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3 SÉP. ÉTUDE DES COURBES PLANES BULL. 395

coordonnées homogènes ou trimétriques. Cependant, pour
satisfaire autant que possible aux lois de symétrie, il est,
dans les formules suivantes, largement tenu compte de cette
sorte de symétrie qui résulte de ce que les coordonnées d'un
point ou d'une droite sont exprimées en fonction d'une
troisième variable indépendante.

A. Coordonnées tangentielles rectilignes.

1. On suppose pour plus de simplicité des coordonnées

rectangulaires. L'équation d'une droite
déterminée par ses segments a et b sur les

axes, est

a b

Si l'on pose

_ .1— _ J_ —
Fig. i. a ~~ ' b ~ Vi

cette équation devient

ux -f- vy -\- 1 rr 0.

Les quantités a et b, par conséquent aussi m et v,
déterminent complètement la droite, et c'est pour cela qu'on a

appelé u et v les coordonnées linéaires ou, pour une raison

qui trouve son explication dans la théorie des courbes, les
coordonnées tangentielles de la droite. Les coordonnées

tangentielles d'une droite sont donc les valeurs réciproques
prises avec le signe contraire des segments faits par la
droite sur les axes.

L'angle r que fait la droite avec l'axe des X est donné par

u
tg t rr

v
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Exemples de droites particulières. — 1 La droite u — a,
v — a fait l'angle — 45° avec l'axe des X et ses segments

sur les deux axes sont
a

2) La droite u =z a, v=z — a fait l'angle + 45° avec l'axe
1 1

des X et ses segments sur les axes sont et -|0 a a

3) La droite u zz 0, v zz a est parallèle à l'axe des X à la
1

distance de cet axe.
a

4) La droite u zz 0, v zz oo se confond avec l'axe des X.

5) La droite u zz b, v zz 0 est parallèle à l'axe des Y
1

à la distance r- de celui-ci.
b

6) La droite u — oo, v zz 0 est identique avec l'ase des Y.

7) u — 0, v zz 0 signifie la droite à l'infini.

8) La droite u zz oo, v zz oo passe par l'origine, et sa

direction est donnée par tg t zz lim 1 pour lim m zz oo

et lim v oo.

2. L'équation
ux + vy + 1 zz 0

permet une double interprétation. Interprétée en coordonnées

ponctuelles, elle représente la droite dont les

coordonnées tangentielles sont u et v. Si, au contraire, on y
regarde x et y comme constants, u et v comme variables,
elle fournit une infinité de droites, et comme les valeurs

constantes de x et y satisfont pour chaque couple de valeurs

de m et t' à l'équation (envisagée de nouveau comme équation

d'une droite) toutes ces droites passent par le point
dont les coordonnées ponctuelles sont x et y.
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L'équation ux -f- vy + 1 zz 0, interprétée en coordonnées

tangentielles, représente par conséquent le point (x, y) et

l'on voit sans difficulté qu'en général une équation du
premier degré en u et v, telle que

Am + Bv + C zz 0

représente le point dont les coordonnées ponctuelles sont

_ A _ _B
x - c ' y - C '

La forme particulière ux -f- vy + 1 zz 0 de l'équation du

premier degré a été appelée par Hesse la forme normale de

l'équation du point (x, y).
L'angle a (fig. 1) que fait le rayon vecteur du point (x,y)

avec l'axe des X, est donné par

Exemples de points particuliers. — 1) Le point u zz a se

trouve sur Taxe des X à la distance de l'origine.
a

2) Le point v zz b est le point sur l'axe des Y dont

l'ordonnée est r-b

3) L'équation Au + Bt' zz 0 signifie le point qui se trouve

à l'infini dans la direction déterminée par tg « zz —

4) t; zz 0 est le point à l'infini dans la direction de l'axe
des Y.

5) Le point m zz 0 se trouve à l'infini dans la direction de

l'axe des X.

6) L'équation C zz 0, où C y. 0, qui paraît absurde,

signifie l'origine. En effet, si dans l'équation Au + Bv + G zz 0,
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>
<C
'

0, A et B tendent vers zéro, les coordonnées du point

représenté a;zz-^-, y=z-rr- tendent vers zéro.

3. Point d'intersection de deux droites données (uu vt) et

(ws, vt). L'équation du point demandé sera de la forme

ux + vy+ lrzO;
elle doit être satisfaite par les coordonnées des droites
données, en sorte que

M4a; + v^ + lzzO,
«j« + v3y + 1 zz 0.

En éliminant de ces trois équations les inconnues x et y, on
obtient l'équation cherchée

M U. ZZ — -(v — VA.
Vi — Vt

Les coordonnées ponctuelles de ce point sont

v » — v, u, — u,x zz 2 — y zz -—
Wt Vj — U3 Vi Mj V2 — M2 l>4

et l'angle a que fait son rayon vecteur avec l'axe des X est

déterminé par
Uà Ula

4. Droite qui joint deux points donnés (x^y,) et («2,y2). Les

coordonnées u, v de la droite cherchée satisfont aux équations
de condition

uXi + vyt + 1 zz 0,
uxt -f- v?ys + 1 zz 0.

En résolvant ces équations par rapport à m et v, on trouve

pour la droite demandée

u zz
^1 V*

v zz
X* Xî

Xi 2/s xi y{ x{ yi #s yt
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5. Angle de deux droites données (w,^,) et (m2,v2). L'angle
cherché y est égal à ± (*, —- tJ ; donc

m, v, — u. v,
tgyzz ±tg(r, —*t) ± cj fg wj t- 4

M4 M, + Vt Vt

Condition de parallélisme des deux droites (wl7 v4) et

(m,, u,) :

Wjflj — WäD, zz 0.

Condition de perpendicularité des deux droites (uu t'4)

et (ms, vä) :

m4 m, -f- Vi i\ — 0.

6. Distance ô du point (j?,ry) à la droite (u,v). L'équation
en coordonnées ponctuelles de la droite (u, v) étant

ux + vy -f- 1 0,

il s'ensuit qu'on trouve la distance demandée d'après la règle

connue de la géométrie analytique. Cette distance

wg + t)i? + 1

_ fit2 + v1

est considérée comme positive ou comme négative, suivant

que le point donné (£, rf) et l'origine se trouvent du même

côté de la droite donnée ou de côtés différents.

La distance S de l'origine à la droite (u, v) est

1

Observation. On voit sans difficulté que, si le système de

coordonnées adopté avait été oblique (avec l'angle des

coordonnées co), il suffirait de remplacer dans les formules pré-
sin r sin a

cedentes tg t par -:—-, r tga par -r— r tgy par& r sin (w—t) ° r sin (co — a)
siri v

-—;—-—r. Les équations des points et des droites ne se-
sin (w — y)
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raient pas changées, mais il faudrait substituer à la formule

pour d, la suivante :

u§ + vrt -f 1

} u* + v2 — 2 uv cos w
sin co.

7. Transformation de coordonnées.— 1) Passage d'un
système de coordonnées à un système parallèle.

Soit w l'angle des coordonnées, m et n les coordon¬
nées ponctuelles et par conséquent
um + vii + 1 zzO l'équation de la nouvelle

origine 0'. Si u et v sont les
coordonnées tangentielles d'une droite
quelconque par rapport au système de

coordonnées X, Y, u' et v' les

coordonnées de la même droite par rap-
Fig. 2. port au nouveau système X', Y' on a,

en posant «z cy zz — u
1

V —¦ b' '

(fig. 2) les relations

a
T b' '

¦m
b' + n _b'

De ces deux relations, il suit

u'
U rr

v rr

¦mu' — nv' + 1

v'
— mu'—nv' + 1

et

W zz

V'rr

u

mu + nv + 1

v

mu + nv + 1
"

2) Passage d'un système à un autre de même origine.

Soit w l'angle des coordonnées du système donné X, Y,
et soient « et ß les angles que font les nouveaux axes

X', Y' avec l'axe des X, en sorte que ß — « zz es' est le



9 sép.

Fig. 3.
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nouvel angle des coordonnées. Si,
pour plus de brièveté, on introduit
encore l'angle auxiliaire y, c'est-à-
dire l'angle supplémentaire de celui

que fait une droite (u, v) quelconque

avec l'axe des X, la figure 3

donne

a sin (a -f- y) sin a -f- cos cc tg y

a' ~ siny ~ tgy '

b _ sin (ß + y) _ sin ß + cos ß tg y
b' ~~ sin (co + y) ~ sin w + cos w tg /

Mais comme de

b sin y

a
tgy

l'on déduit

sin (m -f- y) sin co + cos co tg y '

b sin to
tg/

on a aussi

a a sin a -f- b sin (m — a) b

a' ~ b sin co ' b'

a — b cos w '

asinß+ 6sin(w—/S)
a sm io

De ces deux équations on tire immédiatement

v sin a -f- u sin (w — a)

D'rr

sin w

v sin ß -\- u sin («j — ß)
sin co

et en résolvant par rapport à u et v :

u' sin ß — v' sin a
W rr r-'-cc- r

sm (/?— a) '

f' sin (dì — a) — u' sin (w — /J)
~ sin(/î — a)
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Remarque. S'il s'agissait de passer d'un système de

coordonnées à un autre système d'origine et de directions d'axes

différentes, il faudrait combiner les deux transformations qui
viennent d'être indiquées.

ETUDE DES COURBES PLANES

8. Lorsqu'il existe entre u et v une relation telle que

F (u, v) rr 0 ou »r/(ti),
chaque couple de valeurs de m et de v détermine une droite

ux + vy -f-1 rr 0 et l'ensemble de ces droites enveloppe
évidemment une courbe de sorte que F(u,v) Q ou u =f(v)
peut être considérée comme l'équation de cette courbe en

coordonnées tangentielles. Trouver l'équation de cette courbe

en coordonnées ponctuelles, revient à trouver l'enveloppe
des droites ux -f- vy + 1 rr 0 sous la condition F (u, v) zz 0.

Si, au contraire, les coordonnées x et y sont liées entre elles

par une équation telle que

<P(as, y) rrO ou y — (p(x)

chaque couple de valeurs de x et de y détermine un point

ux -f vy + l rr 0, et l'ensemble de ces points forme un lieu

géométrique dont l'équation est évidemment <P (x,y)=.0
ou y zz if (x). Trouver l'équation de ce lieu géométrique en

coordonnées tangentielles, c'est trouver le lieu géométrique
des points was + vy +1 rr 0 sous la condition ® (x, y) rr 0.

L'équation ux -f- vy + 1 rr 0, comme on vient de voir,
représente indifféremment un point ou une tangente de la

courbe, suivant que son équation est donnée en coordonnées

ponctuelles ou en coordonnées tangentielles.
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9. Problème de la tangente et de la transformation des

coordonnées ponctuelles en coordonnées tangentielles.

Supposons qu'on donne la courbe sous la forme
symétrique

* 9>(0, y V(0i
où t signifie une troisième variable indépendante, et

désignons par

les dérivées de x et de y par rapport à la variable t. La
tangente en un point (x,y) d'une courbe, étant la droite qui
joint ce point au point infiniment voisin, ses coordonnées

(u,v) satisfont aux deux équations

ux -f vy + 1 zz 0,

ux' + vy' zz 0,

d'où l'on tire

u zz- y
xy' — yx' '

(1)
' ii —

xy — yx1

En introduisant ces valeurs dans l'équation

uì + Vî] + 1 rr 0,

où £ et rj désignent les coordonnées courantes, on obtient

l'équation connue de la tangente

y'
v—y= jr$ — x)-

La direction de la tangente est donnée par

iar — _ Ü — ]L-ÈL — tMg
v ~ x' ~~ dx ~ (p' (t)

•
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Les formules (1) qu'on modifiera facilement, si la courbe
est donnée sous une autre forme, résolvent le problème de

la transformation des coordonnées ponctuelles en coordonnées

tangentielles. En effet, elles expriment u et v en fonction

de t et dans la plupart des cas c'est sous cette forme que
l'étude d'une courbe se fait le plus facilement. Si l'élimination
de la variable t est possible, on obtient l'équation de la courbe

sous une des formes ordinaires F (u, v) rr 0 ou u rz/(t)).

10. Problème du point de contact et de la transformation
des coordonnées tangentielles en coordonnées ponctuelles.

Soit u — ip(l),v — (f(t),

la courbe donnée et u' et v' les dérivées de m et de f par
rapport à t".

Le point de contact d'une tangente donnée n'est autre
chose que le point d'intersection de cette tangente avec la
tangente infiniment voisine ; par conséquent ses coordonnées

x,y doivent satisfaire aux deux équations

ux -f- vy + 1 rr 0,
M'as -f v'y rr 0,

qui donnent

x rr
¦ vu'

¦y — vu — uv'

En substituant ces valeurs dans l'équation

\Jx +Yy + 1 rrO,
où U et V signifient les coordonnées courantes, on obtient

pour l'équation du point de contact

n'
U — mzz4-(V— v).

v'
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Le point de contact se construit avec la même facilité que la

tangente en coordonnées cartésiennes, car on a

t„K_ y _ W _ du _ xp'(t)
s x ~~ v' ~~ dv ~~ y (0

"

Cette construction n'est en défaut que lorsque la tangente

passe par l'origine, c'est-à-dire dans le cas où «r»
et v zz oo.

Les équations (2) permettent de passer de l'équation d'une
courbe en coordonnées tangentielles à son équation en
coordonnées ponctuelles. U suffit d'en éliminer la variable t pour
arriver à une des formes F (x, y) zz 0 ou y rr f(x). (Cf.
Salmon : Treatise on the higher plane curves.)

11. Asymptotes. Si l'on considère les asymptotes d'une
courbe comme des tangentes dont le point de contact se

trouve à l'infini, elles sont comprises dans les tangentes
données par les formules (1). En effet, si

*=îp(0, y=4'(t)
est la courbe donnée, on cherchera les valeurs de t, pour
lesquelles x ou y ou les deux deviennent infinis, et on
obtiendra les segments que déterminent les tangentes
correspondantes sur les axes, en introduisant tour-à-tour les valeurs

trouvées dans les équations

1 xy' — yx1 1 xy' — yx1

u y' ' v x'

On aura une asymptote parallèle à un axe coordonné ou une
asymptote oblique, suivant que par ces substitutions l'une

des expressions — et — ou les deux prendront des valeurs

finies.



406 BULL. H. AMSTEIN SÉP. 14

Exemple. — Le folium de Descartes. L'équation de cette

courbe
xi + y3 — axy zz 0

est identiquement satisfaite, si l'on pose

t t'
x a y rr a

1 + Is ' tf 1 + f
Comme x et y deviennent infiniment grands pour t rr — 1

et que la substitution de cette valeur dans

1 t 1 C2

m 2—f' v 1 —2i3

donne rr — —, rr — —-, la tangente
m 3d 3 °

x + y + ± Q

est une asymptote de la courbe.

Lorsque la courbe est donnée en coordonnées tangentielles

V — <p(t), U — lp(t),

les formules (2) montrent immédiatement que pour les

asymptotes on doit avoir

m u'
v v'

Cette condition est nécessaire, mais non suffisante, car elle

exprime seulement que la tangente et le rayon vecteur de

son point de contact sont parallèles. Si cette condition ne
peut être satisfaite que par u rr v zz 0, la tangente
correspondante se trouve tout entière à l'infini et par suite elle
n'est pas une asymptote proprement dite. Si, au contraire,
une valeur de t, tirée de cette équation de condition, rend
wzzooetvzz=w,ona une tangente passant par l'origine.
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Dans ce cas, il s'agit de vérifier si le point de contact, donné

par x et y, se trouve ou ne se trouve pas à l'infini. Dans tous
les autres cas, une valeur t0 de t, qui satisfait à l'équation
M tt
— rr —r fournit une asymptote v zz y(t0), u rr ip(Q.

Exemple. Choisissons encore le folium de Descartes, qui
cette fois sera donné par

12-/5 \ 1— 2<3

a t ' v - a t" •

De l'équation — —r on tire t zz •— 1. Par conséquent

3 3
« zz — cy zz — est une asvmptote de la courbe.

a a • r

12. Equation du point de la tangente (u, v), dont le rayon
vecteur fait un angle droit avec le rayon vecteur du point de

contact. Courbe correspondante à la développée. Le point en

question joue par rapport au point de contact d'une
tangente le même rôle qu'en coordonnées ponctuelles la
normale par rapport à la tangente. Son équation est, en
désignant par U et V les coordonnées courantes,

U— u — -^(V— v).
u'

De même qu'on traite en coordonnées cartésiennes la

question de la développée, on peut, en coordonnées

tangentielles se poser le problème : Trouver le lieu géométrique

des points situés sur les tangentes d'une courbe donnée,

tels que leurs rayons vecteurs fassent avec les rayons
vecteurs des points de contact un angle droit. En d'autres

termes : Une courbe étant donnée, on demande une autre
courbe telle que si un observateur se place à l'origine et

regarde simultanément le point de contact d'une tangente
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de la courbe donnée et sur cette tangente le point
correspondant de la courbe cherchée, l'angle des deux rayons
visuels soit toujours un angle droit. Ou encore : Un triangle
rectangle à côtés variables dont le sommet de l'angle droit
est placé à l'origine se mouvant de manière que le second

sommet demeure sur une courbe donnée et qu'en ce point
l'hypoténuse soit tangente à la courbe, on demande le lieu

géométrique du troisième sommet.

Soit
V zz (f (t), u rr ip (t)

la courbe donnée. Le point de la courbe cherchée qui
correspond au point de contact de la tangente (u,v) de la

courbe donnée, a pour équation

U — «r- 4-(V— v).
u

Les coordonnées U,V de la tangente en ce point doivent

satisfaire à cette équation et à celle qu'on obtient en la
differential par rapport à t. On a donc pour déterminer U et V

les deux équations

u' (U—u) + V (V—i/)rr0
u" (U —m) + v" (V—v)=u'î + v'\

d'où

V—vzz

U— u- —

M'2 + V'%

l'v"—v'u"
u'2 + v'2

i'v"—v'u"

En éliminant la variable t de ces deux équations on obtient

l'équation de la courbe cherchée sous la forme F (u, v)rr0.
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Exemple 1. La parabole. L'équation en coordonnées

tangentielles de la parabole y% zz 2-pas est

V* ZZ — u.
p

Elle est identiquement satisfaite, si l'on pose

v — t, u rr -|-1\

En appliquant les formules ci-dessus, on trouve pour les

coordonnées U,V d'une tangente quelconque de la courbe
cherchée

Vrr— pH\
Uzzi + -!»/»,

p ^ 2 r '

d'où, en éliminant i,

(U— -LV — — —\ pl ~~ 8 p

Telle est l'équation de la courbe cherchée. En passant aux
coordonnées ponctuelles, il vient

1

xy1 + — as5 + cpy2 — 0.

(Courbe en affinité avec la cissoide.) (PI. 24, fig. 1.)

Observation. Il est clair qu'il aurait suffi de changer dans

l'équation de la développée de la parabole as en U, î/ en V
1

et p en — pour arriver à l'équation demandée.

Exemple 2. L'ellipse. L'ellipse —r + j-- rr 1 a pour équation

en coordonnées tangentielles

a2 m2 + 6V 1.

27
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Une tangente quelconque de cette ellipse est donnée par

_ sin t cos t

a ' b

La tangente correspondante de la courbe demandée se trouve

par les équations

V rr :,-;— cos31

U rr r»— sin3<,

d'où, par l'élimination du paramètre t, il résulte comme

équation de la courbe cherchée

2 s /a2 ;,2. |
(2) («V)3+(6U)3rr(—y-)

Traduites en coordonnées cartésiennes, les équations (1) et

(2) deviennent

- a6* J_
a2 — 62 ' sin t

{ìa) { __j^ _L^ rt2 62 '
COS t

et (2») a*x* + b*f (?~^-y x*y\

(Pl. 24, fig. 2.)

13. Normale et développée. Soient w et i> les coordonnées

d'une tangente quelconque de la courbe donnée, U et V

celles de la normale correspondante. On a pour déterminer

U et V les deux équations

Uw + VvrrO ou w(U — u) + v(Y — v) — (m2 + v2),

v' (U — u) — m' (V — v) zz 0

exprimant que la normale est perpendiculaire à la tangente

et qu'elle passe par le point de contact.
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Delà

U uv — vu

"'uu'+ vv'

V
uv' — vu'

rr — m. ——uu' -f- vv' '

Or, si u et v sont exprimés en fonction d'une troisième
variable t, U et V le seront aussi. Par conséquent ces équations

résolvent le problème de la développée. Il suffit d'en
éliminer t pour avoir l'équation de la développée sous la
forme F (m,?,') zz 0.

Exemple. L'ellipse. L'ellipse étant donnée comme
précédemment par

sin t cos t
u zz v rr —T-a b

on trouve en appliquant les formules ci-dessus

u- a— J- v-— L_
a2 — 62 ' sinT a2 — 62

"
cos «'

d'où il résulte pour l'équation de la développée

(a- _ py u« V rr a3 Vs + 6SU2.

14. Classe d'une courbe algébrique. Lorsqu'on combine

avec l'équation d'un point u rz av + ß, l'équation en

coordonnées tangentielles d'une courbe F (if, i>) rz 0, où F

signifie une fonction entière de u et v du degré n, on obtient

n couples de valeurs (réelles ou imaginaires) qui satisfont

aux deux équations. Cela revient à dire que la courbe admet

n tangentes (réelles ou imaginaires) émanant d'un point
quelconque. Par conséquent, la classe d'une courbe est identique

avec le degré de son équation en coordonnées

tangentielles.

On peut encore remarquer qu'il sera toujours possible de
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disposer de l'une des constantes arbitraires a et ß en sorte

que la résolvante des équations F (u,v) zz 0 et m zz an -f- /S

possède une racine double. Dans ce cas, le point u zz av -f- ß

est le point de contact de la tangente (u,v) correspondante.
Le problème : Etant donné a, déterminer ß de la manière

indiquée, revient à trouver tous les points de la courbe qui
sont situés sur une droite passant par l'origine. En
déterminant les deux constantes a et ß de manière à ce que la
résolvante admette deux couples de racines égales, ce qui
en général est toujours possible, le point ainsi obtenu sera

un point double ou un point de rebroussement. On en conclut

que les courbes de la classe n possèdent en général
des points doubles et des points de rebroussement, tandis

que les courbes de l'ordre n admettent des tangentes doubles

et des tangentes stationnaires comme singularités
habituelles. (Cf. Salmon : Higher pl. curves.)

Exemple. Cherchons les points doubles de la courbe

(u1 + v*)* — m2 + v8 rr 0.

En éliminant de cette équation et de

au + ßv + 1 rr 0

la variable v, on obtient

-, *- tt.+g^±^g+y-^+^ + g)tt+w T" ft* _|_ ß* " ^ (a1 + /î2)2
'

(a2 + /?2)

+ 1+^ -o.

Comme la courbe est symétrique par rapport aux axes
coordonnés il est évident que ses points doubles seront
symétriques par rapport aux axes. Par conséquent, si les points
doubles existent, il doit être possible de donner à a, ß, p
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des valeurs telles que le premier membre de cette équation
devienne identique avec

(w2 —J92)2zz0,

ce qui donne les quatre conditions

_4«_ &g* + tt.ß- + °lß*-ß*_
«2 + ß*

~~ ' («s + ß*y ~ p '

2«(2 + ^)_n _i±£__
(«2+,S2)s -U' (a*+/î*),-p'

d'où l'on tire

«zzO, /J=±]/8, p ±^.
Les deux points doubles de la courbe possèdent donc les

coordonnées a rr 0, ß rr ± /8 ; les tangentes principales
en ces points sont données par

r 1

tt=±K|, v — ± j7=-
(Pl. 24, fig. 3.)

15. Anemie de contingence. L'angle de contingence dr en

un point donné d'une courbe est l'angle que fait la
tangente (u,v) en ce point avec la tangente consécutive. Comme

(Cf. n" 9)

U U
tgr zz ou Tzz—arctg -v v

l'angle de contingence est donné par

vdu — udv
dr rr u* + v*

16. Interprétation de la dérivée seconde. Soit

u=f(v)
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l'équation d'une courbe. On sait que (Cf. n" 10)

tga —/(«),
où ce désigne l'angle que fait le rayon vecteur du point de

contact de la tangente (u,v) avec l'axe des X. De cette équation

on tire
« rr — arctg/'(v)

et par differentiation

da__ /"(»)
dv~ 1-H/W

Par conséquent l'angle a croît ou décroît, suivant que f"(v)
est négatif ou positif.

17. Concavité et convexité d'une courbe. Soit v la variable

indépendante à laquelle on convient de donner des

accroissements positifs dv. Vue de l'origine, la courbe u rr/(«;) sera

convexe ou concave en un point dont la tangente possède
les coordonnées u et v, suivant que pour ces valeurs w et v
les quantités dt etf"(v) sont de même signe ou de signes

contraires.
Cette règle est en défaut : 1° lorsque la tangente au point

considéré passe par l'origine ou qu'elle est une asymptote,
c'est-à-dire dans les cas où dt s'annule ; 2° lorsque f'(v) rr 0.

Dans les deux cas, savoir efcrrO et/"(t>)rr0, le point
considéré est un point singulier qui demande une étude spéciale.

18. Contact des courbes. Lorsque deux courbes

u=f(v) et ut <p(v)

ont en commun une tangente (u,v) et son point de contact,

on dit qu'elles possèdent en ce point un certain contact.
Ce contact est évidemment d'autant plus intime que les

tangentes des deux courbes qui suivent immédiatement la tan-
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gente commune, s'écartent moins l'une de l'autre. En effet,
si trois courbes sont en contact et que la seconde courbe

passe entre la première et la troisième, il est clair que le
contact de cette courbe avec une des deux autres courbes

sera plus intime que celui des deux autres courbes entre
elles. Afin d'obtenir une définition plus précise du contact
de deux courbes, il faut calculer leurs angles de contingence

au point considéré.

Si par un accroissement positif h de la variable indépendante

v la fonction u passe en u + Ju rz/(fl -\-h), «4 en

m, -f- ^w4 zz if (v + h), les angles de contingence Jt et Jtt
deviennent (Cf. n° 15)

vJu—uh vJut— uh

et leur différence est

JUi — Ju
J%i —Jt — —v. —r~.—r—U* + V*

d'où l'on tire

_ Jtt — Jt
H —r ZZ Jut JU,

fc

expression dans laquelle la projection sur l'axe des Y de la

perpendiculaire, abaissée de l'origine sur la tangente
considérée, est représentée par

v
M2 -j- V*

Or, le développement de (JUi — Ju) suivant des puissances
ascendantes de h commencera en général par un terme d'un
ordre supérieur au premier. Divisant encore par h et posant

Jti — Jt JUi — Ju
hk h

Ahm + Bhm+n +

le plus petit des exposants, savoir m, sera appelé l'ordre du
contact des deux courbes.
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Cette définition est en défaut lorsque le point de contact
de la tangente considérée se trouve sur l'axe des Y. Dans ce

cas, il suffit de regarder u comme variable indépendante et

de chercher le développement de —'—? correspondant

à un accroissement h de u.

En général, on aura soin de choisir la variable indépendante

de façon que le développement de (Jut—Ju), ou de

(JVi—Jv) commence par une puissance supérieure à la
première. Alors la définition ne subit aucune exception.

Exemple 1. Les deux courbes

w —lzz (v— \f
Ui — \-(v — \f

ont en commun la tangente wzzMjZzl^rrl et son point
de contact as rr — 1, y rr 0. Pour trouver l'ordre de leur

contact, posons v — 1 -f- h, d'où il suit

Ju —h}-\-

Jui — hx -f

h
1

L'ordre de contact est par conséquent rr T.4

Exemple 2. Les courbes

u —1 (v — 1)*,

Ui— 1 — (v—1)*

ont en commun la tangente w zz m, rr 1, « rr 1 et son point
de contact. Ce point de contact x rr 0, y rr —1 étant situé
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sur l'axe des Y, il convient de regarder u comme variable

indépendante. Il va sans dire qu'on trouvera encore par là

l'ordre de contact rr —
4

Exemple S. Les courbes

u rr v3 «(r«*
se touchent à l'origine. Dans ce cas on a

h

Par conséquent l'ordre du contact des deux courbes à l'origine

est encore zz —

Lorsque les deux fonctions

u —f(v) et Ui rr if (v)

permettent dans le voisinage des valeurs communes v zz v0,
u rr m4 rr w0 le développement suivant le théorème de Taylor,
en sorte que

u0 + Ju =f(v0) +f (v0) .à+f (vQ). £1 +

+ fn^-TJZn+fn+1 ^'ÎIZ^fT) +

h /i2
M0 + JUi rr if (t>„) + cp'(v0). -r -f sp>0) j^ +1.2

+ ^^-l^n+^+l^-T^^)+
la définition indiquée ci-dessus peut s'énoncer comme il suit :

Les deux courbes u=f(v) et Ui (p(v) possèdent en une

tangente commune (w0, v0), qui n'est pas une tangente
singulière pour chacune d'elles, un contact de l'ordre n, lors-
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que pour v — v0 les fonctions f(v) et y>(v), ainsi que leurs n

premières dérivées, affectent les mêmes valeurs, tandis que
les dérivées (n + l)ième fn+x (v) et c/)"*1 (v) prennent des

valeurs différentes. En un tel endroit, les courbes ont (n + 1)

tangentes consécutives communes et le contact se fait avec

ou sans intersection suivant que n est un nombre pair ou

impair.
Toutefois cette définition exige que le point de contact

commun ne soit pas situé sur l'axe des Y.

Exemple. De quel ordre est le contact de la parabole

i + iu + 3u*=v* ou m —— |—L/iqriF
et de la circonférence

2uî + 2«, zz t,2 ou Ui rr- L _ L fî+ï?
au point as rr 1, y rr 0, c'est-à-dire au point de contact de

la tangente commune wzz — 1, « rr 0

Pour v rr 0, il vient M rr — 1,

(£).=•¦(£).=-'• (£).=•¦(£)=9i

«.=-'^a=^)=-^)=o^0=6-
Les trois premières dérivées des fonctions u et w4 étant

égales, les dérivées quatrièmes différentes pour v rr 0, il
s'ensuit que l'ordre du contact des deux courbes rr 3.

19. Cercle osculateur, différentielle de l'arc, rayon de

courbure. Le cercle osculateur en une tangente donnée (u,v)
d'une courbe a trois tangentes consécutives communes avec
la courbe. Par là ce cercle est défini uniformément; car trois

tangentes consécutives étant données, le sens de courbure
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l'est en même temps. Si donc a et ß sont les coordonnées

cartésiennes de son centre, q son rayon, l'équation du cercle

osculateur aura la forme

(aU+iîV+l)2r=ç2(U2 + V«),

et les constantes a, ß et q seront déterminées par les trois
conditions

(ccu + ßv + iY=Q'(ut + v*),

{au + ßv+i)(a*i + ß) Ç.(M^ + V),

a ¦ 4\ d*u / du ,r, /du\* diu'\
(aU + ßV+i)aw + (a- + ßy=Q^l+(a-)+u-w\

qui indiquent que la circonférence admet la tangente (u,v)
et les deux tangentes qui la suivent immédiatement. Au lieu

de résoudre ces équations, ce qui n'offre aucune difficulté,
on se borne à chercher l'expression du rayon de courbure

par la voie suivante :

Supposons la courbe donnée sous la forme

v zz (f (t) «ri/) (t).

Alors on tire des formules

v
vu' — uv'

u'
vu'—uv'

par differentiation

dx

(Cf. n° 10.)

dt " ' (vu' — Ml»')2

dy u'v"—v'u"
dt ~ ' (vu' — uv'Y
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d'où pour la différentielle de l'arc :

u'v" — v'u" ./—r-,—àds rz ± --—-, yu1 + v-(vu — uv y

Le signe du radical sera toujours choisi en sorte que ds soit

positif.

Or, comme o zz -j- il vientK dt

Q
(vu' —uv')SjV + o3-

D'après ce qui vient d'être établi relativement au signe de ds,

il est clair que q aura toujours le signe de dt. En d'autres
termes : Un observateur placé au point considéré de
manière à avoir le point infiniment voisin (correspondant à un
accroissement positif de la variable indépendante) devant

lui, verra le centre de courbure à sa gauche ou à sa droite,
suivant que q sera positif ou négatif.

20. Tangentes multiples. Soit/(U,V)zrO l'équation de la
courbe. D'après le théorème de Maclaurin on peut écrire

/(U,V) zz A0 + A, (V- v) + A2(U-m) +

+ l [Au (V- vY + 2Ad2 (V- v) (U- u) + A2S (U - m)2 ] +

+ |[A«i (V-tO3 + 3Am(V-t,)2 (U-M) +
+ 3Am (V- v) (U- uy + AS22 (U- m)5 ] +

où

A0 f(u,v),Ai=(^)uv,A^Quv,

A - (El) A - dtf\ A - (W\ etcAii~ \dV2A... ' 1S~ VdVdüA. ' ä2_ VdU2/....



29 SÉP. ÉTUDE DES COURBES PLANES BULL. 421

Or, si A0 rr 0, la droite Vrr v, U zz u est une tangente
de la courbe et son point de contact est donné par l'équation

A,(V— v) + A2(U— u) rr 0.

Si on a simultanément A0 rr 0 et At rr A2 rr 0, la droite
V rr v, U rr u est une tangente double de la courbe. Ses

deux points de contact s'obtiennent par l'équation

A14 (V — vy + 2 A15 (V — v) (U — u) + A32 (U — m)2 rr 0.

Pour que la courbe possède une tangente multiple, il faut,

comme on vient de le voir, que/(U,V) satisfasse aux
conditions

A0 rr Aj rr A2 rr u ;

la tangente est double, si les dérivées secondes de /(U ,V),
savoir AM, A12, A22 ne sont pas toutes égales à zéro, et ses

points de contact sont réels ou imaginaires, suivant que

A2 a a >n
¦"•12 AU ¦ti22 ^r u

ils sont réels et ils coïncident, lorsque A^zr AH A22. Dans

ce dernier cas, la tangente considérée est une tangente
singulière de la courbe. Pour reconnaître la singularité qui a

lieu, il faudrait tenir compte des premiers termes d'un ordre

supérieur au second, qui ne s'annulent pas. Comme cette

étude est en général assez pénible, elle ne sera pas poussée

plus loin, attendu que l'on va déterminer les singularités
d'une courbe par un autre procédé qui, le plus souvent,
présente moins de longueur.

On voit facilement quelles sont les conditions qui amènent

une tangente triple, quadruple, etc.

Exemple 1. Pour la courbe

(m2-M2)2 — (w.s — «2) 0

la droite à l'infini (v rr m rr 0) est une tangente double. Ses
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points de contact u rr ± v se trouvent dans les directions

«rz±45°. (PL 24, fig.3

Exemple 2. La courbe

(v— iy + (M —1)*_ 2a (t>— l)3-r-26(w—l)*(v—1) 0

possède une tangente triple Mrzl, «zzi. Les trois points
de contact sont déterminés par les équations

i uzJU + t/fi

21. Eléments singuliers. Soit m rr m0 v rr «0 une tangente

singulière, (a;0, y0) son point de contact. Pour trouver la
forme qu'affecte la courbe en ce point, on prend ce point
pour origine, la tangente considérée pour axe des abscisses et

la normale correspondante pour axe des ordonnées d'un
nouveau système de coordonnées, et l'on développe u et v
suivant les puissances ascendantes d'une troisième variable t.

Ces développements permettent de reconnaître l'ordre dont
m et v deviennent infiniment grands à la nouvelle origine.
On aura par exemple

u—al~m + ait~m + m' +
v= bl-n + bit-n+n' +

où a,aA, b,bi... sont des constantes différentes de zéro,
m et n des nombres entiers, et puisque l'axe des abscisses

est une tangente de la courbe évidemment n > m. Alors
quatre cas peuvent se présenter :

1. Si m est un nombre impair et n un nombre pair, l'élé¬

ment de courbe se trouve des deux côtés
de la normale et en entier du même côté
de la tangente. La singularité en question
tient à ce que le contact de la tangente
avec la courbe est d'un ordre différent du

Fig. a. premier.



31 sép.

Fig. 5.

Fig. 6.

Fig. 7.

ÉTUDE DES COURBES PLANES BULL. 423

2. Soient m et n des nombres impairs.
Alors l'élément de courbe possède des

points des deux côtés de la normale et

en même temps des deux côtés de la

tangente. Le point considéré est un point
d'inflexion.

3. Lorsque m est un nombre pair,
n un nombre impair, l'élément de courbe

se trouve des deux côtés de la tangente
et en entier du même côté de la normale

et le point singulier est un point de

rebroussement de la première espèce.

4. Si enfin m et n sont des nombres

fairs, l'élément reste en entier non-seulement

du même côté de la tangente,
mais aussi du même côté de la normale.

Le point critique est alors un point de

rebroussement de la seconde espèce.

Exemples. L'origine est un point singulier pour les quatre
courbes

1) w.rr v3 ou
tu t-i
Ì v —:t-

- (mrr t~
3) v rr u'- -f u2 ou

v — t-u + l

,; 2) u-v3 ou
Mrr<-2
frr<-3'

â (u — t-v ou uni-
savoir un point d'inflexion pour la première, un point de

rebroussement de la première espèce pour la seconde et un

point de rebroussement de la seconde espèce pour la
troisième. La singularité de la quatrième courbe consiste en ce

1

qu'à l'origine, la courbe forme un contact de l'ordre •-- avec

l'axe des X. (Pl. 24, fig. 4-7.)
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Exemple 5. On propose de chercher les singularités de la
courbe

(u + \y ~(v+iy.
En posant

t u — (1 + e)
v — 1-M3

cette équation est identiquement satisfaite. On reconnaît
facilement que l'origine est un point de rebroussement de la

première espèce et que la tangente u=z — 1, «rr — 1 avec
le point de contact x rrO, y rr 1 est une tangente singulière.
Pour trouver la forme qu'affecte la courbe en ce dernier

point, on transporte d'abord l'origine du système de

coordonnées au point asrrO, wrz 1, ce qui donne (Cf. n° 7,1.)

1 + P — 1 + <3

ui — iz— v, — *

et l'on tourne ensuite les axes coordonnés d'un angle de

— 45°. (Cf. n° 7,2.). Alors il vient

«,= _ *
(|-» + l); Pj=-L(_2t — _*--' + l).

Comme dans ce cas m zz 1, n zz 3, le point considéré est un

point d'inflexion. (Pl. 24, fig. 8.)

22. Polaires réciproques. L'équation de la polaire du point
(£, rj) par rapport à la circonférence as2 + m2 rr 1 est

$x + »£!/—1.

Si l'on pose £rr—u. y — — v, on obtient l'équation

Ma; + vy -f 1 rr 0

qui a servi de point de départ au présent mémoire. Suivant

qu'on l'interprète en coordonnées ponctuelles ou en coor-
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données tangentielles, elle représente soit la polaire du point
(£,i?), soit le pôle de la droite Sx + rjy^z 1. La polaire d'un

point figure ainsi comme lieu géométrique des pôles de toutes
les droites passant par ce point, et le pôle d'une droite est

l'enveloppe de toutes les polaires des points de cette droite.

Lorsque le point (ï,r;) décrit une courbe/(ï,rj) zz 0, la

droite (u,v), polaire du point (jf,ij), enveloppe une seconde

courbe /(— u, — v) zz 0. Deux courbes, liées entre elles de

la manière indiquée, ont été appelées des polaires réciproques

par rapport à la circonférence a;2 + w2 — 1. Les substitutions

£ zz — u, iq— — v

dans l'équation /(?,»,) zz 0 et

M zz — §, v rr — r,

dans l'équation /(w ,t')rr0 résolvent par conséquent le

problème de trouver en coordonnées °, „ "la polaire
ponctuelles c

v -, j ponctuelles
réciproque d une courbe donnée en coordonnées T .¦ ii j.
En même temps ces considérations permettent de reconnaître
la nature intime des coordonnées tangentielles.

Les relations £ rr — u, ?jrr —v entraînent les autres qui
suivent :

777=7777' J 7r ì^+^=ì^ + v-,

d'où il résulte que la tangente au point (£,?;) de la courbe

f(§, ij) rr 0 est perpendiculaire au rayon
vecteur du point de contact delà tangente

(—u, — v) de la courbe/(—u, —v) 0

et réciproquement, et que le rayon vecteur

du point (?,»/) est la valeur

réciproque de la distance de l'origine à la

tangente (—m,—v). (Cf. n° 6.)

28
Fi
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Le principe de la dualité que l'on rencontre ici, règne dans

toute la géométrie. Aussi les géomètres se sont-ils servis de

ce puissant instrument pour doubler en quelque sorte les

résultats de leurs recherches. Il serait inutile d'insister plus

longuement sur ce principe qu'on trouve développé dans

tous les bons ouvrages sur la géométrie analytique, notamment

dans les excellents ouvrages de M. Salmon. Qu'il suffise

d'avoir montré le rapport qui existe entre les coordonnées

ponctuelles et les coordonnées tangentielles.

23. Podaire d'une courbe par rapport à l'origine. Si d'un

point donné A on abaisse des perpendiculaires sur toutes les

tangentes d'une courbe donnée, le lieu géométrique des pieds
de ces perpendiculaires est une courbe qu'on appelle la
podaire de la courbe donnée par rapport au point A. On va
chercher les relations qui existent entre les coordonnées

tangentielles (u,v) d'une tangente quelconque d'une courbe et

les coordonnées ponctuelles (x,y) du point correspondant de

sa podaire par rapport à l'origine. Soit

ux -f vy + 1 rr 0

la tangente considérée,

uy — va? rr 0

la perpendiculaire abaissée de l'origine sur cette tangente.
De ces deux équations on tire

(1)

[y

M
_ u- + V* '

V

~ v.r + »4 '

et réciproquement :

/ X
l M rr

(2)
y + y' '

y
x- + i/ '
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Ces formules résolvent le problème de la podaire et le
problème réciproque. En effet, si/(«,i>) rr 0 est la courbe don-

née i /( —
a;i + yi ' — F+7/ ° est l'équation de sa

podaire, et si <p(x,y) 0 est l'équation de la courbe donnée,

V — -r~i—2 > ï~~;—î — 0 sera celle de la courbe dont
m2 + v1 ir + v2 '

la proposée est la podaire.

Exemple 1. Si l'on fait les substitutions (2) dans l'équation
de l'ellipse

a2u2 + òVrr 1,

il vient pour la podaire par rapport à l'origine

a2 ai2 + b*y* (x* + w2)2.

Exemple 2. Pour la parabole

p(u* + v2) zz 2u,

rapportée à son foyer, on obtient la podaire

as2 + m2 2.«
_ p

p- (x*+y*y — ~ x2 + y* ' °U X — ~~
2 '

Exemple 3. La lemniscate

(as2 + y2)2 — a" (x* — y2) rr 0

est la podaire de l'hyperbole equilatere

a2 (m2— v3) rr 1.

24. Courbes équidislanles. Lorsqu'on porte des deux côtés

des points d'une courbe donnée sur les normales une

longueur constante k, l'ensemble des points ainsi obtenus forme

une nouvelle courbe (qui dans certains cas peut dégénérer

en deux courbes différentes) qu'on appelle courbe equidistante

de la courbe proposée. Elle peut aussi être considérée
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comme l'enveloppe d'un cercle de rayon k dont le centre

se meut le long de la courbe donnée. De ces définitions il
suit immédiatement que les tangentes en des points
correspondants des deux courbes sont parallèles. C'est cette

propriété qui servira à établir l'équation de la courbe equidistante

en coordonnées tangentielles.

Soit/(m, t») rr 0 la courbe donnée. Si ç rr -— est la
y m2 + v2

distance de l'origine à une tangente quelconque (u,v) de

cette courbe

1 1

(1) Q±k -==-=- dr fc

/m2 + v* /U2 +V2

sera la distance de l'origine à la tangente correspondante
(U,V) de la courbe equidistante. Comme ces tangentes sont

parallèles, on a de plus

En résolvant les équations (1) et (2) par rapport à u et v on
trouve

U
1=F fc|/U2-l-V2'

_ V" 1 rr: k j/lP+V2 '

En conséquence, pour obtenir l'équation de la courbe
equidistante, il suffit de remplacer dans l'équation donnée u et v

par les valeurs trouvées.

Exemple 1. Si l'on fait les substitutions indiquées dans

l'équation de la circonférence de rayon r et du centre (a,ß),

(au + ßv + l)2 rr r- (m2 + v1),

il vient
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(«U + ßY + 1 qr k yU2+V2)2 rr r2(U2 +V2)

ou
(«U + ßY + l)2 rr (r ± k)3 (U2 + V2),

ce qui représente deux circonférences concentriques des

rayons (r ± k).

Exemple 2. Pour l'ellipse a2m2 + 62t'2 rr 1 ou

U :

cos w sin w— v —Kl

a b

on trouve

U _ cos (p Y sinfp
1 =F k i/u2 +V2 a ' 1 rcfc yu»-t_v4 - f

d'où, en éliminant 1 'angle <f

a2U2 + b1 V2 rr (1 rc k yTF+V2)2.

Remarque. Afin de faire un travail un peu complet, tout
en conservant le cadre limité de ce mémoire, il a fallu aborder

le problème des courbes équidistantes, bien que cette

partie du mémoire, comme du reste plusieurs autres qui ont
été ajoutées dans le même but, n'offre absolument rien de

nouveau. Pour plus de détails, on renvoie le lecteur à

l'ouvrage, cité déjà plusieurs fois : Salmon, Higher pl. curves.

25. Problème analogue à celui des trajectoires. La
traduction du problème des trajectoires isogonales en
coordonnées tangentielles donne lieu au problème suivant qui
ne manque pas d'intérêt : Etant donné un système de

courbes /(m,v:a) rr 0, où a signifie un paramètre variable,
trouver un autre système F(m,î;;C) 0 tel que chaque
courbe de l'un des systèmes ait au moins une tangente
(réelle ou imaginaire) commune à chaque courbe de l'autre
système et que les rayons vecteurs des points de contact
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(ou le prolongement de l'un d'eux) fassent entre eux un
angle constant ß, en sorte que pour un observateur à l'origine

qui regarderait simultanément les deux points de contact

des tangentes communes, l'angle des rayons visuels soit

toujours le même.

Soit _, du\ 0

l'équation différentielle du système de courbes

donné. On en tire

tgarr-
du
dv — (f(u,v).

Fig. 9.

Or, pour les courbes cherchées on doit
avoir

-£=»<.+» tg« + tg/? _ — <f>(u,v) + tgß
1— tgatgß l+(p(u,v).tgß'

L'équation différentielle du système de courbes cherché est

par conséquent

du <p(u,v) — tgß
dv — 1 + <p(u,v).tgß '

L'intégrale générale de cette équation résout le problème

proposé.
Dans le cas particulier /5rr90°, l'équation différentielle

des courbes cherchées prend la forme simple

1du
dv <p (u,v)

Exemple. On demande de résoudre le problème énoncé

pour les paraboles confocales avec l'origine comme foyer

commun



du
dv ~

luv

celle des courbes cherchées devient

du, V* — M2

dv 2m v
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(1) M2 + l2 ZZ —v a

et ß rr 90°.

L'équation différentielle du système donné étant

i

¦

L'intégrale générale de cette dernière est

(2) «2 + v* -rr ¦

¦

On reconnaît aisément que ces courbes sont identiques, à

l'inversion des axes près, avec les courbes données.

Comme les équations (1) et (2) sont satisfaites pour
m rz v rr 0, la droite à l'infini est une tangente commune à

toutes les courbes. Deux courbes quelconques des deux
systèmes possèdent en outre la tangente commune

2a 2C
yrzw-a2 + C2' a2 + C2'

sa direction est donnée par

m a

Lorsque a rr C, il vient u rr v, c'est-à-dire la tangente

commune à deux courbes correspondant à la même valeur
des paramètres a et C, fait l'angle r rr — 45° avec l'axe

des X. On peut observer encore que ses points de contact

se trouvent sur les axes coordonnés. (Pl. 25, fig. 9.)
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