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B. Coordonnées tangentielles polaires.

26. La longueur q de la perpendiculaire abaissée de l'ori-
x v

gine sur une droite —|- — — 1 et l'angle g> que fait cette

perpendiculaire avec l'axe des X,
déterminent complètement la droite. En raison
de l'analogie qui existe entre cette manière
de fixer la position d'une droite et celle qui
consiste à déterminer un point par ses

coordonnées polaires, il paraît convenable

d'appeler q et (p les coordonnées tangentielles

x 11

Fig. io. polaires de la droite —I- ~ zz 1, savoir or ab
son rayon vecteur et <p sa déviation.

La transformation des coordonnées tangentielles rectilignes

en coordonnées tangentielles polaires est donnée par
les formules

Q 1

a zz

d'où

(1)

COS (p u '

sin (p

1

V '

COS (f

V-- sin ip

et la transformation inverse par

(2)

/m2+ V'
,COSç/: 'fûF+v- „smcpz V

v v
tgcprr —.
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L'équation q zz const, représente une circonférence du

rayon q comme l'enveloppe de toutes ses tangentes. L'équation

<p rr const, signifie un point à l'infini dans la direction
perpendiculaire à (p. On peut envisager ce point comme
l'enveloppe de toutes les droites perpendiculaires à la direction <p.

Les deux équations ensemble déterminent par conséquent
(le signe de q étant donné) une tangente particulière de la
circonférence.

En faisant les substitutions (1) dans l'équation

Mas + Vy _|_ i — o,
il vient

(3) x cos (p + y sin <p rr q

et si l'on pose encore

x rr r cos xp, y rr r sin xp,

où r et xp sont les coordonnées ponctuelles polaires du
point (x,y) :

(4) r cos (ip — (p) rr ç.

Les équations (3) et (4) représentent indifféremment soit
en coordonnées tangentielles un point (x,y) ou (r,xp), soit
en coordonnées ponctuelles une droite (o,cp), suivant qu'on
y regarde as. et y, r et tp ou q et (p comme constants.

Lorsqu'il existe entre q et cp une équation f(ç, (p) rr 0, les

équations (3) et (4) représentent pour chaque couple de
valeurs de q et ip une droite ; l'ensemble de ces droites
enveloppe une courbe F (x,y) rr 0 ou Q>(r,xp) rr 0 dont l'équation
en coordonnées tangentielles est précisément f(ç,<p) rr 0.

Si, au contraire, on envisage x et y, r et xp comme
paramètres variables, liés entre eux par les équations F (as,w) 0

ou ®(r,xp) rr 0, les équations (3) et (4) donnent pour chaque
couple de valeurs de as et m ou de r et xp, un point, et
l'ensemble de ces points forme un lieu géométrique, savoir
F (x,y) rr 0 ou d» (r,xp) rr 0.
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27. Transformation des coordonnées ponctuelles en

coordonnées tangentielles polaires et vice-versa. Soit

f(Q,<p) 0

l'équation d'une courbe. Une tangente quelconque de cette

courbe est donnée en coordonnées ponctuelles par

(1) x cos çp -f- y sin cp rr q.

En différentiant cette dernière équation par rapport à cp, on

obtient pour la tangente infiniment voisine

(2) — x sin çp -f- y cos cp rr -^-.

De (1) et (2) on tire les formules de transformation

dp
x rr r cos i//rç cos çp — -j— sin cp,

dp
y — r sin xp rr p sm çp -(- -^S- cos cp,

dç

y
Çsiny-f- —cosçp

J=tgt/,rr Jt
0 cos cp — -j^- sin cps dip

0. + wWçp/

Dans ces formules q est considéré comme fonction de cp ; en

conséquence, il suffit d'éliminer des deux premières équations

le paramètre cp pour obtenir l'équation de la courbe

sous une des formes F (x,y) rr 0 et <$(r,xp) rr 0.

Lorsque la courbe est donnée en coordonnées ponctuelles

rectilignes
F(as,M)rrO

l'équation

(1) as cos cp -f y sin çp zz q,
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interprétée en coordonnées tangentielles, représente un point
de la courbe. Le point infiniment voisin satisfait à l'équation

(3) cos çp + sin cp ~ rr 0.

De ces deux équations il suit

dy
3 dx

V'+(:

col«=-;l-
En éliminant x (y étant considéré comme fonction de x) de

ces dernières équations, on arrive à l'équation f(q,çp) rr 0

de la courbe en coordonnées tangentielles polaires.

Enfin, si l'on veut passer des coordonnées ponctuelles
polaires aux coordonnées tangentielles polaires, on partira
des équations

r COS (xp — cp) rr q,
dr

cos (xp — çp) — r sin (0 — cp) rr 0,

desquelles on tire

2 L/dn"

dr
r sm xp ;— cos xpy dip y

tgy -jz
r cos xp + -r— sin xp

Pour les applications qui vont suivre, il sera utile d'établir
les équations en coordonnées tangentielles polaires de quelques

courbes bien connues.
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Coord, ponot. Coord, tg. pol.
1) Le point.

x rr a, y zz b, ou
au -+- bv + 1 rr 0 prr acoscp + ösincp.

2) La circonférence.

(x—«)2-f- (y—ß)* — a*. q a + acos(p + ßsm(p.

3) La parabole.

y» 2p^| —ä) pcosçprr-/).
4) L'ellipse.

+ r* rz 1 q zz/a2cos2cp-f-ö2sin2cp.

5) L'hyperbole equilatere.
as2 — w2 zz a2 p rr « }/cos2cp

6) La spirale logarithmique.
r ek* çrrcos#etf+?)t85,

où # rr arctg A.

7) La développante du cercle.

i x rr a (X cos X — sin X)
\ y rz a (A sin X + cos A) • • • • —«ÎT-

8) La cycloïde.
as rr fl(cosÂ—1)

ii/rrafA + sinLl)
<? 2a«psinçp.

9) L'épicycloïde.

i x rr — a sin A + ft sin T X '
¦

1 6 ,s /0 — 6

/ a,
• * « (« + *>™fc+T»).

f y acos/ — 0C0S-7-A
\ o

où le rayon du cercle fixe rr (a — b) et celui du cercle mobile

rr b. Lorsque 6 est négatif, la courbe devient une hy-

pocycloïde, par exemple pour a rr — c, 6 rr — — c

10) L'astroïde.

as ¦=-- c cos3 X 1

^zzcsinU «^«U*.



45 SÉP. ÉTUDE DES COURBES PLANES BULL. 437

Observation. On reconnaît immédiatement que si/(p,çp) rr 0
est l'équation d'une courbe en coordonnées tangentielles
polaires, /(r,i//)rr 0 sera celle de sa podaire par rapport à l'origine.

En d'autres termes : Le problème de trouver l'équation
d'une courbe en coordonnées tangentielles polaires est

identique avec celui de trouver en coordonnées ponctuelles
polaires la podaire de cette courbe par rapport à l'origine.

Interprété à ce point de vue, le tableau précédent donne
les podaires des courbes dont il y est question.

28. Interprétation géométrique de la dérivée ¦—¦ Asymptotes.

De l'équation

' + ($)"

il suit que la valeur absolue de ~ est un côté d'un triangle

rectangle dont l'hypoténuse est le rayon vecteur r du point
de contact et l'autre côté le rayon vecteur q- de la tangente

(£,cp) (fig. 10). La dérivée -~ mesure par conséquent sur la

tangente la distance du pied de la perpendiculaire q au point
de contact. Vu de l'origine, le point de contact se trouve à

gauche ou à droite de la perpendiculaire q, suivant que la

valeur absolue de q augmente ou diminue avec les angles
croissants.

La tangente (q,<p) est une asymptote toutes les fois que -j-aip

devient infiniment grand, sans qu'on ait en même temps

q rr oo.

29. Les coordonnées tangentielles se prêtent facilement à

la résolution de certains problèmes élémentaires tels que les

suivants : 1) On demande une courbe pour laquelle la dis-
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tance du point de contact d'une tangente quelconque au

pied de la perpendiculaire, abaissée de l'origine sur cette

tangente, soit une fonction donnée F (p,çp) de q et çp.

L'intégrale de l'équation différentielle

£='«¦»>
fournit la solution.

2) On cherche une courbe telle que le rayon vecteur du

point de contact d'une tangente (q,(p) fasse avec celui de la

tangente un angle qui soit une fonction donnée F (q,<p)

de q et çp.

Comme tg(xp — çp) rr — -7^., ce problème conduit à

l'équation différentielle

''"
rr tg [F(e,çp)].jl dq_

q dip

3) On demande une courbe telle que le rayon vecteur du

point de contact d'une tangente (q,(p) soit une fonction donnée

F(p,çp) de q et cp. Ce problème exige la résolution de

l'équation différentielle

F(W)=VV + (*)'.
Etc.

Exemple 1. Trouver une courbe pour laquelle la distance

du point de contact d'une tangente quelconque au pied de

la perpendiculaire abaissée de l'origine sur cette tangente
soit constante rr a.

On obtient immédiatement

dp

dip

d'où q rr a<p -f- C. (Développante du cercle.)
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Exemple 2. On veut que cette distance soit toujours rr nq.
Alors il vient

dq

o> n?'

q rr Ce"?. (Spirale logarithmique).

Exemple 3. On cherche une courbe pour laquelle xp rr n<p.

Dans ce cas on est conduit à l'équation différentielle

1 dq

-qdj tg(n-D»,
dont l'intégrale est

C
Q ^

J/cos(n— l)cp

Pour nrr 1 cette équation représente la circonférence q C,

pour w rr 2 une parabole, rapportée à son foyer.

Exemple 4. Quelle est la courbe qui satisfait à la relation

r rr nq
La réponse est donnée par l'intégrale de l'équation

différentielle

savoir par

q rr Ce' ,'"*-1 (Spirale logarithmique).

30. Différentielle de l'arc. Angle de contingence. Rayon de

courbure. En différentiant les équations (Cf. n° 27)

dq
X rr q cos çp — --— sin cp

dp
y rr q sin cp -f- -r— cosçp

par rapport à çp, on obtient
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f da; rr — (q + -j-M sin çp d çp

dy— (p + ^Jcoscpdçp,

d'où il suit pour la différentielle de l'arc

ds Y(dxy + (dyy (q + 0) dip.

Comme t rr 90° + çp (fig. 10), l'angle de contingence est

dt rr dçp.

Pour le rayon de courbure R, enfin, on trouve l'expression

simple

r _ ds _ d2?

dr * dcp2

Un observateur, placé au point de contact d'une tangente

(q,<f) de manière à avoir le point infiniment voisin devant

lui, aura toujours le centre de courbure à sa gauche. En

d'autres termes : Le centre de courbure se trouve du même

côté de la tangente que l'origine ou de l'autre côté, suivant

que q et R sont du même signe ou de signes différents.

Exemple 1. On demande une courbe dont la longueur de

l'arc s, compté à partir de çp rr 0, soit proportionnelle au

rayon vecteur q avec la condition que pour p rr 0, ¦—¦ zz a.

d2
on aComme s — C"(q + jXj d<p,

0

d'où par differentiation

d2p dq
" d<p3

~~ d(p '
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Pour intégrer cette équation différentielle linéaire, nous
distinguons trois cas :

1) n> 2. Dans ce cas l'intégrale devient

q zz Aexi? + Bex»î,

où l,-»+/**«-4 ; n-Yny^l
2 2

Les conditions initiales donnent pour la détermination des

constantes arbitraires A et B

A + B 0, XiA + A2Bzz a,

d'où A zz — Br r
en sorte que l'équation de la courbe demandée est

q rr — (eM?—ex»ç).

2) n < 2. L'intégrale générale de l'équation différentielle
est dans ce cas

n -r j" cT A en. gEg çp + B ™ gEg T
1

En introduisant les conditions initiales, il vient

ArrO,Brz_J-l_.
V 4 — ?i2

La courbe demandée a donc l'équation

2a f»? /a __ m*
g rr — e2 sin Li. iL«.

/4 — n2 2

3) n rr 2. Dans ce cas la résolvante de l'équation
différentielle possède une racine double. Par conséquent l'intégrale

est de la forme

p rr e (A + Bip) ;
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par suite des conditions initiales on a

AzzO, B — a,
de sorte que

q rr oçpe

1
Exemple 2. On cherche une courbe pour laquelle s rr — ag>s,

avec les conditions initiales çp zz 0, p zz ~- rr Ò.

Ce problème conduit à l'équation différentielle

d*q

d7^ + ^'
dont l'intégrale générale est

p rr acp -(- A cos çp + B sin çp.

Pour qu'elle satisfasse aux conditions initiales, on doit avoir

AzzO, Bzz —a.

Par conséquent la courbe demandée a pour équation

p rr a (çp — sin çp). (Développante du cercle.)

Exemple 3. Trouver une courbe dont le rayon de courbure

soit proportionnel au rayon vecteur p.(R rr nq).

dîq
Comme R rr p -j- --—-, il s'agit de résoudre l'équation

différentielle

$ <—>*
Suivant que 1) n > 1, 2) n < 1, 3) n rr 1, l'intégrale devient

1) p rr Ae? •'5=I -f Be-91'"711,

2) q Acos (cp/T^n) -f Bsin(cpVl —n),

3) p rr Acp + B.
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Dans le second cas la courbe est une épicycloïde, par
g

exemple pour n rr - une cardioide, pour n zz — 3 une as-

troïde, dans le troisième une développante du cercle et pour
A zz 0 une circonférence.

31. Relations entre une courbe et sa podaire. Si/(p,çp)rr 0
est l'équation d'une courbe en coordonnées tangentielles
polaires, on sait que /(p,çp) rr 0 peut aussi être envisagée
comme l'équation en coordonnées ponctuelles polaires de la

podaire par rapport à l'origine de la courbe considérée.

(Cf. n°27.) Or, la normale N et la sous-normale S„ polaires
d'une courbe sont respectivement

N=v^(J|)\s.= *,
d'où il résulte le théorème : La normale polaire en un point

quelconque P de la podaire d'une courbe
est égale au rayon vecteur r du point
correspondant P' de cette courbe et la sous-
normale de la podaire au point P est

égale à -—., savoir égale à la distance

PP' (Cf. n° 28).

En appelant w l'angle que fait la
normale au point P de la podaire avec le rayon vecteur p de

ce point, il vient

t» rr xp — çp cotg co rr cotg (xp — çp) rr p -^

Moyennant ces théorèmes la normale et la tangente de la

podaire peuvent facilement être construites.

Fig. 11.
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Le rayon de courbure R au point P' de la courbe

proposée étant (Cf. n° 30)

R-<? + dT2

et celui de la podaire au point correspondant P

¦dQ^-s

R'
b-+0j

«¦+¦($¦-.£

•[«¦+(Ä)l-«(» d*g\ 2r' — pR'+ d<p!

il existe entre les deux rayons de courbure la relation
linéaire

r2 f2

n, f* r"7 R'_ 7R rz t— — ZZ ; ou2r2 —pR 9^_R r 2l!_R
Q Q

Par conséquent, R étant connu, R' pourra être construit

moyennant une quatrième proportionnelle et réciproquement.

Observation. On peut remarquer que R' devient infiniment

grand, lorsque 2 —- — R rr 0. Une courbe qui satisferait en

tous ses points à cette dernière condition, aurait pour
podaire une droite. Or, on sait que la parabole, rapportée à

son foyer, est une pareille courbe. Afin de savoir s'il n'existe

pas encore d'autres courbes jouissant de la même propriété,
r2

intégrons l'équation différentielle 2 R rr 0 ou
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+ w) _ d'p
2-

p - e + dçp2
•

En la mettant sous la forme

d (-)V p / dp
acp rr ;—-, ou p rr -r—

on obtient d'abord l'intégrale première

çp — çp0 zz arctg ^ ou -J- rr tg(çp - c/0),

et ensuite l'intégrale seconde

log
C

~~ log cos ^ ~~ ^
qui peut s'écrire

C
P :

COS (çp — çp0)

On reconnaît par là que la parabole est la seule courbe

qui jouisse de la propriété indiquée.
R r2

L'équation -^- rr — permet une construction très simple

du rayon de courbure de la parabole. (Pl. 24, fig. 10).

32. Aire d'une courbe. En différentiant l'équation

cos(xp — çp)rr £(Cf. n°27),

il vient

— sin (xp — c/) (dip — dcp) rr d (£)

d'où l'on tire
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\r/ \r/ dip *acp
dxp — dcprr -—, -rr —r.—j—zz --—-. —dq,

sm(xp — çp) dp dq
d<p dip

dr dq dq d*q d%q^
q

< «<--ip ap a*p / « p\
p dcp q*d<p dw'dw1, v dq1/,dxp=- -r-dw zz -\ £ ^—2-dcp rr r-^—dw zzT r dq r dq r*

dq dq

«4dq.
r2

La différentielle de l'aire A d'une courbe en coordonnées
1

ponctuelles polaires étant dA rr — r2 dip, on a

dArrLr.#rrLçRdçprrL(e. + ?0)dy.
Si l'on désigne par At l'aire de la podaire de la courbe

considérée, en sorte que

^rr-p'dçp,
il suit

dA _ R
dAj ~~

p

Lorsque ce rapport est constant rr n (Cf. n° 30) et qu'on a

soin de prendre les intégrales entre les mêmes limites, il est

évident que le rapport des aires des deux courbes est le

A
même, savoir -r- — n-

A{
C'est ainsi qu'on trouve par exemple que l'aire de la

développante du cercle p rr acp est égale à celle de la spirale
d'Archimede p rr acp, si toutefois on compte ces surfaces à

partir d'une couple de points correspondants jusqu'à une
autre couple de points correspondants. (Pl. 25, fig. 11.)
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33. Polaires réciproques. On a vu (Cf n° 22) que le pôle

d'une droite (p,çp) par rapport à la circonférence pr 1 est
1

situé à la distance — de l'origine sur la perpendiculaire,

abaissée de l'origine sur cette droite. Par conséquent, si

/(p,çp)rrO est l'équation d'une courbe en coordonnées

tangentielles polaires, /(—,çp) rr 0 sera l'équation en coordonnées

ponctuelles polaires de la polaire réciproque de cette

courbe par rapport à la circonférence p rr 1.

Exemples.
Courbe donnée Polaire réciproque

en coord, tg. pol. en coord, ponct. pol.

1) La circonférence.

1 1

prra. — — • (Circonf. du rayon -).

p rr ]Ao2 cos2 cp -(- 62 sin2 çp

2) L'ellipse.

1

/a2 cos2 cp -f- b2 sin2 cp

1 1

(Ellipse aux axes - et t-)

3) La parabole.

1

pcosçprr-p
2 1

prr—cos çp. (Cire, du rayon -* p P
passant par l'origine.)

4) L'hyperbole equilatere.

—
1 (Autre hyp.

p — a y cos 2 çp
a/cos 2 çp eqml.)

5) La développante du cercle.

q — aq prr — (Spir. hyperbolique.)
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6) Courbe dont la podaire est une spirale hyperbolique.

pzz— prr—. (Spir. d'Archimede.)
q a

7) Spirale logarithmique,

q rr ae? p rr— e-?. (Autre spir. log.)

34. Courbes équidistantes. Soit/(p, cp) rr 0 l'équation d'une
courbe. De la définition des courbes équidistantes (Cf. n° 24)
il suit immédiatement que l'équation d'une courbe equidistante

s'obtient en remplaçant dans/(p,cp)rrO le rayon
vecteur p par q±k, en sorte que f(q±k,çp) 0 sera l'équation

cherchée.

Si R est le rayon de courbure en un point quelconque de

la courbe /(p,çp)rr0, R±& sera celui de la courbe
equidistante au point correspondant.

La longueur de la courbe/(p,cp)rr0 étant

: p'Rdcp,

celle de l'arc correspondant de la courbe equidistante sera

k)dq rr s ± k (çps — çp4),

ce qui démontre une des propriétés principales des courbes

équidistantes.

:J>

35. Développée riime. Les normales d'une courbe donnée

p rz/(cp) étant les tangentes de la
développée de cette courbe, on peut envisager

la développée comme l'enveloppe de

toutes les normales de la courbe proposée.

Or, la normale en un point
quelconque P de la courbe p rr/(çp) est

parallèle à la perpendiculaire, abaissée deFig. 12.
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l'origine sur la tangente en ce point et la distance entre ces

deux parallèles est égale à -r- (Cf. n° 28). De là il résulte

qu'en appelant p, et çpt les coordonnées tangentielles
polaires de la normale en question, savoir d'une tangente de

la développée, on aura

dp 1

Afin d'obtenir l'équation de la développée cherchée, il
suffit d'éliminer le paramètre cp de ces deux équations.

En répétant ce procédé on arrive aux équations suivantes

remarquables par leur simplicité

dnq n

où p„ et çp„ désignent les coordonnées de celle des tangentes
de la développée >iième qui correspond à la tangente (q,q) de

la courbe proposée. Par l'élimination de l'angle çp de ces deux

équations il vient pour l'équation de la développée nitme

correspondant à la courbe p =/(çp)

p„rr/»(çpn — Hj).

Exemple 1. Le fait que la développée /iiëme de la courbe

p rr a + 04 cp -f a2cp2 -f -f- a„ qn

est évidemment la circonférence p zz a, permet de reconnaître

qu'en ce système de coordonnées toute courbe pour
laquelle p est une fonction entière de cp du degré n, représente

une développante nièine du cercle. • *

Exemple 2. Soit la spirale logarithmique

p rr Ae°i.
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La développée nième de cette courbe, savoir

p„=: Aane°(f»-ni)

est identique avec la courbe donnée, mais placée différemment.

On peut obtenir la coïncidence des deux courbes en
choisissant convenablement la constante a. En effet, si m
désigne un nombre entier, il suffit de tirer a de l'équation

Aea(T-äm*) — Aanea(f-nf)

tï
ou 0 rr nlogo + a (2m— — n

Â

dqn dq
qui exprime que pn rr p et en même temps -f— rr -p- pour

<p„ rr cp. Pourvu que m > 0 et 4m > n cette équation admet

toujours une racine réelle. (Pl. 25, fig. 12.)

Exemple 3. Soit la cycloïde

p rr 2a [sin cp -\- (n — çp) cos çp].

La dérivée nièm* de p devient

j\ — la [(1 — n) sin (cp -f n J) + (n — q) cos (çp + n J)].

Tt
En remplaçant cp par (cpn — n ^-) dans cette équation, il suit

pour la développée ri'hme

n 4- 2
p„rr2o[(l— n)sinçp„-f- n — <pB)cos<p„3•

On reconnaît sans difficulté que cette courbe ne diffère de la

proposée que par la position.

Exemple 4. Soit Yépicycloïde

fa + b
p (a + 6)sin(£—£cp).

De cette équation on tire

dnQ ia /a + b\n /a + b n\
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It set en substituant pour çp sa valeur (qn — n =-), il vient
À

a -f 6\n r(a + è) cpn — nbrcl
qn=(a + b) (t--)n sin f a — 6 J'

Cette dernière équation montre que la développée nième de

l'épicycloïde est une courbe semblable à la proposée.

36. Développante rièmt. Par le procédé inverse de celui

qui a servi à déterminer la développée rita" d'une courbe

donnée p rr/(çp), on peut établir l'équation de la développante

ri*"*' de cette courbe.

Soient, en effet, p_i et çp_i les coordonnées tangentielles
polaires de celle des tangentes de la développante nihaK qui
correspond à la tangente (q,q) de la proposée.

Alors on doit avoir

dq_i n
5_zrp,çp_1zrçp_f,

d'où l'on tire en observant que
dcp_i zz dcp

Fig. 13. p-,zrJpdçp + C|.

En continuant ce procédé on obtient pour la tangente

(p_n, çp_„) de la développante nième correspondant à la

tangente (o,cp) de la courbe donnée

p_„ =fdqfdq Jpdçp + Ct q n~* + C, cp
—ä +

+ Cn_d çp + c„,

çp_nrrçp — H-

L'élimination du paramètre variable q de ces deux équations

conduit à l'équation cherchée.
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Exemple 1. Cherchons la développante nième du point

p rr a cos (f + 6 sin f.
On trouve successivement :

Pour la développante première

p_i osinc/> — ocosçp -f- Cj,

n9-i-9~- g-,

d'où p_i rr acos</>_i 4- bsinif—i -\- G,. (Circonférence

du centre (a,b) et du rayon C,.)

Pour la développante seconde

p _srra sin <p—\ — bcosip—i 4- C^-i 4- C2,

ip-i — V-i — 2»

d'où p-a^acoscp-a 4-6sinçf _2 4-CJçc,_a4-Cs.
(Développante du cercle.)

Enfin pour la développante riime
-

p_n acosçc5_„4- 6sin<?_„4- C^l-;1 H-CjÇpu-'^'-f

4-C«-! </>_„ + C„.

Exemple 2. La développante première de l'ellipse

p rr }/a2cos2ç/> 4- 62sin2<ß

est déterminée par

q-t zr P}''a2cos2ço4-6,sin!,f dç* 4- C, rr aE(A^) + C,,
0

où E(k,<p) signifie, d'après Legendre, l'intégrale elliptique

de la seconde espèce en question et k zz -

9-1 9-%.
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De ces deux équations il suit :

BULL. 453

n.p_1rzaE(^_1-L.-)-|-C1.

Exemple 3. Pour la développante première de la parabole

a

il vient
cos <p

3 1

P_j rr alogtg (^ n + ^ f_i) 4- Ct.

37, Podaire nlème d'une courbe par rapport à l'origine.
Bien que renonçant à l'emploi des coordonnées tangentielles
polaires pour la solution du problème des podaires nibma, le

problème lui-même a paru assez important pour justifier son

insertion dans ce mémoire. La solution pourrait d'ailleurs
se donner avec la même facilité en coordonnées tangentielles.

Soient r,xp les coordonnées polaires d'un point P quel¬

conque de la courbe proposée

r=f(ip), ri,xpi-, r2,i/'2; rn,xpn
les coordonnées des points
homologues P4, P2,...Pre respectivement

de la lrc, 2ae,...nième podaire
de la courbe donnée et soit # l'angle

que fait la tangente au point
P avec le rayon vecteur r. Alors

Fig. 14.

on sait que d'une part

et d'autre part (Cf. n° 31)

rdxp

dr

dri
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en sorte que
dxp dxl'i
dr * dr{

En continuant ce même raisonnement, on obtient les égalités

dxp dxpi dxpt _ _ rn dt//„
dr * dri 2 dr3 drn

qui démontrent le théorème : En des points homologues les

tangentes des podaires successives d'une courbe donnée font
avec les rayons vecteurs correspondants des angles égaux.
De ce théorème on déduit immédiatement

r,rz r sin # i

r2zz rt sini> r sin2 # Ì

r»rr rn-_isin # :— rsin" &

et VBrr xp — n (-l2 -Ü).
Les deux équations

r

W> + &"
^rr^-narctg^)dxp)

résolvent le problème proposé. Dans les cas où l'élimination
du paramètre xp est possible, on obtient l'équation de la
podaire niime sous la forme F(rn,xp„) rr 0.

Ces équations restent encore applicables, lorsque n est

zéro ou un nombre entier négatif. Pour une valeur négative
de n la courbe donnée figure elle-même comme podaire rihmt

de la courbe cherchée. Dans le cas de «rrO on retombe

sur la courbe donnée.
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Exemple. Appliquons les formules précédentes au cas

o
r zz

y cos mxp

où m signifie un nombre positif ou négatif, entier ou
fractionnaire. On obtient pour la podaire niëm<!

O n——-ro (cos mxp) m

y cos mxp [y 1 -{-tg1 mxp]

i//„r xp — n.arctg (tgmxp) rr (1 —nm) xp,

d'où en éliminant l'angle xp

[mipn 1 »-—
cos -A—-— m

1 — nm]
Cet exemple donne lieu à de nombreux cas particuliers.
Considérons-en quelques-uns.

1" cas particulier. Soit m rr 1 ; alors la courbe donnée

a

cosi//

est une droite parallèle à l'axe des Y. Sa podaire nième a
l'équation

rB-a^C0S__J
Cette formule devenant inapplicable pour n rr 1, ce cas doit
se traiter directement. On trouve

tpi rr 0, rfra.
La podaire première de la droite est par conséquent un point
sur l'axe des X.

1

nrr2, r2zzacosi/v (Circonférence du rayon --¦ a passant
Jt

par le pôle.)
1

n rr 3, r5 rr — a (1 -f cos xp*). (Cardioide.)
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n 4, U fl (COS
ccj

i//„)5,

n — —-1, r.
a 2a

- t
i

(Par-'-, 1
(COS j xp.-i)S

"~i + COS xp_

n — —•2, r.
a

(Pl. 25, fig- 13.)~*~
<

1

(cos-i//_-O'

2?- cas particulier, m rr 2.

r rr (Hyperbole equilatere.)
}/cos2t/<

rBrza[cos(r^)]n-5.

n rr 1, r, zz a /cos 2i/v (Lemniscate.)

2 |
n rr 2, r2 zz o (cos ô- c//2 "

l.r^rr- ~ -5. (Pl.25,fig. 14.)

(TOS g (//_-

On peut remarquer que deux hypothèses m rr \i et m rr r
1 1

amènent les mêmes suites de courbes, lorsque n rr v p.

est un nombre entier. Par exemple /x rr 1, rr- ;

4
fizz 3, v -

Remarque. Les rayons vecteurs r, ri, r2, rn formant
une progression géométrique, et les angles correspondant

V.V— (f -*)- V —2 $—*),... V-»(j-*) une
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progression arithmétique, il est évident que les points
P,P^.-.P« d'une courbe donnée rrr/(<//) et de ses n
podaires successives sont situés sur une spirale logarithmique
dont l'équation est

(fr-ff)log sin 3
iiu—a

R r.e 2

où R et *P désignent les coordonnées courantes et où

(rdxp\»=•*<%)¦
38. On propose de trouver une courbe dont la podaire

nifeme sort une courbe semblable par rapport à l'origine prise

pour centre de similitude.

Il y a trois cas à distinguer.

1er cas. La similitude est telle que les rayons vecteurs des

points homologues sont proportionnels, savoir rn rr mr.
Dans cette équation m doit évidemment être un nombre
fractionnaire.

Soit r —/((//) l'équation de la courbe cherchée. La fonction

f(xp) doit alors satisfaire à l'équation différentielle

rmr zz ;—

d'où l'on tire

dr J _!
— zz y/ m n — 1 dip-

L'intégrale générale de cette équation est

log j, rr xpy m n — î.

ou

v:r-Ce1 ' m "-1

30
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En posant pour simplifier }jm~n— 1 rrtgco, l'équation de

la courbe cherchée devient

rr: Ce*'8™,

celle de sa podaire niëme

r„ rr C cos n m e (+» + "••) « u.

Ces deux courbes sont des spirales logarithmiques identiques,

mais placées différemment. En tournant la première
d'un angle

xp0 — n cotg w [w tg w 4- log cos w~\

autour de l'origine dans le sens des angles décroissants, on

peut amener la coïncidence.

Il est presque inutile d'ajouter que pour rwzz 1 on obtient
la circonférence r rr C.

2d cas. On demande que la similitude soit directe avec

correspondance arbitraire des rayons vecteurs proportionnels.
Si dans ce cas rrr/(t/j) est l'équation de la courbe cherchée,

celle de sa podaire nième aura la forme

rn rr mf(xpn + p),

où m et (i sont des nombres réels quelconques. Pour la
première de ces courbes on a

° /'M
et pour la seconde

ig^/fe+je-i
"/'(M+^n)"

Or, en des points homologues qui correspondent à

xp.= xp, xpnzzxp — n.arctg /(V) '
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on doit avoir y rr S- (Cf. n° 37), d'où il suit l'équation

f{Xp) /'[,+ ^-narctgÄ]'
à laquelle on peut satisfaire par l'hypothèse

/M- *

f'(<p)--k'
où k désigne une constante. L'intégrale générale de cette

dernière équation différentielle étant

log-^ rr ± kxp ou r =/(</,) rr Ce±ki,

on reconnaît que la courbe cherchée sera encore une spirale
logarithmique. La constante k se détermine moyennant la

condition qu'en des points homologues on ait (Cf. n° 37)

r Ce±H
rn

"~W>y£)TVii+krrdxp

ou

_i i - i i i \- «i'mCe-,±k ]* + i — n arcig(±A-;; Ce

/(1+ *»)"'
d'où il suit

m e ± fc > - n arctg (± ;.-); _ 1

~Y{\+Wn'
et en prenant les logarithmes

log m ± k (u qr n arctgfc) + - log (1 + k1) rr 0.

Si l'on convient de prendre le radical } 14- k- positivement,
m devra aussi être un nombre positif.
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Discussion des deux équations

1%

(1) log m + k (n — n arctg k) -f ^ log (1 + k?) rr 0,

(2) log m — k (p 4- n arctg k) + ^ log (1 + A2) rr 0.

Comme (2) s'obtient de (1) en changeant k en —k, il est

clair que si les deux équations possèdent des racines

positives, elles admettront aussi des racines négatives. Il suffira,

en conséquence, de constater dans les différents cas l'existence

ou l'absence de racines positives.
Considérons d'abord l'équation (1)

f(k) log m + k (xi - n arctg k) + | log (1 + k1) rr 0,

en n'admettant que des valeurs positives de n. Comme

/' (k) rr ci — n arctg k

s'annule pour Ä rr tg - et que

la fonction/(A") possède un maximum pour A; zz tg —.

Soit maintenant 1) m > 1, /t > 0. La valeur initiale

/(0) zz log m étant positive, le maximum

log m 4-1 log (1 4- tg21)

le sera aussi. Pour que la fonction puisse devenir négative,
Tt

p doit satisfaire à la condition p<in — Alors l'équation

possède une seule racine positive.
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2) m < 1, p > 0. La valeur initiale est négative. Pour

que le maximum soit positif, il faut que

n

g- log (1 4- tg2 — > — log m, ou p > n arccos /m.

Si on prend encore p<.n — en sorte que

n
Tt II ,/
cccr > — > arccos y m
2 n

ce qui est toujours possible, l'équation possède deux racines
n

positives qui dans le cas limite g, zr n arccos Ym coïncident.

3) m>l, j«<0. La valeur initiale est positive. La fonction

décroît jusqu'à — oo. Par conséquent il existe une seule

racine positive, sans que p soit soumis à une condition de

limite.

4) m<Cl, M<0. Ce cas diffère du précédent en ce que
la valeur initiale est négative, d'où il suit que l'équation (1)
n'admet point de racine positive.

Si l'on applique le même raisonnement à l'équation

f)
(2) f(k) rr log m- k (,« -f n arctg k) + - log (1 + /c2) zr 0,

on trouve

1) m > 1, jtt > 0. Une racine positive; p sans condition.

2) m < 1, p > 0. Point de racine positive.

Tt
3) m > 1, tt<0, — ju <C m ô-. Une racine positive.

n

4) m<l, jU< 0, — > > arccos /m Deux raci-

n

nés positives qui coïncident à la limite —^tt m arccos /m\
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Remarque. Afin d'obtenir, pour la construction, des courbes

dont on connaisse la forme à l'avance, il est plus simple
de choisir k et de calculer p. C'est ainsi que pour

«rr 1, mrr-, k rr — 1

on a trouvé (i rr — 1,1319718...rr — 64°51'26" et par la
suite

r zr Ce-*, r, rr L Ce«-««-— ?>, (Pl. 25, fig. 15.)

tandis que les hypothèses

n 2, m rr 4, A rr -7=

donnaient

p rr — 1,8522151... rr — 106°7' 27",
i/ +—1,8582...

r Ce v'\ r2rz4Ce •* (P1.25, fig. 16.)

#"e cas. On demande que la similitude soit inverse.

En suivant un raisonnement analogue à celui qui a été

employé dans le second cas, on trouvera que la circonférence
seule répond à toutes les conditions du problème.

39. Comme dernière application des coordonnées tangentielles

polaires on pose le problème : Trouver une courbe

dont la développée nitme soit une courbe semblable par
rapport à l'origine prise pour centre de similitude.

Ce problème a beaucoup d'analogie avec un problème
plus général concernant les développoïdes qui a été traité
récemment par M. Haton de la Goupillière dans son
mémoire : Recherche sur les développoïdes des divers ordres.

(Annales de la Soc. se. de Bruxelles, 2e année, 1877.) Aussi
n'en donnons-nous ici la solution qu'à titre d'application in-
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téressante des coordonnées tangentielles polaires. La perte
de généralité provenant de ce qu'on a disposé d'avance du
centre de similitude, trouve en quelque sorte une compensation

dans l'avantage que la solution proposée se prête à

la construction sans intégration préalable. Quant au mode

de solution, nous ne saurions mieux faire que de suivre
l'analyse élégante de M. H. de la Goupillière.

Il convient de distinguer les cas de la similitude inverse

et de la similitude directe, tout en laissant arbitraire la

correspondance des rayons vecteurs proportionnels.

I. Similitude inverse. Soit prz/(ç>) l'équation de la courbe

cherchée. Celle de sa développée ni6n"J aura la forme

p„ zz mf(gi—<pn),

où m et p signifient des nombres quelconques positifs ou

négatifs. Or, on sait (Cf. n° 35) qu'en des points correspondants

on doit avoir

d"p n

Tt
Si donc on donne à 9„ la valeur <p -f n --¦, il vient

(1) qn=fn(<p) mf(ß — n^ — <p),

et en différentiant cette équation encore n fois

(2) fin (f) rr e» mfn (u — n J — 9),

où s est mis pour — 1. C'est une équation aux différences

mêlées. Pour la ramener à une équation différentielle

ordinaire remplaçons <p par p — n -^ — <p, ce qui donne

/«»0*—n J - 9) *n m/" (9)
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et moyennant (1)

fìn(p — n^ — 9) sn m2f(fi — n^ — ip).

Tt
En remplaçant de nouveau p — n <p par 9, on obtient

l'équation différentielle linéaire de l'ordre 2n

(3) /*»(?)-*«m2/(çp),
dont l'intégration n'offre aucune difficulté.

En effet, la résolvante de (3) est

Âînrr ê"m2 rr e^m1, où i rr/— 1.
On en tire

n

Xy, rr reak», r rr y [m]
où [m] désigne la valeur absolue de m et

«4-2 (ft — 1)
2?l

L'intégrale générale de l'équation (3) est par conséquent

qz=f((p)-2Aie^.
1

En observant que Xv. zr — Ak., lorsque /c" rr n -f ft', on peut
écrire

n
(4) prz2(Ake^4-Bke-^)-

1

Or, l'intégrale (4) devant satisfaire non-seulement à l'équation

(3), mais aussi à l'équation différentielle (1) qui est de

l'ordre n, il s'ensuit que n des constantes Ak et Bk ne sont

pas arbitraires. L'équation (1) servira à les déterminer. En

y remplaçant f(9) par la valeur trouvée, il vient

2X"k (Ak«»w + e"BkC-V) rr
i

n
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Dans ces deux sommes les termes d'indices différents ne
permettent plus de réduction entre eux, on peut donc se borner
à comparer les termes généraux, ce qui donne

A^(Ake1kî + ««Bke-xkT)zz

rr m[Ake'Ak^-nIi e-''k<?-|-Bke-,'k<ii-n5> e1"],

xlAk mBYe-^^-ni>

AktnBk zz mAkexk b~nlK

De l'une ou de l'autre de ces dernières équations il suit

xn
Bkrr — e'lck-np. &

m

^ X), \m\Comme — rr ^-^ e™v
m m

on a maintenant

n u

p rr 2 Ak [e*w ± e n«k» + »k (*-*£-»)],
i

où l'on prendra le signe supérieur ou le signe inférieur,
suivant que m est positif ou négatif.

Afin de faire disparaître l'imaginaire de l'intégrale p, il
faut distinguer les cas de n pair et de n impair.

a) Lorsque n est un nombre pair, chaque terme de la
n

somme 2 est accompagné d'un terme conjugué, sauf toute-
i

nfois les deux qui correspondent àftrrl et à ft rr — 4- 1.

Si l'on considère ces deux termes en premier lieu, on a

at rr - Tt, X^re* rr n

et <i ^.rrcT, Xy L.rzrert'zz
cjn +1 ' |n + 1
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Par conséquent, le premier terme de la somme devient

A4 [ep*' dr efu'e-rï*] rr
rr 2 Ai [(cosrip -\- i sinrç>) dr e8' (cosr<p —- i sinrç»)] rz

2A4 [(1 ± e^) cosrço -f t(l q= e8i) sinrç>],

où ß=n^ + r(n — »2).

Soit, pour simplifier

2A1(l±e80rrC,
d'où

ctgL^
»c.

« .**..'' /-c«*',
suivant qu'il s'agit des signes supérieurs ou des signes

inférieurs.

En introduisant ces valeurs, le premier terme prend la
forme

ÌC
1

j—cos (rip--ß)
cos jß

— sin (rp — -ß),
sin

g
ß

ou si l'on modifie encore la constante arbitraire

1
cos (rf — wß)

ci \
sin(rçp — -ß).
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Le terme correspondant à l'indice (-^n + 1) se présente

sans transformation préalable sous la forme réelle

Quant aux autres (n — 2) termes, il suffira pour amener
la forme réelle de faire la somme et la différence de deux

termes conjugués (abstraction faite des constantes

arbitraires), tels que

e^k? -f- gnafci* 4-Xfc (n — ng — t) —

— o Vf (cos «k + i sin ok) _j_ g n«kt+. r (cos otk + i sin «k ([i — nj—?)

exVdr e — "V + ^'k k — n2~?! rr

— gfç (cos«.—i sin ak)_(_.,— tt<*ki+ r (cos«k — isin otk) (i* — n- — ç)

OÙ Â'jjrrre-^4

signifie le nombre conjugué de Ak. En changeant encore
convenablement les constantes, on aura remplacé les termes

complexes aux indices ft et n — (ft — 2) par l'expression
réelle

Qk er?cosak cos (rçcsinak) dr ercos*k G*-»!-?).

cos [wak 4- r (fi — n--- — 9)sin «J \ 4-

4- Dk \ er?cos«k sin(ry sinak) dr ercosak d*-";-?).

sin [n«k 4- r (« — m --¦ — ç>) sin «J j.

Si l'on désigne, pour abréger, cette expression par F(ç>,ft),

la forme définitive de p devient
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(5) î 1

[cos(rf—-ß)
ç cA

1
+C|.+1[«-p»±«-r?'-"I»<f»] +

sm(rip—-ß)

+ 2F(<p,k).
2

Dans cette équation, où les lettres r, ak et ß ont la
signification suivante

V-T, n + 2(ft —1) fl N nr — y [m], «krr A^ i tt, /3zz rçt + (1 — r)n ^
on prend les signes supérieurs ou inférieurs, suivant que m
est positif ou négatif.

b) Lorsque n est un nombre impair, chaque terme de la
n

somme 2 se trouve accompagné d'un terme conjugué et il
i

n'y a que le premier qui doive être considéré séparément.
En procédant de la même manière que dans le cas a) et en
maintenant la signification des lettres r, ak et F(çp,ft), on
obtient

cos(rç* —-/?) |(n +
(6) pzrCJ i + 2F(9,k).

[ sin(r<p—-ß)

Dans le cas le plus simple, n rr 1, r rr 1, la courbe se

réduit à un point ; pour n rr 1, r y. 1 elle devient une épi-

cycloïde.

II. Similitude directe. Si dans ce cas p—/(f) est l'équation

de la courbe cherchée, celle de la développée nième de

cette courbe sera

p» mf(p + 9„).
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Or, comme

Qn dr pour Çn 9 + n ï '

on est conduit à l'équation différentielle de l'ordre n

(1) f*(9) mf(tl + n% + 9).

La résultante de (1) étant une équation transcendante

Xn zz m.e^ + "f)

elle ne pourra en général être résolue que par approxima-
Tt

tion. Cependant, cela n'arrive pas lorsque /tzr — n —, c'est-

à-dire lorsqu'on admet que les rayons vecteurs proportionnels

p et p„ appartiennent à des points homologues des deux

courbes. En effet, dans cette hypothèse la résolvante prend
la forme

Xn rr m,
et l'intégrale générale de (1) devient

(2) p rr J Ake'k?;
Ì

où pour une valeur positive de m

2(ft-l)
r rr }'m, «k rr w, /k zz re V

n

et pour une valeur négative de m

n
i fr n ri ti —- 1

r rr y\m\, c*k zz n, Xk zr reV

Pour débarrasser l'intégrale (2) des imaginaires, il faudra

distinguer entre les valeurs paires et impaires de n. Moyennant

le procédé connu que nous venons d'appliquer sous I)
et en désignant, pour plus de brièveté, l'expression

Cker* COi"k cos (r<p sin «k) + Dker?c08'k sin (rçc sin «k)
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par F(ip,ft), on trouvera

1) pour m>0 et« pair

-n
9 Cei +Ci e-*i + 2F(9,k);

2n + 1
2

2) pour m>0 et n impair

prr de*- + 2 F(9,k);
2

3) pour m<^0, n pair

I»
o=2F(9,k);

i
4) pour m < 0, ?i impair

* C^ + 1,«-r' + *f~lW
Parmi les courbes représentées par ces quatre équations

se trouvent comme cas particuliers le point, la spirale
logarithmique, l'épicycloïde, etc.

40. Si l'on demande une courbe dont la développée niima

soit une courbe semblable, en faisant abstraction du centre
de similitude, quelques légères modifications dans la
méthode employée au numéro précédent, suffiront pour
résoudre ce problème plus général.

Une première modification consiste à rapporter les deux

courbes, savoir la courbe cherchée et sa développée niime, à

deux systèmes différents de coordonnées tangentielles
polaires dont les axes sont parallèles.

Soit alors, par exemple, dans le cas de la similitude
inverse p rr/(ç>) l'équation de la courbe cherchée, rapportée
au premier système de coordonnées et

p*n rr mf(n — 9n)
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celle de sa développée nièrae rapportée au second système de

coordonnées. L'équation de la

courbe cherchée, transformée

dans le nouveau système, sera

p* zz f(f) — a cos 9 — b sin ip,

où a et b signifient les coordonnées

rectangulaires de l'origine
du second système de coordonnées

par rapport au premier.
Or, comme les deux courbes sont maintenant rapportées

au même système de coordonnées, en des points homologues

on doit avoir (Cf n° 35)

* dnq* Tt

Fig. 15.

dç>"

c'est-à-dire

(i)mf(p—n~—<p)=fn(9)—a.cos(9+n-^)—bsm(9+n^).

En différentiant cette équation deux fois

(2) m/'(u—n^—9)=fn+t(9)+acos(<p+n~)+bsin(9+n%)

et en ajoutant (1) et (2), il vient

(3)m[/(/c-nJ-ç.) + /"Cu-nJ-ç,)]rr/»(^)+/^(^)-

Si l'on différentie (3) encore n fois

m «» [/» (,«- n ~ -ip) +fn+\fi-n J -9)]=/în (9)+/ìn+ì (9)

Tt
et que l'on remplace 9 par (p — nâ~ 9Ì on obtient moyennant

(1) et (2) l'équation différentielle linéaire de l'ordre

(2n + 2)



472 BULL. H. AMSTEIN SÉP. Si)

(4) mh» [f(ç) +/'(9)-] rr /»»+¦ (ip) + /¦» i».
La résolvante de cette équation étant

(5) (A2 4-1) (2j«-mV')r.O
on voit que l'intégration n'offre aucune difficulté. L'intégrale
générale contiendra (2n 4- 2) constantes, dont (n 4- 2) peuvent

être déterminées à l'aide des équations (1) et (3).

Exemple. Dans le cas le plus simple

m rr 1 n rr 1, p rr 0,

où l'on exige que la développée première soit égale à la

courbe cherchée, les équations (1), (3), (4), (5) prennent la

forme

(1«) f(-^-<p)=f'(<p) + asm9~bcosV,

(3*) /'" (9) + f'{9) - f" (-~PW(-~-Ç»)=0,
(4°) /,v(f) + 2/"(ç.)+/(y?)zr0,

(5«) (Â2+1)2rz0.
La résolvante (5a) possède les racines doubles

X rr 4- * et Â rr — i.

Par conséquent l'intégrale générale de (4a) sera

p =/(?) (A 4- Bf) cos ip + (G -f Der) sin <?.

En substituant cette valeur de f(ip) dans l'équation (3a) on
trouve BrrO et (la) donne encore

1 1

Dzz — a, Czz-(0 — -an),

en sorte que l'équation de la courbe cherchée devient

p rr A cos 9 + \^-(b — ^ au) — aip sin 9
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