Zeitschrift: Bulletin de la Société Vaudoise des Sciences Naturelles
Herausgeber: Société Vaudoise des Sciences Naturelles

Band: 15 (1877-1878)

Heft: 80

Artikel: Etude élémentaire des courbes planes au moyen des coordonnées
tangentielles

Autor: Amstein, H.

Kapitel: B: Coordonnées tangentielles polaires

DOI: https://doi.org/10.5169/seals-287517

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-287517
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

432 BULL. H. AMSTEIN _ SEP. 40

B. Coordonnées tangentielles polaires.

26. La longueur ¢ de la perpendiculaire abaissée de 1'ori-

/-
7=
perpendiculaire avec 'axe des X, déter-
minent complétement la droite. En raison
de ’analogie qui existe entre cette maniére
de fixer la position d’une droite et celle qui
consiste & déterminer un point par ses
coordonnées polaires, il parait convenable
d’appeler g et ¢ les coordonnées tangentielles

gine sur une droite g -+ 1 et l’angle ¢ que fait cette

Fig. 10. polaires de la droite - + % — 1, savoir ¢

son rayon vecleur et ¢ sa déviation.

La transformation des coordonnées tangentielles rectili-
gnes en coordonnées tangentielles polaires est donnée par
les formules

0 1
0= = — =,
cos ¢ u
b= — s :
sin @ v
d’ou
__ cosg
- 0
(1) sin
v — — @
0
et la transformation inverse par
® |
= OSg:—-—u—— sing—— —— Y gy — 2
V'uﬂ_i_?ﬂ ]/u2_|_,v2’ Vu2+ 2’
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L’équation ¢ — const. représente une circonférence du
rayon ¢ comme l'enveloppe de toutes ses tangentes. L’équa-
tion ¢ — const. signifie un point & l'infini dans la direction
perpendiculaire & ¢. On peut envisager ce point comme I'en-
veloppe de toutes les droites perpendiculaires & la direction ¢.
Les deux équations ensemble déterminent par conséquent
(le signe de ¢ étant donné) une tangente particuliére de la
circonférence.

En faisant les substitutions (1) dans 1'équation

ur + vy +1 =0,
il vient
(3) xecosyg + ysing — o
et si I'on pose encore
X =rcosy, y =rsny,

ou r et y sont les coordonnées ponctuelles polaires du
point (z,y) :

4) rcos (Y — ¢) = p.

Les équations (3) et (4) représentent indifféremment soit
en coordonnées tangentielles un point (z,%) ou (r,y), soit
en coordonnées ponctuelles une droite (o,¢), suivant qu’on
y regarde xz. et y, r et ¥ ou ¢ et ¢ comme constants.

Lorsqu’il existe entre ¢ et ¢ une équation f(o,¢) =0, les
équations (3) et (4) représentent pour chaque couple de va-
leurs de ¢ et ¢ une droite; I’ensemble de ces droites enve-
loppe une courbe F (z,y) =0 ou @(r,y’) =0 dont I'équation
en coordonnées tangentielles est précisément f (o,¢) = 0.

Si, au contraire, on envisage z et ¥, r et ¥ comme para-
metres variables, liés entre eux par les équations F (z,y) =0
ou @(r,y) — 0, les équations (3) et (4) donnent pour chaque
couple de valeurs de x et ¥ ou de r et v, un point, et I'en-

semble de ces points forme un lieu géométrique, savoir
F(z,y) =0 ou @(r,y) =0.
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27. Transformation des coordonnées ponctuelles en coor-
données tangentielles polaires el vice-versa. Soit

f(o,9) =0

I'équation d'une courbe. Une tangente quelconque de cette
courbe est donnée en coordonnées ponctuelles par

(1) xcosy + ysing — .

En différentiant cette derniére équation par rapport & ¢, on
obtient pour la {angente infiniment voisine

2 —zsing +ycosgp — —.
() P+ yLEg = o
De (1) et (2) on tire les formules de transformation
do .
F=reoiy = gcosgp———@smgo,
de

y:rsinzp:gsingp—l—d—ggcosq:,

o sin ¢ +3—;cosgp
—=lpw= do g
Qcosgo-—@ sing

do\?
2 2 hat ol
T*_Q +(d(p)'

Dans ces formules ¢ est considéré comme fonction de ¢; en
conséquence, il suffit d’éliminer des deux premiéres équa-
tions le parameétre ¢ pour obtenir I'équation de la courbe
sous une des formes F(z,y) = 0 et @(r,y) = 0.

Lorsque la courbe est donnée en coordonnées ponctuelles
rectilignes

SRR

F(z,y) =0
I’'équation

(1) ﬁxcosgo+ysinqa:g,
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interprétée en coordonnées tangentielles, représente un point
de la courbe. Le point infiniment voisin satisfait a I'équation

. dy
3) cos ¢ + smgp-gz—c—._o.

De ces deux équations il suit

[ g — d_y

< \/1 dy)
__dy

\ cotggo_—d—x.

En éliminant z (y étant considéré comme fonction de z) de
ces derniéres équations, on arrive a I'équation f(o,¢) =0
de la courbe en coordonnées tangentielles polaires.

Enfin, si I'on veut passer des coordonnées ponctuelles
polaires aux coordonnées tangentielles polaires, on partira
des équations

reos (Y —¢) = o,

dlpcos(w—tp)u—rsm(w—q/)_o

desquelles on tire
f r

Pour les applications qui vont suivre, il sera utile d’établir
les équations en coordonnées tangentielles polaires de quel-
ques courbes bien connues.
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Coord. ponect. ; ) Coord. tg. pol.
1) Le point.
T=a,y=2~=b, ou

au +bv+1=0 . . . . . o=acosg+ bsing.
2) La ctrconférence.
(—a)P+ (y—p)P=a*>. . . . o=a-+acosg+ Bsing.
3) La parabole.
y’:%p(g——x) €« ® % & W gcosgp:-ép.
4) Lellipse.
—=+55=1. . . . . . . ¢=Va*cos’p+ b*sin’y.
5) L’hyperbole équilatére.
2 —y* = a? . v v . . e=aVcos2¢.

6) La: spirale logarithmique.
r=ekt . . . . . . . . . p—cosIded+tIBI

ou % — arctg k.
7) La développante du cewle
| £ = a (Acosi — sin 4) .
z y—a(isind+cosd) * * * - ¢—49
8) La cycloide.
\ £ — a(cosi—1) .
;y:a(l—l—sinl) v v v . 0=2agsing.
9) L'épicycloide.

b

( Yy = acosl-—Hbcos% A

ou le rayon du cercle fixe — (a— b) et celui du cercle mo-

bile — b. Lorsque b est négatif, la courbe devient une hy-

" 3 1

pocycloide, par exemple pour a = 16 b—= — 1°
10) L’astroide.

‘w:——asinl—i—bsingl '
\- 0 =@ +)sin(2279),

gw:_—_ccosal —lcsin")
) y—=csin®1 ®=73 =9
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Observation. On reconnait immédiatement que sif(0,¢) =0
est 'équation d’une courbe en coordonnées tangentielles po-
laires, f(r,1) = O sera celle de sa podaire par rapport a I'ori-
gine. En d’autres termes : Le probléme de trouver I'équation
d’une courbe en coordonnées tangentielles polaires est iden-
tique avec celui de trouver en coordonnées ponctuelles po-
laires la podaire de cette courbe par rapport a l'origine.

Interprété a ce point de vue, le tableau précédent donne
les podaires des courbes dont il y est question.

28. Interprétation géométrique de la dérivée é% . Asymp-

totes. De I'équation

2
=er
il suit que la valeur absolue de % est un coté d'un triangle
rectangle dont I'hypoténuse est le rayon vecteur r du point

de contact et 'autre coté le rayon vecteur ¢ de la tangente

(0,9) (fig. 10). La dérivée (%i mesure par conséquent sur la

tangente la distance du pied de la perpendiculaire ¢ au point
de contact. Vu de l'origine, le point de contact se trouve a
gauche ou a droite de la perpendiculaire ¢, suivant que la
valeur absolue de ¢ augmente ou diminue avec les angles
croissants.

La tangente (o,¢) est une asymplote toutes les fois que g—;

devient infiniment grand, sans qu’'on ait en méme temps
0 — oo,

29. Les coordonnées tangentielles se prétent facilement a
la résolution de certains problémes élémentaires tels que les
suivants : 1) On demande une courbe pour laquelle la dis-
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tance du point de contact d’'une tangente quelconque au

pied de la perpendiculaire, abaissée de l'origine sur cette

tangente, soit une fonction donnée F (o,9) de o et ¢.
L’intégrale de I'équation différentielle

fournit la solution.

2) On cherche une courbe telle que le_rayon vecteur du
point de contact d’'une tangente (¢,9) fasse avec celui de la
tangente un angle qui soit une fonction donnée F (o,9)
de ¢ et ¢.

Comme tg(y— ¢) :%a‘%, ce probleme conduit a I'é-
quation différentielle
| 1 dg
= tg [F (o,
cdg — &L (el

3) On demande une courbe telle que le rayon vecteur du
point de contact d'une tangente (o,9) soit une fonction don-
née F(o,9) de ¢ et ¢. Ce probleme exige la résolution de
I'équation différentielle

Flog) =1/¢ +( sv)

Exemple 4. Trouver une courbe pour laquelle la distance
du point de contact d'une tangente quelconque au pied de
la perpendiculaire abaissée de l'origine sur cette tangente
soit constante — a.

On obtient immédiatement

Ete.

d’ou 'g = a¢g + C. (Développante du cercle.)
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Exemple 2. On veut que cette distance soit toujours = ne.

Alors il vient
do
dy
o — Cer¢. (Spirale logarithmique).

— nho,

Ezemple 8. On cherche une courbe pour laquelle ¥ = ng.
Dans ce cas on est conduit & I'équation différentielle

ldo
E dq) s tg (n“ l)fp’
dont l'intégrale est
_ C
¢ — 23

Veos(n—1) ¢
Pour n =1 celte équation représente la circonférence o =C,
pour # —2 une parabole, rapportée a son foyer.

Exemple 4. Quelle est la courbe qui satisfait & la relation
r—=mno? |

La réponse est donnée par l'intégrale de I'équation diffé-
rentielle |

savoir par

¢ Ynt—1

o = Ce . (Spirale logarithmique).

30. Différentielle de Uarc. Angle de conlingence. Rayon de
courbure. En différentiant les équations (Cf. n° 27)

X == 0 COS do sin
— @CosS ¢y dg ¢,
; do
y:gsm(p-}—dgocosgo,

par rapport & ¢, on obtient
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dr — )smwdtp,

dy = (g+d¢) cosg d g,

d’ou il suit pour la diﬁérentielle de Uarc

ds = V@ ¥ @F = e + 7%

Comme 7 = 90° + ¢ (fig. 10), lUangle de conlingence est
dv = dg.
Pour le rayon de courbure R, enfin, on trouve I'expres-
sion simple

ds d?o

B = T=e - L
Un observateur, placé au point de contact d'une tangente
(0,¢) de maniére a avoir le point infiniment voisin devant
lui, aura toujours le centre de courbure & sa gauche. En
d’autres termes : Le centre de courbure se trouve du méme
coté de la tangente que origine ou de I'autre coté, suivant

que ¢ et R sont du méme signe ou de signes différents.

Ezemple 1. On demande une courbe dont la longueur de
I'arc s, compté a partir de ¢ — 0, soit proportionnelle au

rayon vecteur ¢ avec la condition que pour ¢ =0 gi =l 1 )

= I® £
Comme s__f (Q+dgo’) dg, ona

f?(e + dag) dgp —no,

d’ou par différentiation

d*g__ do
9+d¢ ndq)
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Pour intégrer cette équation différentielle linéaire, nous
distinguons trois cas :

1) n> 2. Dans ce cas 'intégrale devient

0 = AeMv + Bels,

i 2, ____n+V'n’ 4 2 _n——]/n—m-df

: ’ 2
Les conditions initiales donnent pour la détermination des
constantes arbitraires A et B

A+B=0, {4,A + 1,B = a,

d

dou AIWB:H’

en sorte que 'équation de la courbe demandée est

3

s — (e*11— ghe¥),
e ( )

2) n << 2. L’intégrale générale de I’équation différentielle
est dans ce cas

=2 [Acos_]./io___qﬁ—l—Bsin@_@:’ﬁgp].

En introduisant les conditions initiales, il vient

A=0, B___._Q_“_._u

J & — nt

La courbe demandée a donc I'équation

e ’
—?—(—l———. e’ sm]’4
e ,2

q' .

3) n = 2. Dans ce cas la résolvante de I'équation diffé-
rentielle possede une racine double. Par conséquent I'inté-
grale est de la forme

¢ = ¢? (A + Bo);
29
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par suite des conditions initiales on a

A=0, B=u,

de sorte que |
0 = age’° .

Ezemple 2. On cherche une courbe pour laquelle s = %a’gp’,
avec les conditions initiales ¢ — 0, o = ':f% — 0,

Ce probleme conduit a 'équation différentielle

d*o -
dgj! + Q o a?’

dont l'intégrale générale est
0o =agp + Acosg 4+ Bsing.
Pour qu’elle satisfasse aux conditions initiales, on doit avoir
A=0,B=—a.
Par conséquent la courbe demandée a pour équation
o — a(p—sing). (Développante du cercle.)

Ezemple 3. Trouver une courbe dont le rayon de cour-

bure soit proportionnel au rayon vecteur ¢.(R = np).

Comme R = ¢ + g;{i , 1l s’agit de résoudre I’équation dif-

férentielle
de __

i — (n—1)e.

Suivant que 1) n >1, 2)n<<1, 3) n =1, l'intégrale devient
1) Q:Ae? Vn—1 +Be—?VhT—_l,
92) ¢ = Acos(¢})/1—n) + Bsin(¢}V1—n),

3) o—=A¢g + B.
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Dans le second cas la courbe est une épicycloide, par

8 . .
exemple pour n— g une cardioide, pour n» = — 3 une as-

troide, dans le troisitme une développante du cercle et pour
A — 0 une circonférence.

31. Relations enire une courbe et sa podaire. Si f(o,p) =0
est I'équation d’une courbe en coordonnées tangentielles
polaires, on sait que f(g,¢) =0 peut aussi étre envisagée
comme 'équation en coordonnées ponctuelles polaires de la
podaire par rapport & l'origine de la courbe considérée.
(Cf. n°27.) Or, la normale N et la sous-normale S, polaires
d’une courbe sont respectivement

d’ou il résulte le théoréme : La normale polaire en un point
quelconque P de la podaire d’une courbe
est égale au rayon vecteur r du point cor-
respondant P’ de cette courbe et la sous-
normale de la podaire au point P est

égale aad—; savoir égale a la distance

PP’ (Cf. n° 28).

En appelant o 'angle que fait la nor-
male au point P de la podaire avec le rayon vecteur ¢ de
ce point, il vient

Fig. 11,

| d
w:gu——q:,cotgw:cotg(tp———gp):g-ag.

Moyennant ces théoremes la normale et la tangente de la
podaire peuvent facilement étre construites.
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Le rayon de courbure R au point P’ de la courbe pro-
posée étant (Cf. n° 30)

d?o
R=0o+ i

et celui de la podaire au point correspondant P

BR'=

9[9’+(g—§;)2]—— ¢ (9+g:f,) - 2 —eR’

il existe entre les deux rayons de courbure la relation li-
néaire

1]

r

R_ o
r? o= '
2 ——R 2——R
¢ ¢

?12

- §y
bJ

r 0

9" — R

Rf

Par conséquent, R étant connu, R’ pourra étre construit
moyennant une quatriéme proportionnelle et réciproque-
ment. '

Observalion. On peut remarquer que R’ devient infiniment
2
grand, lorsque 2 -%- — R = 0. Une courbe qui satisferait en

tous ses points a cette derniére condition, aurait pour po-
‘daire une droite. Or, on sait que la parabole, rapportée a
son foyer, est une pareille courbe. Afin de savoir s’il n’existe

pas encore d’autres courbes jouissant de la méme propriété,
2

intégrons équation différentielle 2°— —R =0 ou

0
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dg\?
2 S—
¢ +(dgp) — a4 dto
0 o dg*
En la mettant sous la forme

2.

!/

d(%) - o

"_':.'1+(%,—)2,011Q T ey

on obtient d’abord l'intégrale premiére

¢ — ¢, = arcig (-‘;—) ou £ =tgly—g¢,),

et ensuite l'intégrale seconde

log % — — log cos (¢ — ¢,)
qui peut s’écrire
G
0o — .
cos (¢ — @)

On reconnait par 14 que la parabole est la seule courbe
qui jouisse de la propriété indiquée.

2
L’équation % = %— permel une construction trés simple

du rayon de courbure de la parabole. (Pl. 24, fig. 10).

32. Awe d’une courbe. En différentiant I’équation

cos(y — ¢) = % (Cf. n° 27),
il vient
—sin(y—¢) (o —dg) =d (£),

d’ou 'on tire
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_ r dg “do
W T Eme—y e A
dg - dg
dr do do d% d*e
dzp—gﬁd _0 dq>+dgo dgo’d_g(9+dgo’)d .
r _t_i_g_ = , do ¥ = r? ¢ =
dg do
= 08
=3 deg.

La différentielle de l'aire A d’une courbe en coordonnées

ponctuelles polaires étant dA — é— r*dy, on a

I 1/, d*o
dA=gr dtp.__;z;—nggo_é-(Q +9d—¢) dg.
Si I'on désigne par A, l'aire de la podaire de la courbe
considérée, en sorte que

1
dAi —_— :o): gg d@ ’
il suit
dA_R
dA, " o’
Lorsque ce rapport est constant = n (Cf. n° 30) et qu'on a

soin de prendre les intégrales entre les mémes limites, il est
évident que le rapport des aires des deux courbes est le

" . A
méme, savolr — — n.
Ay

C’est ainsi qu’'on trouve par exemple que l'aire de la dé-
veloppante du cercle ¢ = ag est égale a celle de la spirale
d’Archimeéde ¢ = ag, si toutefois on compte ces surfaces a
partir d’'une couple de points correspondants jusqu’a une
autre couple de points correspondants. (Pl. 25, fig. 11.)



Ho SsEp. ETUDE DES COURBES PLANES BULL. 447

33. Polaires réciprogues. On a vu (Cf n° 22) que le pole
d’une droite (o, ) par rapport a la circonférence ¢ — 1 est

situé a la distance% de lorigine sur la perpendiculaire,

abaissée de l'origine sur cette droite. Par conséquent, si
f(e,9) =0 est I'équation d’'une courbe en coordonnées tan-

gentielles polaires, f (3—,(,0) — 0 sera l'équation en coordon-

nées ponctuelles polaires de la polaire réciproque de cette
courbe par rapport a la circonférence ¢ — 1.

EXEMPLES.
Courbe donnée Polaire réciproque
en coord. tg. pol. en coord. ponet. pol.

1) La circonférence.
 (— 1
e=a . . . . . ... 0= (Circontf. dulayona).

2) L’ellipse.
. 1
Q—*Va*cos"ga—i— b*sin*g

; r 1
(Ellipse aux axes " et 3) :

0= ]/a*cos”cp + b*sin®g

3) La parabole.
0COSQp — L p —gcos @. (Circ.du rayon 1
=3 Y =5 . . o
passant par l'origine.)

4) L’hyperbole équilatére.

0= — 1 ~ (Autre hyp.
a) cos2 ¢ équil.)

o—a ]/rcosﬂgp

5) La développante du cercle.

PEEAE. « 2 = = v » & gza—lg; (Spir. hyperbolique.)



448 BULL. H. AMSTEIN SEP. 56

6) Courbe dont la podaire est une spirale hyperbolique.

—4 P s s a
p == G U M e m oo T (Spir. d’Archiméde.)
7) Spirale logarithmique.
PEEEY o v s o sox v PE Elx_ e—¢. (Autre spir. log.)

34. Courbes équidistantes. Soit f (o, p) = 0 I'équation d’une
courbe. De la définition des courbes équidistantes (Cf. n° 24)
il suit immédiatement que I'équation d’une courbe équidis-
tante s’obtient en remplacant dans f(¢,9) =0 le rayon vec-
teur o par g4k, en sorte que f (o =k, ¢) =0 sera 'équa-
tion cherchée. '

Si R est le rayon de courbure en un point quelconque de
la courbe f(0,9)=0, R=+F sera celui de la courbe équi-
distante au point correspondant. '

La longueur de la courbe f(0,4) =0 étant

$ :f?’Rdgo,
71

celle de l'arc correspondant de la courbe équidistante sera
' e .
¢ = [T RE Ry = s = kg — 9,

ce gui démontre une des propriétés principales des courbes
équidistantes.

35. Développée n*. Les normales d’une courbe donnée
o = f(¢) étant les tangentes de la déve-
loppée de cette courbe, on peut envisa-
ger la développée comme ’enveloppe de
toutes les normales de la courbe propo-
sée. Or, la normale en un point quel-
conque P de la courbe ¢ =f(¢) est pa-
rallele a la perpendiculaire, abaissée de
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'origine sur la tangente en ce point et la distance entre ces
deux paralléles est égale a a‘% (Cf. n° 28). De la il résulte

qu'en appelant ¢, et ¢, les coordonnées tangentielles po-
laires de la normale en question, savoir d’'une tangente de
la développée, on aura.
_do 1
94—@,%—@—1—-@-”-

Afin d’obtenir I'équation de la développée cherchée, il
suffit d’éliminer le parameétre ¢ de ces deux équations.

En répétant ce procédé on arrive aux équations suivantes
remarquables par leur simplicité

dro 7

Qn-_—-@;,%'——@-l-n-g,

ou ¢ et g, désignent les coordonnées de celle des tangentes
de la développée n**™ qui correspond a la tangente (o,¢) de
la courbe proposée. Par I’élimination de I'angle ¢ de ces deux
équations il vient pour I’équation de la développée ni®®¢ cor-
respondant a la courbe ¢ —=f(¢)

Qn:f”(q)ﬂ——n%).

Ezemple 1. Le fait que la développée n*=¢ de la courbe

e=a+a, 9+ a¢*+ ... +ayg"

est évidemment la circonférence ¢ — a, permet de recon-
naitre qu’en ce systéme de coordonnées toute courbe pour
laquelle ¢ est une fonction entiére de ¢ du degré n, repré-
sente une développante n**®¢ du cercle. Xt °

Exemple 2. Soit la spirale logarithmique
o = Ae?.
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La développée ni*™ de cette courbe, savoir

on = Aared(m—n3)
est identique avec la courbe donnée, mais placée différem-
ment. On peut obtenir la coincidence des deux courbes en
choisissant convenablement la constante a. En effet, si m
désigne un nombre entier, il suffit de tirer a de I'équation

Aea(?—-emn) — Aa® ea(q;—n-;f)
ou O:nloga+a(2m—~—g-)7r

on __ dp

de,  dg

¢» — ¢. Pourvu que m >0 et 4m > n cette équation admet
toujours une racine réelle. (P1. 25, fig. 12.)

qui exprime que g, — ¢ et en méme temps

pour

Exemple 3. Soit la cycloide
o = 2a[sing + (m —g)cosg].
La dérivée ni* de ¢ devient

j; = 2a[(1—n) sm(qa+n ) + (fr-——-go)cos(gp+n——)]

En remplacant ¢ par (¢, —n 2—) dans cette équation, il suit

pour la développée n*®™e
. n -+ 2
on =2a[(1 —n)sing, + (—2_1_— T — P ) COS Py ].

On reconnait sans difficulté que cette courbe ne differe de la
proposée que par la posilion.

Exemple 4. Soit I'épicycloide
. [a+b
0= (a + b)sin (aj_—b q>).
De cette équation on tire

dn il +b)(a+b) sn(a’+z¢+n )
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et en substituant pour ¢ sa valeur (¢, — n g-) , il vient
a4+ b a + b) ¢, — nb
Qn—-(a“l"b)( ax ) [( +a)1b n—]

Cette derniére équation montre que la développée ni*™ de
I’épicycloide est une courbe semblable & la proposée.

36. Développante n*. Par le procédé inverse de celui
qui a servi & déterminer la développée n®*™¢ d’une courbe
donnée ¢ —f(¢), on peut établir I'équation de la dévelop-
pante n®*=e de cette courbe. '

Soient, en effet, o, et ¢ les coordonnées tangentielles
polaires de celle des tangentes de la développante ni*® qui
correspond a la tangente (0,¢) de la proposée.

Alors on doit avoir

do_1 . 7
1_9’@—1'—*9} 9

d'ou l'on tire en observant que
d@—-i — dgp

odg + C,.

Fig. 15. el =

En continuant ce procédé on obtient pour la tangente
(0—n, ¢—n) de la développante n®®e correspondant a la
tangente (o,¢) de la courbe donnée

So_n:@——-?la)—.

=

L’élimination du paramétre variable ¢ de ces deux équations
conduit a I'équation cherchée.
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Ezemple 1. Cherchons la développante ni*® du point
o —acos¢ + bsing.
On trouve successivement :
Pour la développanté premiére

o—1=asing —bcosg + C,,

r
g1 =9¢— ik
d’ol o—1=acos¢_y + bsing_y + C,. (Circonfé-

rence du centre (a,b) et du rayon C,.)

Pour la développante seconde

o_e—asing_y—becosyp 1+ C,¢_1 + Gy,

w

Sp-—g—_—sa-—-‘l“_é- ]

d’ou 0—_3—acos¢_g+ bsing o+ C,¢_as+ C,. (Deve-
loppante du cercle.)

Enfin pour la développante nime

0_n=acos¢_n+ bsing_,+ C,go..n +02¢I;’+
+Cn—{ Sa—n + C‘n .

Exemple 2. La développante premiére de 'ellipse

0 =) a*cos*¢ + bsin*¢
est déterminée par

o— ,_f Y@ cos g F brsinr ¢ dg + C, =aE(h,¢) + G,

ou E (k,¢) signifie, d’aprés Legendre, l'intégrale elliptique

b . (& B
de la seconde espéce en question et k= LT_

)

T

¢—1:¢—§-
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De ces deux équations il suit :
e—1=aE(ky—i +3) + C.

Ezemple 3. Pour la développante premiere de la parabole

a
Q'_"‘.....—._—m-.

~ cos ¢
il vient

3 1 : "
01 —alogtg (In +- 5 ¢—1) + C,.

37. Podaire n®™< d'une courbe par rapport a Uorigine.
Bien que renoncant & 'emploi des coordonnées tangentielles
polaires pour la solution du probléme des podaires nitme  le
probleme lui-méme a paru assez important pour justifier son
insertion dans ce mémoire. La solution pourrait d’ailleurs
se donner avec la méme facilité en coordonnées tangen-
tielles.

Soient r,y les coordonnées polaires d'un point P quel-
. conque de la courbe proposée

P = F () By Wi T o Wagssssa Py Win

les coordonnées des points ho-

mologues P,, P,,...P, respective-
ment de la 1%, 2%, ... n'*™e podaire
de la courbe donnée et soit 9 I'an-
gle que fait la tangente au point
P avec le rayon vecteur r. Alors

on sait que d'une part

o ray
ted =g
et d’autre part (Cf. n° 31)
tgd = Fy iy

'}
dr,
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en sorte que

ilg — dlp
"o — " dr, ”
En continuant ce méme Iraisonnement, on obtient les égalités
dy _  dy, dwg_ _ radyy,
P =T . = Ty Ay ==

qui démontrent le théoréme : En des points homologues les
tangentes des podaires successives d'une courbe donnée font
avec les rayons vecteurs correspondants des angles égaux.
De ce théoréme on déduit immédiatement

r, = r sin 4,
ry — 7,8inJ = rsin*J,
Pp = Ta—tSind — rsin" $¢
T
et tp,,:zp-—-n(-g————éi).
Les deux équations

[ o=
< [\/1 rd(p

Y, —y—mnarctg (%;b)

\

résolvent le probleme proposé. Dans les cas ou I'élimination
du parameétre y est possible, on obtient I'équation de la po-
daire n*e sous la forme F (r,,yn) = O.

Ces équations restent encore applicables, lorsque 7 est
zéro ou un nombre entier négatif. Pour une valeur négative
de n la courbe donnée figure elle-méme comme podaire n'*™e
de la courbe cherchée. Dans le cas de »—0 on retombe
sur la courbe donnée.
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Ezemple. Appliquons les formules précédentes au cas

a
m b )

Y cos my

ou m signifie un nombre positif ou négatif, entier ou frac-
tionnaire. On obtient pour la podaire 7nit=e

T

a e
ry — - —a(cosmy)  m

V cos my [Vl + tg’mlp]
Y= ¢ — n.arctg (tgmy) = (1 —nm) y,
d’ou en éliminant I'angle ¢

m n——
= a [cos Wn m
1—am

Cet exemple donne lieu & de nombreux cas particuliers.
Considérons-en quelques-uns.

4* cas particulier. Soit m — 1; alors la courbe donnée

_a
T cosy

est une droite parallele & 'axe des Y. Sa podaire n®*=¢ a
I'équation

n—1

rn = @ [cos Yn ] .
1—n

Cette formule devenant inapplicable pour n =1, ce cas doit

se traiter directement. On trouve
La podaire premiere de la droite est par conséquent un point

sur 'axe des X.

: . 1
n =2, r,—=acosy,. (Circonférence du rayon > a passant

par le pdle.)

n =3, r; = =a(l+ cosy;). (Cardioide.)

O] =
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1 ”
n—4,r, = a(cos 3 ),

a 2a
n—=—1,r_,= . (Parabole.)
(COS 1 1)9 1 4+ cos_y

R= — 2, Py ——e (PL. 25, fig. 13.)

(cos 5 W)’

2% cas particulier. m — 2.

P = e . (Hyperbole équilatére.)
]/cos 2y Y
2, n—%
P 5 [cos ( 1 _"U%)] .
n=1,r, =a} cos 2y, (Lemniscate.)
. . .

n=2,1,=alcosz )",

&

n——1,r_1= 5 - (P1.25,fig. 14.)

cos % rp_1)é

On peut remarquer que deux hypothéses m —u et m —=»

amenent les mémes suites de courbes, lorsque n = i — -1-
v |0
: 1
est un nombre entier. Par exemple uw =1, » = 5
4
=3, v—= 3

Remarque. Les rayons vecteurs », »,, 7, ... 7, formant
une progression géométrique, et les angles correspondant

Y, Y — ( =) th— Q(““—‘) -?/J—n(g#{i) une
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progression arithmétique, il est évident que les points
P,P,,..P, d'une courbe donnée r—f(y) et de ses n po-
daires successives sont situés sur une spirale logarithmique
dont I'équation est

(v — DPlogsin g
5
R=r.e *

ou R et ¥ désignent les coordonnées courantes et ou

J — arclg ( (j;b)

38. On propose de trouver une courbe dont la podaire
n'*™ soit une courbe semblable par rapport a l'origine prise
pour centre de similitude.

Il y a trois cas a distinguer.

1 cas. La similitude est telle que les rayons vecteurs des
points homologues sont proportionnels, savoir r, — m».
Dans cette équation m doit évidemment étre un nombre
fractionnaire.

Soit » = f(y) I'équation de la courbe cherchée. La fonc-
tion f(y) doit alors satisfaire a l’équation différentielle

VAT

_._'-—\ n-—l dt’b

L’intégrale générale de cette équation est

d’ol1 I'on tire

- _¢\/m n—1.

ou

Vs
P mT n—A1

"
30
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En posant pour simplifier Vm n— 1 =tg w, I'équation de
la courbe cherchée devient

celle de sa podaire nitme

frn — C COS n e (&;ln -F-‘n.tu) \g m.

Ces deux courbes sont des spirales logarithmiques identi-
ques, mais placées différemment. En tournant la premiére

d’un angle

Y, = ncotgw [wigw 4 log cos w]

autour de l'origine dans le sens des angles décroissants, on
peut amener la coincidence.

Il est presque inutile d’ajouter que pour m — 1 on obtient
la circonférence r = C.

2% cas. On demande que la similitude soit directe avec cor-
respondance arbitraire des rayons vecteurs proportionnels.

Si dans ce cas r=f(y) est I'équation de la courbe cher-
chée, celle de sa podaire n®*m¢ aura la forme

rn = mf(l,vn + 1“)1

ou m et u sont des nombres réels quelconques. Pour la pre-
miére de ces courbes on a

i (w)
tgd =5
| )
et pour la seconde

’ff(n""*' Wn)’

Or, en des points homologues qui correspondent a

Y=, Y=y —n. arctgf((w)),

tg 9 =
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on doit avoir 4’ = & (Cf. n° 37), d'ou il suit I'équation

[ ()
/@) _f[”“” " ]
| 7@)
a laquelle on peut satisfaire par l’hypothése
S _
Pt

ou k désigne une constante. L’intégrale générale de cette
derniére équation différentielle étant

logf(l’b) = =+ ky ou r = f(y) = Ceik‘;‘,

on reconnait que la courbe cherchée sera encore une spirale
logarithmique. La constante & se détermine moyennant la
condition qu’en des points homologues on ait (Cf. n° 37)

CeTH
"V A
[\/1 -I- ] V{1 + £
edlp
ou
mceiki?-'i'k?"“narclg(ik)} 5 Ee_i}in,
V(+ )
d’ou il suit
meik ;—unarctg(-]-;) _“-E__R,
V({1 + k)

et en prenant les logarithmes

L

log m 4=k (1w =F narctg k) + log 14+ F)=0.

- - * f-*__‘gf - L]
Si 'on convient de prendre le radical } 14 A* positivement,
m devra aussi étre un nombre positif.
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Discussion des deux équations

(1) logm + k (u—n arctg k) + & log (1 + &) = 0,

@) logm — k (u + n arctg k) + g—log (1 + k) =o0.

Comme (2) s’obtient de (1) en changeant £ en — k&, il est
clair que si les deux équations possédent des racines posi-
tives, elles admettront aussi des racines négatives. Il suffira,
en conséquence, de constater dans les différents cas 1'exis-
tence ou I'absence de racines positives.

Considérons d’abord Y'équation (1)

F(k) =logm + k (u — n arctg k) + gilog 1+k) =0,

en n'admettant que des valeurs positives de n. Comme

J (k) = p — n arctgk
) g B
s'annule pour £ = tg - et que

n

F®=—1rp

la fonction (k) posséde un maximum pour k — g i—:
Soit maintenant 1) m > 1, ©« > 0. La valeur initiale

f(0) = log m étant positive, le maximum
log m + g- log (1 4 tg? %)

le sera aussi. Pour que la fonction puisse devenir négative,
T
‘5 .

—

w doit satisfaire a la condition u<<n Alors T'équation

possede une seule racine positive.
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2) m <1, > 0. La valeur initiale est négative. Pour
que le maximum soit positif, il faut que

g log (1 4 tg* %) > —log m, ou u > n arccos }/ m.

T
— en sorte que

Si on prend encore u < n 3

n
7T
G)—>%>arccos Vm ,
ce qui est toujours possible, I'équation posséde deux racines

n
positives qui dans le cas limite w = arccos }'m coincident.

3) m>1, u<<0. La valeur initiale est positive. La fonec-
tion décroit jusqu’'a — oo. Par conséquent il existe une seule
racine positive, sans que p soit soumis & une condition de
limite.

4) m<<1, n<C0. Ce cas difféere du précédent en ce que
la valeur initiale est négative, d’ou il suit que I’équation (1)
n'admet point de racine positive.

Si 'on applique le méme raisonnement a 1’équation

(2) f (k) =logm — k (u + narectg k) + g- log(1+4%*) =0,
on trouve

1) m > 1, > 0. Une racine positive; u sans condition.

2) m <1, u>0. Point de racine positive.

Iy m>1, u<<0, —u<<n ;—r— . Une racine positive.

T

4y m <<1, n<< 0,5->—-%>arccos]/n7. Deux raci-

n
nes positives qui coincident a la limite —u —=mnarccos } m.
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Remarque. Afin d’obtenir, pour la construction, des cour-
bes dont on connaisse la forme a I’avance, il est plus simple
de choisir & et de calculer u. C’est ainsi que pour

1
n..._l,m._-g-, k=—1

on a trouvé u = — 1,1319718... = — 64° 51" 26" et par la
suite

r—Go—t, 1, = %Cewm--——w, (PL 25, fig. 15.)

tandis que les hypothéses

1
n=2, m=4, k=—
- 6
donnaient
p = — 1,8522151...— — 106°7' 27",
K2 ¢—1,8522...

r—Ce'%, r,—4Ce Y* . (PL25,fig.16.)

3™ cas. On demande que la similitude soit inverse.

En suivant un raisonnement analogue a celui qui a été
employé dans le second cas, on trouvera que la circonférence
seule répond a toutes les conditions du probléme.

39. Comme derniére application des coordonnées tangen-
tielles polaires on pose le probleme : Trouver une courbe
dont la développée ni*™ soit une courbe semblable par rap-
port & l'origine prise pour centre de similitude. |

Ce probléme a beaucoup d’analogie avec un probléme
plus général concernant les développoides qui a été traité
récemment par M. Haton de la Goupilliére dans son mé-
moire : Recherche sur les développoides des divers ordres.
(Annales de la Soc. sc. de Bruxelles, 2¢ année, 1877.) Aussi
n’en donnons-nous ici la solution qu’a titre d’application in-
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téressante des coordonnées tangentielles polaires. La perte
de généralité provenant de ce qu’'on a disposé d’avance du
centre de similitude, trouve en quelque sorte une compen-
sation dans l'avantage que la solution proposée se préte a
la construction sans intégration préalable. Quant au mode
de solution, nous ne saurions mieux faire que de suivre I'a-
nalyse élégante de M. H. de la Goupilliére.

I convient de distinguer les cas de la similitude inverse
et de la similitude directe, tout en laissant arbitraire la cor-
respondance des rayons vecteurs proportionnels.

L Similitude snverse. Soit o =/ (¢) I'équation de la courbe
cherchée. Celle de sa développée ni*™ aura la forme

on = mf(u—¢n),

ou m et p signifient des nombres quelconques positifs ou
négatifs. Or, on sait (Cf. n° 35) qu'en des points correspon-
dants on doit avoir

do | v
Qn:W1 gﬁn:SDfl-n'Q--
Si donc on donne a ¢, la valeur ¢ + n ;j, il vient

(1) en=/"(¢) =mfla—ng—9),
et en différentiant cette équation encore n fois
T

2) ffrp)=éemfr(u—ng

ou ¢ est mis pour — 1. C’est une équation aux différences
mélées. Pour la ramener a une équation différentielle ordi-

'*—99)1

- Tr [ ]
naire, remplagons ¢ par p — 1 ;- — ¢, ce qui donne

fir(p—ng —¢)=e"mf"(¢)
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et moyennant (1)

firp—ng—g)=e m*f(u—nz —¢).

i

En remplacant de nouveau u — n g — ¢ par ¢, on obtient

I'équation différentielle linéaire de 1'ordre 2n

3) f*(9) = e*m*f(9),
dont I'intégration n’offre aucune difficulté.
En effet, la résolvante de (3) est

At — g — emim?, ot i =)/ —1.

On en tire
n

b = resd, r =} [m],
ou [m] désigne la valeur absolue de m et

2 (k—1
ak:n+ 253 )ﬂ'.

L’intégrale générale de I'équation (3) est par conséquent
2n

o =Jf(¢) = :’Akelk?.

En observant que Ay.— — 4., lorsque k" = n 4 k', on peut
écrire
(4) o= 2 (Axe™? 4 Bye—v),
1

Or, l'intégrale (4) devant satisfaire non-seulement & ’équa-
tion (3), mais aussi a I'équation différentielle (1) qui est de
Pordre m, il s’ensuit que n des constantes A, et B, ne sont
pas arbitraires. L’équation (1) servira a les déterminer. En
y remplac¢ant f(¢) par la valeur trouvée, il vient

Sy (A et + e Bye—w) =
1

n - .
— m I [AgeXlr—n5—¢ 4 Bye—M(r—nz—9],
1
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Dans ces deux sommes les termes d’indices différents ne per-
mettent plus de réduction entre eux, on peut donc se borner
a comparer les termes généraux, ce qui donne

Al (AgeMs 4+ enBye— ) =
— m[Ageixlr—n3) g—he | B,e——n3) ent],

ki

n

A, = mBye= * (r—nJ)
.n T
LBy — m Aye'x (r—nz),

De 'une ou de l'autre de ces derniéres équations il suit

n

A . =
B.—ZLenla—n)) A,.
k= m > k

A _ [m]
m  m

Comme AL U

on a maintenant

P %Ak [e*xe 4 gnak’i+1k(|»—-ﬂg—-?)],
1
ol I'on prendra le signe supérieur ou le signe inférieur, sui-
vant que m est positif ou négatif.
Afin de faire disparaitre 'imaginaire de l'intégrale ¢, il
faut distinguer les cas de n pair et de n impair.
a) Lorsque n est un nombre pair, chaque terme de la

n

somme = est accompagné d'un terme conjugué, sauf toute-
1

fois les deux qui correspondent a k£ — 1 et & k= :)-3- + 1.

Si 'on considere ces deux {ermes en premier lieu, on a

1 1zd .
= g 7, La—=rez™ —=1m

et a o= S —re™ = — 7.

n41 2n+i

)=
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Par conséquent, le premier terme de la somme devient
A, [ems = ebig—rvi] —
— 2A, [(cosrg + isinrg) = e¥ (cosrg — ¢ sinrg)] =
= 2A,[(1 = e¥) cosrg 4+ ¢ (1 = e?) sinre],

‘ 7w
ou f=ng+r(u—n ;—r).

Soit, pour simplifier
| 2A, (1 e¥) =C,

d’ou
G 1=ed
9 9 Py =
2A, = o 21A, (175 et) =1C. Toew
Clg 1
L, e~ M o ea¥ 8y #
—1C0.—— — = )
e” ¥ + o2¥ — Ccotg = 8

suivant qu'il s’agit des signes supérieurs ou des signes in-
férieurs.

En introduisant ces valeurs, le premier terme prend la
forme

| ——C— cos (r¢ — = ﬁ)
1 1
*2— COS -—ﬂ
C [cos 7'50

— cotg

sinre ] =
C . 1
B — —7—sin (W—Q B),

\ Slﬂé‘ﬁ

B
1
2

ou si I'on modifie encore la constante arbitraire

1
( cos (e — L)
=5 0,

; d
sin (r¢ — é—ﬁ) ;
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Le terme correspondant a l'indice (%n—l— 1) se présente

sans transformation préalable sous la forme réelle

Gy

-y [e—"? = g =T e=ng) e"?:l.
3

Quant aux autres (n—2) termes, il suffira pour amener
la forme réelle de faire la somme et la différence de deux
termes conjugués (abstraction faite des constantes arbi-
traires), tels que

eMe - gnakt (1&-"12—:—?) i

— eve(cosag $isin ay) —+ e Nagl ok 1 (cos ey + ising ) (y.—ng—qa)
. ™
ekt 4= et + iy k—nz—e) =
— e (cos«k—-isinak)ie—naki-]-r(cosuk—isin ak)(p.-—ng-—-—q)’

ou Ay = re— %t

signifie le nombre conjugué de 4;. En changeant encore con-
venablement les constantes, on aura remplacé les termes
complexes aux indices £ et n — (k—2) par l'expression
réelle

G]{ ge‘r‘? oS % COS ('rsa sin ak) i 67‘008 @y (p.-—‘ng—?).
T . ]
cos [ney + (4t —ng —¢)sin ]| +
. . -
+ Dk i er? cos o sin (Tsa Sin ak) i B‘r cos G‘.k (;}.—ntz_— ?) .

T

sin [ney + 1 (w—n 5 —¢) sin o]

Si 'on désigne, pour abréger, cette expression par F (¢,k),
la forme définitive de o devient
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5 1

©) cos(ro— 5 £) ]

0o=G, 1 +Czn+,[3“‘r‘?i e—r—n3) e'?] +
sin(rg— g f)

e

+3F (.-

Dans cette équation, ou les lettres r, a, et 8 ont la signi-
fication suivante

r=Yinl, a="2120D 0 o4 —na T

zn

on prend les signes supérieurs ou inférieurs, suivant que m
est positif ou négatif.
b) Lorsque n est un nombre ¢mpair, chaque terme de la

n

somme =X se trouve accompagné d'un terme conjugué et il
1

n’y a que le premier qui doive étre considéré séparément.
En procédant de la méme maniére que dans le cas @) et en
maintenant la signification des lettres r, oy et F(¢,k), on
obtient

’ 1

COS(T{D——gﬁ) %(n-i-l)

6) ¢=0C, ; T SF@h.
sin(ro—8)

Dans le cas le plus simple, n =1, r—=1, la courbe se

>

réduit a un point; pour n—=1, r =

1 elle devient une épi-
cycloide.

II. Semilitude direcle. Si dans ce cas ¢ = f(¢) est 'équa-
tion de la courbe cherchée, celle de la développée n*™ de
cette courbe sera

On — mf(-u = ?n)'
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Or, comme

dro

T
0n = gou POUr Qu= ¢ + 15,

-—

on est conduit & 'équation différentielle de 'ordre n
D f"@)=mf(n+ng + )
La résultante de (1) étant une équation transcendante
At — . erletng) ,
elle ne pourra en général étre résolue que par approxima-

tion. Cependant, cela n’arrive pas lorsque u— —n;—r, c’est-
a-dire lorsqu’on admet que les rayons vecteurs proportion-
nels o et ¢, appartiennent a des points homologues des deux
courbes. En effet, dans cette hypothese la résolvante prend
la forme “

| Ar— m,
et Pintégrale générale de (1) devient

n
(Q) D — = Ake}k?’
1
ou pour une valeur positive de m
2(k—1)

n
?4:1//-???/, ak:""’_“'———” n’ Ak__?"eak!

et pour une valeur négative de m

2k—1

n
A V[m], o — 5

Pour débarrasser 'intégrale (2) des imaginaires, il faudra
distinguer entre les valeurs paires et impaires de n. Moyen-
nant le procédé connu que nous venons d’appliquer sous I)
et en désignant, pour plus de brieveté, I'expression

Cye 2k cos (r¢ sin ey) + Dye™ 7k sin (r¢ sin ay)
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par F(¢,k), on trouvera

1) pour m >0 et n pair
e=Cem +C, e+ IF(pk);

2) pour m >0 et n impair

300+
e=Cem+ I F(ph);

3) pour m <0, n pair
0 :22’? F (¢,k);
1

4) pour m <0, n impair

3(n—1)

¢ = Capyy o=rr 4 Z F1g:k)-

Parmi les courbes représentées par ces quatre équations
se trouvent comme cas particuliers le point, la spirale loga-
rithmique, I'épicycloide, etc.

40. Si I'on demande une courbe dont la développée nitm
soit une courbe semblable, en faisant abstraction du centre
de similitude, quelques légéres modifications dans la mé-
thode employée au numeéro précédent, suffiront pour ré-
soudre ce probléme plus général.

Une premiere modification consiste a rapporter les deux
courbes, savoir la courbe cherchée et sa développée nitme,
deux systemes différents de coordonnées tangentielles po-
laires dont les axes sont paralléles.

Soit alors, par exemple, dans le cas de la similitude in-
verse ¢ = f(¢) I'équation de la courbe cherchée, rapportée
au premier systéme de coordonnées et

o*n = mf (u— ¢n)
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celle de sa développée ni*me rapportée au second systéme de
coordonnées. L’équation de la
courbe cherchée, transformée
dans le nouveau systeme, sera

o* = f(¢)—acos¢—bsin ¢,

ou a et b signifient les coordon-
nées rectangulaires de 'origine
du second systéme de coordon-
nées par rapport au premier. |

Or, comme les deux courbes sont maintenant rapportées
au méme systéme de coordonnées, en des points homolo-
gues on doit avoir (Cf n° 35)

Fig. 15.

n*

¢ = dw et pn=p+n 7

c’est-a-dire

(1) mj’(u_7’zg——go):f”(go)——acos(go-l—ng)—bsin (go+n-2’f).
En différentiant cette équation deux fois

(2) Mf"('t_?’t —@)=f"**(¢)+acos(y +n—) + bsin (90+n—)
et en ajoutant (1) et (2), il vient
(?)m[f('l“n——@-kf”(u ?%——90) *‘f“(go)Jrf"”(sO)
Si I'on différentie (3) encore n fois

m e [fr (u*ng—¢)+f"+*(,u—ng—¢)]:f“(<P)+f 42 (¢)

et que 'on remplace ¢ par (y,—ng—— ¢) on obtient moyen-

nant (1) et (2) 'équation différentielle linéaire de I'ordre

(2n + 2)
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(&) me [f(¢) +f (@] =7"*(¢) + 2 (¢).
La résolvante de cette équation étant
3) (A*+4+1) (A»—m?*) =0

on voit que l'intégration n’offre aucune difficulté. L'intégrale
générale contiendra (2n 4 2) constantes, dont (n 4-2) pew-
vent étre déterminées & 1'aide des équations (1) et (3).

Ezxemple. Dans le cas le plus simple
m—_—], =1y =10,

ou l'on exige que la développée premiere soit égale a la
courbe cherchée, les équations (1), (3), (4), (5) prennent la
forme

(19 f(—5—¢) =/(g) + asing—b cosg,
39 1" @)+ ) — f (—F—O—f(—5—9)=0,
4%) Y9 + 2" (9) + f(9) =0,

(5% (A*4 1) = 0.
La résolvante (59) posséde les racines doubles
A— 4+ 1 et A= —u.

Par conséquent 'intégrale générale de (4%) sera
o =J(¢) = (A+Bg¢) cos¢ + (C+ Dg)sing.

En substituant cette valeur de f(¢) dans I'équation (32) on
trouve B—=0 et (1%) donne encore

1 1
D:—(l-, C:—Q-(b——gaﬁ),

en sorte que 'équation de la courbe cherchée devient

o =Acos¢ + l%-(b—-a)l—(m)—arp] sin ¢

s
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