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NOTE
SUR LA

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS

PAR LE

D" H. AMSTEIN
professeur à l'Académie de Lausanne.

La solution d'un grand nombre de problèmes dépend en
dernier lieu de la résolution d'une équation algébrique ou
transcendante. Aussi, de tout temps et ajuste titre, les
mathématiciens se sont-ils préoccupés des méthodes pouvant servir à

la résolution numérique des équations. Aujourd'hui on en possède

plusieurs qui toutes peuvent fournir de bons résultats, à
tel point qu'il paraît presque oiseux d'en chercher encore d'autres.

Cependant, en appliquant les diverses méthodes existantes
on s'aperçoit bientôt que chacune d'elles présente, à côté d'avantages

réels, certains inconvénients qui, dans beaucoup de cas,
en rendent l'application extrêmement laborieuse. Il est probable
que ces inconvénients ne pourront jamais être évités entièrement,

mais, tant qu'ils subsisteront, toute méthode nouvelle
capable d'abréger le travail purement mécanique sera accueillie
favorablement par les intéressés.

Après avoir jeté un coup d'œil rapide sur les principales
méthodes actuellement en usage, pour en signaler les avantages et
les inconvénients, nous offrons au lecteur, dans cette note, une
autre méthode que nous appellerons la méthode des trois points,
et qui mérite peut-être une modeste place à côté de celles qui
sont déjà connues. Est-elle nouvelle? Nous l'ignorons et nous en
doutons même, tant l'idée qui y a conduit paraît simple. Mais,
comme elle nous a rendu service en mainte occasion, nous désirons

qu'elle soit utile à d'autres et c'est le seul motif qui nous

engage à la soumettre au lecteur compétent.

1. La régula falsi. La méthode dite la régula falsi est sans
contredit la plus connue. Non-seulement elle a dû se présenter
tout naturellement à l'esprit, mais elle est facile à retenir et son
application est simple.
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L'équation à résoudre est

y f(x)=0
Soient x, et xt deux valeurs approximatives de l'une de ses

racines réelles, ensorte que la vraie valeur de la racine se trouve
comprise entre xt et xt, et soient y, et ys les valeurs correspondantes,

l'une positive, l'autre négative, de la fonction /(x);
alors on peut écrire

A/1 A/%

ou
Aj i ~~~ iA-J

ou encore en faisant la demi-somme

_ xt + x*, y{ + y8 xl — x,
X*~ 2 2

' tji-y,
et cette relation fournit en général une meilleure valeur pour x.
L'on voit que, interprétée géométriquement et en coordonnées
rectangulaires, la régula falsi consiste à substituer au point
d'intersection de la courbe y =f (x) avec l'axe des X le point
d'intersection avec le même axe de la corde joignant les points
(xt, y,) et (Xa yi) de la courbe. Répété un nombre suffisant de

fois, ce procédé permet évidemment de pousser l'approximation
aussi loin qu'on voudra. Mais l'application en est souvent rendue
laborieuse par la nécessité où l'on se trouve de calculer y pour
chaque nouvelle valeur de x, calcul indispensable, soit pour
contrôler la valeur trouvée, soit pour préparer une nouvelle
application de la formule, et d'autant plus pénible que la valeur
de x devient plus approchée. Le mérite de cette méthode, d'ailleurs

si utile et si commode, est encore diminué par la circonstance

qu'elle ne permet pas d'apprécier d'avance le degré d'exac
titude obtenue par chaque application de la formule.

2. La méthode de Newton. Soient /(x) 0 l'équation
proposée, x x0 une valeur approchée de la racine cherchée et
h la correction, alors le théorème de Taylor donne

f{x0 + h) 0 =f{xa) +/ (x0)h + f'{x0)~ft-
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d'où, en négligeant les termes qui, par rapport à h, sont d'un
ordre supérieur au premier, on tire

j_ /Oo)
/W

Cette formule exige la connaissance d'une seule valeur approchée

de la racine et en même temps elle offre le moyen d'apprécier

l'approximation. Car on peut aisément se rendre compte de
h2

l'influence que peut avoir le premier terme négligé/" (x0) ——.
A

Par contre, la formule nécessite le calcul non-seulement de la
fonction / (x), mais encore de sa dérivée premièref {x,i e* ^
serait facile de citer des cas où l'évaluation de/'(a;0) est beaucoup

plus longue que celle àef(x0).
Géométriquement, la méthode de Newton revient à remplacer

la courbe y=f(x) par sa tangente au point (x0, y0). De ce fait
il ressort immédiatement que dans certains cas, faciles à
reconnaître, les valeurs successives de x, au lieu de tendre peu à peu
vers leur limite, s'en écartent de plus en plus.

3. La méthode de Horner est une modification très ingénieuse
de la précédente. Elle s'applique seulement aux équations
algébriques ; mais dans ce cas elle se recommande surtout par la
simplicité du procédé qu'elle emploie et par la facilité d'exercer
un contrôle sur l'approximation atteinte.

4. La méthode de Newton a encore été perfectionnée au
moyen de la série de Maclaurin qui permet l'inversion de la
fonction /(x). On obtient sans difficulté la formule

r_r /Oq) IM UJaK i

° /O»)] [/O«)]3 2 +

+/Oo)/"Oo)-3 [/»(*.)]« [/Oo)]3
[/'Oo)]5 6

• •

et il serait aisé d'augmenter le nombre des termes de cette
série. Chaque nouveau terme contrôle la valeur de x obenue

par les termes précédents. Plus on prendra de termes, plus
l'approximation sera grande. Mais en général on se bornera
aux trois ou quatre premiers termes, vu que les calculs deviennent

de plus en plus pénibles. La circonstance que cette formule
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renferme plusieurs dérivées successives de la fonction / (x) est

un inconvénient qui souvent en diminue la valeur pratique.
Géométriquement, cette méthode substitue à la courbe y=f(x)

ou x <p (y) la courbe osculatrice

* - «. ¥ (v.) y-=± + f (vu Ki^ +-9"'ù/o)(y- y°r
1.2 T w<" 1.2.3

qui, au point (x0,y0), possède en général quatre points consécutifs

communs avec la première.

Telles sont les méthodes que l'on préfère employer de nos
jours. Beaucoup d'autres ont encore été inventées; les unes ne
traitent que des équations algébriques, les autres n'ont presque
plus qu'un intérêt historique, comme par exemple celle de La-
grange. Il n'entre pas dans nos vues de les énumérer toutes.
D'ailleurs, ce qui vient d'être dit sur la régula falsi et la
méthode de Newton suffira pour faire connaître les services que
pourra rendre la méthode qui va suivre.

5. La méthode des trois points. Comme on vient de le voir,
l'idée géométrique qui est à la base de toutes les méthodes pour
le calcul approché des racines réelles d'une équation est au fond
toujours la même, à savoir la substitution à la courbe y=f{x~)
dans le voisinage de la racine cherchée d'une autre ligne dont
le point d'intersection avec l'axe des X est facile à trouver. Ainsi,
la régula falsi remplace la courbe donnée par une corde, la
méthode de Newton y substitue une tangente, et la méthode de
Newton modifiée une parabole osculatrice du deuxième ou du
troisième ordre.

Afin d'éviter et l'approximation lente de la régula falsi et les

longueurs de la méthode de Newton, il paraît naturel d'avoir
recours à une section conique ayant trois points communs avec
la courbe y=f(x). Dès lors, la marche géométrique à suivre
est très simple. On choisit dans le pian de la courbe y=f(x)
deux points arbitraires (x', y') et (x", y") qui, joints par des lignes
droites aux trois points donnés(xt, yt), {x\,yft, (x3, y,) de cette
courbe déterminent deux faisceaux de rayons projectifs dont les
points (x', y') et {x", y") sont les centres. En considérant comme
rayons correspondants deux droites passant par le même point
de la courbe y=f(x), la projectivité est bien établie et les deux
faisceaux engendrent la section conique en question. Pour ne
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pas introduire des racines carrées dans les calculs, il faut que x
soit une fonction uniforme de y. A cet effet, il suffit de choisir

pour (x\ y'), O") y")i Par exemple, les points à l'infini des axes
X et Y. Alors l'équation de la section conique prend la forme

(1) xy + Ax + By + C 0.

De cette façon on substitue à la courbe yz=f{x) une hyperbole
equilatere. Celle-ci devant passer par les points {x,, y ft, 02> 2/sX

Os i y3) 1 on ai Pour déterminer les constantes A, B, C, les trois
équations

(2)

x, y, -+- Axt -f- B«/, + C 0

Xi «/8 -+- Ax2 -f- B«/2 + C 0

x3y3 + Ax3 + By3 + C 0.

Mais il s'agit seulement du rapport ——, car l'équation (1) donne

pour le point d'intersection de l'hyperbole avec l'axe des X,
c'est-à-dire pour la valeur approchée de la racine cherchée de

l'équation f(x) 0,

C
y 0, x r.

r, les équations (2) fournissent

x, y, x, yK

Xi y» x.y.

C
CC3 2/3 •^3 y%

x- A _
xty, y* 1

x±y^ y. 1

xzVz 2/3 1

ou en développant numérateur et dénominateur

%, yty% Oa — #>) + x-t y* y, Oa — *.) + %> 2/. y* P.—^)
X

y*y3 Oî — xz) + 2/3 «/1 Os — »1) + 2/1 ys O. — »*)
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De là on tire finalement

_ Os — x3) O, — *i) y, {y, — y^A
I. X-

y,y3 Oî - oc3)-\-y3y, (x3 — x,)ft-ylyi (xl — x,)

Telle est la formule que nous proposons et qui, dans beaucoup
de cas, pourra donner de bons résultats. Afin d'en tirer le meilleur

parti possible, on choisira pour xt et x2 deux valeurs
approchées de x ne différant entre elles que d'une unité d'un
certain ordre décimal et en outre telles que la vraie valeur de x
soit comprise entre x, et xs ; et pour x 3 on prendra la valeur
intermédiaire fournie par la régula falsi

Ai j A/»
x3 x., yx

2/i — 2/s

Cette méthode partage dans une certaine mesure l'inconvénient

essentiel de la régula falsi, elle laisse le calculateur dans
le doute sur l'approximation acquise par chaque application de
la formule I. A cet égard, on peut cependant faire la remarque
suivante : — En considérant la plus grande des différences
h x3 — x, ou h Xi — x3 comme un infiniment petit relatif du
premier ordre, l'hyperbole devient une courbe osculatrice de la
courbe y=f(x). Il s'ensuit que la différence entre la valeur
fournie par la formule I et la valeur exacte de x ne portera
ordinairement que sur des quantités du troisième ordre de h.

Observation i. L'hyperbole (1) n'est d'ailleurs pas la seule
section conique pouvant remplacer avantageusement la courbe

y =f[x). En effet, la parabole

(3) x A + By + Cy'

se trouve exactement dans les mêmes conditions. Si l'on pose
dans l'équation (3) y 0, on obtient comme valeur approximative

de x
x A,

pourvu que les constantes A, B, C satisfassent aux équations

rr, A + By, -+¦ Cyft

(4) Xi A -h B«/ä -f- C«/,s

x3 A + By3 + Cy3-
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qui donnent

X, 2/. 2/.2

Xi y* y.1

x$ 2/3 2/s2

1 2/. 2/,2

1 y. 2/r
1 y. 2/3s

x, yt 2/s (2/. — 2/s) + «j 2/s 2/1 (2/s—2/1 + «s 2/. 2/j (2/1 — 2/s)

Enfin il vient

II. x — x3-=y3

(2/s —2/s) (2/s —2/.) (2/1 —2/s)

(g8—3?3) y, (y,—y3) + (a:3—x, yt (^ — y3)

(2/1— 2/s) (2/s — 2/s) (2/3 — 2/1)

On reconnaît aisément dans cette formule les traces de la
formule d'interpolation de Lagrange. Il suffit, en effet, d'échanger

entre elles les variables x et y dans cette dernière et de poser
ensuite y 0 pour arriver immédiatement à la formule qui vient
d'être donnée. Mais, tandis que les manuels et autres livres ne
se servent ordinairement de la formule de Lagrange que pour
déplacer la difficulté en substituant, par exemple, à une équation

transcendante une équation algébrique non moins difficile
à résoudre, la formule II conduit d'une manière sûre et facile à
la racine cherchée.

Observation 2. Il n'est peut-être pas superflu de rappeler que
toutes les formules indiquées cessent d'être applicables lorsque
la dérivée première de la fonction / (x) s'annule pour la racine
en question.

Afin de mettre en lumière les avantages et les défauts de la
méthode des trois points, cette note sera terminée par quelques,
exemples d'équations résolues au moyen de la formule I.

Exemple i. Soit à déterminer la racine réelle de l'équation

fix) y x3 — ix — 5 0.
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D'abord on reconnaît facilement que la racine demandée est

comprise entre 2,4 et 2,5. Soit donc

alors les valeurs correspondantes de y sont

«/,=-0,776, 2/2 0,625.

Ensuite la régula falsi fournit

»¦=^^-.-
et la valeur correspondante de y est

y3= — 0,023653625.

En introduisant ces valeurs

x. =2,4, y, — 0,776 ; x., — ,r3 0,045,

x2 2,5, »/2 0,625 ; a;3 — x, 0,055,

a:, 2,455, 2/s — 0,023653625 ; #, — a;, 0,1,

2/. — 2/s — 1,401

dans la formule I, il vient

— 0,045.0,055.1,401.2/3 _x — 2,455
0,776.0,625.0,1 + y3 [0,625.0,045 — 0,776.0,055]

0,00167918.

La nouvelle valeur approchée de x est ainsi

x 2,45667918

tandis que la valeur exacte jusqu'au 8me ordre décimal est

x 2,45667834.

La différence D entre la valeur donnée par la formule I et ia
valeur exacte est donc

D + 0,000 000 84.
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Exemple 2. y-=x3— 4rr2— 2x + 4 0.

«,=4,24, y, — 0,165376

^ 4,25, yä 0,015625

x3 4,249137, y3 — 0,000064296413985647

Valeur trouvée x 4,2491405381345

Valeur exacte x= 4,2491405381295
D + 0,0000000000050

Exemple 3. y xr° x3 + —— x 0.* v 4 16 32

rr, 0,978 y, — 0,000192003873632

Xi 0,979 y, 0,001113684570899

x3 0,9781471, y3 — 0,00000065179001782223705

Valeur trouvée x= 0,9781476007346

Valeur exacte x 0,9781476007338

D= +0,0000000000008

Exemple 4. y rr3 — 5rr + 4 0.

», 1,5615, y, — 0,000122266625

a;, 1,5616, y, 0,000109264896

x3 1,561552808, y3 — 0,000000011134084491

Valeur trouvée a; 1,56155281280883032

Valeur exacte x 1,56155281280883027
D + 0,00000000000000005

Exemple 5. y ; a; — 10 log,0rr 0.

*, 1,3, y, 0,160566477

x,_ 1,4, ys — 0,061280357

a;, l,372, y3 —0,001541114
14
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Valeur trouvée x= 1,371288539

Valeur exacte x= 1,371288574
D — 0,000000035

Exemple 6. y x — tang x 0.

a;, 4,49, y, 0,067749552419

x., 4,50, y2 — 0,137332054552

a'3= 4,49330, y3 0,002208894682

Valeur trouvée x 4,4934094596

Valeur exacte x 4,4934094579 *
D +0,0000000017

Exemple 7. y x — cos x 0.

a;, 0,739, y, — 0,00014247729462

ars 0,740, ys 0,00153144127039

ar3 0,7390851, y3 — 0,00000005558930

Valeur trouvée x 0,73908513321516„

Valeur exacte a; 0,7390851332151608
D + 0,0000000000000049

* Dans son mémoire, « Application de la méthode de Fourier à la
résolution des équations transcendantes », M. Stern trouve

x 4,49340964,

tandis que Euler, dans son « Introd. in anal. inf. », L. II, § 539, indique
la valeur

* 4,49340834.

De son côté, l'auteur de la présente note, en calculant les tangentes au
moyen de la série

1 x x3 2x* x1 2x9
cotg x — —

x 3 45 945 4725 93555

jusqu'aux chiffres du 12me ordre décimal, trouve pour la racine cherchée

x 4,4934094579«.
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Pour mieux faire ressortir l'influence des valeurs initiales
avec lesquelles on entre dans la formule I, le même exemple
(de Fourier) sera encore traité quatre fois, en partant de valeurs
qui diffèrent entre elles respectivement d'une unité du 1er, 2m%
3me et 4m" ordre décimal.

Exemple 8. y x3 -- 2a; — 5 0.

a) x, et xs diffèrent d'une unité du premier ordre décimal

a, 2,0, y, -i
Xa — A^ 1 Vi 0,061

x, 2,094, y3 — 0,006153416

Valeur trouvée x 2,09455154

Valeur exacte x 2,09455148
D -+- 0,00000006

b) x, et x2 diffèrent d'une unité du deuxième ordre décimal.

x, 2,09, y, — 0,050671

a?2 2,10, y2= 0,061

a;3 2,09454, y3 — 0,000128149691336

Valeur trouvée x 2,094551481607

Valeur exacte x 2,094551481542
D + 0,000000000065

c^ x, e^ xs diffèrent d'une unité du troisième ordre décimal.

a;, 2,094, y, — 0,006153416

x. 2,095, ya 0,005007375

x3 2,0945513 y3 — 0,000002026273165879303

Valeur trouvée x 2,094551481542337

Valeur exacte x 2,094551481542326
D + 0,000000000000011
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d) x, et x2 diffèrent d'une unité du quatrième ordre décimal.

x, 2,0945 2/i — 0,000574591375

Xi 2,0946 y, 0,000541550536

x3 — 2,094551480 y3 — 0,000000017214582189798208000

Valeur trouvée x 2,09455148154232659236

Valeur exacte x 2.09455148154232659148

D + 0,00000000000000000088

Bemarque. — Des exemples précédents, on peut déduire la
règle empirique suivante : Si par l'application de la formule I
il se trouve que a;3 est exact jusqu'au chiffre du wième ordre
décimal, la valeur fournie par cette formule sera en général
exacte jusqu'au chiffre du 2wièmc ordre décimal.
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