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NOTE

SUR LA

RESOLUTION NUMERIQUE DES EQUATIONS

PAR LE
Dr H. AMSTEIN

professeur & I'Académie de Lausanne.

—_—Pe

La solution d’un grand nombre ‘de problémes dépend en
dernier lieu de la résolution d’une équation algébrique ou
transcendante. Aussi, de tout temps et & juste titre, les mathé-
maticiens se sont-ils préoccupés des méthodes pouvant servir a
la résolution numérique des équations. Aujourd’hui on en pos-
seéde plusieurs qui toutes peuvent fournir de bons résultats, a
tel point qu’il parait presque oiseux d’en chercher encore d’au-
tres. Cependant, en appliquant les diverses méthodes existantes
on s’aper¢oit bientét que chacune d’elles présente, a c6té d’avan-
tages réels, certains inconvénients qui, dans beaucoup de cas,
en rendent ’application extrémement laborieuse. Il est probable
que ces inconvénients ne pourront jamais étre évités entiére-
ment, mais, tant qu’ils subsisteront, toute méthode nouvelle ca-
pable d’abréger le travail purement mécanique sera accueillie
favorablement par les intéressés.

Aprés avoir jeté un coup d’ceil rapide sur les principales mé-
thodes actuellement en usage, pour en signaler les avantages et
les inconvénients, nous offrons au lecteur, dans cette note, une
autre méthode que nous appellerons la méthode des trois points,
et qui mérite peut-étre une modeste place a coté de celles qui
sont déja connues. Est-elle nouvelle? Nous l'ignorons et nous en
doutons méme, tant I'idée qui y a conduit parait simple. Mais,
comme elle nous a rendu service en mainte occasion, nous dési-
rons qu'elle soit utile & d’autres et c’est le seul motif qui nous
engage 4 la soumettre au lecteur compétent.

1. La regula falsi. La méthode dite la regula falsi est sans
contredit l1a plus connue. Non-seulement elle a dit se présenter
tout naturellement & I’esprit, mais elle est facile & retenir et son
application est simple.
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L’équation & résoudre est
y=r(x)=0

Soient z, et z, deux valeurs approximatives de 'une de ses
racines réelles, ensorte que la vraie valeur de la racine se trouve
comprise entre x, et x,, et solent y, et y, les valeurs correspon-
dantes, I'une positive, 'autre négative, de la fonction f (x);
alors on peut écrire

z T y xl'—xi
3— 47 U
Yy — Ys
oun
2 - y Xy — Tg
g — g T Yg
Yy — Y,

ou encore en faisant la demi-somme

_ 4+ r Yt Y 2 — 2
e & Yo — Y2

et cette relation fournit en général une meilleure valeur pour z.
L’on voit que, interprétée géométriquement et en coordonnées
rectangulaires, la regula falst consiste & substituer au point
d’intersection de la courbe y =f (x) avec l’axe des X le point
d’intersection avec le méme axe de la corde joignant les points
(xy, y,) et (xy, y;) de la courbe. Répété un nombre suffisant de
fois, ce procédé permet évidemment de pousser I’approximation
aussi loin qu’on voudra. Mais ’application en est souvent rendue
laborieuse par la nécessité ou ’on se trouve de calculer  pour
chaque nouvelle valeur de z, calcul indispensable, soit pour
controler la valeur trouvée, soit pour préparer une nouvelle
application de la formule, et d’autant plus pénible que la valeur
de x devient plus approchée. Le mérite de cette méthode, d’ail-
leurs si utile et si commode, est encore diminué par la circons-
tance qu’elle ne permet pas d’apprécier d’avance le degré d’exac
titude obtenue par chaque application de la formule.

L3

2. La méthode de Newton. Solent f(x) = 0 I’équation pro-
posée, x =1z, une valeur approchée de la racine cherchée et
} la correction, alors le théoréme de Taylor donne

_ W
F@o+1) = 0=Ff(zo) -+ f @)+ F' (@) o+ -



RESOLUTION NUMERIQUE DES EQUATIONS 203

d’ou, en négligeant les termes qui, par rapport & %, sont d’'un
ordre supérieur au premier, on tire

_ f@)
b=y

Cette formule exige la connaissance d’une seule valeur appro-
chée de la racine et en méme temps elle offre le moyen d’appré-

cier 'approximation. Car on peut aisément se rendre compte de
2

Pinfluence que peut avoir le premier terme négligé 7 (z,) %—

Par contre, la formule nécessite le calcul non-seulement de la
fonction f(x), mais encore de sa dérivée premiére ' (z), et il
serait facile de citer des cas ou I’évaluation de f’ (x,) est beau-
coup plus longue que celle de f (z,).

Géométriquement, la méthode de Newton revient a4 remplacer
la courbe y =f (x) par sa tangente au point (z,, ¥,). De ce fait
il ressort immédiatement que dans certains cas, faciles & recon-
naitre, les valeurs successives de z, au lieu de tendre peu a peu
vers leur limite, s’en écartent de plus en plus.

3. La méthode de Horner est une modification trés ingénieuse
de la précédente. Elle s’applique seulement aux équations algé-
briques; mais dans ce cas elle se recommande surtout par la
simplicité du procédé qu’elle emploie et par la facilité d’exercer
un controle sur ’approximation atteinte.

4. La méthode de Newton a encore été perfectionnée au
moyen de la série de Maclaurin qui permet 'inversion de la
fonction £ (). On obtient sans difficulté la formule

GRS CYRVICH]
* f)]  f=)) 2

L F@f @)L @) [l
[F (@) 6

et il serait aisé d’augmenter le nombre des termes de cette
série. Chaque nouveau terme controle la valeur de z obenue
par les termes précédents. Plus on prendra de termes, plus
Papproximation sera grande. Mais en général on se bornera
aux trois ou quatre premiers termes, vu que les calculs devien-
nent de plus en plus pénibles. La circonstance que cette formule

rT=x

_|_
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renferme plusieurs dérivées successives de la fonction f (z) est
un inconvénient qui souvent en diminue la valeur pratique.

(Géométriquement, cette méthode substitue a la courbe y=f(x)
ou x =0 (y) la courbe osculatrice

(y yo)E’ (¥ — %)*

+ (P”’ (yﬂ) 1 2 3

' Yy—
% — %o = 9" (Yo) + ¢" (Yo)
qui, au point (x,,%,), possede en général quatre points consécu-
tifs communs avec la premiere.

Telles sont les méthodes que l'on préfere employer de nos
jours. Beaucoup d’autres ont encore été inventées; les unes ne
traitent que des équations algébriques, les autres n’ont presque
plus qu’un intérét historique, comme par exemple celle de La-
grange. Il n’entre pas dans nos vues de les énumérer toutes.
D’ailleurs, ce qui vient d’étre dit sur la regula falsi et la mé-
thode de Newton suffira pour faire connaitre les services que
pourra rendre la méthode qui va suivre.

5. La méthode des trois points. Comme on vient de le voir,
I'idée géométrique qui est a la base de toutes les méthodes pour
le calcul approché des racines réelles d’'une équation est au fond
toujours la méme, & savoir la substitution & la courbe y =f (x)
dans le voisinage de la racine cherchée d’une autre ligne dont
le point d'intersection avec’axe des X est facile & trouver. Ainsi,
la regula falsi remplace la courbe donnée par une corde, la mé-
thode de Newton y substitue une tangente, et la méthode de
Newton modifiée une parabole osculatrice du deuxieme ou du
troisieme ordre.

Afin d’éviter et 'approximation lente de la regula falsi et les
longueurs de la méthode de Newton, il parait naturel d’avoir
recours & une section conique ayant trois points communs avec
la courbe y =f(«x). Dés lors, la marche géométrique & suivre
est trés simple. On choisit dans le pian de la courbe y=f (x)
deux points arbitraires (x', ¢') et (2", ¥”) qui, joints par des lignes
droites aux trois points donnés (z,, y,), (Z., ¥s), (25, ¥,) de cette
courbe détermirent deux faisceaux de rayons projectifs dont les
points (2', y') et («”, ¥") sont les centres. En considérant comme
rayons correspondants deux droites passant par le méme point
de la courbe y = f (), la projectivité est bien établie et les deux
faisceaux engendrent la section conique en question. Pour ne
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pas introduire des racines carrées dans les calculs, il faut que x
soit une fonction uniforme de y. A cet effet, il suffit de choisir

pour (z', ¥'), (z", ¥"), par exemple, les points & l'infini des axes
X et Y. Alors I’équation de la section conique prend la forme

(1) 2y + Az + By + C =0.

De cette fagon on substitue & la courbe y =f () une hyperbole
équilatere. Celle-ci devant passer par les points (2, , ¥,), (., ¥.),

(x4, y,), on a, pour déterminer les constantes A, B, C, les trois
équations

x Y, + Az, + By, +C=0
(2) ZsYs + Az, + By, + C =0
2,4, + Az, + By, 4+ C = 0.

Mais il s’agit seulement du rapport ~(—}—, car I’équation (1) donne

pour le point d’intersection de I'’hyperbole avec I'axe des X,
c’est-d-dire pour la valeur approchée de la racine cherchée de
I’équation f(x) =0,
C
—_ O’ ¥y = — —K" %

Or, les équations (2) fournissent

Xy Y, Ly Y,y

Ly Y, Lzl

X 1 0 )
C 3 Y 3Ys

oY Y 1
Tals Yo 1
X3, Y, 1

ou en développant numérateur et dénominateur

- XyYaYs ('Te. - 373)"1' ZaYs ¥y (393 - xl) -+ T3 Yo (xt“"“xe) .
Yol (Bg — 23) + Yo Uy (X3 — 21) + Yy Yo (2 — %)

X
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De 13 on tire finalement

(s —13) (x5 — 2,) Y5 (Yy — ¥s) )
Yo Ys (Lo — Z3) + Y Yy (Xs— X4) + Y1 Y (¥, — @)

I. x—2,=

Telle est la formule que nous proposons et qui, dans beaucoup
de cas, pourra donner de bons résultats. Afin d’en tirer le meil-
leur parti possible, on choisira pour z, et z, deux valeurs ap-
prochées de z ne différant entre elles que d’une unité d’un cer-
tain ordre décimal et en outre telles que la vraie valeur de =
soit comprise entre x, et z,; et pour z, on prendra la valeur
intermédiaire fournie par la regula fals

XLy — Ty
Yy — Yo

Cette méthode partage dans une certaine mesure I’inconvé-
nient essentiel de la regula falsi, elle laisse le calculateur dans
le doute sur 'approximation acquise par chaque application de
la formule I. A cet égard, on peut cependant faire la remarque
suivante : — En considérant la plus grande des différences
h=x,—x, ou h=1x, — x, comme un infiniment petit relatif du
premier ordre, I’hyperbole devient une courbe osculatrice de la
courbe y =f (x). Il s’ensuit que la différence entre la valeur
fournie par la formule I et la valeur exacte de x ne portera
ordinairement que sur des quantités du troisiéme ordre de 4.

Xy =X — Y,

 Observation 1. L’hyperbole (1) n’est d’ailleurs pas la seule
section conique pouvant remplacer avantageusement la courbe
y =j (x). En effet, la parabole

(3) x = A + By + Cy*

se trouve exactement dans les mémes conditions. Sil’on pose
dans I'équation (3) y =0, on obtient comme valeur approxi-

mative de z
= Ay

pourvu que les constantes A, B, C satisfassent aux équations
z, = A + By, + Cy,*

(4) 2, = A + By, + Cy,’
x, = A + By, + Cy,’
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qui donnent

T Y Y
s Y Y.
Ty Ys Yy

= A= —
1y oy
Iy 9
1y Y

— _%Y:Ys (Ya—Ys) + XY ¥y (Yo—Y) + LY Ys (Y — ?/2)’
(Y —Ys) Ws— Y1) (Y1 —Ys)

Enfin 1l vient

(.’I?, “‘xa) Yy (yl""y3)+(xa_xi) Ys (yz_ya)._
(Y1 —Ys) Y2 —Ys) (Ys— Y1)

II. z—2z, =y,

On reconnait aisément dans cette formule les traces de la
formule d’interpolation de Lagrange. Il suffit, en effet, d’échan-
ger entre elles les variables « et y dans cette derniere et de poser
ensuite y = 0 pour arriver immédiatement & la formule qui vient
d’étre donnée. Mais, tandis que les manuels et autres livres ne
se servent ordinairement de la formule de Lagrange que pour
déplacer la difficulté en substituant, par exemple, & une équa-
tion transcendante une équation algébrique non moins difficile
a résoudre, la formule II conduit d’une maniére siire et facile &
la racine cherchée.

Observation 2. Il n’est peut-étre pas superflu de rappeler que
toutes les formules indiquées cessent d’étre applicables lorsque
la dérivée premiere de la fonction f(x) s’annule pour la racine

en question.
Afin de mettre en lumiére les avantages et les défauts de la.

méthode des trois points, cette note sera terminée par quelques.
exemples d’équations résolues au moyen de la formule I.

Exemple 1. Soit & déterminer la racine réelle de I’équation

f@)y=y=a*—4x—5>=0.
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D’abord on reconnait facilement que la racine demandée est
comprise entre 2,4 et 2,5. Soit donc

=924, 2,=20,
alors les valeurs correspondantes de y sont
y, = — 0,776, iy, = 0,625.

Ensuite la regula falsi fournit

z, = 2,4 + 0’—717’-5-0'—(1)’—1 — 2,455
et la valeur correspondante de y est
Yy, = — 0,023653625.

En introduisant ces valeurs

@y =24, ¥, = — 0,776 ; Ty — @y = 0045,

py =25, ¥, = 0,625; z, — 2, = 0,005,

i, = 2455, y, = — 0,023653625; x,—x, = 0,1,
Y, — Y, = — 1,401

dans la formule I, il vient

— 0,045.0,055.1,401., .
0,776.0,625.0,1 + y, [0,625.0,045 — 0,776.0,055]

— 0,00167918.

x— 2450 =

La nouvelle valeur approchée de z est ainsi
% = 245667918
tandis que la valeur exacte jusqu’au 8™° ordre décimal est
x = 2,4H667834.

La différence D entre la valeur donnée par la formule I et ia
valeur exacte est donc

D = + 0,000 000 84.
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Exemple 2. y=ua*—42*—22+4+4=0.

7, = 4,24, y, = — 0,165376

2y =4,25, y, =  0,015625

x, = 4,249137, Yy, = — 0,000064296413985647
Valeur trouvée x= 4,2491405381345

Valeur exacte z = 4,2491405381295
D =+ 0,0000000000050

-

5 ;
Exemple 3. y=a"— — &* +Ti)__x — (1

1 35 = 0.
x, = 0,978, y, = — 0,000192003873632
2, = 0,979, y, =  0,001113684570899
x, = 0,9781471, y, = — 0,00000065179001782223705
Valeur trouvée x= 0,9781476007346
Valeur exacte rx=  0,9781476007338
D= + 0,0000000000008
Ezxemple 4. y=ua*—br+4=0.
z, = 1,5615, y, = — 0,000122266625
zy = 1,5616, y, = 0,000109264896
2, = 1,561552808, vy, = — 0,000000011134084491
Valeur trouvée = 1,56155281280883032
Valeur exacte x = 1,06155281280883027

D = + 0,0000000000C000005

Ezxemple 5. y =z — 10 log ,,z = 0.
e = 1.4, y, =  0,160566477
B = Ly Yy, = — 0,061280357
2, =1372, wy, = — 0,001541114

14
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Valeur trouvée r=  1,371288539
Yaleur exacte r= 1371288574
D = — 0,000000035
Fxemple 6. y = x — tang x = 0.
&, = 4,49, y = 0067749552419
z, = 4,50, y, = — 0,137332054552
x, = 4,49330, y,=  0,002208894682
Valeur trouvée €= 44934094596
Valeur exacte r=  4,4934094579 *

D = + 0,0000000017

Exemple 7. y=ax— cos z = 0.
x, = 0,739, y, = — 0,00014247729462
z, = 0,740, ys =  0,00153144127039
x, = 0,7390851, y, = — 0,00000005558930
Valeur trouvée x = 0,73908513321516,,
Valeur exacte 2=  0,73908513321516,,

D = + 0,00000000000000,,

* Dans son mémoire, « Application de la méthode de Fourier & la ré-
solution des équations transcendantes », M. Stern trouve

% = 4,49340964 ,

tandis que Euler, dans son « Introd. in anal. inf. », L. II, § 539, indique

la valeur
x = 4,49340834.

De son coté, 'auteur de la présente note, en calculant les tangentes au
moyen de la série
cotga::—l—————u——— _— e — = — .,
& 3 45 945 4725 93555
jusqu’aux chiffres du 12m¢ ordre décimal, trouve pour la racine cherchée
x = 4,4934094579,.



RESOLUTION NUMERIQUE DES EQUATIONS 211

Pour mieux faire ressortir I'influence des valeurs initiales
avec lesquelles on entre dans la formule I, le méme exemple
(de Fourier) sera encore traité quatre fois, en partant de valeurs
qui different entre elles respectivement d’une unité du 1, 2,
3me et 4™ ordre décimal.

FExemple 8. y=u"—2x —5=0.

a) X, etlx, difféerent d'une unité du premier ordre décimal.

& == 2.0, ==

2, =21, y, = 0,061

2y =2094, y, = — 0,006153416
Valeur trouvée r= 209455154
Valeur exacte = 2,09455148

D = + 0,00000006

b) X, et x, different d’'une unité du deuxicme ordre décimal.

@, = 2,09, y, = — 0,050671

i = 210, Yy, = 0,061

X, == 209454 , y, = — 0,000128149691336
Valeur trouvée = 2,094551481607
Valeur exacte = 2,094551481542

D = + 0,000000000065

¢c) X, et x, different d’une unité du troisieme ordre décimal.
1

z, = 2,094, y, = — 0,006153416

z, = 2,095, y, =  0,005007375

x, = 2,0945513, y, = — 0,000002026273165879303
Valeur trouvée x = 2,094551481542337
Valeur exacte r=  2,094551481542326

D = + 0,000000000000011
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d) x, et x, different d'une unmité du quatrieme ordre décimal.

%, = 2,0945 . y, = — 0,000574591375

g = 2,0940 , Yy =  0,000541550536

2, = 2,094551480 , 9, = — 0,000000017214582189798208000
Valeur trouvée o=  2,09455148154232659236

Valeur exacte o= 2,09455148154232659148

D = + 0,00000000000000000088

Remarque. — Des exemples précédents, on peut déduire la
regle empirique suivante : Si par Papplication de la formule I
il se trouve que x, est exact jusqu’au chiffre du ni¢me ordre
décimal, la valeur fournie par cette formule sera en général
exacte jusqu’au chiffre du 2ni¢me ordre décimal.
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