule en
même temps que cp, et que, a étant la pression moyenne, on a :

H a — cep.

Par conséquent :

[ uoyu — iy^iyj.
P„M=^

+ [^ («-!) + (A+a,-a,) («—,)]

a&sl a —-^

P I V
*~ f

M=^ ° \t
2

r(a2+òc)s(a-|) 1

[ y^ +(A+tt,-a,) (a-7)J cp
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En appelant a le poids spécifique du mercure, nous avons :

' +

a x — 4 abs +

hfx--A (a*+bc)s+(x-y)?m(\+at-a.)\ y

Comme As n'est autre chose que le poids q de la colonne de

mercure par unité de longueur à 0°, M prend la forme :

l(-("-|)a62 +

+ [("— |) (a*+hc) î+(«—7) (A+a,—o,)Pm]<p

Le moment artificiel à faire agir sur l'appareil pour
compenser tout effet de variation de température pour les positions
moyennes est donc :

Ux-l)abq-

~~ [(*" l) (fl2+6c)2+(a-7) (A+o,—a,) Pm] •

Remarquons que ce moment sera toujours nul pour :

(a-l)abq

x— Aj (a1 + bc) q+(x — y) (A + a, —o,) Pm

Cette valeur est assez approximativement :

ab
9

aï + bc

Il est clair que cet angle cp ne sera pratiquement jamais
atteint, mais sa connaissance est utile dans le placement du
"petit appareil que nous allons décrire.

On peut corriger l'influence de la température sur le
baromètre-levier en fixant à celui-ci, en un point quelconque, mais
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dans une position déterminée, l'appareil représenté dans la
figure 5 de la planche V, et dont le mode d'action est si simple
qu'il n'a pas besoin d'être expliqué; la boule supérieure contient
de l'alcool et le reste de l'appareil, du mercure. Chacun des
récipients de cette espèce de thermomètre a un centre de gravité
qui varie peu ; c'est d'après la position moyenne de ces centres

que se mesurent les longueurs X, Y et D. Soit ß le coefficient de
dilatation de l'alcool, v0 le volume de l'alcool à 0°, et v'0 celui
du mercure de la boule supérieure; le volume total de cette
boule à 0° est donc :

V0 + V'a

et son volume à t" :

(v0 + v'a)(l + yt),

mais l'alcool qui y est contenu a pris en passant de 0" à t° le
volume v0 (l+ßt), et le mercure le volume v'0 (l+xt), de
sorte qu'il sort de la boule un volume de mercure :

V0 (l+ßt) + V0 (l + xt) - (V0 + V\) (l + yt)

v0(ß-y)t-+ v'0(x-y)t.

Le poids de ce mercure est :

al(ß-7)v0+(x-y)v'a]t
et comme il passe dans l'autre boule, le poids de celle-ci
augmente d'autant que le poids de la première diminue, de sorte

que, les poids étant regardés comme forces, il se produit ici un
couple dont le moment de rotation est :

M D A [v0 (ß- y) + (a- y) v'a] t

Mais comme :

D X cos cp — Y sin cp,

ou plus simplement :

D X — Ycp,

on aura :

M A [(/3 - 7) v0 + (a - 7) v'a] (X- Y<p) t.
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Appelons p& le poids de l'alcool, pm le poids du mercure
contenus à 0" dans la boule supérieure, et ô le poids spécifique de

l'alcool ; nous aurons :

P* Pm
Ù A

et:

M- [iß - 7) yP* + (« - 7) Pm] (X - Ycp) t.

Pour résoudre complètement le problème, nous n'avons plus
qu'à identifier les moments M' et AI; cela nous donnera les deux

équations :

— (y—y) ab(i= Uß—'A -j P* + O —7) P™\ X

"ï [(""I") (°' + U)q + (a ~ 7) (A + 0* ~ a,) Pm]

[0î-7)^-^ + (a-7)^ra] Y.

De ces deux équations on tire celle-ci :

(a2 + bc) q + (x — y) (A + «2 — aft Pm
Y_ V 3

X
abq

3/ 1

ou :

Y _ cr + bc / 2y\ A+a2 — a, Pr

X ab \ 3a/ aô g

P"1 .,'„Si le tube a partout le même diamètre intérieur, — n'est
q

autre chose que la longueur totale L du mercure dans le
baromètre. Nous pouvons donc, dans ce cas, écrire l'équation précédente

sous la forme :

2-A

Y
a* + bc + (l --£J (A+tt.— a,)L

X ab
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Les équations que nous avons établies entre X, Y, joa, pm, ne
donnent que deux conditions auxquelles doivent être soumises
ces quantités; pour leur détermination exacte, on se laissera
guider par les besoins de la pratique.

Pour construire l'appareil compensateur dont nous venons de
donner la théorie, on confectionnera d'abord, aussi exactement

que possible, le verre de l'instrument, puis on calculera, au
moyen des équations précédentes, le poids de l'alcool qu'il doit
contenir; on pourra ainsi construire sans difficulté le thermomètre

en question, et compenser très exactement l'influence de

la température sur le baromètre-levier.

Ce
que devient le puceron îles pommiers pendant l'hiver,

par le Dr Henri BLANC,
professeur à l'Académie de Lausanne.

S'il est un insecte dont on se soit beaucoup occupé ces
derniers temps, c'est bien du puceron des pommiers (SchAoneura
lanigera Hausm.) qui, par ses dégâts semble vouloir acquérir

une aussi grande célébrité malfaisante que son congénère, le

Phylloxera vastatrix, aussi possède-t-on sur lui un volumineux
dossier d'articles et de brochures contenant des détails sur
l'organisation, le genre de vie de l'insecte, à côté de données statistiques

et de mesures à prendre pour empêcher sa propagation
et pour le détruire. Mais en parcourant toute cette littérature,
on est frappé de voir les divergences nombreuses qui existent
entre les observateurs quant au mode de reproduction et quant
au cycle de développement de cet insecte.

Les uns ont prétendu que ce cycle était à peu près semblable
à celui parcouru par la plupart des pucerons, c'est-à-dire
qu'au printemps apparaissaient sur les pommiers des femelles
aptères, parthénogénétiques vivipares, qu'en automne
apparaissaient parmi celles-ci des femelles ailées parthénogénétiques
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