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REPRESENTATION DES IMAGINAIRES 31

L’étude qui vient d’étre faite peut se résumer comme il suit:
La ‘double nfinité de droites appartenant a la congruenee (1)
se groupe selon une infinité d’hyperboloides a une nappe. Ces
surfaces forment un faisceau passant par les directrices des
congruences n = (a=4=bi) &£ +h 4 ki; une série de leurs sections
circulaires est paralléle au plan xy, et leurs cones tangents
concentriques sont coupés par des plans paralléles au plan xy
selon un systcme de sections coniques homofocales, pourvu que
le centre commun se trouve en dehors du plan xy. En parti-
culier, les sections coniques homofocales représentant le contour
apparent des hyperboloides sur le plan xy ont pour foyers
les points doubles de ce plan correspondant aux congruences
n=(a=bi) £+ h+ki.

Il resterait encore & examiner les cas particuliers: 1° A=k=0,
2°b=0, 3> a=1, b=0. Dans le cas 2° les droites dans ’espace
forment une gerbe, et dans le cas 3° elles sont toutes paralléles.

On n’entrera pas ici dans les détails de cette étude qui, du
reste, n’offre aucune difficulté.

SECONDE PARTIE
Courbes imaginaires.

Soit ’équation d’une courbe

(1) n=J (&)

En séparant les parties réelles et imaginaires, on peut la mettre
sous la forme
| X+ Yi=o(x,y) + 4 (2,9)

Pour que le point (« 4+ (37, 7 + d¢) fasse partie de cette courbe,
il faut que les quantités =, 3, 7, ¢ satisfassent aux conditions

0= ( f)

Par ces deux équations, y et 9 sont déterminés en fonction de
a et 3 que l'on peut, en conséquence, envisager comme des va-
riables indépendantes. Si l’on donne & « et 3 toutes les valeurs
possibles, les équations

x—a y—_f
3) - =
y—a 09—

= Z
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fournissent toutes les droites représentant les points de la
courbe (1). En vertu des équations (2), ces droites appartien-
nent & une congruence. Or, on sait que les droites faisant partie
d’une telle congruence sont tangentes en deux points a une sur-
face & deux nappes. Il s’agit maintenant de déterminer cette
surface. Dans la suite, elle sera désignée par S.

Soient , y, # les coordonnées d’un point de 'une quelconque
des droites

” g s

y=p(f~+0O—p) =

Lorsque « et (3 varient, le point (x, y, #) se meut sur une sur-
face. Aux accroissements arbitraires d«, df3 des paramétres
o et 3 correspondent des accroissements des quantités x, y, 2
7, 0, reliés aux premiers par les équations

gdaz—da—l-( 27 a2 % ap— da)z—l—(y—a)dz
4
()(@=%+G%«+Em a5) 2+ (6 — p)d.

Or, la droite (3) est tangente a la surface au point (x, y, 2), si
I'on &
de=(7—a)ds, dy=(3—p)de.

Introduisant ces valeurs dans les équations précédentes et po-
sant, pour simplifier 1’écriture,
dy dy 99 20

. =93,, =—==20,,

da 0 BT s e

il vient

[l+(n—Deldx +y2d8 =0
e de+[14(3,—1)2]dB=0

Les plans tangents & la surface S aux points A et B, ou elle
est touchée par la droite ¢ de la congruence, se déterminent de
la maniere suivante. La droite y répond aux paramétres « et f3.
Si 'on donne & « et 8 des accroissements conformes aux équa-
tions (5), on obtient une droite consécutive ¢’ qui, elle aussi, est
tangente a la surface S aux points A’ et B’. Soit A’ le point
d’intersection de g et ¢’. Alors le plan de ces deux droites est

®)
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évidemment le plan tangent a la surface au point B, et le
coefficient angulaire de sa trace sur le plan zy est donné par

ap

"'_"'—=mo
d o

L’élimination du rapport ;l—g entre ces deux équations permet
d’établir une relation qui détermine z en fonction de « et f5.
On obtient

[14+ (7 —De] [1+ 0. —1) 2] = 2729,
ou

(6) z [7182—7281—“71_82+1]+3[71+8‘2—2]+1=0'

Cette équation étant du 2¢4 degré en z, il existe effectivement
deux points de contact.

Si, au contraire, on élimine 2z entre les mémes équations, on
aura une équation pour déterminer m. Il vient successivement

dOf _ dﬁ
v o — dot 4 7,dB  3,d3 — df + 3,d=
1 L m
v — 14 y.m T dym— m 9,
() vam® 4 (7, — 0,) m — J, = 0.

Les équations (6) et (7) se simplifient, si I’on tient compte des
relations entre les dérivées partielles premiéres de v et 9. En
effet, quelle que soit d’ailleurs la fonction f(ax—+ 3i), on sait

qu’on a
of af ’0f . df

—_— Z%

da d(a4 i)’ W d(adPi)

d’ou l'on tire

|
l

-~

)
8 1
F'_J
~

~
(@)

ou

(7 10,) = 7, =+ 19,
et par suite

71_83: 722_8:

‘ 7152 - 7281 = 712 -+ '/221 71— 851 — O‘-
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A D'aide des deux dernieres relations, les équations (6) et (7)
prennent la forme

(62) Al — 1D+ 7 +22(,— 1)+ 1=0

(79) 7e (m* 4+ 1) =10
De I’équation (62) il suit
1— o, 2+ 1
®) =D —
(72— 1)+ 7, 1 — vy Fiy,

et I’équation (7¢) fournit, si 72 >0

dﬁ .
g - .
(9) = g d

De I’équation (9) on conclut que les traces sur le plan ay des
plans tangents & la surface S forment deux séries de droites pa-
ralléles, ayant pour coefficient angulaire respectivement ¢ et — 4.
11 s’ensuit que la surface elle-méme se compose de deux surfaces
cylindriques dont les génératrices sont a la fois paralleles au
plan xy et aux traces des plans tangents.

On obtiendrait ’équation de cette surface en éliminant « et 3
entre les équations

1
T F
(10) = e ] 4
y=p+0—pF) 2

Le cas ou y, = 0 mérite une attention spéciale. En effet, dans
cette hypothése, 2z devient réel

1
1—p
m n’est plus nécessairement imaginaire et les équations (10)
sont remplacées par les suivantes :

Y — 1
( 1_71

£ =

(109)
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Or, lorsque
71 = F (OE, B) —_— O

le-point («, (3) se meut sur une courbe dans le plan xy. Alors
les équations (10%) représentent en général une courbe gauche
réelle et les droites (3), tangentes a cette courbe, forment une
surface développable dont la trace sur le plan xy est donnée
par l’équation F («, 3) =0. La courbe gauche devient plane ou
se décompose en plusieurs courbes planes chaque fois que la
courbe F («,3) =0 dégénére en une ou plusieurs lignes droites.

Les deux nappes de la surface, bien qu'imaginaires, peuvent
cependant se couper suivant une courbe réelle. Pour un point
d’intersection les deux valeurs de 2 dans la formule (8) doivent
étre égales, ce qui n’est possible que lorsque 7, = 0. Par consé-
quent, la courbe gauche répondant & I’hypothese 7, =0 n’est
autre que l'intersection réelle des deux nappes imaginaires de
la surface S.

Dans le but d’établir 1a correspondance entre les valeurs de
m et de z, 9, 2, on posera dans la premiére des équations (5)

ap

= == 1A et on la résoudra par rapport a 2, ce qui donnera
74
1 \

_ 1——"/,—01272'

&

En écrivant encore ¢ 4 la place de == ¢ pour éviter dans la suite
le double signe de ¢, on voit qu’a la valeur m = ¢ correspond la
valeur

1

5 = .
l—y —ey

Mais on se souvient qu’au point (x, y, £) répondant 4 cette valeur
de 2z, la trace sur le plan xy du plan tangent & la surface S n’a
pas pour coefficient angulaire ¢, mais bien — . Il s’ensuit qu’en
désignant par £, », ¢ les coordonnées courantes, les génératrices
de la surface S possedent les équations

(11) (=2, n—y=—c(E—2)
ou en remplacant x, y, 2 par leurs valeurs
1
:': . ’
1L — 7 — &y,
n—pB— O:_ﬁ ﬂ—&(i—a— [ )
L—yi—ep =y
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ou
' O—F)A—yitezs) | =) (l—yi-e7s)
n=—=cb+f+ca+ —+ ¢ .
(I=7)* 47 (I—y1)*+7,"
Enfin les équations (11) prennent la forme
1
.
1 —yy—¢ys

(8_ ﬁ)(] —71)"‘(“_’7) /2
(1— "/1)2 -+ "/22

B Clld 7% ol Vi) A Ut 2).

k (=== Y vt

Elles expriment indifféremment les deux séries de génératrices,

sulvant qu’on attribue a ¢ la valeur 4 ¢ ou — 4.

(119) < n=—cb+f+ca+ s

La tarigente.

Par analogie, on appellera tangente a la courbe

n=f(¢)
au point (z, ) la droite imaginaire
. _dy
7 y'—dw(‘a CL‘).
Or
€ =a—+ fi, = v + ot,
dy d(y—+9o1) dy : do
=== ~ ==
dx d(a+ (i) d (e + [3) d (e + [3i)
dv 00 | .
—ﬁ_l"?é";—/g_?'/ia

ensorte que I’équation de la tangente prend la forme

n—y—0=(/ —17) E—a— )
ou
(12) (yy—ty)t—n+(y—ay,—By)+i(@+ay.— By,)=0.
Traduite en géométrie, cette équation conduit, comme on sait, a

une congruence linéaire ayant deux droites consécutives com-
munes avec la congruence qui est le représentant géométrique
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de la courbe imaginaire » = f (£). On obtient les directrices de
la tangente imaginaire (12) en faisant dans les formules (4),
p. 6, a savoir

= Gp+Dq+e(Dp—Gq)1 y— cE 4 Eq—Fp+:(Ep+Fq)
P+ P+

les substitutions suivantes

A=, B=—y,, C=—1, D=1,
E=y—ay—f7, F=0+an,—[17,

p=A4+C=y —1, g=B4+D=—y,.

Il vient

gy =" 1=y —ep :

=D 77 A—p—e) A—ytep) 1=yt
— (7 — &y — B‘/e) 7e — @+ ay, — By) (1 — 1)
= ek -4 - \ :
=St ESUESA .
ET (y — oy —Bys) 7y — 1) — (@4 ays — By 7s .
h—X o
Aprés quelques réductions, cette derniere équation devient

+

L E=B =)+ E—=7) 7
14 n=c¢ct 43 —cor 4 . -
W : (V=7 + 7
_8(8-6)7%+(7_"a) (1_71)
(L =70+ 7"

En comparant les équations (13) et (14) avec les équations
(119) on reconnait que les directrices de la tangente (12) ne sont
autres que les génératrices de la surface S dont il a été question
jusqu’icl. Par conséquent, lorsque la tangente varie, ses direc-
trices engendrent cette mémz surface.

Dans le cas particulier ou 7, = 0, les deux valeurs de £ coin-
cident et deviennent réelles. La tangente (12) prend la forme

(15) HnE—n+(7—ay) +1(Q@—Fr) =0
Le coefficient angulaire de cette congruence étant réel, les

droites qui en font partie forment une gerbe dont le centre est
donné par les formules (5), p. 7, & savoir

;__CUE+DF, CF — DE C

_ C: + D2 C: ﬂ='_,0—2+De :’ C=A+C
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Or, dans le cas actuel
A:'/“ C=—~I, D=0, E="/-—G¢““ F=6—ﬁ"/”

puis

4 ! f=1"21 7= Bl

]_71’

| 11—y, 1 — 7,

Ce sont 1a précisément les formules (10¢). Il s’ensuit que le lieu
géométrique des centres des tangentes a la courbe imaginaire
v = f (§) qui répondent a ’hypothése y, = 0, est identique &
'intersection réelle des deux surfaces cylindriques imaginaires
(10).

La courbe définie par les formules (102) est encore susceptible
d’une autre interprétation importante. En effet, lorsque le point
(2, 3) du plan inférieur est assujetti & se mouvoir sur une courbe
F (o, ) = 0, les droites appartenant & la congruence (1) en-
gendrent une surface réglée dont 1’'une quelconque des sections
paralleles au plan xy se détermine au moyen des formules

: [ & = const.
(16) Sxzar(l——.e')—i-yxa'
(y=ﬁ(l~—2)+6‘z

La tangente au point (', v/, 2) & cette courbe est donnée par
les équations |

dB (1 — 2) =+ (3,doc +0,df3) 2
dee (1 — 2) =+ (7, da~+7,d03) 2

qui en vertu des relations

(E'"CU'),:=3

n—y =

O0s == V1» 0y = — 71
peuvent s’écrire

DB 4 (7 —1) 6] — 70

da
d;
1+(7,—1)z—+—d§7,3

(I7) n—y' = (f—a), t=2

Dans le plan de la courbe se trouve une génératrice de la sur-
face S, a savoir

(18) E=2, n—Yo=1(§— x)

Est-11 possible que la tangente (17) devienne identique a cette
génératrice ? Telle est la question qui se présente naturellement
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3 Desprit. La réponse est affirmative pour tous les cas ot '’équa-
tion v, = 0 est satisfaite par des valeurs réelles de « et f3.
D’abord de la condition

d
1ty —1) 2] — 720

d
L+ — 1) e+ 5.2

on tire

dﬁ=i[1 +Gi— D2ty :

d o 14 (7 —1) 2 —iy.2 '
Ensuite, pour que le point (2,. %,, ) appartienne a la surface S,
il faut que 'on ait

1
Z= =
1'—71 — U5
ou
. 1
(19) 1=y —tpy=~—.
g

Dans cette équation, 2 doit étre réel et différent de zéro; par

conséquent elle se décompose en ces deux
1
72 =0, L == 71—
z

desquelles on déduit les valeurs réelles

X = Xy, B::ﬁo'

Or, il est évident que I’équation linéaire

(20) B—B=1t(x— )
est compatible avec la condition (19); en méme temps elle

. . a ’
fournit —@ = 1.
, o
Le point (x,, %o, 2) est maintenant déterminé; en appelant
7o 0o les valeurs que prennent respectivement y et § pour a=x«,,

3= f3,, on a en effet
Ty = (1 —2) + 742
Yo = Bo (1 — &) =+ 92,

La génératrice (18) peut étre considérée comme étant I'image
dans le plan z= const. de la droite imaginaire (20). En suppo-
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sant pour un instant 'identité des droites (17) et (18), il s’ensuit
que de son c6té le point de contact (2, o/, 2) de la tangente (17)
est 'image du point (o, [7) satisfaisant simultanément aux

équations |
F(«, ) =0
B — By =1t (o — ).
Soient 7/, 9’ les valeurs de 7 et § correspondant & a =2/, f=['.
Alors on a, puisque le point (2, ¢/, 2) appartient non-seulement
a la courbe (16), mais aussi & la surface S |
\ =o' (1—2)+ 2
ly=F—a+ye
Afin de démontrer @ posteriori que les valeurs a,, y,, @', ¥’
trouvées de la facon indiquée rendent effectivement identiques
les droites (17) et (18), il suffit de prouver que le point (z,, %, )
fait partie de la tangente (17), en d’autres termes, on doit avoir
yo - y’ — 2".
Xy —

Or, de I’équation
il suit, par hypothese,
70 + 0ot = f (@ + fot)
/43 =f (@ + i)
Remplagant dans cette derniere égalité 3’ par sa valeur, a savoir
fFr=pFt+ild—a)
il vient | .
/A Vi = f (o By — & ) = f (to+Bii) =70+ 3
Par conséquent
/=70 0 =20
et puis
Yo— y’ - 60(1 _ z) +803"" [Bo ~+1 (a,_’ aﬂ)] (1 — z) — 803 o
P— U (1 —2) + 02 — & (1—2) — 708
_il—) 1—2) _
(¢, — @) (1—2) |
Ainsi, l'identité des droites (17) et (18) est bien établie.
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Partant de 1'égalité
7 — 3 =f (¢ — f3i)
que l'on obtient en substituant les expressions conjuguées i
toutes les quantités imaginaires entrant dans ’équation

7+ 0 =f (e + fi);
on vérifierait de méme 'identité des droites
n—y = — i (E— '), L=
n—Yo=—1(— %), {=2,
ou z” et y” signifient les valeurs conjuguées respectivement de
! ’
x' et y'.
Les génératrices de la surface S
n—Yo=Fxi(§—x), =2
se rencontrent au point réel

= I,, y=y01C=z.

Celui-ci est par conséquent un foyer de la courbe (16). La fonc-
tion I («,3) est arbitraire, et par suite I’équation F(«, 5)=0 donne
naissance a une infinité de surfaces réglées. Or, le point (z,, ¥,. #)
est indépendant de la fonction F. Il en résulte que les sections
Sfautes dans ces surfaces par le plan z= c, ou ¢ est une constante
différente de zéro, possedent toutes le foyer commun (Xq, Yo, 2).

De plus, lorsque z varie, le foyer (X,, ¥,, z) décrit en général
une courbe gauche qui n’est autre que lintersection réelle des
deux nappes de la surface S, ¢’est-a-dire la courbe représentée
par les formules (10%).

Comme exemple’.f—u I'appui de ces généralités sur les courbes
imaginaires, il ne sera pas inutile d’étudier quelques courbes

particuliéres. Les courbes choisies sont trois courbes spéciales
du second degré.

La parabole.

Soit I’équation de la courbe a étudier

(1) & = 2pr,
ou p signifie une constante réelle. Puisque
dn £

de p
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le rapport des éléments linéaires aux points correspondants »
et £ est égal a la valeur absolue de 2—?;; et I’élément d» fait avec
I'élément dZ un angle qui est égal a la déviation de L . Entre le

~n supérieur et le plan inférieur la similitude dans les parties

aiment petites regne partout, & ’exception des points £ = 0
es § = =o. Posant
E=x+yi, n=X+Yj
I’équation (1) devient
(@ + 99" = 2p (X + Yi),
d’ou l'on tire
, 2pX = a2 — y*
(2)
Q_pY = wa.

Ces relations montrent qu'a des lignes droites paralléles aux
axes coordonnés dans le plan supérieur correspondent dans le
plan inférieur des hyperboles équilatéres qui, en vertu de la si-
militude dans les parties infiniment petites, se coupent sous un
angle droit. Deux quelconques de ces courbes orthogonales se
coupent en deux points réels. Il s’ensuit qu'a chaque point du
plan supérieur correspondent en général deux points du plan

inférieur, symétriques par rapport au centre 0. La méme chose
ressort directement de 1'équation (1) ou des formules

z=VpV X+ VX+ Y

y=Vp V—X+VX+Y
déduites des équations (2).

Soit
y=uxtgpy,

alors on a
C 2pX = (1 —tg* ) a®
;\ 2pY = 2 tg p 2*,

puis
LS ). 1 I
X 1 —tg*

Par conséquent, lorsque le point £ parcourt la droite y=wxtgp,
son image » décrit cette autre droite Y = X tg 2u.. Mais tandis
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que le point £ se meut sur la droite entiére, le point » est res-
treint & un rayon partant de I'origine.
Afin de faciliter le langage, ces droites seront désignées dans
la suite respectivement par u et 2u.
Si ’on pose
X =1 CcoS @
Yy =rsino,
1l suit ’
2

— 7 osto—sinto) — 1
X_“Qp (cos® @ — sin CP)_zp cos 29

o

o e
— 2 sIn cpcoscp=§—1-;sm 20

2p

Il s’ensuit que lorsque le point £ parcourt une fois la circonfé-
rence de rayon r

Y=

2?4yt = 7,2’
L ; ; y | r?
» décrit deux fois la circonférence de rayon "
p
S
X? —+ Y= 2.
| 4p*

Ceci établi, il serait facile de construire des points corres-
pondants. En effet, si l'on projette comme précédemment le
plan supérieur sur le plan inférieur, la figure (3) montre la posi-
tion relative d’un point (X, Y) et des deux points correspon-
dants (z, y) et (— x, —y).

La correspondance entre les points des deux plans est parfai-
tement établie, si I’on donne par exemple un point B’ sur la
droite 2u. et les points correspondants B et B, sur la droite p.
Or, pour construire tous les points correspondants situés sur les
droites u et 2u, on peut procéder de la maniere suivante (fig. 4).
Sur la droite p se trouve une involution AA,, BB,, CC,, etc.,
dont les points doubles sont I'origine et le point & l'infini. D’un
point S sur une circonférence quelconque dans le plan, on la
projette sur celle-ci. Par 14 on détermine une involution curvi-
ligne dont le péle P est le point d’intersection des sécantes joi-
gnant les couples de points conjugués. Le faisceau formé par
les sécantes est projectif avec la ponctuelle simple A’, B’, C/, etc.,
sur la droite 2. En le coupant par une droite quelconque, on
est en présence de deux ponctuelles projectives A", B”, C’, .....,
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A" B, C ... et deés lorsil est facile de construire autant de points
correspondants que 1'on voudra.

Si maintenant on demandait de construire les points D et D,,
correspondant au point donné D', on chercherait d’abord D”; ce
point trouvé, on aurait la sécante PD”, d’ou I'on remonterait
aisément aux points cherchés. Dans la figure (4), on s’est servi
des points doubles de P'involution AA,, BB, ..... pour déterminer
le pole P, ce qui simplifie un peu les opérations.

La construction indiquée est encore utile, lorsque le point
donné E’ n’appartient pas a la droite 2u.. En effet, dans ce cas,
on menera la droite OE’; alors les points E et E, seront situés
sur la bissectrice de 'angle E'OX. Pour les trouver, il suffit de
transporter le point E’ sur la droite 2u., moyennant un arc de
cercle dont le centre est O et le rayon OE’, de construire sur la
droite u les points correspondants et de les ramener ensuite &
leur place.

Cette construction deviendra en partie superflue, quand on
connaitra 1’enveloppe des droites joignant les points de la droite
v aux points correspondants de la droite 2u. A cet effet, soient

xety=uwxtg pn

les coordonnées d’un point quelconque de la droite v.; les coor-
données du point correspondant de la droite 2u seront

] — tg? .
X = tg“wﬂ Y-_—tg—{}m”‘

9

2p p
et la droite, déterminée par ces points, aura pour équation
Y—uy
w — b -
Y X—zx U )
ou
(3) x* sin g 4  cos u (v cos 2 p. — £ sin 2u) 4

-+ 2p cos® u (& sin w— 7 cos ) = 0.
En la différentiant par rapport a «
(39) 2¢ sin ® + cos w (1 cos 2p. — & sin 2p) =0
et en éliminant ensuite  entre les équations (3) et (3¢), il vient
(4) (&sin 2p—n cos 2w)* = 8p sin u (£ sin . —» cos w).

Telle est I’enveloppe des droites (3). Si, dans cette équation, on
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regarde p. comme variable, elle représente un systéme de para-
boles. Par la transformation a P'aide des formules

£sin 2u — v cos 2u = Y + 2p sin 2p.

£ cos2u 4 » sin 2 = X + 2p cos?p,
d’out T'on tire

’ E= (X 4 2pcos*u) cos 2u. + (Y + 2p sin 2u) sin 2p.

( n= (X + 2p cos* ) sin 2v. — (Y + 2p sin 2) cos 2p.
I’équation (4) prend la forme

Y= —8psin?*p X

Cette équation montre que les coordonnées du foyer de I'une
quelconque des paraboles sont

Y=0, X=—2psin?p
et que sa directrice possede I’équation

X = 2p sin*p.
Au moyen des coordonnées £, », le foyer est donné par
‘E — 2}9, =20

et la directrice par ’équation

£ cos 2p. + »n sin 2p = 2p.

Il s’ensuit que toutes ces paraboles ont un foyer commun et
que leurs directrices enveloppent une circonférence dont 1’ori-
gine est le centre et le rayon — 2p (voir fig. ). Elles passent
toutes par l'origine, et en ce point la droite u est une tangente
a la courbe correspondante, tandis que la droite 2u en est un
diameétre. La construction de ces paraboles est donc des plus

faciles. D’une propriété trés connue de la parabole, ainsi que
des formules
X i W 2, Y — 8¢
2p p

qui ne renferment x qu’au carré, on conclut qu’on aurait obtenu
la méme parabole en joignant le point (X, Y) au point (— z, — y).
Cette observation permet de construire facilement des points
correspondants sur les droites p et 2u. En effet, pour trouver
sur la droite u les points A et A, correspondant & un point A’
donné sur le diameétre 2p, il suffit de mener par A’les deux-
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tangentes & la parabole; celles-cu couperont la droite p aux
deux points cherchés.

Cette construction devient illusoire lorsque p=0o0up=m,
car dans ces cas la parabole se réduit & la droite » =0. D’all~
leurs, c’est sur cette droite que sont situés les points doubles du
plan, & savoir l'origine et le foyer des paraboles. On trouve ces
points caractéristiques en posant » =& dans I’équation (1), ou
X =uz, Y =1y dans les équations (2), ce qui donne

£=0; &t=2
pe=y=l; w=2p yp=0.

ou

L’équation (4) est susceptible de la forme suivante
(cos2u +nsin 2 u — 2p) = (5§ — 2p)* + n* =
=[n+i(E—2p)] [»— (& — 2p)]

Cette forme prouve que les droites imaginaires » = =i ({— 2p)
sont des tangentes communes a toutes les paraboles en question.
Il sera possible d’établir plus loin la connexion entre ces deux
droites et les génératrices de la surface a deux nappes S répon-
dant & la congruence (1).

Les droites de la congruence (1) qui joignent les points de la
droite 2u, remise dans le plan supérieur, aux points correspon-
dants de la droite u, engendrent une surface réglée, dont
I’équation s’obtient en éliminant x entre les équations

E—ux n — xtgp
= - =
— tgp —axtgp
p
ou ﬂg
()

x*C
S —_ - PR g [ LS )
E—r (- =5 (—tgy)

On trouve d’abord
n—ax(1—0¢)tgp
E—x(1—9)

= tg 2u,

d’ou I’on tire o
£ sln 2. — ¥ €0s 2.

1—0tgp
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et en introduisant cette valeur dans la premiére des équa-
tions (H)

(6) 2psin p (ncos p—Esinp) (1 —&)*={¢ (£ sin 2u — » cos 2u)*.

La surface du 3™ degré représentée par cette équation pos-
s¢de la génératrice double

=1, £&sin2u — »cos 2u = 0.

La partie intéressante de son contour apparent sur le plan xy
est la parabole (4), et Pon remarquera qu’on 1’obtient en faisant

dans 1'équation (6) {=— 1. En d’autres termes, le cylindre
tangent paralléle 4 ’axe des z touche la surface suivant une
courbe située dans le plan { = — 1. La section déterminée dans

la surface (6) par un plan paralléle au plan zy, est une para-
bole; or, on sait d’'une maniere générale que toutes ces courbes,
répondant a différentes valeurs de p, doivent avoir un foyer
commun. En effet, £ étant constant, on trouve que les coordon-
nées du foyer sont indépendantes de p

1— &)
™ 1=0, f=—pC )
et de plus, en mettant I’équation (6) sous la forme
n (1—2)° A=07T _
[’g'cos 2u.~+nsm2u—4p o ] [5+p 7 | =
_ : (1—¢)’ ] [ (1 — 5
—gw+%[i+p 2% g E+p—p |
on reconnait que les droites
8) n:ié[a—i—p( Q—cg)]

sont tangentes a toutes ces courbes.
Maintenant, si l'on rend & £ sa variabilité, le lieu géométrique
des foyers (7) est ’hyperbole

(9) =0, 284+ p(l—L)F=0.

Avant de constater, pour confirmer la théorie générale, que
les droites (8) sont les génératrices de la surface S, et que I'hy-
perbole (9) est lintersection réelle de ses deux nappes, il sera
peut-étre intéressant de chercher encore '’équation de la surface
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réglée, engendrée par les droites qui joignent les points de la
circonférence dans le plan supérieur

i 72 »”

X=_—cos2¢0, Y=_—sin2¢

2p 2p
aux points correspondants de la circonférence dans le plan in-
férieur _ |
Xx=17rcosp, Yy=rsino.

On 'obtient en éliminant ¢ entre les équations

E—17rcosgp y, — 7 sin g ,
2 =% =
5 COS 20 — #° COS @ 5% sin 29 — 7 sing
ou
r? ;
(550032@—'—rcosgo>'g=£—aﬂcosq SIn @ | COS @
(%sin?cp-—-?s_in@)'g—.f-nf-rsi11cp — c0s @ | sin o.

Il vient successivement (les opérations nécessaires étant indi-
quées d’'une maniere généralement usitée

. r? ) r*
(£+§5§>smcp—ncoscp_.0 E——-—QEC — "
‘ﬁsincp—}-('é—— v ?>coscp=r(l——ﬁ) 7 Z+T—2'C

? 2p 2p 7’

:(E*—Z?ﬁf;g)—i—rﬂj simg=7r(1—&)

(r—Zoc) v
| dp

Elevant au carré et ajoutant terme par terme, on trouve finale-
ment

cos § =7 (1—2) (£ ).

‘2___7: 2 w212 — p2 __r\2 ﬁ'g 2
(10) [ = 758 ] =1t (1= 0 [ 0" 7]

Sans entrer dans une discussion détaillée, on peut cependant
reconnaitre immédiatement la propriété suivante de cette sur-
face du 4™ ordre. Les sections paralléles au plan zy sont des
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épicycloides engendrées par un point a la distance CZ_:) du centre

du cercle mobile; le cercle fixe et le cercle mobile étant d’ailleurs
1 :

du méme rayon ——+ 57 (1 —&). Quelle que soit la valeur par-

‘ticuliére de 7, elles possedent le foyer

L

. (1 — ¢y
=q, ‘,_—_:0, = —_— .
L=~ 7 3 P o

Parmi ces courbes se trouvent la circonférence simple
Ee=0, Ez -+ 72 =
et la circonférence double
Tfi
=1, e~ "= — .
49*

Enfin il importe d’établir I’équation de la surface a deux
nappes, a laquelle les droites de la congruence (1) sont tan-
gentes doubles. A cet effet, il suffit, comme on sait, d’éliminer
« et (3 entre les équations (10), p. 34, qui, dans le cas actuel, ol

J_A—f o ap
§ == 21) 1 a—‘;:
S =% . __B
/1—13’ 72 »
prennent la forme
f e B
p—oa—+efs
ot — 32
1 . — v N i s '
(11) f=a(l=0+—5=¢

= == ‘Z-l.—/i, o = 3 Z)_j—-— 1——:—6,
€5 el g
= 9%eyp P74 e
TR AN
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En introduisant ces valeurs dans la seconde des équations (11),
on obtient

(12) -nc-r-s[-'f Z (12—5)2]=0.

Ainsi, les deux nappes de la surface cherchée ont pour équations .
p( —C)’]

2

nl —1i LE,C:+p——(}2_?;)2:| =0,

Elles se coupent effectivement suivant ’hyperbole réelle
p(1—0)
2
et leurs génératrices sont respectivement

Bl —LF ] .
28

e+ &C-l—

=0

n=0, &&4+——7

¢ = const., n=_—+_—_i[£+

L’hyperbole équilatére.

Soit & représenter la courbe

) , =2t b'i'
&
Posant comme précédemment
E=xz+y, n=X+Yi
et séparant les parties réelles et imaginaires, il vient
ax + by
2 +y2
bz —ay
x! + y!

X=
(2)

et réciproquement
__aX +bY

5 X4t
(29) o bX — aY
= X!_l_Y!
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Aux deux systémes de droites & = const. et y = const. cor-
respondent dans le plan supérieur deux systémes de circonfé-
rences qui se coupent orthogonalement. Les courbes du premier
systéme se touchent & l'origine, ou elles ont la tangente com-
mune aX +b6Y =0, et leurs centres sont situés sur la droite
bX — aY = 0. Les circonférences du second systéme possé-
dent & D'origine la tangente commune X — aY =0, et leurs
centres se trouvent sur la droite aX 4 b6Y =0. Si ’on projette
encore le plan supérieur sur le plan inférieur, alors au point
déterminé (z, y) correspond le point d’intersection (différent de
Iorigine) des deux circonférences correspondantes. Cette rela-
tion, d’ailleurs parfaitement symétrique, entre les deux plans
permettrait de construire des points correspondants; mais il
est facile de trouver une construction purement géométrique.

Les points doubles du plan s’obtiennent en identifiant £ et »
dans ’équation (1). Si l'on pose pour simplifier

( a=pcosv
b= psinv
et partant
a4 bi=p(cos v+ isiny) = pe” ,
on trouve

vi
t==Vp e?.
Il existe par conséquent deux points doubles; leurs coordonnées
sont

a:=i]/r;cos%

v
2
Lorsque le point inférieur se meut sur la ligne droite (u)
y=uxztgpy,
son image parcourt cette autre droite (v — )
Y=Xtg(v—u)

et lorsque le point (x, y) décrit la circonférence

y=;+—_]/;sin

|\ L=17C0sQ § o i
% ou a*—+4 y*=r?,

y=rsino
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son image se meut également sur une circonférence, a savoir

X=£—Cos(u—cp) .

ou Xc"—{-Yg.—_-(E—) :
P o r
Y:;sm (v— o)

La correspondance entre les points des droites p. et (v — 1) est
uniforme; en d’autres termes, les ponctuelles . et (v — p) sont
projectives. Pour établir cette projectivité, il suftit d’une seule
couple de points, car & I'origine, considérée comme appartenant
& l'une des droites, correspond chaque fois le point & I'infini de
I’autre droite. De cette fagon, on connait trois couples de points
correspondants, ce qui permet de résoudre le probléme suivant :
Etant donné sur la droite 1 le point D, construire sur la droite
(v — p) le correspondant 1Y, et, dans le cas actuel, la construc-
tion est trés simple. En effet, si la couple donnée est CC’, 1a pa-
ralléle a DC’, menée par le point C, détermine sur la droite
(v — p) le point cherché D'. (Voir fig. 6.)

La droite joignant les points correspondants (z, y) et (X, Y)
des droites p. et (v — 1) a pour équation
(3) p cos*. [ncos (v—p) — Esin (v—p)] + p cos psin (v—2p) +

+z2*(Esinp —yncos ) =0,
dans laquelle a est envisagé comme un parametre variable:
Elle enveloppe I'hyperbole

(4) &* sin posin (@ —v) 4+ &7 sin v — %7 cos p. €OS (p —v) =
=7lp sin? (v — 2u)

qui dans cette équation est rapportée & son centre et dont les
asymptotes sont les droites n =_£tg (v—p) et » =£tg p.. Lorsque

N — % v, les deux asymptotes coincident et la courbe se confond

~avec la droiten = £ tg 5 ¥

En transformant I’équation (4) & I'aide des formules

.1 1
é—xcosgv—ystv
L 1

'ﬂ=xsin—2—v+ycos§u
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elle prend la forme
& y?

— =1.

. 1
.-OCOS*(.U-—--%V) psin? (p—5v)

I1 s’ensuit que les axes de I'hyperbole sont respectivement
Ve cos (u—l> et }p sin (p.-—-i
‘ 2 2

et que, w signifiant maintenant un parametre variable, toutes

ces hyperboles sont homofocales. L’excentricité étant =]/p, les
foyers communs sont encore les points doubles du plan. D’ail-
leurs, on vérifie aisément que 1’équation (4) peut s’écrire des
deux maniéres suivantes

1 - e 1
[€ COSEv-I-nsm%v-—]/p COS!(H—EU)]’_—_

2 1 - 1 a == § 1 2
=COS‘(H—-§V)[(E—VP COSE”)‘-I-(W—VP sin = u)'],
1 ! . 1
[EcosEv—l—nsmav—i— V e COS‘(;}.——:)-y)P:

= c0s* (5 — = ) [E+ V7 c0s 59+ (o Vg sin 5 7]

De ces deux équations ressort de nouveau la propriété déja
citée des hyperboles en question; de plus, elles font voir que
ces courbes possédent les quatre tangentes communes

-~

o .. . 1
'ﬁ"-FVp sin §V=:*:Z(Z$V;COS:;V)-

Afin de trouver aussi ’enveloppe de la droite

psin (v — ) — r? SIHCP(E—TCOS 7
pcos (v— @) — r*cos g

5) n—rsino=
qui joint les points correspondants
L =1 CoSQ X=_‘:cos(v—cp)

’ et
Yy=rsineg Y:‘__zsin(v—-cp)

1
i
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ou ¢ est considéré comme variable et » comme constant, on
pourrait éliminer ¢ entre I’équation (5) mise sous la forme
(5%) n[pcos(v—o@)—r*cosp]—E[psin(v—0@)—r*sing] =
= rp sin (29 —v)
et celle qu’on en déduit en la différentiant par rapport a ¢
(6) n[psin(v—o@) +r*sing] +&[pcos(v—o@)+7r*cosp] =
= 2rp cos (29 — v).
Mais les calculs nécessaires pour opérer cette élimination se-
raient longs et manqueraient de symétrie, de sorte qu’il vaut

mieux résoudre les deux derniéres équations par rapport & £ et 7.
Toute réduction faite, on trouve pour I’enveloppe cherchée

2 a4
e 4 —"Ep CObCP—I-—p cos(3cp--—‘)v)—-1-r cos (3p —v) —
rp 2
3 -
Y CO ey
5! s (p—v)
2 L4
P r =_3PSIH(P_.1PSID(3(P-—2]U)—-1-T Sln(g(P—V)—"
rp 2 2

—+ g r® sin (9 —~'v)

Afin de reconnaitre la nature de cette courbe, on transforme
ces équations au moyen des formules

o 1 .1
£ = écos-‘;v+r/sm—2-v

Einlv+ coslu
=— Esin — n —
4 5 5

Posant ensuite ¢ — % v = {, on obtient finalement

z=2 " _cos® &
p+ 7
re

p—r
Ce sont 1a les équations de la développée d'une ellipse. En effet,
‘on sait que la développée de Pellipse

x 2 y 2

A

a® + b*

(7)

y=2 S sin’ 4.
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est donnée par les formules

a*—b?
xr = cos ?
= ¢

—

2 bi

Yy=— sin ® .

Or, il y a identité entre cette courbe et la courbe trouvée, si
a et b satisfont aux équations

C 2rp =P

o4r: a
8 :
20 a*—b

p—r b

sous la condition p < #*. Mais en remplacant ¢ par — ¢, c’est-
a-dire en comptant 1’angle J en sens inverse, on voit que dans
le cas ou p > 72 il suffit de substituer & la seconde des équa-
tions (8) la suivante

2ro0 @ =0

rg—p_ b

pour obtenir une valeur positive de 4. On en conclut que les
ellipses en question et par conséquent aussi leurs développées
(7) sont les mémes pour »? > p et #* < p. Lorsque »* =p, le
petit axe de D'ellipse se réduit & zéro. Dans cette hypothése, les
points (2, y) et (X, Y) se meuvent sur la méme circonférence
passant par les points doubles du plan et les droites (5) dont on
a cherché I’enveloppe, sont paralléles.
Des équations (8) on tire

2 2 ___
a_T+P’ b=,r P’
2r 2r
puis
a: — b2 =

Il s’ensuit que les ellipses dont les courbes (7) représentent
les développées sont homofocales, et que leurs foyers sont les
points doubles du plan.

On pourrait établir maintenant I’équation de la surface S, &
laquelle les droites de la congruence (1) sont tangentes doubles.
Mais comme cette surface est imaginaire, elle offre peu d’intérét.
Il n’en est pas de méme des courbes réelles suivant lesquelles
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ses deux nappes se coupent. Pour les trouver, on part des for-
mules (2), aprés y avoir remplacé X, Y par y, 3, et z, y par «, 3,
afin de les mettre en harmonie avec la théorie générale :
_ax+bB _ acosv—+4 fB3siny
—aﬂ_i_ﬁ?;#p a2+_ﬁ2

_ba—aﬁ_ o siny — 3 cosv

3#—';,4_—55——9 2+ [
On en tire
dy (P —a*)cosv — 2B sin v
‘D_a—'/t-—'P (@ + )
dy (e —[p*) siny — 2xf3cosv
BTt &+ B |

Or, v, s’annule lorsque
(e — [5°) sin v — 2af3 cos v = 0,
c¢’est-a-dire

I° pour

Do »

RN® R
b

— — COotg — V.
& 2

Si donc le point («, (3) se meut sur 'une ou ’autre des droites

©) 1
3 =—a cotg 57

les droites de la congruence (1) enveloppent une courbe plane
dont les équations s’obtiennent en éliminant « et (3 entre les
équations

/o 1

Py
& /’
)£=a(1—6)+75
\77:5(1—'@)—{-8&

tout en tenant’compte des relations (9). On trouve moyennant
la premiére des équations (10)

(10)
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2° pour [3=— «cotg —; v

sin — v _PC__
2 Z—1

1 Y
e E: 24
5=— cos 5 \/C_._T

_ 2 (&—1
) = cosgv\/&_?__

&

et on remarquera que les premiéres formules répondent au cas
ou ¢ < 1, et les secondes au cas ou £ > 1. Les deux autres des
équations (10) fournissent ensuite

10

E=2008%vaC(1—?:)

AN f, = 2sm~u Vet (1—2)

Les enveloppes cherchées sont ainsi

1° Vellipse

[ 4 1\2
'-i-pCOSE—'Qv
'/2 ' , 1\¢2
(12)<f—1 +(§— T)) =
4:p sin2~2—v -
1
k n=4¢ tg—g— v

20

E=—2sin —;v ]/p_C(C—-l)

(119) n = QCOS-%V ]/pC(C-—l)

et 2° 'hyperbole

1\2 i 1
4psin’—v
el

-1 2 .02 . 1

3) =1

-4p0082§v ‘
v
=~—£c0tg—§v.

Lorsque le point («,"() est assujetti & rester sur la courbe
quelconque F(«,5) =0, les droites de la congruence engendrent
une surface réglée. Or, on se souviendra que la section faite par
le plan {=const. dans cette surface, possede des foyers dont les
coordonnées sont données par les formules (11) et (112), et que
~ le lieu géométrique de ces foyers, ¢ étant considéré comme va-
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riable, est précisément soit 1’ellipse, soit I’hyperbole qui viennent
d’étre trouvées. On vérifiera ce fait dans deux cas qui se distin-
guent par leur simplicité.

Premaer cas. Le point («, (3) se meut sur la droite

f=atgypy,
son image dans le plan £ =1 sur la droite
o=ytg(v—up).

Les génératrices de la surface correspondante ont alors pour
équations

{§—« — n—atgp

a—+btgp T b—atgp

(+tg*pma  ~ (+tgip)a

=¢

—atgpy

ou

. cos (v— ) cos u
f=a(1—8) + pr 20!

sin (v— ) cos u
= :

n=a(1—L)tgp-+pt

En éliminant « entre ces deux équations, il vient
(13) (&sinp—mncos p) [Esin(v—p) —ncos(v—p)]=
= pf(E—1) sin? (2u —v).

C’est ’équation d’un hyperboloide & une nappe. Si on la trans-
forme encore a I'aide des formules

E = 1 ini
é——xcosgv—ys 5 Y
(14)

.1 1
=xsSm —-v—+ 1Y Cos =V

2 2
elle prend la forme plus simple
a = y — =1
408 (1 —C&)cos?® (y—-_—é v) . 4pf(1 —&)sin? (pa—E v)

et qui permet de reconnaitre que la section de la surface déter-
minée par le plan {=const. est une hyperbole ayant pour foyers
les points

¢=const, y=0, a==2Vpl(l—2)
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ou ¢ = const., y=:_*—_2]/,5_c—(2;—1), z=0,

suivant que & est plus petit ou plus grand que I'unité. Exprimées
en &, v, les coordonnées des foyers deviennent

pour < 1: pour { > 1:

& = const. ¢ = const.

'. g=i-_2003—;u]/p£(1—- ) E=¢2Sin%v]/;&_((:—1)

' n=i23in—;-vl/pi(l—§) 7J=:':9008':21'VVP5(C—1)

et ce sont bien 1a les formules (11) et (11¢). On peut remarquer
encore que ’hyperbole (4) est le contour apparent sur le plan
2y de ’hyperboloide (13).

Deuxieme cas. Le point («, (3) se meut sur la circonférence

a=rcose, [=rsine
et par conséquent son image sur la circonférence

7=£cos (v—9), 3=L sin (v —9).
r r

Dans ce cas, les génératrices de la surface réglée sont

E=cos ¢ [T(1—5)+Z%cosv]+sincp'gp7sinu

-/;._—_cosqagp-;sinv +sino [r (I—C)—-C%cosv]
et I’élimination de ¢ entre elles fournit
(15) (& +n*) [”2 (A—=8y+& 5—] +25(1—%) pcosv(n*—&) —

—4&np (.1 — &) sinv= [fr‘z(l—lﬁ)"—C2 f—:]2

Clest I’équation de la surface cherchée. Celle-ci est du 4™ ordre

et son contour apparent sur le plan zy est la courbe (7). Par

la transformation au moyen des formules (14), I’équation (15)
prend la forme

2 2

(159 e !

ra-o+Sag ra—y-Loge

= 1.




60 H. AMSTEIN

Elle montre que les sections paralleles au plan zy de la surface
sont des ellipses. Les foyers de I'une quelconque de ces courbes
sont les points déja trouvés dans le cas précédent. La surface
(159) est facile & construire. Pour #* = p, elle devient le cono-

cuneus de Wallis

* y?
—_ -t = 1’
p o p(1—28)

ayant pour directrice la droite { = 50 Y= 0, et pour plan di-
recteur x = 0.

La circonférence.

Soit
(1 et =t
et @ une constante réelle. Alors
dn &
dt ]/g;';—g'

Il s’ensuit que =0 et { = ~+ a sont les points singuliers de la
fonction 7. Les points qui, apres la projection du plan supérieur
sur le plan inférieur, deviennent les points doubles du plan, sont

a
g — _"_L'_ ==
V2
De I’équation (1) on tire
; Xz___Ye____yz_we_i_az
XY =— xyY.

Par conséquent, lorsque y* — x® 4+ a* = const., c’est-a-dire
lorsque le point £ se meut sur une hyperbole équilatére, le
point » décrit aussi une hyperbole équilatére. La méme chose a
lien dans le cas ot zy =const. Aux points x == o, y==f3
du plan inférieur correspondent ainsi deux points symétriques
par rapport a ’origine du plan supérieur.

La représentation transmise par la fonction # est connue. On
sait, par exemple, que lorsque le point (e, (3) parcourt une cir-
conférence du centre O, son image (y,d) décrit une courbe de
Cassini.

(2)
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Afin d’établir d’autres relations entre les deux plans, on posera
(@ -+ yt = a cos (¢4 Y1)
X + Yi = asin (p+ {2).

Ces valeurs satisfont identiquement a I'équation de la circonfé-
rence, et I'introduction de la variable (¢ +- 1) constitue une re-
présentation des plans {=0 et {=1 sur un troisieme plan,
celui de la variable (¢ 4 7). Des équations (3), si 'on-désigne
par cos i, sin hY (cosinus et sinus hyperboliques de ), respec-
tivement les expressions

1/, =4 /v _ —¢
E(e + e ) et '-2-(8 —e )

(3)

il résulte
(& = @ cos @ cos kY X = a sin g cos ki
@ | o (82) { .
Yy =— a sin o sin h} Y =a cos o sin Ay

En éliminant premierement § entre les équations (4), puis entre
les équations (42), on trouve

2 2
x . () —1

a*cos’*o a’*sin’o

R & 1

a*sin*¢  a*cos*o

Interprétées dans le méme plan, ces deux équations repré-
sentent un seul systéme d’hyperboles homofocales, puisque

e o v $
' €0s @ = sin (—2- T — cp). Si donc le point inférieur parcourt une

des hyperboles, son image se meut en général sur une autre hy-
perbole du systeme. Les deux hyperboles correspondantes se
confondent dans les cas ou cos®p=-sin?g.

Eliminant en second lieu ¢ entre les équations (4) et (42), on
obtient

®)

2 2 2 2
RSN P N S
a*cos® i a®sin’hy a*cos*hy  a*sinth
Ce sont des ellipses homofocales telles que chaque ellipse se cor-
respond a elle-méme sans que pour cela les points correspon-
dants coincident.

La construction de points correspondants n’offre aucune dif-
ficulté. En effet, deux points correspondants P, P’ étant donnés,
on détermine d’abord les axes des ellipses passant par ces points,
ce qui se fait facilement a I’aide des relations 2°+ X*=a*cos* A,
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y® 4+ Y* =a*sin®AJ, ensuite, afin d’obtenir d’autres couples de
points sur la méme ellipse, on peut se servir du procédé indiqué
dans la fig. 7, dans laquelle OA = a cos 4y, OB=asin A,
angle AOC = angle EOF = o.

Comme dans les cas précédents, on cherchera maintenant I’en-
veloppe de la droite qui joint le point (z, y) au point correspon-
dant (X, Y). L’équation de cette drBite est

COS @ ~-sin @
sing — cos @

n~+ asin ¢ sin hy = tg A
ou
(6) sing(n— &tg i) — cos @ (v+ & tg Ay) = — a sin k.

Si en premier lieu on y considére ¢ comme parameétre variable,
on est conduit & I’enveloppe suivante

(E—acospcoshy)

_ EE .ﬁ‘.‘
(7) ] —+ 1 =1.
"éa"COS‘hL{J -:,-z-a'sm’w'

Cette équation représente encore des ellipses homofocales, ayant
pour foyers les points doubles du plan. Deux ellipses apparte-
nant P'une au systéme (5), Pautre au systéme (7), qui répondent
a la méme valeur de ¢, sont semblables et semblablement pla-
cées. Le parallélogramme ABA’B’ (fig. 7), inscrit a la premieére,
est circonscrit a la seconde.

Si, au contraire, dans I’équation (6), mise sous la forme

(64)  » (sin @ — cos @) + a sin AY = E tg h (cos @ 4 sin @)
on envisage ¥ comme parametre variable, et que I'on différentie
par rapport a ¢, il vient

, COS @ =+ sin @
cos b} = ,
acos by =¢ O HY

d’ou ’on tire

) cos?hy = 89T NG

et I’équation (6¢) fournit ensuite
sin ¢ — cos @

(82) sin® Ay =
a

Les deux équations (8) et (82) ou I’équation unique qui s’en-
suit par ’élimination de ¢



REPRESENTATION DES IMAGINAIRES 63 -

2

9) (E sin @ -+ cos cp)a_ (n sin ¢ — cos cp)3= i

a \ a

It

représentent I’enveloppe cherchée. Or, on reconnait que 1’équa-
tion (9) est celle de la développée d’une hyperbole. En effet, 1a
développée de I’hyperbole

2 w2
S-g-
est donnée par I’équation
2 2
A e
ot + o + f
et les équations (9) et (10) sont identiques pourvu que l’on ait
ot + (3 . a
o SIn @ - COS @
at + [5* a
£ ~ sin © — cos @’
c’est-a-dire si
1

=0 (sin @ 4 cos @)

ok

3= —a (sin g — cos @)

bo

et par la suite _
1
ol : ot
+ £ 5
Ainsi les hyperboles (¢ étant maintenant considéré comme
variable), dont les courbes (9) sont les développées, sont homo-
focales et leurs foyers sont les points doubles du plan.
Dans le but de trouver l'intersection réelle des deux nappes

de la surface S, on formera y, et y, ou, si 'on ne veut pas chan-

J J
ger de notation — et —X
dx dy

D’abord des équations (2) on tire

9X2 — as_i_ya_xs_l_]/(aa_'_y: _ x’)2—|—4m2y’
ou la racine est nécessairement positive. Ensuite il vient
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IX y @+ o' 4o + V(@ + v — @) + oy
2 2X V(@ + v — &) + 4oy’

Or X ne peut s’annuler que pour y=0. Dans cette hypothése

'}Dy
Y=10, X=i]/a’—oc"’=j—_acosl,
XX  x _ __cos)
ﬂ=+}ﬁ_+m’

ott, pour simplifier, on a posé x =acos ). En introduisant ces
valeurs dans les équations (1C¢), p. 34, & savolr

on obtient
}-: — _ s1n 4 _
sin ). =+ cos /.
e + a
" sin ). =& CO0S /.
i = 1
L’élimination de 7 entre les deux premiéres de ces équations
donne
. 1\®
. (-3
(1) 7 =0, 7 1
g ¢ 1

La courbe cherchée est par conséquent une hyperbole dont le

centre est le point £=0, » =0, ‘g=% et le demi-axe réel = ﬁ.—_.
V2
Si, en dernier lieu, on cherche les surfaces réglées, engendrées
par les droites de la congruence donnée :

1° Lorsque le point inférieur est assujetti & rester sur l'ellipse

1]

x’ y®
a*cos*h)  a*sinhl

—¥ A
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et 2° lorsqu’il se meut sur I’hyperbole
@2 A
2 — 2 ?'J 2 =1
a*cos®*o a*sin‘oQ

on trouve dans le premier cas I’hyperboloide
2 n%
2 5 + 2 in 2

a* cos*hy  a®sin® by

=+ (11—

et, dans le second cas, la surface du 4™ ordre
5 _ a _
@’ [Esing+ (1 —¢)cose]*  a*[fcoso—(1—¢)sing]®

Dans les deux cas, on constate aisément que les sections faites
dans ces surfaces par le plan £ = const. sont homofocales et que
le lieu géométrique des foyers, £ étant de nouveau variable, est
précisément I’hyperbole (11). Le contour apparent sur le plan
a2y de hyperboloide est l'ellipse (7), celui de la surface du
4 ordre est la courbe, représentée par I’équation (9).

INFLUENCE DE L’ACIDE BORIQUE

SUR DIFFERENTES FERMENTATIONS
Communication de M. A. HERZEN.

~SAOYONG YO~

La présence d’une certaine quantité d’acide borique exerce
sur la marche de certaines fermentations une influence trés cu-
rieuse, tantot favorable, tantot défavorable. Ainsi :

1° La transformation de ’amidon en glucose, au moyen du
ferment salivaire ou pancréatique, n’est point influencée par
I’acide borique, méme si le véhicule de I'infusion est une solu-
tion saturée d’acide borique.

2° La transformation du glucose en alcool est favorisée par
la présence de 'acide borique, méme en treés petite quantité;
le moit, par exemple, fermente plus vite et donne un vin con-

)



	

