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REPRÉSENTATION DES IMAGINAIRES 31

L'étude qui vient d'être faite peut se résumer comme il suit :

La double infinité de droites appartenant à la congruence (1)
se groupe selon une infinité d'hyperboloïdes à une nappe. Ces

surfaces forment un faisceau passant par les directrices des

congruences r, (a ± bi) X + h + ki ; une série de leurs sections
circulaires est parallèle au plan xy, et leurs cônes tangents
concentriques sont coupés par des plans parallèles au plan xy
selon un système de sections coniques Jiomofocales, pourvu que
le centre commun se trouve en deiiors du plan xy. En particulier,

les sections coniques homofocales représentant le contour
apparent des Jiyperboloïdes sur le plan xy ont pour foyers
les points doubles de ce plan correspondant aux congruences
•/î (a±bi)£ + h + ki.

Il resterait encore à examiner les cas particuliers : 1° fc=fe=0,
2° 6=0, 3° a =1, 6 0. Dans le cas 2° les droites dans l'espace
forment une gerbe, et dans le cas 3° elles sont toutes parallèles.

On n'entrera pas ici dans les détails de cette étude qui, du
reste, n'offre aucune difficulté.

SECONDE PARTIE

Courbes imaginaires.
Soit l'équation d'une courbe

(i) »=/(8-
En séparant les parties réelles et imaginaires, on peut la mettre
sous la forme

X + Yi cp (x, y) + »\J/ (x, y).

Pour que le point (x + ßi, y + li) fasse partie de cette courbe,
il faut que les quantités x, ß, y, l satisfassent aux conditions

(2) }'/ <P(«.ß)

5 <1> (x, ß)

Par ces deux équations, y et l sont déterminés en fonction de

x et ß que l'on peut, en conséquence, envisager comme des

variables indépendantes. Si l'on donne à x et ß toutes les valeurs
possibles, les équations

(3) — p-ß
y — x l — ß
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fournissent toutes les droites représentant les points de la
courbe (1). En vertu des équations (2), ces droites appartiennent

à une congruence. Or, on sait que les droites faisant partie
d'une telle congruence sont tangentes en deux points à une
surface à deux nappes. Il s'agit maintenant de déterminer cette
surface. Dans la suite, elle sera désignée par S.

Soient x, y, z les coordonnées d'un point de l'une quelconque
des droites

x x + (y — x) z
(3)

W

y ß + (l-ß)z.
Lorsque x et ß varient, le point (x, y, z) se meut sur une
surface. Aux accroissements arbitraires dx, dß des paramètres
x et ß correspondent des accroissements des quantités x, y, z,
y, l, reliés aux premiers par les équations

dx dx + -/¦ dx + r-ir dß — dx z + (y — x) dz
yx dß j(4) {K ' /dl 33

dy dß + I r- dx + — dß — dß J z + (3 — ß) dz.

Or, la droite (3) est tangente à la surface au point (x, y, z), si
l'on a

dx (y — x) ds, dy (l — ß) dz.

Introduisant ces valeurs dans les équations précédentes et
posant, pour simplifier l'écriture,

!Z-V il-y ^_a L^_s
dx~ A' 3ß—/2' 3a—Ö" 3ß-02'

il vient

[1 + (y, — 1) e] dx +y3edß =0
(5)

V dx + [1 + (5, -1) 0] dß 0

Les plans tangents à la surface S aux points A et B, où elle
est touchée par la droite g de la congruence, se déterminent de
la manière suivante. La droite g répond aux paramètres x et ß.
Si l'on donne à x et ß des accroissements conformes aux équations

(5), on obtient une droite consécutive g' qui, elle aussi, est
tangente à la surface S aux points A' et B'. Soit A' le point
d'intersection de g et g1. Alors le plan de ces deux droites est
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évidemment le plan tangent à la surface au point B, et le
coefficient angulaire de sa trace sur le plan xy est donné par
dß—-= m.
d x

dßL'élimination du rapport -f- entre ces deux équations permet

d'établir une relation qui détermine z en fonction de x et ß.
On obtient

[1 + (y, - 1) z-} [1 + (5S -1) z] zyA
ou

(6) z' [yA — y23, - y. - 8, +1] + z [y, + 5S - 2] + 1 0.

Cette équation étant du 2d degré en z, il existe effectivement
deux points de contact.

Si, au contraire, on élimine z entre les mêmes équations, on
aura une équation pour déterminer m. Il vient successivement

dx dß

ytdx — dx + ytdß l^dß — dß + l,dx
1 m

'/i — 1 + y2m 3sm — m + 5,

(7) 7im- + (y, - 32) m — S, 0.

Les équations (6) et (7) se simplifient, si l'on tient compte des
relations entre les dérivées partielles premières de y et 3. En
effet, quelle que soit d'ailleurs la fonction f(x + ßi), on sait
qu'on a

lf_ df H=i. df
dx d(x-\-ßif dß d(x-\-ßiy

d'où l'on tire

¦ÌI=Udx~ dß

ou

et par suite
i (7. + tôi) "A + i52

y, 5,, y* — 3,

7äSt y,' + /s2, 7, — 33 0.
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A l'aide des deux dernières relations, les équations (6) et (7)
prennent la forme

(6°) z1 [(y, - l)2 + yä2] + 2z (y, - 1) + 1 0

(7«) y, (m2 + 1) 0

De l'équation (6°) il suit
1 — y, dtiyt _

1

(8)

et l'équation (7°) fournit, si y2 \, 0

(y, - l)2 + 7.2 1-7.=F*>.
>
<

rfß
(9) m= — ±i.dx

De l'équation (9) on conclut que les traces sur le plan xy des

plans tangents à la surface S forment deux séries de droites
parallèles, ayant pour coefficient angulaire respectivement i et — i.
Il s'ensuit que la surface elle-même se compose de deux surfaces
cylindriques dont les génératrices sont à la fois parallèles au
plan xy et aux traces des plans tangents.

On obtiendrait l'équation de cette surface en éliminant x et ß
entre les équations

1

z

(10)
1 — y, -h i'/s

X x + (y — x) z

2/ ß+(3-ß)^
Le cas où y, 0 mérite une attention spéciale. En effet, dans

cette hypothèse, z devient réel
1

1 — 7.

m n'est plus nécessairement imaginaire et les équations (10)
sont remplacées par les suivantes :

/ 1
I z ¦=

(10«)

1-7.
y — xy,

j 1-7.
f 5~ß7.
\y=~x 7.
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Or, lorsque
y, F (x, ß) 0

le point (x, ß) se meut sur une courbe dans le plan xy. Alors
les équations (10°) représentent en général une courbe gauche
réelle et les droites (3), tangentes à cette courbe, forment une
surface développable dont la trace sur le plan xy est donnée

par l'équation F (x, ß) 0. La courbe gauche devient plane ou
se décompose en plusieurs courbes planes chaque fois que la
courbe F (a,ß) 0 dégénère en une ou plusieurs lignes droites.

Les deux nappes de la surface, bien qu'imaginaires, peuvent
cependant se couper suivant une courbe réelle. Pour un point
d'intersection les deux valeurs de z dans la formule (8) doivent
être égales, ce qui n'est possible que lorsque y2 0. Par
conséquent, la courbe gauche répondant à l'hypothèse y2 0 n'est
autre que l'intersection réelle des deux nappes imaginaires de
la surface S.

Dans le but d'établir la correspondance entre les valeurs de

m et de x, y, z, on posera dans la première des équations (5)

-J— m et on la résoudra par rapport à z, ce qui donnera
dx

1

1 — y, — my3

En écrivant encore £ à la place de ± i pour éviter dans la suite
le double signe de i, on voit qu'à la valeur m s correspond la
valeur

1

z ¦

1 _ 7i _ g yt
Mais on se souvient qu'au point (x, y, z) répondant à cette valeur
de z, la trace sur le plan xy du plan tangent à la surface S n'a
pas pour coefficient angulaire e, mais bien — e. Il s'ensuit qu'en
désignant par X, n, 'C les coordonnées courantes, les génératrices
de la surface S possèdent les équations

(11) i—z, ri — y — s (X — x)
ou en remplaçant x, y, z par leurs valeurs

C-^-i
-j c *y

-r(X-
¦/x — nr V L — yl — s~/i

„-u-_Ì^L_—.({-- <-
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OU

,=_£g+ß + £g+^-ßX1-7<^7,)+£(7-«)(l-7.+^),'
(l-7.)ä+7/ (l-7.)ä+722

Enfin les équations (11) prennent la forme
1

(11«) •/?= — ec-r-ß-+-£cc-

+

1 - y, — ey,

(3-ß)(l-y,) + (*-y)y2
(i-7.r+7.s

(3-ß)yä + (y-«)(l-y,)
(1-7,)*+7,*

Elles expriment indifféremment les deux séries de génératrices,
suivant qu'on attribue à e la valeur +i ou —i.

La tangente.
Par analogie, on appellera tangente à la courbe

»=/(8
au point (x, y) la droite imaginaire

dy ,-y s
Y) — y-=-y(X-x).dx

Or
a; a+ßi, 2/ y + Si,

dy _d (y + Si) _ dy dl _
cte

— d (a+ ßi) _ d (x + ßi) rt ^a + ßi)
~~

ri + »5- 7i — »ynJ« c'a

ensorte que l'équation de la tangente prend la forme

>! — y — Si (y, — iyt) (X — x — ßi)
ou

(12) (yi-iyi)X-Y,+ (y-xyt-ßyi)+i(l+ayi-ßyi)=0.
Traduite en géométrie, cette équation conduit, comme on sait, à

une congruence linéaire ayant deux droites consécutives
communes avec la congruence qui est le représentant géométrique
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de la courbe imaginaire y, =/ (X). On obtient les directrices de

la tangente imaginaire (12) en faisant dans les formules (4),
p. 6, à savoir

Cp + Dî +e(Dp-Cg) Eg-Fp+e^+Fg)
p + g2 i> + g

les substitutions suivantes

A=y,, B -7î, C=-l, D 0,
E y-ay,-ßyI, F S+«y2-ßy,,

IJ A + C y, — 1, g B + D — y,.
Il vient

(7.—!)—e7«_ 1 — 7. — £7* _ L _(13) K--

(y,-l)'+ y* (l_7l_£7ä)n-y+£y2) l-y.+ey,
y. _ .s — (y — ay, — ßy2) y, — (S + «y, — ßy.) (y, — 1)

;
(y - ay, - ßyä) (y, - 1) - (3 + «y, - ßy,) y2

(7. -l)2 + 7/
Après quelques réductions, cette dernière équation devient

(14) „ -X + ß - ex + <*=# fc *> ±fcL^A
(l-7.)s + 7is

(S ~ß) 7j + (7 -«)(!- 7.)

(l-7.)s + 7.2

En comparant les équations (13) et (14) avec les équations
(11°) on reconnaît que les directrices de la tangente (12) ne sont
autres que les génératrices de la surface S dont il a été question
jusqu'ici. Par conséquent, lorsque la tangente varie, ses directrices

engendrent cette même surface.
Dans le cas particulier où y2 0, les deux valeurs de Ç

coïncident et deviennent réelles. La tangente (12) prend la forme

(15) 7iX - y, + (y - a7l) + i (3- ßy,) 0.

Le coefficient angulaire de cette congruence étant réel, les
droites qui en font partie forment une gerbe dont le centre est
donné par les formules (5), p. 7, à savoir

_ _
CE + DF _ _ CF-DE _

C
«

C2 + D2 ;' n~ - C2 + D2
Ç' Ç

—A + C
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Or, dans le cas actuel

A y,, C=-l, D 0, E y-ay,, F 3 - ßy,,
puis

r= 1 fc_7 — *?i „ LlZ_ÉZi_
1 — y,

'
1 - y,

' '
1 — y,

Ce sont là précisément les formules (10°). Il s'ensuit que le lieu
géométrique des centres des tangentes à la courbe imaginaire
n=f(X) qui répondent à l'hypothèse y2 0, est identique à
l'intersection réelle des deux surfaces cylindriques imaginaires
(10).

La courbe définie par les formules (10«) est encore susceptible
d'une autre interprétation importante. En effet, lorsque le point
(a, ß) du plan inférieur est assujetti à se mouvoir sur une courbe
F (a, ß) 0, les droites appartenant à la congruence (1)
engendrent une surface réglée dont l'une quelconque des sections
parallèles au plan xy se détermine au moyen des formules

!f
z const.

x x(l-z)-\-yz
y — ß([ — z) + lz

La tangente au point (x', y', z) à cette courbe est donnée par
les équations

y, - y' ffi(l-«) + (M« + M3)* a _ ^ K g
dx (1 — z) + (y,dx-\-y^dß) z

qui en vertu des relations

5a 7. ' 5, — ys

peuvent s'écrire

£| [1 + (y,-1) ,]._?,,
(17) r,-y' - ^-(?-^Ç ^

1 + (y, - 1) z; + ¦£ ytz

Dans le plan de la courbe se trouve une génératrice de la surface

S, à savoir

(18) K z, r,— y0 i(X — x0).

Est-il possible que la tangente (17) devienne identique à cette
génératrice Telle est la question qui se présente naturellement
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à l'esprit. La réponse est affirmative pour tous les cas où l'équation

y2 0 est satisfaite par des valeurs réelles de a et ß.
D'abord de la condition

jg[l + (7,-l)«]-?.'_.
i-Hy.-D'+jfy,*

on tire
dß i [1 + (y, - 1) g] + y,.g

rt a 1 + (y, — 1) z — iy22

Ensuite, pour que le point (•£„,y„,z) appartienne à la surface S,

il faut que l'on ait
1

z
1 — y, - iyt

ou

(19) 1 — 7. — V. - -

z

Dans cette équation, z doit être réel et différent de zéro; par
conséquent elle se décompose en ces deux

y2 0, 1 — y, =-,z
desquelles on déduit les valeurs réelles

a a0, ß ß0.

Or, il est évident que l'équation linéaire

(20) • ß — ß0 i (x - «„)

est compatible avec la condition (19) ; en même temps elle

..dßfournit —- i.
dx

Le point (x0, y0, z) est maintenant déterminé; en appelant
y0, 30 les valeurs que prennent respectivement y et 3 pour a a0,
ß ß0, on a en effet

t X0 — x0 (l—^ + y^
*/o ßo (1 — Z) + S„2,

La génératrice (18) peut être considérée comme étant l'image
dans le plan z const, de la droite imaginaire (20). En suppo-
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sant pour un instant l'identité des droites (17) et (18), il s'ensuit
que de son côté le point de contact (x', y', z) de la tangente (17)
est l'image du point a', ß' satisfaisant simultanément aux
équations

F (x\ ß') 0

ß'-ß0 i(x'-x0).
Soient y', S'les valeurs de y et 5 correspondant à x=x', ß ß'-
Alors on a, puisque le point (%', y', z) appartient non-seulement
à la courbe (16), mais aussi à la surface S

l x' a' (1 — z) + y'z

(y' ß'(l-z)-r-l'z
Afin de démontrer a posteriori que les valeurs x0, y0, x', y'

trouvées de la façon indiquée rendent effectivement identiques
les droites (17) et (18), il suffit de prouver que le point (x0,y0, z)
fait partie de la tangente (17), en d'autres termes, on doit avoir

y°-y' i.
x0 — x'

Or, de l'équation

y + 3i=/(a+ßi)
il suif, par hypothèse,

yo + S„i=/(«0 + ß0i)

/+S'i=/(«'+ß'i).
Remplaçant dans cette dernière égalité ß' par sa valeur, à savoir

ß' ßo + * («' - «o)

il vient

y' + S'i =/(«'+ iß0 — ot' + a0) / (a0 + ß0i) y0 + S0i.

Par conséquent
y' ya, 3' 3„

et puis

I/o—!/' _ ß0(l-z)+l„z- [ß0 + i («' — a0)] (1 - z) — l0z _
x0— x' '

a0 (1 — z) + y0z — a' (1 — z) — y0z

_ i K — «') (j — f) _ j
(O0_fl0(l-*)

Ainsi, l'identité des droites (17) et (18) est bien établie.
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Partant de l'égalité

y-3i=/(a-ßi)
que l'on obtient en substituant les expressions conjuguées à

toutes les quantités imaginaires entrant dans l'équation

y + Si=/(a + ßi);
on vérifierait de même l'identité des droites

r, — y" — i (X — x"), Ç z

f — Vo — i (£ — x0), Z z,
où x" et y" signifient les valeurs conjuguées respectivement de
x' et y'.

Les génératrices de la surface S

n — y0 ±i(X — x0), 'C z

se rencontrent au point réel

x x0, y y0, Ç z.

Celui-ci est par conséquent un foyer de la courbe (16). La fonction

F (a, ß) est arbitraire, et par suite l'équation F (a, ß)=0 donne
naissance à une infinité de surfaces réglées. Or, le point (x0, y0,z)
est indépendant de la fonction F. Il en résulte que les sections

faites dans ces surfaces parle plan z c, où c est une constante
différente de zéro, possèdent toutes le foyer commun (x0, y0, z).

De plus, lorsque z varie, le foyer (x0, y0, z) décrit en général
une courbe gauclie qui n'est autre que l'intersection réelle des

deux nappes de la surface S, c'est-à-dire la courbe représentée

par les formules (10°).
Comme exemple à l'appui de ces généralités sur les courbes

imaginaires, il ne sera pas inutile d'étudier quelques courbes

particulières. Les courbes choisies sont trois courbes spéciales
du second degré.

La parabole.
Soit l'équation de la courbe à étudier

(1) 2p»,
où p signifie une constante réelle. Puisque

dri=X
dX P
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le rapport des éléments linéaires aux points correspondants n

x
et X est égal à la valeur absolue de — et l'élément dr, fait avec

P
¦ x

1"élément dX un angle qui est égal à la déviation de — Entre le

'"" supérieur et le plan inférieur la similitude dans les parties
niment petites règne partout, à l'exception des points X 0

et £ oo. Posant

X x-\-yi, y, X + Yi,

l'équation (1) devient

(* + 2/i)2 2i>(X + Yi),
d'où l'on tire

2»X x* — y-
(2)

\ F y

2pY 2xy.

Ces relations montrent qu'à des lignes droites parallèles aux
axes coordonnés dans le plan supérieur correspondent dans le
plan inférieur des hyperboles équilatères qui, en vertu de la
similitude dans les parties infiniment petites, se coupent sous un
angle droit. Deux quelconques de ces courbes orthogonales se

coupent en deux points réels. Il s'ensuit qu'à chaque point du
plan supérieur correspondent en général deux points du plan
inférieur, symétriques par rapport au centre O. La même chose
ressort directement de l'équation (1) ou des formules

x fp~\/ x+ yx2+Y2

y=fp\/ZJ^fT+Yt
déduites des équations (2).

Soit

alors on a

puis

y x tg y,

2pX (1 — tg2 y) x2

2pY 2 tgyx'-,

Y ^ 2 tg ^ __ t 2
X l-tg> g ""

Par conséquent, lorsque le point X parcourt la droite y xtgy,
son image y, décrit cette autre droite Y X tg 2y. Mais tandis
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que le point X se meut sur la droite entière, le point n est
restreint à un rayon partant de l'origine.

Afin de faciliter le langage, ces droites seront désignées clans
la suite respectivement par y et 2y.

Si l'on pose
x — r cos cp

il suit
y rsm cp,

r' rX — (cos2 m — sin2 cp) — cos 2cp
2p T 2p

r* r~Y —¦ 2 sin cp cos cp — sin 2cp
2p T T 2p T

Il s'ensuit que lorsque le point X parcourt une fois la circonférence

de rayon r
x* + yi r*,

y2
v décrit deux fois la circonférence de rayon

2p
r4

X2 + Y2 —
4^2

Ceci établi, il serait facile de construire des points
correspondants. En effet, si l'on projette comme précédemment le

plan supérieur sur le plan inférieur, la figure (3) montre la position

relative d'un point (X, Y) et des deux points correspondants

(x, y) et (— x, — y).
La correspondance entre les points des deux plans est

parfaitement établie, si l'on donne par exemple un point B' sur la
droite 2y et les points correspondants B et B, sur la droite y.
Or, pour construire tous les points correspondants situés sur les
droites y et 2y, on peut procéder de la manière suivante (fig. 4).
Sur la droite y se trouve une involution AA,, BB,, CC,, etc.,
dont les points doubles sont l'origine et le point à l'infini. D'un
point S sur une circonférence quelconque dans le plan, on la
projette sur celle-ci. Par là on détermine une involution curviligne

dont le pôle P est le point d'intersection des sécantes
joignant les couples de points conjugués. Le faisceau formé par
les sécantes est projectif avec la ponctuelle simple A', B', C, etc.,
sur la droite 2y. En le coupant par une droite quelconque, on
est en présence de deux ponctuelles projectives A", B", C",
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A'. B', C et dès lors il est facile de construire autant de points
correspondants que l'on voudra.

Si maintenant on demandait de construire les points D et D,,
correspondant au point donné D', on chercherait d'abord D"; ce

point trouvé, on aurait la sécante PD", d'où l'on remonterait
aisément aux points cherchés. Dans la figure (4), on s'est servi
des points doubles de "involution AA,,BB, pour déterminer
le pôle P, ce qui simplifie un peu les opérations.

La construction indiquée est encore utile, lorsque le point
donné E' n'appartient pas à la droite 2y. En effet, dans ce cas,
on mènera la droite OE' ; alors les points E et E, seront situés
sur la bissectrice de l'angle E'OX. Pour les trouver, il suffit de

transporter le point E' sur la droite 2a, moyennant un arc de
cercle dont le centre est O et le rayon OE', de construire sur la
droite y les points correspondants et de les ramener ensuite à
leur place.

Cette construction deviendra en partie superflue, quand on
connaîtra l'enveloppe des droites joignant les points de la droite

y aux points correspondants de la droite 2y. A cet effet, soient

x et y x tg y
les coordonnées d'un point quelconque de la droite y ; les
coordonnées du point correspondant de la droite 2«. seront

X ^=-^x2, Y ^'x2
2p p

et la droite, déterminée par ces points, aura pour équation

¦i — y v— (l — *)
X — x

ou

(3) xi sin y + x cos y (r/ cos 2 y — \ sin 2a) +
+ 2p cos2 y (X sin y — n cos y) 0.

En la différentiant par rapport à x

(3°) 2x sin u + cos y. (r, cos 2a — X sin 2a) 0

et en éliminant ensuite x entre les équations (3) et (3a), il vient

(4) (X sin 2y — -i) cos 2y.y 8p sin y (X sin a — •/? cos a).

Telle est l'enveloppe des droites (3). Si, dans cette équation, on
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regarde y. comme variable, elle représente un système de
paraboles. Par la transformation à l'aide des formules

X sin 2a — r, cos 2a Y + 2p sin 2a

X cos 2a + r, sin 2a X + 2p cos2 y,
d'où l'on tire

I X (X + 2p cos 2 y) cos 2a + (Y + 2p sin 2a) sin 2y

yi (X + 2p cos 2 a) sin 2y. — (Y + 2p sin 2y) cos 2y.

l'équation (4) prend la forme
Y2 - 8psin>X

Cette équation montre que les coordonnées du foyer de l'une
quelconque des paraboles sont

Y 0, X= — 2psinäla
et que sa directrice possède l'équation

X 2p sin2 y..

Au moyen des coordonnées i;, v;, le foyer est donné par
X 2p, yi=0

et la directrice par l'équation
X cos 2a + yi sin 2a 2p.

II s'ensuit que toutes ces paraboles ont un foyer commun et
que leurs directrices enveloppent une circonférence dont l'origine

est le centre et le rayon 2p (voir fîg. 5). Elles passent
toutes par l'origine, et en ce point la droite y est une tangente
à la courbe correspondante, tandis que la droite 2y en est un
diamètre. La construction de ces paraboles est donc des plus
faciles. D'une propriété très connue de la parabole, ainsi que
des formules

x l-tgVxS T tg£a,
2p p

qui ne renferment x qu'au carré, on conclut qu'on aurait obtenu
la même parabole enjoignant le point (X, Y) au point (— x, — y).
Cette observation permet de construire facilement des points
correspondants sur les droites a et 2a. En effet, pour trouver
sur la droite y les points A et A, correspondant à un point A'
donné sur le diamètre 2a, il suffit de mener par A' les deux •
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tangentes à la parabole; celles-ci couperont la droite y aux
deux points cherchés.

Cette construction devient illusoire lorsque y 0 ou y n,
car dans ces cas la parabole se réduit à la droite m =0. D'ailleurs,

c'est sur cette droite que sont situés les points doubles du
plan, à savoir l'origine et le foyer des paraboles. On trouve ces
points caractéristiques en posant yi X dans l'équation (1), ou
X x, Y y dans les équations (2), ce qui donne

5 0; l 2p
ou

x y 0 ; x 2p, y 0.

L'équation (4) est susceptible de la forme suivante

(X cos 2a + y, sin 2 a — 2p)* (X — 2p)" + yi*

fr + i (X - 2p)] [„-»($_ 2p)]
Cette forme prouve que les droites imaginaires yi ± i (X—2p)

sont des tangentes communes à toutes les paraboles en question.
Il sera possible d'établir plus loin la connexion entre ces deux
droites et les génératrices de la surface à deux nappes S répondant

à la congruence (1).
Les droites de la congruence (1) qui joignent les points de la

droite 2a, remise dans le plan supérieur, aux points correspondants

de la droite y, engendrent une surface réglée, dont
l'équation s'obtient en éliminant x entre les équations

X-— X yi — x tg y

ou

(5)

7T-(1 — tg» — x —ï%y—xtgy
2p p

x%
-, — x(l — Ç)tga —-tgy

-x(\-K) =~(\-t^y).

Ç

On trouve d'abord

¦n— x (1 — Ç) tg fX
tg2y,

d'où l'on tire
X-x(\-ï)

X sin 2a — -r, cos 2a
r (l-S)tgf*
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et en introduisant cette valeur dans la première des équations

(5)

(fi) 2p sin a (y, cos y — X sin a) 1 — Ç)2 Ç (X sin 2a — r, cos 2a)2.

La surface du 3me degré représentée par cette équation
possède la génératrice double

Ç 1, £ sin 2a — -n cos 2a 0.

La partie intéressante de son contour apparent sur le plan xy
est la parabole (4), et L'on remarquera qu'on l'obtient en faisant
dans l'équation (6)Ç =—1. En d'autres termes, le cylindre
tangent parallèle à l'axe des z touche la surface suivant une
courbe située dans le plan Ç — 1. La section déterminée dans
la surface (6) par un plan parallèle au plan xy, est une parabole;

or, on sait d'une manière générale que toutes ces courbes,
répondant à différentes valeurs de y, doivent avoir un foyer
commun. En effet, Ç étant constant, on trouve que les coordonnées

du foyer sont indépendantes de y.

»=0, X -P{±^
et de plus, en mettant l'équation (6) sous la forme

[jcos2a+-„sin2a+p llZl^!J >,» + [Ç + p <Izl9.']'

=|„+i[l+y(i_.«]j|„_,.[,+,(i_2:]j
on reconnaît que les droites

(8) r>=±i\l+P^-^\
sont tangentes à toutes ces courbes.

Maintenant, si l'on rend à Ç sa variabilité, le lieu géométrique
des foyers (7) est l'hyperbole

(9) /7 0, 2^+^(1—Ç)a 0.

Avant de constater, pour confirmer la théorie générale, que
les droites (8) sont les génératrices de la surface S, et que
l'hyperbole (9) est l'intersection réelle de ses deux nappes, il sera

peut-être intéressant de chercher encore l'équation de la surface
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réglée, engendrée par les droites qui joignent les points de la
circonférence dans le plan supérieur

X —cos2cp, Y ^— sin 2<p

2p r' 2p r

aux points correspondants de la circonférence dans le plan
inférieur

x r cos cp, t/=r sin cp.

On l'obtient en éliminant cp entre les équations

X — r cos cp r, — r sin cp

r- r'
—— cos 2cp — r cos cp -rr— sm 2cp — r sin cp

2p T 2p

S

ou

-j— cos 2cp •— r cos cp ] Ç ; — r cos 9

2p
sin 2cp — r sin cp

1 'Ç n — r sin cp

sin

— cos cp

cos cp

sin

Il vient successivement (les opérations nécessaires étant
indiquées d'une manière généralement usitée

?+2^'

X + -~— Ç sin cp — n cos cp 0

yi sin cp ¦ r
2p

Ç COS c

0 5-
2j>

r(l-S) »3

[(? " ¥2 Ça)+ "*]sin T r (1 ~~ Ç) "

[(? - ip2 Ç2)+"*]cos =r (1 -Ç) (l ¦

2p
Ç).

Elevant au carré et ajoutant terme par terme, on trouve finalement

(10) t(?- ~ ?2) + <ls r-- (i - ç)2 K5+ j- o»+»*].

Sans entrer dans une discussion détaillée, on peut cependant
reconnaître immédiatement la propriété suivante de cette
surface du 4mc ordre. Les sections parallèles au plan xy sont des
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Kr1
épicycloïdes engendrées par un point à la distance —— du centre

du cercle mobile; le cercle fixe et le cercle mobile étant d'ailleurs

du même rayon =± ~z r (1 — 'Ç). Quelle que soit la valeur

particulière de r, elles possèdent le foyer

(\ — iy

Parmi ces courbes se trouvent la circonférence simple

Ç 0, X* +'r r°-

et la circonférence double

r"
Ç=l, + „»:='

4p-

Enfin il importe d'établir l'équation de la surface à deux

nappes, à laquelle les droites de la congruence (1) sont
tangentes doubles. A cet effet, il suffit, comme on sait, d'éliminer
x et ß entre les équations (10), p. 34, qui, dans le cas actuel, où

7
_«'-ßä g._ aß- 2p ' §-

p
a

p
' *

_ß
P

prennent la forme

/
/

\

1

Ç:
P

p — x-j-sß

(11) * x-- «(1_Ç) + -
; - ßä

2p

Y, 0(1-$ + -p ?)•

La première et la dernière'de ces équations fournissent

.^ + ^i^y^+^^.
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En introduisant ces valeurs dans la seconde des équations (11),
on obtient

(i2) ,ç + £[K + 'iilp^] o.

Ainsi, les deux nappes de la surface cherchée ont pour équations.

Elles se coupent effectivement suivant l'hyperbole réelle

— 0, R+«4=2-0
et leurs génératrices sont respectivement

Ç const., Yi ±i [S+^r*0'] •

L'hyperbole equilatere.
Soit à représenter la courbe

a + bi
(1) 'n ^~'

Posant comme précédemment
X x + yi, K X + Yi

et séparant les parties réelles et imaginaires, il vient

ax + by
Ä i~, 2X +w

(2) i
bx — ay
x*+y*

et réciproquement

_ «X + 6Y
X~ X2+Y«

(2°) {V ; » &X-aY
y~ X2+Y3
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Aux deux systèmes de droites x const, et y const,
correspondent dans le plan supérieur deux systèmes de circonférences

qui se coupent orthogonalement. Les courbes du premier
système se touchent à l'origine, où elles ont la tangente
commune aX + 6Y 0, et leurs centres sont situés surla droite
6X — aï 0. Les circonférences du second système possèdent

à l'origine la tangente commune 6X — aY 0, et leurs
centres se trouvent sur la droite «X + bY 0. Si l'on projette
encore le plan supérieur sur le plan inférieur, alors au point
déterminé (x, y) correspond le point d'intersection (différent de

l'origine) des deux circonférences correspondantes. Cette relation,

d'ailleurs parfaitement symétrique, entre les deux plans
permettrait de construire des points correspondants; mais il
est facile de trouver une construction purement géométrique.

Les points doubles du plan s'obtiennent en identifiant X et >j

dans l'équation (1). Si l'on pose pour simplifier

a p cos v

b p sin v

et partant

a-\-bi-= p (cos v + i sin v) pewi,

on trouve
vi

X ± fp~ e3.

Il existe par conséquent deux points doubles; leurs coordonnées
sont

r— V

x ± y p cos —
À

y ±fp sin -
Lorsque le point inférieur se meut sur la ligne droite (a)

y x tg y,
son image parcourt cette autre droite (v — a)

Y Xtg(v-a)
et lorsque le point (x, y) décrit la circonférence

x r cos q

y r sin
ou x1 + y2 r2,
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son image se meut également sur une circonférence, à savoir

X — cos (v — cp)

Y — sin (v — cp)

ou X2+Y2 (£
r

La correspondance entre les points des droites y et (v — y) est
uniforme; en d'autres termes, les ponctuelles y. et (v — y) sont
projectives. Pour établir cette projectivité, il suffit d'une seule
couple de points, car à l'origine, considérée comme appartenant
à l'une des droites, correspond chaque fois le point à l'infini de

l'autre droite. De cette façon, on connaît trois couples de points
correspondants, ce qui permet de résoudre le problème suivant :

Etant donné sur la droite y. le point D, construire sur la droite
(v — y) le correspondant D', et, dans le cas actuel, la construction

est très simple. En effet, si la couple donnée est CC, la
parallèle à DC, menée par le point C, détermine sur la droite
(v — y) le point cherché D'. (Voir fig. 6.)

La droite joignant les points correspondants (x, y) et (X, Y)
des droites y et (v — y.) a pour équation

(3) p cossy \_yi cos (v—u) — X sin (v—u)] + XP cos u sin (v—2a) +
+ xi (X sin y — v cos a) 0,

dans laquelle x est envisagé comme un paramètre variable:
Elle enveloppe l'hyperbole

(4) X1 sin u sin (a — v) + 5^ sin v — n"- cos y cos (y — v)

— p sin2 (v — 2y)

qui dans cette équation est rapportée à son centre et dont les

asymptotes sont les droites v X tg (v — y) et-/i=X tg y- Lorsque

y — v, les deux asymptotes coïncident et la courbe se confond

avec la droite y, — X tg — v.

En transformant l'équation (4) à l'aide des formules
1 .1X x cos — v — y sm — v

i i
¦n x sin — v + y cos — v
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elle prend la forme

53

x% y*

pcos2(a — -v) ,osin2(a — - v)

1.

Il s'ensuit que les axes de l'hyperbole sont respectivement

v\ .r— ¦ f vNr? cos a et fp sin l a — -
et que, /* signifiant maintenant un paramètre variable, toutes

ces hyperboles sont homofocales. L'excentricité étant =fp, les

foyers communs sont encore les points doubles du plan.
D'ailleurs, on vérifie aisément que l'équation (4) peut s'écrire des

deux manières suivantes

VC
1

• 1
IX cos — v + n sin — v ¦

A A
Yp cos2(a —-v)]a

cos ' (y. — - v) [(X — fp cos - v)2 + (-n — fp sin - v)2],

1 1 /— 1

[$ cos — v + >? sin — v + y p cos2 (a — — v)]2
A A A

— cos2 (a — - v) [(£+ /£" cos - v)2 + (« + fp~ sin - v)»].
A A A

De ces deux équations ressort de nouveau la propriété déjà
citée des hyperboles en question ; de plus, elles font voir que
ces courbes possèdent les quatre tangentes communes

n + fp sin — v ± i (X -+- fp cos — v).

Afin de trouver aussi l'enveloppe de la droite

• P sin (v — cp) — r- sin cp

(o) n — r sin cp
'¦ — (X — r cos cp)

p cos (v — cp) — r2 cos cp

qui joint les points correspondants

r cos

y r sin cp

et

X — cos (v — cp)

Y L sin (v -r
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où cp est considéré comme variable et r comme constant, on
pourrait éliminer 9 entre l'équation (5) mise sous la forme

(5a) yj[pcos(v— cp) — r*coscp]—£[psin(v— cp) — r2sincp]

rp sin (2cp — v)

et celle qu'on en déduit en la différentiant par rapport à cp

(6) v [p sin(v— cp)+r2sincp] + £ [pcos(v— cp) + r2 coscp]

2rp cos (2cp — v).

Mais les calculs nécessaires pour opérer cette élimination
seraient longs et manqueraient de symétrie, de sorte qu'il vaut
mieux résoudre les deux dernières équations par rapport à X et n.
Toute réduction faite, on trouve pour l'enveloppe cherchée

pt y4 3 1 1
5 — p cos cp H—p cos(3cp — 2v) r2cos(3cp — v) —

i
rp 2 2 2

3 r cos (cp — v)
A

¦r* 3 1 1

y] — p sin cp — — p sin (3cp — 2v) — —r sin (3cp — v) -

rp 2' 2'
3

H r2 sin (cp — v)
A

Afin de reconnaître la nature de cette courbe, on transforme
ces équations au moyen des formules

1 1

x X cos — v + Yi sin — v
2 2

y — X sin — v + yi cos — v.
A A

Posant ensuite 9 — — v 9, on obtient finalement

(7)

ro
x 2 '-—- cos3 <h

P + r-

O rP -31y — 2 —!— sin3 cp.•7
p — r* Y

Ce sont là les équations de la développée d'une ellipse. En effet,
on sait que la développée de l'ellipse

— + ^= 1

a2 b'-
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est donnée par les formules

X COS 3
cp

a

y= r-— sin3c{/.

Or, il y a identité entre cette courbe et la courbe trouvée, si

« et b satisfont aux équations

2rp _
g2 — V

p-^-r* a

2rp
__

a* — ¥
p — r1 b

sous la condition p < r-. Mais en remplaçant 41 par — y, c'est-
à-dire en comptant l'angle <J/ en sens inverse, on voit que dans
le cas où p > r%, il suffit de substituer à la seconde des équations

(8) la suivante

2rp _ a2 — V
r1 — p b

pour obtenir une valeur positive de b. On en conclut que les

ellipses en question et par conséquent aussi leurs développées
(7) sont les mêmes pour r* > p et r2 < p. Lorsque r2 p le

petit axe de l'ellipse se réduit à zéro. Dans cette hypothèse, les

points (x, y) et (X, Y) se meuvent sur la même circonférence
passant par les points doubles du plan et les droites (5) dont on
a cherché l'enveloppe, sont parallèles.

Des équations (8) on tire
r2 + p r2 — p

a —'-£, b
2r 2r

puis
a2 — b"- p

Il s'ensuit que les ellipses dont les courbes (7) représentent
les développées sont homofocales, et que leurs foyers sont les

points doubles du plan.
On pourrait établir maintenant l'équation de la surface S, à

laquelle les droites de la congruence (1) sont tangentes doubles.
Mais comme cette surface est imaginaire, elle offre peu d'intérêt.
Il n'en est pas de même des courbes réelles suivant lesquelles
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ses deux nappes se coupent. Pour les trouver, on part des
formules (2), après y avoir remplacé X, Y par y, l, et x, y par a, ß,
afin de les mettre en harmonie avec la théorie générale :

ax+bß a cos v + ß sin v
17 a» + ß*

— P a2+ß2
&a — aß _ a sin y — ß cos v- a8 + ß2

~~ P
a2+ß2

"

On en tire
3 y (ß2 — a2)cosv — 2aßsinv
Tx 7ì~~ P

(a* + ß2)*

dy (x- — ßs) sin v — 2aß cos v

dß
7i P

<V + ß2)2
'

Or, y2 s'annule lorsque

(a2 — ß2) sin v — 2aß COS v 0,
c'est-à-dire

ß 1
1° pour — tg — v

x 2

ß 1

2° » -- — cotg — v.
a 2

Si donc le point (a, ß) se meut sur l'une ou l'autre des droites

(9)

(a a
1

ß «tg-v

ß=—acotg-v

les droites de la congruence (1) enveloppent une courbe plane
dont les équations s'obtiennent en éliminant a et ß entre les

équations

(,0) «-U-0+ *
,-/! ß(i-C) + §c;

tout en tenant'compte des relations (9). On trouve moyennant
la première des équations (10)
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1° pour ß atg — v
A

x cos — V
2 V,_e

^cosf^/zszg

2° pour ß — a cotg — v
A

a sin-vi/ _XI_
2 VÇ — 1

' ß^-cos^vy/IK

7=-smi,N/ZIEI)

cos- 1)

et on remarquera que les premières formules répondent au cas
où Ç < 1, et les secondes au cas où 'Ç > 1. Les cieux autres des

équations (10) fournissent ensuite

1

1°

(H)

2cos-vypÇ(l-0

>7=2sin-iv/pÇ(l-Ç)

2°
(?=-2sin-ivfpÇ(Ç-l)

(lla)(„ 2cos^vypÇcÇ-l)

Les enveloppes cherchées sont ainsi

1° l'ellipse et 2° l'hyperbole
f 52 ,/, iy_i \k !Y ?î 1

ipcos — V
A

Vç 2J
4

1
1 4psnr — v
G

4

(12) {

ip sin2—v
A

¦CA
1

(12«) HJ--V•4pcos' —v

¦n — — Hcotg-v.

1

4

Lorsque le point (a,*ß) est assujetti à rester sur la courbe
quelconque F(«,ß)=0, les droites de la congruence engendrent
une surface réglée. Or, on se souviendra que la section faite par
le plan Ç const, dans cette surface, possède des foyers dont les
coordonnées sont données par les formules (11) et (lla), et que
le lieu géométrique de ces foyers, Ç étant considéré comme va-
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riable, est précisément soit l'ellipse, soit l'hyperbole qui viennent
d'être trouvées. On vérifiera ce fait dans deux cas qui se distinguent

par leur simplicité.

Premier cas. Le point (a, ß) se meut sur la droite

ß x tg y,
son image dans le plan '(, 1 sur la droite

l ytg(v-y).
Les génératrices de la surface correspondante ont alors pour
équations

X — * _ "/î—atga

ou

a + b tg a
__

b — a tg y.

(l+tg»a " (l + tg2a)a * tg ^

cos (v — y.) cos y
x

sin (v — a) cos y

Ç

X x (1 - Ç) + pi

>5=a(l — Ç)tga+ pÇ
a

En éliminant a entre ces deux équations, il vient

(13) {X sin y — v cos y) [X, sin (v — y.) — -n cos (v — a)]
pÇ(Ç-l)sin20-v).

C'est l'équation d'un hyperbolo'ide à une nappe. Si on la transforme

encore à l'aide des formules

¦c 1.1X x COS — v — y sin — v
A A

(i*) ;v ' ' .i i
: x sm — v + y cos — v

A A

elle prend la forme plus simple
x* f =1

4pÇ(l-Ç)cos2(pc-^v) 4pÇ(l--Ç)sin2(pc-|v)

et qui permet de reconnaître que la section de la surface déterminée

par le plan 'C const, est une hyperbole ayant pour foyers
les points

Ç const., y 0, x — ±2 fpÇ(l — K)
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pour Ç < 1 :

Ç const.

X ±2cos ±vf~pT(Ï^T)

•/î ±2sin|vKpÇ(l—Ç)

ou Ç const., y dz 2 fp% (Ç — 1), x 0,

suivant que Ç est plus petit ou plus grand que l'unité. Exprimées
en X i " les coordonnées des foyers deviennent

pour Ç > 1 :

Ç const.

S=+2sin-iv/plf(Ç-l)

¦/3 =t:2cos|vy7r(r="i)

et ce sont bien là les formules (11) et (11°). On peut remarquer
encore que l'hyperbole (4) est le contour apparent sur le plan
xy de l'hyperboloïde (13).

Deuxième cas. Le point (a, ß) se meut sur la circonférence

a r cos cp, ß r sin cp

et par conséquent son image sur la circonférence

y — cos (v — cp), 5 — sin (v — cp).

r ' r
Dans ce cas, les génératrices de la surface réglée sont

p p
X cos cp [r (1 — Ç) + Ç — cos v] + sin cp Ç — sin v

¦n cos cpÇ — sin v + sin cp [r (1 — Ç) — Ç — cos v]

et l'élimination de cp entre elles fournit

(15) (f+^)p(l_Ç)2+Ç2^J+2Ç(l-Ç)pcosv(^-^)_

- 4$« p (1 - Ç) sin v L* (1 - ?)2- Ç2 £lj.
C'est l'équation de la surface cherchée. Celle-ci est du 4me ordre
et son contour apparent sur le plan xy est la courbe (7). Par
la transformation au moyen des formules (14), l'équation (15)
prend la forme

(15«) 1 y. 1 1.

[r(l-Ç) + iq« [>(l_Ç)_Lç]*
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Elle montre que les sections parallèles au plan xy de la surface
sont des ellipses. Les foyers de l'une quelconque de ces courbes
sont les points déjà trouvés dans le cas précédent. La surface
(15°) est facile à construire. Pour r* p, elle devient le cono-
cuneus de Wallis

p^p (1-2Ç)2

ayant pour directrice la droite Ç — y 0, et pour plan di-
A

recteur x 0.

La circonférence
Soit

(O 'fi. ¦ "i
X1 + Y,- : a*

et a une constante réelle Alors

dri

dX

X

Vcl2 — p

Il s'ensuit que £ 0 et X -±.a sont les points singuliers de la
fonction ri. Les points qui, après la projection du plan supérieur
sur le plan inférieur, deviennent les points doubles du plan, sont

r a
5=±7=.f2

(2)

De l'équation (1) on tire

X2 — Y2 y2 - x2 + a2

XY — xy.
Par conséquent, lorsque y* — x2 + a2 const., c'est-à-dire
lorsque le point X se meut sur une hyperbole equilatere, le
point yi décrit aussi une hyperbole equilatere. La même chose a
lieu dans le cas où xy const. Aux points x ±x, y -+- ß
du plan inférieur correspondent ainsi deux points symétriques
par rapport à l'origine du plan supérieur.

La représentation transmise par la fonction yi est connue. On
sait, par exemple, que lorsque le point (a, ß) parcourt une
circonférence du centre O, son image (y, S) décrit une courbe de
Cassini.
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Afin d'établir d'autres relations entre les deux plans, on posera

x + yi a cos (cp + <\ii)

X + Yi a sin (cp + <\ti).

Ces valeurs satisfont identiquement à l'équation de la circonférence,

et l'introduction de la#variable (cp + yi) constitue une
représentation des plans Ç 0 et Ç=l sur un troisième plan,
celui de la variable (9 + 9Ì). Des équations (3), si l'on désigne

par cos h\i, sin h<lj (cosinus et sinus hyperboliques de 9),
respectivement les expressions

Ve'
il résulte

'

x a cos cp cos h'ty

y-= — a sin cp sin Jv\
(4)

et i
2

(4a)

e' — e

X =± a sin cp cos h-\

Y a cos 9 sin Ay

En éliminant premièrement 9 entre les équations (4), puis entre
les équations (4°), on trouve

X2 Y2

a2cos29
W_

a2 sin "•

1 1.
a2 sin2 9 a*cos 9

Interprétées dans le même plan, ces deux équations
représentent un seul système d'hyperboles homofocales, puisque

Si donc le point inférieur parcourt une• cos 9 sin l — tt —

des hyperboles, son image se meut en général sur une autre
hyperbole du système. Les deux hyperboles correspondantes se

confondent dans les cas où coss 9 sin2 9.
Eliminant en second lieu 9 entre les équations (4) et (4°), on

obtient
X2 Y

(S)
x2 y

a2 cos2 A9 as sin 2 A9
1 (5«)

ar cos 2&9 a2sinsA9
1.

Ce sont des ellipses homofocales telles que chaque ellipse se
correspond à elle-même sans que pour cela les points correspondants

coïncident.
La construction de points correspondants n'offre aucune

difficulté. En effet, deux points correspondants P, P' étant donnés,
on détermine d'abord les axes des ellipses passant par ces points,
ce qui se fait facilement à l'aide des relations :r+X2 a2 cos2 A9,
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y1 + Y2 a* sin2 Ay, ensuite, afin d'obtenir d'autres couples de

points sur la même ellipse, on peut se servir du procédé indiqué
dans la fig. 7, dans laquelle OA acosÄ9, 0B=cssinA9,
angle AOC angle EOF 9.

Comme dans les cas précédents, on cherchera maintenant
l'enveloppe de la droite qui joint le point (x, y) au point correspondant

(X, Y). L'équation de cette drBite est

• u a. 7,1 cos9 +sin9
yi + a sin cp sin hé tgAcp -—- ¦—- (X — a cos cp cos Au/)

T sin 9 — cos 9
T T

ou

(6) sin 9 (yi — X tg A9) — cos 9 (yi + X tg A9) — a sin A9.

Si en premier lieu on y considère 9 comme paramètre variable,
on est conduit à l'enveloppe suivante

x%

— a'- cos2 A9 — a' sin * A9
<* A-y-+i^— ->¦

2

Cette équation représente encore des ellipses homofocales, ayant
pour foyers les points doubles du plan. Deux ellipses appartenant

l'une au système (5), l'autre au système (7), qui répondent
à la même valeur de 9, sont semblables et semblablement
placées. Le parallélogramme ABA'B' (fig. 7), inscrit à la première,
est circonscrit à la seconde.

Si, au contraire, dans l'équation (6), mise sous la forme

(6") yi (sin 9 — cos 9) + a sin A9 X tg A9 (cos 9 + sin 9)

on envisage 9 comme paramètre variable, et que l'on différence
par rapport à 9, il vient

„ cos cp + sin cp

a cos A9 X —
cos A9

d'où l'on tire
/on ,cos(p + sin 9
(8) cos3 Â9 X -

a

et l'équation (6°) fournit ensuite

,c x -371 sin 9 — cos 9(8°) sin3 A9 yi

a

Les deux équations (8) et (8°) ou l'équation unique qui s'ensuit

par l'élimination de 9
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/g\ / sin 9 +cos 9\3 / sin cp — cosyX3

représentent l'enveloppe cherchée. Or, on reconnaît que l'équation

(9) est celle de la développée d'une hyperbole. En effet, la
développée de l'hyperbole

a ï i
ß2

est donnée par l'équation

ao) (_A_y_(__ÊL_y=1
\a2 + ß2/ W + ßr)

et les équations (9) et (10) sont identiques pourvu que l'on ait
a8 + ß2 a

a sin 9 + cos 9

a2 + ß2 a

c'est-à-dire si
ß sin 9 — cos 9

a — a (sin 9 + cos 9)

ß — a (sin 9 — cos 9)

et par la suite

a2 + ßs - a2.

Ainsi les hyperboles (9 étant maintenant considéré comme
variable), dont les courbes (9) sont les développées, sont
homofocales et leurs foyers sont les points doubles du plan.

Dans le but de trouver l'intersection réelle des deux nappes
de la surface S, on formera y, et yt ou, si l'on ne veut pas Chan-

ger de notation — et —.dx dy
D'abord des équations (2) on tire

2X3 0} + y2 — x2 + f(a2 + y* - rx2)2 + 4xy,
où la racine est nécessairement positive. Ensuite il vient
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d X _ a' + x- + y- + y (et2 + y2 — x2)2 + 4x2y2

?</
~

2X /(o* + y2 — x2)2 +7^
Or, — ne peut s'annuler que pour y 0. Dans cette hypothèse

oy
Y 0, X + fa1 — x2 ±z a cos X,

X x cos

"** ~~ ~*~ fçJ-Z^ " "*" smX'

où, pour simplifier, on a posé x a cos En introduisant ces

valeurs dans les équations (10«), p. 34, à savoir

dx

on obtient

z + (X-xK
rl y + (Y-y) K

r —.
sin ''

5 -
sin X ± cos /,

: «

sin X ± cos X

0.

L'élimination de X entre les deux premières de ces équations
donne

(11) r, 0,^--^ f-^- l-

2°' I
La courbe cherchée est par conséquent une hyperbole dont le

1 n
centre est le point 2 0, -/7=0, Ç — et le demi-axe réel -—.2 y 2

Si, en dernier lieu, on cherche les surfaces réglées, engendrées
par les droites de la congruence donnée :

1° Lorsque le point inférieur est assujetti à rester sur l'ellipse
X'~

<

V%

=1.
a2 cos2 Jv\> a" sin2 Jvb
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et 2° lorsqu'il se meut sur l'hyperbole

^_ y" _ j
ar cosä 9 a2 sin 2

9

on trouve dans le premier cas l'hyperboloïde

H2 1?

T-^TT + —-Vrr Ç2 + (1 - Ç)2
a2 cos2 A9 a2 sin - A9

et, dans le second cas, la surface du 4me ordre

a2 [Ç sin 9 + (1 — Ç) cos 9]s ar [£ cos 9 — (1 — Ç)sin9]2

Dans les deux cas, on constate aisément que les sections faites
dans ces surfaces par le plan Ç const, sont homofocales et que
le lieu géométrique des foyers, Ç étant de nouveau variable, est
précisément l'hyperbole (11). Le contour apparent sur le plan
xy de l'hyperboloïde est l'ellipse (7), celui de la surface du
4m' ordre est la courbe, représentée par l'équation (9).

^•srSSjJ^,

INFLUENCE DE L'ACIDE BORIQUE

SUR DIFFÉRENTES FERMENTATIONS
Communication de M. A. HERZEN.

La présence d'une certaine quantité d'acide borique exerce
sur la marche de certaines fermentations une influence très
curieuse, tantôt favorable, tantôt défavorable. Ainsi :

1° La transformation de l'amidon en glucose, au moyen du
ferment salivaire ou pancréatique, n'est point influencée par
l'acide borique, même si le véhicule de l'infusion est une solution

saturée d'acide borique.
2° La transformation du glucose en alcool est favorisée par

la présence de l'acide borique, même en très petite quantité ;

le moût, par exemple, fermente plus vite et donne un vin con-


	

